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ABSTRACT

Unsupervised domain adaption (UDA), as a form of transfer learning, seeks to
adapt a well-trained model from supervised source domains to an unlabeled target
domain. However, most existing UDA approaches have two limitations. Firstly,
these approaches assume that the source and target domains share the same lan-
guage vocabulary, which is not practical in real-world applications where the tar-
get domain may have distinct vocabularies. Secondly, existing UDA methods for
core vision tasks, such as detection and segmentation, differ significantly in their
network architectures and adaption granularities. This leads to redundant research
efforts in developing specialized architectures for each UDA task, without the
ability to generalize across tasks. To address these limitations, we propose the
formulation of unified language-driven multi-task domain adaption (LAMDA).
LAMDA incorporates a pre-trained vision-language model into the source do-
mains, allowing for transfer to various tasks in the unlabeled target domain with
different vocabularies. This eliminates the need for multiple vocabulary-specific
vision models and their respective source datasets. Additionally, LAMDA enables
unsupervised transfer to novel domains with custom vocabularies. Extensive ex-
periments on various segmentation and detection datasets validate the effective-
ness, extensibility, and practicality of the proposed LAMDA.

1 INTRODUCTION

In recent years, there has been remarkable progress in achieving high performance in diverse visual
tasks, thanks to the utilization of large-scale fine-grained annotated datasets. Nevertheless, the pro-
cess of collecting and annotating these extensive training data is not only financially burdensome
but also demanding in terms of time and effort. To overcome this challenge, the research commu-
nity has turned its attention towards unsupervised domain adaption (UDA) techniques, which aim to
adapt a vision model that has been pre-trained on labeled source domains to target domains utilizing
unlabeled target images (Hoyer et al. (2023); Zhang et al. (2023); He et al. (2021)).

Notwithstanding the significant advancements made in the field of unsupervised domain adaption
(UDA), there remain two prominent limitations within the existing literature. Firstly, a prevalent
assumption in most UDA tasks is that the source and target domains share a common vocabulary.
However, this assumption becomes a significant challenge when dealing with target domains that
possess distinct vocabularies, severely constraining the flexibility and efficiency of unsupervised
transfer. Secondly, it is worth noting that existing UDA methods for core vision tasks, such as de-
tection and segmentation, exhibit notable disparities in terms of network architectures and adaption
granularities, as evidenced in previous studies (Hoyer et al. (2023); Huang et al. (2023)). Although
these specialized architectures have propelled the progress of individual tasks, they lack the versa-
tility to generalize across different tasks. Consequently, redundant research efforts, along with hard-
ware optimization, are expended on developing specific architectures for each UDA task, without
the existence of a mature unified UDA framework that encompasses both tasks.

In light of these limitations, for the first time, we propose the novel formulation of unified language-
driven multi-task domain adaptation (LAMDA), inspired by vision-language models (VLMs) (Rad-
ford et al. (2021b)) which have demonstrated their efficacy in enabling open-vocabulary visual
recognition through the fusion of image and text reasoning. Building upon this, LAMDA serves
as an unsupervised domain adaptation (UDA) framework that harnesses the power of a pre-trained
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VLM in the source domains, facilitating its transfer to diverse unlabeled target domains. Notably,
LAMDA stands out by requiring just a single pre-trained VLM to adapt to target domains char-
acterized by varying vocabularies. This eliminates the need for multiple vocabulary-specific vision
models, along with their associated source datasets. Moreover, LAMDA offers the unique advan-
tage of unsupervised transfer to novel domains featuring custom vocabularies. By alleviating the
burdensome requirements of extensive image annotation, LAMDA enhances deep network training
capabilities, enabling effective handling of a wide range of visual recognition tasks. Importantly,
LAMDA serves as a unified UDA framework for both detection and segmentation, surpassing the
limitations of specialized architectures that are task-specific. It outperforms these specialized archi-
tectures across various UDA tasks, while maintaining ease of training and adaptability to every UDA
task.

Overall, our contributions are summarized as follows: First and foremost, to the best of our knowl-
edge, LAMDA represents the pioneering language-driven multi-task framework for unified seg-
mentation and detection domain adaption. Secondly, we introduce the hierarchical visual-language
alignment (HVA), to enhance the language-driven learning by leveraging both intra-source domain
and inter-source-target domain information, along with promptable language-task learning (PLL) to
mitigate the inter-task differences and inter-domain discrepancies in context distributions. Finaly,
comprehensive experiments are conducted to demonstrate the universal effectiveness and practical-
ity of LAMDA in the domains of both segmentation and detection tasks.

2 RELATED WORK

2.1 UNSUPERVISED DOMAIN ADAPTION

Unsupervised domain adaption (UDA) is a form of transfer learning that seeks to adapt a model,
previously trained on labeled source domains, to unlabeled target domains (Bengio (2012)). Given
the prevalence of domain gaps across various vision applications, UDA methods have found wide-
ranging applications in major vision tasks, such as semantic segmentation (Hoyer et al. (2022b)), ob-
ject detection (Chen et al. (2021); Li et al. (2022b)), and image classification (Hoyer et al. (2022a)),
and have even been extended to other tasks like instance segmentation (Deng et al. (2022)). How-
ever, existing UDA methods primarily concentrate on designing specialized networks for single-task
learning due to the differences in output formats and network architectures across different tasks.
Consequently, there is a lack of flexibility in generalizing these methods to other tasks.

2.2 LANGUAGE-DRIVEN TASK

The application of language-driven techniques to existing tasks represents a dynamic and constantly
evolving research domain that continues to push boundaries. Notable tasks in this field include, but
are not limited to, segmentation (Li et al. (2022a)), image editing (Fu et al. (2022)), and style trans-
fer (Fu et al. (2022)). The emergence of CLIP (Radford et al. (2021a)) has demonstrated the poten-
tial of language assistance in traditional vision tasks that traditionally have no explicit connection
to language. However, the application of language-driven techniques to domain adaption remains
relatively unexplored. Only one previous work (Huang et al. (2023)) has introduced the concept
of open-vocabulary domain adaption, but their applicability is limited to image recognition tasks
alone. To the best of our knowledge, LAMDA represents the pioneering comprehensive framework
that formulates a unified approach, integrating various language-driven settings, to multiple core
vision UDA tasks.

3 METHOD

3.1 PRELIMINARY OF UDA

In classical single-source UDA, a model fθ can be trained on source domain S while adapted to the
unlabeled target domain T. In the source domain S = {(xS

kS , y
S
kS)}(kS ∈ [1, NS]), where xS

kS , ySkS

and NS represent the kS-th image, its label and number of images in the source domain, respectively.
The unlabeled target domain T = {xT

kT}(kT ∈ [1, NT]) is similar. UDA is applicable to various

2



Under review as a conference paper at ICLR 2024

Image 
Encoder

Text 
Encoder

Lean-able 
Task Prompt

Lean-able 
Class Prompt Class Emb. Task Emb.

Cross-modal Fusion
Task-Conditioned 

Initialization

Region 
Decoding

Mask 
Decoding

region query mask query

Source Domain
Image !!"

Target Domain
Masked Image !!#

Source Domain
Image !$"

Target Domain
Image !!#

Target Domain
Masked Image !$#

Target Domain
Image !$# EMA Update

EMA Teacher
Mask

in
te

r-
so

ur
ce

m
ul

ti-
so

ur
ce

-m
as

ke
d-

ta
rg

et
m

ul
ti-

so
ur

ce
-ta

rg
et

in
tra

-s
ou

rc
e

Adaptation 
loss

LMC 
loss

Prediction
Heads

Main Network

Supervised 
loss

Pseudo Label

Alignment
 loss

Language-Guided Masked Consistency
Hierarchical Visual-Language

Alignment

Figure 1: The overview of the proposed LAMDA, which can be semantically divided into three parts:
Main Network, Language-Guided Masked Consistency (LMC), and Hierarchical Visual-Language
Alignment (HVA).

vision tasks, for semantic segmentation, the overall training loss is typically as,

L = LS + λLT =

NS∑
kS=1

1

NSL
ce(fθ(x

S
kS), y

S
kS) + λT

NT∑
kT=1

1

NTL
T
kT (1)

where LS,LT are the supervised source loss and unsupervised adaption loss. λT is loss weight. Lce

is the basic cross-entropy loss, and can be replaced with box regression and classification loss for
object detection. LT

kT is defined according the UDA strategy (Hoyer et al. (2023)) such as adversarial
training or self-training. In the classical UDA, both the source and target domains share the common
vocabulary.

3.2 UNIFIED LANGUAGE-DRIVEN MULTI-TASK UDA

Our work focus on building up the novel unified language-driven multi-task UDA (LAMDA) frame-
work for both semantic segmentation and object detection. Let V be the language category set in
source domain, and the goal of LAMDA is to learn and adapt to perform segmentation/detection on
visual concepts in V in training, and able to generalize to unseen categories on the unlabeled target
domain.

As depicted in Figure 1, the proposed framework can be conceptually divided into three components:
Main Network, Language-Guided Masked Consistency (LMC), and Hierarchical Visual-Language
Alignment (HVA). The Main Network is responsible to receive the images from both source and
target domains for supervised source training, unsupervised domain adaption respectively, where
we formulate a unified proposal decoder for both semantic segmentation and object detection. Since
there is no ground truth supervision for the target domain adaption, inspired by the success of masked
image modeling (MIM) in self-supervised learning, we propose to specifically enhance the explo-
ration of context relations on the target domain with LMC to provide additional clues for robust
self-representation with similar local appearance. Finally, HVA is proposed to enable target domain
with open-vocabulary understanding, from the visual-language alignment learning.

3.2.1 MAIN NETWORK

The Main Network contains the following three parts. We aim to construct a unified framework for
both semantic segmentation and object detection domain adaption. Note that the framework is able
to easily extend other core vision tasks such as instance segmentation and depth estimation.

Text Encoder: Given the language category set V, the text encoder represents each of its text item
into text embeddings. Generally, the text encoder can be usual language-based architectures, here
we follow the common practice and exploit the pretrained Contrastive Language–Image Pre-training
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(CLIP) (Radford et al. (2021a)). According to characteristic of CLIP, the order of input texts is
irrelevant to the set of output vectors.

Image Encoder: As a common block, image encoder takes image as input and produces pixel-
wise visual embeddings, generally, with downsampling for the sake of memory efficiency. Formally,
given an input image RH0×W0×3, the output visual embedding can be denoted as RH×W×C , where
H = H0

d ,W = W0

d , d is the downsampling rate. We exploit the Swin (Liu et al. (2021)) transformer
as image encoder in our framework.

Unified Proposal Decoder: In order to unify the training of both semantic segmentation and object
detection, we formulate the unified proposal decoder (UPD), which queries the visual features ex-
tracted by the image encoder into visual concepts and class-agnostic proposals for both the tasks.
Due to the intrinsic discrepancies between the segmentation and detection: the former requires the
recognition of both foreground and background while the latter focuses solely on localizing fore-
ground objects, we exploit two individual queries to avoid the task conflicts that may significantly
degrade performance. As shown in Figure 1, UPG is a unified decoder which consists of both the
region decoding (for detection) and mask decoding (for segmentation) capability, corresponding to
individual region query and mask query.

Promptable Language-Task Learning: Due to the inter-task differences between segmentation
and detection, it is very hard for a single architecture to take into account both the language-driven
UDA tasks in the absence of concrete task guidance, despite with UPD. Thus, we further adopt the
Promptable Language-Task Learning (PLL) mechanism to collaboratively embed the language and
task prompts. By this way, the multiple tasks are able to be encapsulated in a unified framework
which effectively disentangles the parameter spaces to avoid the training conflicts in different tasks.
Meanwhile, PLL is able to realize dynamic language vocabulary to popularize the framework to
generalize to broader unseen categories and improve open-domain performance. In concrete, we
formulate the prompt template as P (⋆) = [∗, ∗, ..., ⋆, ..., ∗, ∗], where ⋆ is task text (e.g. semantic
segmentation, object detection) or category text, and ∗ is learn-able vector. Then we model a joint
language-task textual space with the general pre-trained CLIP Text Encoder T, to get the multi-
granularity embeddings E:

E = Cat(ET , EC) = Cat(T(P (T )),T(P (C))) (2)

where Cat(·) indicates the concatenation operation. ET , EC are the language category and task
text embedding respectively. It is worth noting that the input category can be arbitrary, so E can
seamlessly adapt to unseen categories for open vocabulary segmentation and detection.

3.2.2 LANGUAGE-GUIDED MASKED CONSISTENCY

Predicting withheld tokens of a masked input sequence/image has shown to be a powerful self-
supervised pretraining task in both natural language processing and computer vision. Inspired by
the success of MLM and MIM, we propose the Language-Guided Masked Consistency (LMC) to
provide additional clues for robust recognition of classes with similar local appearances from differ-
ent parts of the image. This can be local information, which originates from the same image patch
as the corresponding cell in the feature map, or context information, which comes from surrounding
image patches that can belong to different parts of the object or its environment.

In order to build the LMC self-learning paradigm, firstly, we utilize a exponential moving average
(EMA) teacher f

′

θ with smoothing factor α on the weight of fθ:

f
′

θ;t+1 ← αf
′

θ;t + (1− α)fθ;t (3)

where t indicates the training step. By this way, EMA teacher is able to obtain the enhanced context
learning capability from fθ, and exploit both the context and the intact local appearance information
to generate pseudo labels of higher quality.

Different from the previous MIM using randomly sampling which may not provide the important
clues needed to reconstruct the foreground objects (in the case of remaining visible patches only
containing backgrounds), LMC introduces the language-guided masking paradigm to improve the
reconstruction efficiency, by making more rational decisions on which patches to mask. Specifically,
we query the visual concept F ∈ RS×d (S is the sequence length and d is the embedding dimension)
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from the last layer of image encoder of f
′

θ with the language embedding EC ∈ R, to discriminate
these semantically important patch clues:

M =
1

H

H∑
j

softmax(
(EC

j WQ;j)([E
C
j , F ]WK;j)

⊤
√
d

) (4)

where H is the number of self-attention heads, WQ;j , WK;j are the projection matrices of query and
key respectively. [·, ·] is the concatenation operation, for simplicity we omit the MLP layers to unify
the feature dimensions. M is the language-visual cross-modal attention map and the magnitude of
its elements is able to reflect the weights of the corresponding image patch contributing to the output
feature of image encoder. Thus we utilize M to guide the masking location on image patches with
a multi-normal distribution sampling, and finally obtain the masked target image x̂T by masking the
target domain image xT.

In order to maintain the self-consistency of the masked target image using the remaining context
clues, we formulate the LMC loss as:

Llmc = λlmcLce(fθ(x̂
T), f

′

θ(x
T)) (5)

where f
′

θ(x
T) is the pseudo label produced by the teacher network on the complete target domain

image xT. Considering that the pseudo label may not be reliable especially in the very beginning of
training, we add the quality weight λlmc which defined as the maximum softmax probability in f

′

θ
prediction.

3.2.3 HIERARCHICAL VISUAL-LANGUAGE ALIGNMENT

In order to take full advantage of both source domain and target domain to enhance the language-
driven open-vocabulary learning while mitigating the inter-domain discrepancies in context distri-
butions, we propose the Hierarchical Visual-Language Alignment (HVA) to align all the proposals
(detection/segmentation) with language vocabulary, then leverage CLIP to perform zero-shot clas-
sification on the proposals. In each training batch, the input images reflect three levels of domain
hierarchy: intra-source, inter-source. With the language-task prompt guidance, we obtain all the
generated proposals by UPD, which come from both source and target domains.

Formally, given the input images set I = {xS
1, x

S
2, x

T
1 , x

T
2 , x̂

T
1 , x̂

T
2}, where xS

1, x
S
2 are two individual

images in source domain, xT
1 , x

T
2 are two individual images in target domain respectively, x̂T

1 , x̂
T
2 are

masked xT
1 , x

T
2 by LMC. Except for x̂T

1 , x̂
T
2 which are only used for LMC, we obtain all the proposal

outputs

O = {oS1;1, oS1;2, ..., oS1;pS
1
, oS2;1, o

S
2;2, ..., o

S
2;pS

2
, oT1;1, o

T
1;2, ..., o

T
1;pT

1
, oT2;1, o

T
2;2, ..., o

T
2;pT

2
} (6)

which corresponds to the outputs of input images respectively. pS1, pS2, pT1 , pT2 are the number of
proposals in the corresponding outputs respectively. Finally, we set up the cross-modal contrast-
alignment to enforce the alignment between embedded visual proposal representations O and the
language-task text embedding E, which ensures that visual embeddings and its corresponding text
tokens are closer in the feature space compared to embeddings of unrelated tokens. Formally the
contrastive loss is defined as:

Lalign = Lalign
O + Lalign

E =−
[S,T]∑
m

pm∑
i=1

1

L

L∑
j=1

log

(
exp(omi

⊤tj/τ)× 1(yi == j)∑L
k=1 exp(o

m
i

⊤tk/τ)

)

−
[S,T]∑
m

L∑
i=1

1

pm

pm∑
j=1

log

(
exp(t⊤i o

m
j /τ)× 1(yj == i)∑pm

k=1 exp(t
⊤
i o

m
k /τ)

)
yi = argmax

j
omi

⊤tj , yj = argmax
i

t⊤i o
m
j

(7)

where τ is the temperature parameter.

3.2.4 OVERALL LOSS FORMULATION

Therefore, the overall loss formulation include four parts: segmentation/detection supervised loss
LS for source domain, basic unsupervised adaption loss LT, LMC loss Llmc and visual-language
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Method Road S.walk Build. Wall Fence Pole Tr.Light Sign Veget. Terrain Sky Person Rider Car Truck Bus Train M.bike Bike mIoU

Synthetic-to-Real: GTA→Cityscapes (Val.)

ProDA 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
DAFormer 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3
HRDA 96.4 74.4 91.0 61.6 51.5 57.1 63.9 69.3 91.3 48.4 94.2 79.0 52.9 93.9 84.1 85.7 75.9 63.9 67.5 73.8
MIC (HRDA) 97.4 80.1 91.7 61.2 56.9 59.7 66.0 71.3 91.7 51.4 94.3 79.8 56.1 94.6 85.4 90.3 80.4 64.5 68.5 75.9
LAMDA 97.8 81.5 92.1 62.3 57.5 60.1 65.8 73.6 91.9 52.4 93.6 80.3 57.5 94.7 85.9 89.9 81.3 65.9 69.1 76.5

Synthetic-to-Real: Synthia→Cityscapes (Val.)

ProDA 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 – 84.4 74.2 24.3 88.2 – 51.1 – 40.5 45.6 55.5
DAFormer 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 – 89.8 73.2 48.2 87.2 – 53.2 – 53.9 61.7 60.9
HRDA 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 – 92.9 79.4 52.8 89.0 – 64.7 – 63.9 64.9 65.8
MIC (HRDA) 86.6 50.5 89.3 47.9 7.8 59.4 66.7 63.4 87.1 – 94.6 81.0 58.9 90.1 – 61.9 – 67.1 64.3 67.3
LAMDA 86.7 49.5 89.4 49.6 10.9 60.8 65.6 65.1 86.5 - 95.9 80.7 60.1 90.2 - 65.4 - 64.7 70.3 68.2

Day-to-Nighttime: Cityscapes→DarkZurich (Test)

DANNet† 90.0 54.0 74.8 41.0 21.1 25.0 26.8 30.2 72.0 26.2 84.0 47.0 33.9 68.2 19.0 0.3 66.4 38.3 23.6 44.3
DAFormer 93.5 65.5 73.3 39.4 19.2 53.3 44.1 44.0 59.5 34.5 66.6 53.4 52.7 82.1 52.7 9.5 89.3 50.5 38.5 53.8
HRDA 90.4 56.3 72.0 39.5 19.5 57.8 52.7 43.1 59.3 29.1 70.5 60.0 58.6 84.0 75.5 11.2 90.5 51.6 40.9 55.9
MIC 94.8 75.0 84.0 55.1 28.4 62.0 35.5 52.6 59.2 46.8 70.0 65.2 61.7 82.1 64.2 18.5 91.3 52.6 44.0 60.2
LAMDA 96.7 79.7 84.8 49.4 34.4 62.9 50.1 49.6 57.7 45.8 71.7 66.5 62.3 84.7 - - 88.7 53.0 45.7 63.2

Clear-to-Adverse-Weather: Cityscapes→ACDC (Test)

DANNet† 84.3 54.2 77.6 38.0 30.0 18.9 41.6 35.2 71.3 39.4 86.6 48.7 29.2 76.2 41.6 43.0 58.6 32.6 43.9 50.0
DAFormer 58.4 51.3 84.0 42.7 35.1 50.7 30.0 57.0 74.8 52.8 51.3 58.3 32.6 82.7 58.3 54.9 82.4 44.1 50.7 55.4
HRDA 88.3 57.9 88.1 55.2 36.7 56.3 62.9 65.3 74.2 57.7 85.9 68.8 45.7 88.5 76.4 82.4 87.7 52.7 60.4 68.0
MIC (HRDA) 90.8 67.1 89.2 54.5 40.5 57.2 62.0 68.4 76.3 61.8 87.0 71.3 49.4 89.7 75.7 86.8 89.1 56.9 63.0 70.4
LAMDA 98.5 66.3 87.6 48.7 39.8 65.8 78.1 65.4 84.6 59.8 84.3 69.5 50.3 92.8 82.4 90.3 94.5 57.6 64.2 72.7

Multi-Source: GTA5 + Synthia → Cityscapes (Val.)

MIC∗ 97.61 81.34 92.01 62.38 56.91 60.23 67.00 72.26 92.70 51.88 95.11 81.22 57.21 95.00 87.10 88.87 80.62 65.32 68.02 76.46
LAMDA 98.17 82.73 92.57 63.48 57.37 61.03 66.17 74.56 92.89 52.78 94.48 81.62 58.50 95.08 87.15 88.12 81.58 66.72 69.09 77.06

Multi-Source: GTA5 + Synthia + BDD100K → Cityscapes (Val.)

MIC∗ 97.00 82.21 93.12 65.98 47.81 66.83 67.23 76.06 92.13 56.08 92.41 83.22 59.07 95.40 87.32 88.97 80.99 66.82 69.03 77.24
LAMDA 98.35 84.39 94.96 66.65 46.03 65.25 67.72 75.68 93.73 57.72 92.46 83.25 59.49 94.08 87.73 88.58 82.57 67.99 69.39 77.69

Source-Only: GTA5 → Cityscapes (Val.)

MIC 82.64 29.95 81.44 36.99 17.72 27.31 41.84 19.27 86.36 33.25 80.84 67.48 29.23 81.3 37.17 33.81 0.86 30.17 19.26 44.05

LAMDA 72.69 25.66 83.62 42.79 18.18 42.58 45.5 24.81 85.28 33.3 75.04 69.62 37.6 88.52 57.06 53.88 20.23 46.07 31.97 50.23

Source-Only: Synthia → Cityscapes (Val.)

MIC 86.71 41.16 81.28 10.42 0.17 39.69 43.41 29.12 82.68 - 76.51 67.41 28.45 81.16 - 46.77 - 42.59 38.51 50.06
LAMDA 85.74 43.32 84.56 11.66 1.06 44.77 51.92 51.91 85.35 - 80.94 72.24 40.78 85.11 - 47.61 - 53.77 60.08 56.30

Source-Only: Cityscapes → darkzurich (Val.)

MIC 95.32 76.33 78.3 38.72 46.47 48.43 17.13 31.81 35.44 21.62 0.8 25.66 24.95 70.71 - - 44.54 15.97 30.57 36.99
LAMDA 94.79 75.79 78.84 40.53 41.84 44.2 53.21 34.81 35.23 33.1 1.54 33.43 9.32 67.05 - - 43.9 16.05 38.24 39.05

Source-Only: Cityscapes → ACDC (Val.)

MIC 48.17 24.43 74.27 35.15 15.39 33.29 43.24 11.61 87.32 29.81 77.08 68.96 31.06 50.41 22.76 37.22 16.21 31.16 20.47 39.89
LAMDA 86.27 50.01 72.55 26.7 32.53 49.41 63.93 49.1 68.05 35.5 82.38 52.01 27.74 84.54 77.96 70.86 66.29 41.67 26.69 56.01
† Method uses additional daytime/clear-weather geographically-aligned reference images. ∗ Method re-implemented by us since the original work did not report the results.

Table 1: The results of LAMDA for semantic segmentation with Close-Vocabulary.

alignment loss Lalign:
L = LS + λTLT + Llmc + λalignLalign (8)

where λalign is the loss weight for Lalign. Note that there is also a pseudo label quality weight λlmc

in Llmc.

4 EXPERIMENTS

4.1 DATASETS SETTINGS

We give an overview about all the used dataset in the Appendix, including Cityscapes (Cordts et al.
(2016)), GTA5 (Richter et al. (2016)), Synscapes (Wrenninge & Unger (2018)), SYNTHIA (Ros
et al. (2016)), ACDC (Sakaridis et al. (2021)), Darkzurich (Sakaridis et al. (2020)), BDD100K (Yu
et al. (2018)), KITTI (Geiger et al. (2012)) and Foggy Cityscapes (Sakaridis et al. (2018)).

4.2 IMPLEMENTATION DETAILS

For semantic segmentation UDA, we study synthetic-to-real (GTA5→Cityscapes,
Synthia→Cityscapes), clear-to-adverse-weather (Cityscapes→ACDC), and day-to-nighttime
(Cityscapes→DarkZurich) adaptation of street scenes. For object detection UDA, we study on
Cityscapes→ Foggy Cityscapes. In the joint optimization, we follow DAFormer (Hoyer et al.
(2022a)) and use MiT-B5 (Xie et al. (2021)) as encoder, and use AdamW with learning rate
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Method Bus Bcycl Car Mcycle Person Rider Train Trunk mAP

Close Vocabulary
DAFaster 29.2 40.4 43.4 19.7 38.3 28.5 23.7 32.7 32.0
SW-DA 31.8 44.3 48.9 21.0 43.8 28.0 28.9 35.8 35.3
SC-DA 33.8 42.1 52.1 26.8 42.5 26.5 29.2 34.5 35.9
MTOR 38.6 35.6 44.0 28.3 30.6 41.4 40.6 21.9 35.1
SIGMA 50.4 40.6 60.3 31.7 44.0 43.9 51.5 31.6 44.2
SADA 50.3 45.4 62.1 32.4 48.5 52.6 31.5 29.5 44.0

MIC(SADA) 52.4 47.5 67.0 40.6 50.9 55.3 33.7 33.9 47.6
LAMDA 53.8 48.6 67.4 41.9 50.0 56.3 34.0 34.7 48.3

Open Vocabulary

Method Seen Unseen mAPseen mAPunseenBus Bcycl Car Mcycle Person Rider Train Trunk

SADA 37.2 43.1 61.7 30.5 42.9 18.4 2.1 12.5 43.1 11.0
MIC(SADA) 38.3 44.7 62.4 32.5 43.3 19.4 3.2 13.8 44.2 12.1

LAMDA 49.6 47.3 65.8 34.7 46.2 30.4 7.0 21.4 48.7 19.6

Table 2: The results of LAMDA for object detection with Close-Vocabulary and Open-Vocabulary.

Method Seen Unseen
Road Wall Fence Pole TR.Light Sky Person Rider Car Truck Bus Train M.Cycle Bicycle mIoU S.Walk Build. TR.Sign Veget. Terrain mIoU

Synthetic-to-Real: GTA→Cityscapes
DAFormer 97.6 52.54 40.17 58.69 64.04 94.16 77.57 52.49 93.49 76.4 70.61 54.44 37.54 53.83 65.96 14.91 75.04 5.22 67.44 3.02 33.13

HRDA 96.24 47.67 42.08 59.74 62.35 93.23 77.09 49.62 93.74 72.42 72.19 38.3 61.89 66.53 66.65 25.24 74.41 4.53 72.13 5.54 36.37
MIC 97.44 55.31 46.23 59.23 66.23 93.68 77.39 52.32 94.23 81.61 75.69 44.51 57.52 63.48 68.92 18.09 76.17 10.17 75.99 3.17 36.72

LAMDA 97.72 54.67 44.98 60.06 63.72 93.72 77.60 50.99 94.29 81.74 77.46 64.74 61.96 63.11 70.48 27.17 75.01 10.82 76.51 7.79 39.46
Synthetic-to-Real: Synthia→Cityscapes

DAFormer 83.43 50.86 22.34 53.8 61.55 83.81 79.27 48.73 90.16 23.12∗ 63.95 0.0∗ 40.15 68.81 54.99 13.86 52.73 2.06 20.61 2.92 18.44
HRDA 84.15 51.95 25.88 57.2 61.68 84.29 75.12 47.12 90.65 24.87∗ 63.97 0.0∗ 43.38 69.82 55.72 13.04 65.54 2.22 59.75 1.36 28.38
MIC 84.35 58.33 27.22 57.63 63.20 85.95 77.37 48.19 90.67 25.34∗ 62.17 0.0∗ 55.43 69.48 57.52 13.43 70.31 1.96 64.79 1.87 30.47

LAMDA 84.57 49.62 30.93 56.98 63.16 85.89 77.68 47.18 90.61 38.13∗ 65.38 0.22∗ 59.74 70.31 58.60 21.85 75.47 9.72 76.57 0.67 36.86
Day-to-Nighttime: Cityscapes→DarkZurich

DAFormer 95.45 37.02 25.27 48.74 17.14 67.78 22.98 30.21 65.62 - - 81.67 28.97 33.88 53.94 3.27 51.56 0.0 0.0 0.12 10.99
HRDA 95.3 42.98 45.67 43.65 10.6 71.97 26.5 17.69 70.19 - - 84.81 16.8 30.46 54.12 0.0 52.64 0.0 0.05 3.66 11.27
MIC 95.58 36.94 22.45 47.3 16.26 65.78 36.95 40.38 72.06 - - 84.74 19.94 29.5 55.21 13.93 69.41 0.09 1.71 0.0 17.03

LAMDA 95.32 38.72 46.47 48.43 17.13 70.32 25.66 24.95 70.71 - - 84.54 19.97 30.57 55.69 4.82 76.29 0.0 23.0 0.0 20.82
Clear-to-Adverse-Weather: Cityscapes→ACDC

DAFormer 89.13 37.39 32.27 56.57 69.85 82.71 60.59 37.48 85.67 76.67 87.52 86.9 48.51 40.35 63.69 6.67 58.22 6.50 43.27 0.0 22.93
HRDA 91.02 45.23 37.37 56.64 70.05 83.55 60.53 41.28 86.62 67.44 77.67 86.03 43.09 54.96 64.39 6.76 59.45 7.89 44.32 0.0 23.68
MIC 91.28 40.79 29.31 61.24 72.12 84.42 61.46 36.7 83.88 79.48 89.25 77.34 45.93 49.07 64.45 7.65 60.43 5.74 43.96 4.39 24.43

LAMDA 90.46 41.72 40.69 59.58 70.1 84.17 65.45 41.83 85.18 78.41 86.89 88.95 47.96 55.59 66.93 9.17 63.92 9.80 45.17 0.35 25.68
Multi-Source: GTA5 + COCO→Cityscapes

DAFormer 96.3 52.86 44.45 53.52 58.77 92.94 77.08 49.43 93.94 77.75 65.62 70.99 60.13 61.58 68.24 12.11 75.14 6.38 72.79 5.71 34.43
HRDA 97.29 53.21 44.0 55.87 64.25 93.67 77.6 52.54 94.07 80.46 74.36 75.98 63.35 66.36 70.93 23.87 74.86 10.20 73.76 4.59 37.47
MIC 97.38 53.23 46.81 56.52 66.38 93.85 77.82 52.84 94.05 82.44 70.7 80.43 64.62 65.94 71.61 24.25 76.27 16.58 77.02 3.82 39.59

LAMDA 97.35 53.65 46.03 55.25 66.72 92.46 77.25 53.49 94.08 83.73 75.58 81.51 63.99 65.39 71.95 42.04 79.43 18.69 79.77 5.38 45.06
Multi-Source: Cityscapes + COCO→ACDC

DAFormer 89.15 48.56 38.0 58.24 65.13 82.07 60.45 44.52 87.12 68.94 70.55 86.4 42.16 52.49 63.84 16.28 64.56 7.88 56.34 0.0 29.01
HRDA 89.64 52.8 38.15 57.69 64.54 82.64 60.18 45.21 86.98 81.72 88.73 82.01 45.96 50.91 65.72 18.53 65.78 8.95 57.21 0.0 30.10
MIC 88.28 48.69 41.37 58.9 61.53 82.7 59.85 44.41 87.49 78.78 87.05 87.54 45.1 52.94 66.04 19.23 64.32 9.87 58.67 0.0 30.42

LAMDA 90.55 54.47 41.34 58.73 73.23 82.48 62.49 43.06 87.80 82.50 86.14 87.47 43.4 56.56 67.87 24.05 69.26 15.0 61.44 0.54 34.06
∗ indicate that the result for this category was not labeled in the training dataset.

Table 3: The results of LAMDA for semantic segmentation with Open-Vocabulary.

6 × 10−5 for the encoder and 6 × 10−4 for the decoder. The total training iteration is 60k. We set
α = 0.9, λT = 0.1, λlmc = 1, λalign = 0.9. Following previous works, we report the results in
mIoU for segmentation, and mean Average Precision (mAP) with a 0.5 IoU threshold for detection.

4.3 MAIN RESULTS

We show that LAMDA is a universe UDA framework and achieves competetive performances to
both multi-task joint-learning and single-task learning, under both source-only, single-source and
multi-source UDA, with different language-driven settings. In total, we compare LAMDA with the
following methods: ProDA (Zhang et al. (2021)), DAFormer (Hoyer et al. (2022a)), HRDA (Hoyer
et al. (2022b)), MIC (Hoyer et al. (2023)), DAFaster (Chen et al. (2018)), SW-DA (Saito et al.
(2019)), SC-DA (Zhu et al. (2019)), MTOR (Cai et al. (2019)), SIGMA (Li et al. (2022b)), SADA
(Chen et al. (2021)).

4.3.1 LAMDA WITH CLOSE-VOCABULARY

At the very first, we evaluate basic UDA performance on semantic segmentation and object detec-
tion, under various UDA scenes, without open-vocabulary setting.

Single-Source: As the most fundamental UDA scene, we firstly validate LAMDA on single-source
UDA on semantic segmentation and object detection. At this setting, we unify the multi-task joint
training with all the categories input in the language prompt,
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LMC HVA Cross-modal Fusion EMA
Segmentation (mIoU) Detection (mAP)

Close-Vocabulary Open-Vocabulary Close-Vocabulary Open-Vocabulary

Seen Unseen Seen Unseen

Single-source
✓ 68.28 63.43 34.39 37.68 45.76 13.35
✓ ✓ 70.42 65.34 34.28 40.23 47.23 14.98
✓ ✓ ✓ 71.32 66.95 35.37 42.54 48.65 15.34
✓ ✓ ✓ ✓ 76.50 70.48 39.46 48.32 48.74 19.61

Table 4: Ablation study of components.

Method
Segmentation (mIoU) Detection

Close Vocabulary Open Vocabulary Close Vocabulary Open Vocabulary
Seen Unseen Seen Unseen

Train Paradigm Single-Task 75.59 69.01 37.14 47.20 47.56 15.47
Multi-Task 76.50 70.48 39.46 48.32 48.74 19.61

Prompt Ordinary 73.91 68.32 35.99 45.78 46.02 16.19
Lean-able 76.50 70.48 39.46 48.32 48.74 19.61

Table 5: Analysis of PLL and Prompt Engineering

Source-Only: The source-only UDA can better validate the generality of adaption to unknown
target domain since the model can not access the target domain images.

Multi-Source: In the case of the labeled data available coming from multiple domains with differ-
ent distributions, multi-source UDA is able to take advantage of the diverse and abundant knowledge
to improve the generalization ability on target domain, while mitigating the mutual interference dis-
crepancy between different sources. At this setting, in order to fit the multi-dataset training, we
realize the mask decoding by multiplying text embedding and visual concept followed by the clas-
sification for segmentation, and we realize the region decoding with RPN head followed by the
original contrastive alignment loss for detection.

The results of the above experiments settings are shown in Table 1 (segmentation) and Tabel 2
(detection). LAMDA obtains consistent improvements over all scenes and target domains.

4.3.2 LAMDA WITH OPEN-VOCABULARY

Further, we report the results of unified language-driven UDA for both semantic segmentation and
object detection, with open-vocabulary setting. We mainly conduct experiments on single-source,
and multi-source UDA.

Single-Source: We validate the generality of LAMDA on four datasets settings with three adaption
scenes. Specifically, we select five categories from the common set of these target datasets as the
unseen categories, and the rest others are as seen categories. During the training, the model can not
access to the unseen categories and only be trained on the seen categories.

Multi-Source: We follow the same realization of decoders as full-language-driven experiments.
And the setting of unseen categories are consistent with the single-source UDA settings.

The results of the above experiments are shown in Table 3. LAMDA also achieves remarkable im-
provements on both seen and unseen categories over all scenes and target domains.

4.4 IN-DEPTH ANALYSIS

Ablation Study of Components: We delve into each component of LAMDA. Specifically, we per-
form ablation study on LMC, HVA, Cross-model fusion, and EMA teacher. In the setting, “w/o
LMC” indicates using randomly masking, “w/o HVA” indicates only aligning the source outputs
with text embedding, “w/o EMA” indicates directly using the prediction of fθ as LMC supervision.
The results shown in Table 4 demonstrate their effectiveness.

Closer Observation on PLL with UPD: We show that the shared decoder with individual queries
in UPD is a win-win for learning both detection and segmentation, since good box predictions are
typically indicative of good masks, and vice versa. With UPD, PLL is able to effectively disentangle
the parameter spaces to avoid the training conflicts in different tasks. In Table 5, we conduct multiple
experiments on various PLL and UPD settings to prove the efficacy.

8
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v

GroundtruthHRDA LAMDAMICImage

sidewalk terrainvegeta.Tr.signbuilding other

Figure 2: Upper: open-vocabulary segmentation ability of LAMDA on unseen target domain.
Middle: open-vocabulary detection ability of LAMDA on unseen target domain. Lower: intuitive
UDA improvements of LAMDA on target domain over previous methods (Synthia→Cityscapes,
Cityscapes→ACDC, Cityscapes→DarkZurich).

Prompt Engineering: Further, we evaluation the impact of lean-able prompt templates on PLL by
comparing with ordinary templates using the sentence “A photo of [CLASS/TASK]”. As shown in
Table 5, the learn-able prompts significantly outperform the ordinary ones regarding seen and unseen
categories.

Quantitative Results: For more intuitive comparisons, we given some quantitative results in Figure
2. In the upper row, LAMDA demonstrates considerable open-vocabulary ability on unseen images
with unseen categories in target domain. In the lower row, LAMDA shows intuitive improvements
on target domain over previous methods including HRDA (Hoyer et al. (2022b)), MIC (Hoyer et al.
(2023)), on both Synthia→Cityscapes, Cityscapes→ACDC, Cityscapes→DarkZurich. More Visu-
alizations are in Appendix.

5 CONCLUSION

In this paper, we commence by conducting a comprehensive analysis of the prevalent limitations
found in existing UDA methods. Then we introduce an innovative formulation of LAMDA which
addresses the limitations and offers the unique advantage of unsupervised transfer to novel domains
featuring custom vocabularies. We conduct extensive experiments on diverse datasets encompassing
segmentation and detection tasks, which provides compelling evidence for the remarkable perfor-
mance of LAMDA. Additionally, it is important to note that LAMDA serves as a universal frame-
work with the potential to facilitate language-driven UDA in various other core vision tasks, includ-
ing but not limited to instance segmentation and depth estimation.
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