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ABSTRACT

Unsupervised domain adaption (UDA), as a form of transfer learning, seeks to
adapt a well-trained model from supervised source domains to an unlabeled target
domain. However, most existing UDA approaches have two limitations. Firstly,
these approaches assume that the source and target domains share the same lan-
guage vocabulary, which is not practical in real-world applications where the tar-
get domain may have distinct vocabularies. Secondly, existing UDA methods for
core vision tasks, such as detection and segmentation, differ significantly in their
network architectures and adaption granularities. This leads to redundant research
efforts in developing specialized architectures for each UDA task, without the
ability to generalize across tasks. To address these limitations, we propose the
formulation of unified language-driven multi-task domain adaption (LAMDA).
LAMDA incorporates a pre-trained vision-language model into the source do-
mains, allowing for transfer to various tasks in the unlabeled target domain with
different vocabularies. This eliminates the need for multiple vocabulary-specific
vision models and their respective source datasets. Additionally, LAMDA enables
unsupervised transfer to novel domains with custom vocabularies. Extensive ex-
periments on various segmentation and detection datasets validate the effective-
ness, extensibility, and practicality of the proposed LAMDA.

1 INTRODUCTION

In recent years, there has been remarkable progress in achieving high performance in diverse visual
tasks, thanks to the utilization of large-scale fine-grained annotated datasets. Nevertheless, the pro-
cess of collecting and annotating these extensive training data is not only financially burdensome
but also demanding in terms of time and effort. To overcome this challenge, the research commu-
nity has turned its attention towards unsupervised domain adaption (UDA) techniques, which aim to
adapt a vision model that has been pre-trained on labeled source domains to target domains utilizing
unlabeled target images (Hoyer et al.[(2023); [Zhang et al.|(2023); He et al.|(2021)).

Notwithstanding the significant advancements made in the field of unsupervised domain adaption
(UDA), there remain two prominent limitations within the existing literature. Firstly, a prevalent
assumption in most UDA tasks is that the source and target domains share a common vocabulary.
However, this assumption becomes a significant challenge when dealing with target domains that
possess distinct vocabularies, severely constraining the flexibility and efficiency of unsupervised
transfer. Secondly, it is worth noting that existing UDA methods for core vision tasks, such as de-
tection and segmentation, exhibit notable disparities in terms of network architectures and adaption
granularities, as evidenced in previous studies (Hoyer et al.| (2023)); \Huang et al.[|(2023)). Although
these specialized architectures have propelled the progress of individual tasks, they lack the versa-
tility to generalize across different tasks. Consequently, redundant research efforts, along with hard-
ware optimization, are expended on developing specific architectures for each UDA task, without
the existence of a mature unified UDA framework that encompasses both tasks.

In light of these limitations, for the first time, we propose the novel formulation of unified language-
driven multi-task domain adaptation (LAMDA), inspired by vision-language models (VLMs) (Rad-
ford et al| (2021b)) which have demonstrated their efficacy in enabling open-vocabulary visual
recognition through the fusion of image and text reasoning. Building upon this, LAMDA serves
as an unsupervised domain adaptation (UDA) framework that harnesses the power of a pre-trained
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VLM in the source domains, facilitating its transfer to diverse unlabeled target domains. Notably,
LAMDA stands out by requiring just a single pre-trained VLM to adapt to target domains char-
acterized by varying vocabularies. This eliminates the need for multiple vocabulary-specific vision
models, along with their associated source datasets. Moreover, LAMDA offers the unique advan-
tage of unsupervised transfer to novel domains featuring custom vocabularies. By alleviating the
burdensome requirements of extensive image annotation, LAMDA enhances deep network training
capabilities, enabling effective handling of a wide range of visual recognition tasks. Importantly,
LAMDA serves as a unified UDA framework for both detection and segmentation, surpassing the
limitations of specialized architectures that are task-specific. It outperforms these specialized archi-
tectures across various UDA tasks, while maintaining ease of training and adaptability to every UDA
task.

Overall, our contributions are summarized as follows: First and foremost, to the best of our knowl-
edge, LAMDA represents the pioneering language-driven multi-task framework for unified seg-
mentation and detection domain adaption. Secondly, we introduce the hierarchical visual-language
alignment (HVA), to enhance the language-driven learning by leveraging both intra-source domain
and inter-source-target domain information, along with promptable language-task learning (PLL) to
mitigate the inter-task differences and inter-domain discrepancies in context distributions. Finaly,
comprehensive experiments are conducted to demonstrate the universal effectiveness and practical-
ity of LAMDA in the domains of both segmentation and detection tasks.

2 RELATED WORK

2.1 UNSUPERVISED DOMAIN ADAPTION

Unsupervised domain adaption (UDA) is a form of transfer learning that seeks to adapt a model,
previously trained on labeled source domains, to unlabeled target domains (Bengio| (2012)). Given
the prevalence of domain gaps across various vision applications, UDA methods have found wide-
ranging applications in major vision tasks, such as semantic segmentation (Hoyer et al.[(2022b}))), ob-
ject detection (Chen et al.| (2021)); |Li et al.|(2022b)), and image classification (Hoyer et al.| (2022a)),
and have even been extended to other tasks like instance segmentation (Deng et al.| (2022))). How-
ever, existing UDA methods primarily concentrate on designing specialized networks for single-task
learning due to the differences in output formats and network architectures across different tasks.
Consequently, there is a lack of flexibility in generalizing these methods to other tasks.

2.2 LANGUAGE-DRIVEN TASK

The application of language-driven techniques to existing tasks represents a dynamic and constantly
evolving research domain that continues to push boundaries. Notable tasks in this field include, but
are not limited to, segmentation (L1 et al.| (2022a)), image editing (Fu et al.[(2022))), and style trans-
fer (Fu et al.[(2022)). The emergence of CLIP (Radford et al.[|(2021a)) has demonstrated the poten-
tial of language assistance in traditional vision tasks that traditionally have no explicit connection
to language. However, the application of language-driven techniques to domain adaption remains
relatively unexplored. Only one previous work (Huang et al.| (2023)) has introduced the concept
of open-vocabulary domain adaption, but their applicability is limited to image recognition tasks
alone. To the best of our knowledge, LAMDA represents the pioneering comprehensive framework
that formulates a unified approach, integrating various language-driven settings, to multiple core
vision UDA tasks.

3 METHOD

3.1 PRELIMINARY OF UDA

In classical single-source UDA, a model fy can be trained on source domain S while adapted to the
unlabeled target domain T. In the source domain S = {(25s, y5)}(k° € [1, N®]), where 2%, v/
and N represent the k°-th image, its label and number of images in the source domain, respectively.
The unlabeled target domain T = {z};}(k" € [1, N"]) is similar. UDA is applicable to various
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Figure 1: The overview of the proposed LAMDA, which can be semantically divided into three parts:
Main Network, Language-Guided Masked Consistency (LMC), and Hierarchical Visual-Language
Alignment (HVA).

vision tasks, for semantic segmentation, the overall training loss is typically as,

N& NT
1 1
L=L040"=) mﬁce(fg(xis),yis) +AT Y mﬁ}& (1)
kS=1 kT=1

where £, LT are the supervised source loss and unsupervised adaption loss. AT is loss weight. £
is the basic cross-entropy loss, and can be replaced with box regression and classification loss for
object detection. ££T is defined according the UDA strategy (Hoyer et al.|(2023)) such as adversarial
training or self-training. In the classical UDA, both the source and target domains share the common
vocabulary.

3.2 UNIFIED LANGUAGE-DRIVEN MULTI-TASK UDA

Our work focus on building up the novel unified language-driven multi-task UDA (LAMDA) frame-
work for both semantic segmentation and object detection. Let V be the language category set in
source domain, and the goal of LAMDA is to learn and adapt to perform segmentation/detection on
visual concepts in V in training, and able to generalize to unseen categories on the unlabeled target
domain.

As depicted in Figure[T] the proposed framework can be conceptually divided into three components:
Main Network, Language-Guided Masked Consistency (LMC), and Hierarchical Visual-Language
Alignment (HVA). The Main Network is responsible to receive the images from both source and
target domains for supervised source training, unsupervised domain adaption respectively, where
we formulate a unified proposal decoder for both semantic segmentation and object detection. Since
there is no ground truth supervision for the target domain adaption, inspired by the success of masked
image modeling (MIM) in self-supervised learning, we propose to specifically enhance the explo-
ration of context relations on the target domain with LMC to provide additional clues for robust
self-representation with similar local appearance. Finally, HVA is proposed to enable target domain
with open-vocabulary understanding, from the visual-language alignment learning.

3.2.1 MAIN NETWORK

The Main Network contains the following three parts. We aim to construct a unified framework for
both semantic segmentation and object detection domain adaption. Note that the framework is able
to easily extend other core vision tasks such as instance segmentation and depth estimation.

Text Encoder: Given the language category set V, the text encoder represents each of its text item
into text embeddings. Generally, the text encoder can be usual language-based architectures, here
we follow the common practice and exploit the pretrained Contrastive Language—Image Pre-training
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(CLIP) (Radford et al.|(2021a))). According to characteristic of CLIP, the order of input texts is
irrelevant to the set of output vectors.

Image Encoder: As a common block, image encoder takes image as input and produces pixel-
wise visual embeddings, generally, with downsampling for the sake of memory efficiency. Formally,
given an input image RH0xWox3 the output visual embedding can be denoted as R *W > where
H = %, W = %, d is the downsampling rate. We exploit the Swin (Liu et al.|(2021)) transformer
as image encoder in our framework.

Unified Proposal Decoder: In order to unify the training of both semantic segmentation and object
detection, we formulate the unified proposal decoder (UPD), which queries the visual features ex-
tracted by the image encoder into visual concepts and class-agnostic proposals for both the tasks.
Due to the intrinsic discrepancies between the segmentation and detection: the former requires the
recognition of both foreground and background while the latter focuses solely on localizing fore-
ground objects, we exploit two individual queries to avoid the task conflicts that may significantly
degrade performance. As shown in Figure [T} UPG is a unified decoder which consists of both the
region decoding (for detection) and mask decoding (for segmentation) capability, corresponding to
individual region query and mask query.

Promptable Language-Task Learning: Due to the inter-task differences between segmentation
and detection, it is very hard for a single architecture to take into account both the language-driven
UDA tasks in the absence of concrete task guidance, despite with UPD. Thus, we further adopt the
Promptable Language-Task Learning (PLL) mechanism to collaboratively embed the language and
task prompts. By this way, the multiple tasks are able to be encapsulated in a unified framework
which effectively disentangles the parameter spaces to avoid the training conflicts in different tasks.
Meanwhile, PLL is able to realize dynamic language vocabulary to popularize the framework to
generalize to broader unseen categories and improve open-domain performance. In concrete, we
formulate the prompt template as P(x) = [, %, ..., %, ..., %, %], where * is task text (e.g. semantic
segmentation, object detection) or category text, and * is learn-able vector. Then we model a joint
language-task textual space with the general pre-trained CLIP Text Encoder T, to get the multi-
granularity embeddings E:

E = Cat(ET,E) = Cat(T(P(T)), T(P(C))) 2)

where Clat(-) indicates the concatenation operation. E7, EC are the language category and task
text embedding respectively. It is worth noting that the input category can be arbitrary, so E can
seamlessly adapt to unseen categories for open vocabulary segmentation and detection.

3.2.2 LANGUAGE-GUIDED MASKED CONSISTENCY

Predicting withheld tokens of a masked input sequence/image has shown to be a powerful self-
supervised pretraining task in both natural language processing and computer vision. Inspired by
the success of MLM and MIM, we propose the Language-Guided Masked Consistency (LMC) to
provide additional clues for robust recognition of classes with similar local appearances from differ-
ent parts of the image. This can be local information, which originates from the same image patch
as the corresponding cell in the feature map, or context information, which comes from surrounding
image patches that can belong to different parts of the object or its environment.

In order to build the LMC self-learning paradigm, firstly, we utilize a exponential moving average
(EMA) teacher fé with smoothing factor « on the weight of fy:

Fousr & afgy + (1 — ) fou 3)

where ¢ indicates the training step. By this way, EMA teacher is able to obtain the enhanced context
learning capability from fy, and exploit both the context and the intact local appearance information
to generate pseudo labels of higher quality.

Different from the previous MIM using randomly sampling which may not provide the important
clues needed to reconstruct the foreground objects (in the case of remaining visible patches only
containing backgrounds), LMC introduces the language-guided masking paradigm to improve the
reconstruction efficiency, by making more rational decisions on which patches to mask. Specifically,
we query the visual concept F' € R¥*? (S is the sequence length and d is the embedding dimension)
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from the last layer of image encoder of fé with the language embedding E¢ € R, to discriminate
these semantically important patch clues:

(EJCWQ;J')([EJCv F]WK;J')T
Vd

where H is the number of self-attention heads, W, ;, Wi ; are the projection matrices of query and
key respectively. [-, -] is the concatenation operation, for simplicity we omit the MLP layers to unify
the feature dimensions. M is the language-visual cross-modal attention map and the magnitude of
its elements is able to reflect the weights of the corresponding image patch contributing to the output
feature of image encoder. Thus we utilize M to guide the masking location on image patches with
a multi-normal distribution sampling, and finally obtain the masked target image &" by masking the

target domain image 7.

L H
M = T zj:softmaa:( ) 4)

In order to maintain the self-consistency of the masked target image using the remaining context
clues, we formulate the LMC loss as:

Elmc _ AlmcEce(fg(jT)7fé(xT)) (5)

where fé(xT) is the pseudo label produced by the teacher network on the complete target domain
image x". Considering that the pseudo label may not be reliable especially in the very beginning of

training, we add the quality weight A'¢ which defined as the maximum softmax probability in fé
prediction.

3.2.3 HIERARCHICAL VISUAL-LANGUAGE ALIGNMENT

In order to take full advantage of both source domain and target domain to enhance the language-
driven open-vocabulary learning while mitigating the inter-domain discrepancies in context distri-
butions, we propose the Hierarchical Visual-Language Alignment (HVA) to align all the proposals
(detection/segmentation) with language vocabulary, then leverage CLIP to perform zero-shot clas-
sification on the proposals. In each training batch, the input images reflect three levels of domain
hierarchy: intra-source, inter-source. With the language-task prompt guidance, we obtain all the
generated proposals by UPD, which come from both source and target domains.

Formally, given the input images set I = {25,235, 27, 23,27, 23}, where 2%, x5 are two individual

images in source domain, ], x3 are two individual images in target domain respectively, 2, &3 are
masked ], 23 by LMC. Except for 27, 5 which are only used for LMC, we obtain all the proposal
outputs

0= {Oilv 0?;27 ) 0§;p§ ’ Og;lﬂ 0%;2, RS Og;pga O'lﬂ‘;la 0'1]1‘;27 () Orlﬂ‘;p’gv Og;lv 03;27 ceey Og;pg} (6)
which corresponds to the outputs of input images respectively. p$, p3, p], ps are the number of
proposals in the corresponding outputs respectively. Finally, we set up the cross-modal contrast-
alignment to enforce the alignment between embedded visual proposal representations O and the
language-task text embedding E, which ensures that visual embeddings and its corresponding text
tokens are closer in the feature space compared to embeddings of unrelated tokens. Formally the
contrastive loss is defined as:

ST p™ o L . .
Lalign _ Ecgign + LaElign _ Z Z l Z lOg <61‘p(0i th/T) X 1(yi == ]))

Sy exp(ol Tt /7)

- [Sf ZLZ 1 ”Z log [CPE T/ X 1 == D)) @)
£~ pm £ b exp(t] o /T)
Y; = argmax OTth, yj = arg max t;-ro-
j i
where 7 is the temperature parameter.

3.2.4 OVERALL LOSS FORMULATION

Therefore, the overall loss formulation include four parts: segmentation/detection supervised loss
L5 for source domain, basic unsupervised adaption loss £T, LMC loss £!™¢ and visual-language
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Method | Road S.walk Build. Wall Fence Pole TrLight Sign Veget. Terrain Sky Person Rider Car Truck Bus Train M.bike Bike | mloU
Synthetic-to-Real: GTA— Cityscapes (Val.)
ProDA 878 560 797 463 448 456 535 535 8.6 452 821 707 392 888 455 594 10 489 564 | 575
DAFormer 957 702 894 535 481 49.6 558 594 899 479 925 722 447 923 745 782 651 559 61.8 | 683
HRDA 964 744 910 616 515 57.1 639 693 913 484 942 790 529 939 841 857 759 639 675 | 73.8
MIC (HRDA) | 974 80.1 917 612 569 597 660 713 91.7 514 943 798 561 946 854 903 804 645 685 | 759
LAMDA 978 815 921 623 575 601 658 73.6 919 524 936 803 575 947 859 899 813 659 69.1 | 76.5
Synthetic-to-Real: Synthia— Cityscapes (Val.)
ProDA 878 457 846 371 0.6 440 546 370 881 - 844 742 243 882 - 51.1 - 40.5 456 | 555
DAFormer 845 407 884 415 65 500 550 546 86.0 - 898 732 482 872 - 532 - 539  61.7 | 60.9
HRDA 852 477 888 495 48 572 657 609 853 - 929 794 528 89.0 - 64.7 - 639 649 | 65.8
MIC (HRDA) | 86.6 505 893 479 7.8 594 667 634 87.1 - 946 810 589 90.1 - 61.9 - 67.1 643 | 673
LAMDA 867 495 894 496 109 608 656 651 86.5 - 959 80.7 60.1 902 - 65.4 - 64.7 703 | 68.2
Day-to-Nighttime: Cityscapes— DarkZurich (Test)
DANNet" 90.0 540 748 410 21.1 250 268 302 720 262 840 470 339 682 190 03 664 383 236 | 443
DAFormer 935 655 733 394 192 533 441 440 595 345 666 534 527 821 527 95 893 505 385 | 53.8
HRDA 904 563 720 395 195 578 527 431 593 291 705 600 58.6 840 755 112 905 516 409 | 559
MIC 948 750 840 551 284 620 355 526 592 468 700 652 61.7 821 642 185 913 526 440 | 60.2
LAMDA 96.7 797 848 494 344 629 501 496 577 458 717 665 623 84.7 - - 88.7 53.0 457 | 63.2
Clear-to-Adverse-Weather: Cityscapes— ACDC (Test)
DANNet" 843 542 776 380 300 189 416 352 713 394 866 487 292 762 416 430 586 326 439 | 50.0
DAFormer 584 513 840 427 351 507 300 570 748 528 513 583 326 827 583 549 824 441 507 | 554
HRDA 883 579 881 552 367 563 629 653 742 577 859 688 457 885 764 824 877 527 604 | 68.0
MIC (HRDA) | 90.8 67.1 892 545 405 572 620 684 763 618 870 713 494 897 757 868 89.1 569 630 | 704
LAMDA 985 663 876 487 398 658 781 654 84.6 598 843 695 503 92.8 824 903 945 57.6 64.2 | 72.7

Multi-Source: GTAS + Synthia — Cityscapes (Val.)

MIC* 97.61 8134 9201 6238 5691 60.23 67.00 7226 9270 51.88 9511 81.22 57.21 95.00 87.10 88.87 80.62 65.32 68.02 ‘ 76.46
LAMDA 98.17 82.73 92.57 63.48 5737 61.03 66.17 7456 92.89 52.78 9448 81.62 58.50 95.08 87.15 88.12 81.58 66.72 69.09 | 77.06
Multi-Source: GTAS + Synthia + BDD100K — Cityscapes (Val.)

MIC* 97.00 8221 93.12 6598 47.81 66.83 6723 76.06 92.13 56.08 9241 83.22 59.07 9540 87.32 88.97 80.99 66.82 69.03 ‘ 77.24
LAMDA 98.35 84.39 94.96 66.65 46.03 6525 67.72 75.68 93.73 57.72 92.46 83.25 59.49 94.08 87.73 88.58 82.57 67.99 69.39 | 77.69
Source-Only: GTAS — Cityscapes (Val.)

MIC | 82.64 2995 8144 3699 17.72 2731 41.84 1927 8636 3325 80.84 6748 2923 813 37.17 3381 0.86 30.17 19.26|44.05
LAMDA | 7269 25.66 83.62 4279 18.18 42.58 455 24.81 8528 333 75.04 69.62 37.6 88.52 57.06 53.88 20.23 46.07 31.97 | 50.23
Source-Only: Synthia — Cityscapes (Val.)

MIC ‘ 86.71 41.16 81.28 1042 0.17 39.69 4341 29.12 82.68 - 76.51 6741 2845 81.16 - 4677 - 4259 3851 ‘ 50.06
LAMDA 85.74 4332 84.56 11.66 1.06 44.77 51.92 5191 85.35 - 80.94 7224 40.78 8511 - 4761 - 53.77 60.08 | 56.30
Source-Only: Cityscapes — darkzurich (Val.)

MIC ‘ 9532 7633 783 3872 4647 4843 17.13 31.81 3544 21.62 0.8 2566 24.95 70.71 - - 4454 1597 3057 ‘ 36.99
LAMDA 9479 7579 78.84 40.53 4184 442 5321 3481 3523 331 154 3343 932 6705 - - 439 16.05 38.24 | 39.05
Source-Only: Cityscapes — ACDC (Val.)

MIC ‘ 48.17 2443 7427 3515 1539 3329 4324 11.61 8732 29.81 77.08 68.96 31.06 50.41 2276 37.22 1621 31.16 2047 ‘ 39.89
LAMDA 86.27 50.01 7255 267 3253 4941 6393 491 68.05 355 8238 52.01 27.74 84.54 77.96 70.86 66.29 41.67 26.69 | 56.01

T Method uses additional daytime/clear-weather geographically-aligned reference images. * Method re-implemented by us since the original work did not report the results.
Table 1: The results of LAMDA for semantic segmentation with Close-Vocabulary.
alignment loss £%%97:
L= £S + )\Tﬁ'ﬂ‘ + Elmc + )\alignﬁalign (8)

where \?97 is the loss weight for £2%9™ Note that there is also a pseudo label quality weight A/
in £lme,

4 EXPERIMENTS

4.1 DATASETS SETTINGS

We give an overview about all the used dataset in the Appendix, including Cityscapes (Cordts et al.
(2016)), GTAS (Richter et al.| (2016)), Synscapes (Wrenninge & Unger| (2018))), SYNTHIA (Ros
et al. (2016)), ACDC (Sakaridis et al.|(2021))), Darkzurich (Sakaridis et al.|(2020)), BDD100K (Yu
et al.[(2018)), KITTT (Geiger et al|(2012)) and Foggy Cityscapes (Sakaridis et al.[(2018)).

4.2 IMPLEMENTATION DETAILS

For semantic segmentation UDA, we study synthetic-to-real (GTAS5—Cityscapes,
Synthia—Cityscapes), clear-to-adverse-weather (Cityscapes—ACDC), and day-to-nighttime
(Cityscapes—DarkZurich) adaptation of street scenes. For object detection UDA, we study on
Cityscapes— Foggy Cityscapes. In the joint optimization, we follow DAFormer (Hoyer et al.
(2022a)) and use MiT-B5 (Xie et al.| (2021)) as encoder, and use AdamW with learning rate
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Method | Bus Bcycl Car  Mcycle Person Rider Train Trunk | mAP
Close Vocabulary
DAFaster 202 404 434 19.7 38.3 285 237 327 32.0
SW-DA 31.8 443 489 21.0 43.8 28.0 289 35.8 353
SC-DA 338 421 521 26.8 42.5 265 292 345 359
MTOR 386 356 440 283 306 414 406 219 35.1
SIGMA 504 406 603 31.7 44.0 439 515 31.6 44.2
SADA 503 454  62.1 324 485 526 315 29.5 44.0
MIC(SADA) | 524 475 67.0 40.6 50.9 553 337 339 47.6
LAMDA 538 486 674 41.9 50.0 563 34.0 347 48.3
Open Vocabulary
Seen Unseen
Method Bus Bceyel Car  Mcycle Person | Rider Train  Trunk MAPscen  MAPunscen
SADA 372 431 617 30.5 429 184 2.1 12.5 43.1 11.0
MIC(SADA) | 383 447 624 325 433 19.4 32 13.8 442 12.1
LAMDA 496 473 658 34.7 46.2 30.4 7.0 21.4 48.7 19.6

Table 2: The results of LAMDA for object detection with Close-Vocabulary and Open-Vocabulary.

Method | Seen | Unseen
[ Road  Wall Fence Pole TRLight Sky Peson Rider Car Truck Bus Train MCycle Bicycle mloU | SWalk Build. TR.Sign Vegel. Terain mloU
Synthetic-to-Real: GTA—Cityscapes

DAFormer | 97.6 52.54 40.17 58.69 64.04 94.16  77.57 5249 9349 764  70.61 54.44 37.54 5383 6596 | 1491  75.04 522 67.44 3.02 33.13
HRDA 96.24  47.67 4208 59.74 62.35 9323  77.09 49.62 9374 7242 7219 383 61.89 66.53  66.65 | 2524 7441 4.53 72.13 5.54 36.37
MIC 97.44 5531 4623 59.23 66.23 93.68 77.39 5232 9423 8161 7569 4451 57.52 6348 6892 | 18.09 76.17 10.17 75.99 3.17 36.72
LAMDA | 97.72 54.67 4498 60.06 63.72 9372 77.60 5099 9429 8174 7746 64.74 61.96 63.11 7048 | 27.17 7501 10.82 76.51 7.79 39.46

Synthetic-to-Real: Synthia— Cityscapes

DAFormer | 83.43 50.86 2234 538 61.55 83.81 7927 4873 90.16 23.12° 6395 0.0° 40.15 68.81 5499 | 13.86 52.73 2.06 20.61 2.92 18.44
HRDA 84.15 51.95 2588 572 61.68 8429 75.12  47.12 90.65 24.87° 6397 0.0* 43.38 69.82 5572 | 13.04 6554 2.22 59.75 1.36 28.38

MIC 84.35 5833 2722 57.63 63.20 8595 7737 4819 90.67 2534 6217 0.0° 5543 69.48  57.52 | 1343 7031 1.96 64.79 1.87 3047
LAMDA | 84.57 49.62 30.93 56.98 63.16 85.89 77.68 47.18 90.61 38.13" 6538 0.22* 59.74 7031  58.60 | 21.85 7547 9.72 76.57 0.67 36.86

Day-to-Nighttime: Cityscapes—DarkZurich

DAFormer | 9545 37.02 2527 4874 17.14 67.78 2298 30.21 65.62 - - 81.67 28.97 3388 53.94 327 51.56 0.0 0.0 0.12 10.99
HRDA 953 4298 45.67 43.65 10.6 7197 265 17.69  70.19 - - 84.81 16.8 3046 5412 0.0 52.64 0.0 0.05 3.66 11.27
MIC 9558 36.94 2245 473 16.26 6578 3695 40.38 72.06 - - 84.74 19.94 29.5 55.21 1393 6941 0.09 171 0.0 17.03
LAMDA | 9532 3872 4647 48.43 17.13 7032 2566 2495 7071 - - 84.54 19.97 30.57  55.69 4.82 76.29 0.0 23.0 0.0 20.82

Clear-to-Adverse-Weather: Cityscapes—ACDC
DAFormer | 89.13 3739 3227 5657 6985 8271 60359 3748 8567 7667 87.52 869 4851 4035 63.69 | 667 5822 650 4327 00 2293
HRDA | 9102 4523 3737 5664 7005 8355 6053 4128 8662 67.44 77.67 8603 4309 5496 6439 | 676 5945 789 4432 00 2368

MIC 91.28 4079 2931 61.24 72.12 8442 6146 367 8388 79.48 8925 7734 45.93 49.07 6445 7.65 60.43 5.74 43.96 439 2443
LAMDA | 9046 41.72 40.69 59.58 70.1 84.17 6545 41.83 8518 7841 86.89 88.95 47.96 5559  66.93 9.17 63.92 9.80 45.17 0.35 25.68

Multi-Source: GTAS + COCO— Cityscapes
DAFormer | 963 52.86 4445 53.52 58.77 9294 77.08 4943 9394 7775 6562 70.99 60.13 61.58 6824 | 12.11 7514 6.38 72.79 5.71 34.43

HRDA [ 97.29 5321 440 5587 6425 9367 77.6 5254 9407 8046 7436 7598 6335 6636 7093 | 2387 7486 1020 7376 459 3747
MIC | 9738 5323 4681 5652 6638 9385 77.82 5284 9405 8244 707 8043 6462 6594 TI6l | 2425 7627 1658  77.02 382  39.59
LAMDA | 97.35 53.65 4603 5525 6672 9246 7725 5349 9408 8373 7558 8151 6399 6539 7195 | 42.04 7943 1869 7977 538 4506
Multi-Source: Cityscapes + COCO—ACDC

DAFormer | 89.15 4856 380 5824  65.13 8207 6045 4452 87.12 6894 70.55 864 4216 5249 63.84 | 1628 6456 788 5634 00 2901
HRDA  89.64 528 3815 5769 6454 8264 60.18 4521 8698 8172 8873 8201 4596 5091 6572 | 1853 6578 895 5721 00  30.10
MIC | 8828 4869 4137 589 6153 827 5985 4441 8749 7878 8705 87.54 451 5294 6604 | 1923 6432 987 5867 00 3042
LAMDA | 90.55 5447 4134 5873 7323 8248 6249 4306 87.80 8250 8614 8747 434 5656 67.87 | 2405 6926 150 6144 054  34.06

¥ indicate that the result for this category was not labeled in the training dataset.

Table 3: The results of LAMDA for semantic segmentation with Open-Vocabulary.

6 x 107" for the encoder and 6 x 1_0_4 for the decoder. The total training iteration is 60k. We set
a = 09,\T = 0.1, \'me¢ = 1, \*i9" = (0.9, Following previous works, we report the results in
mloU for segmentation, and mean Average Precision (mAP) with a 0.5 IoU threshold for detection.

4.3 MAIN RESULTS

We show that LAMDA is a universe UDA framework and achieves competetive performances to
both multi-task joint-learning and single-task learning, under both source-only, single-source and
multi-source UDA, with different language-driven settings. In total, we compare LAMDA with the
following methods: ProDA (Zhang et al.| (2021)), DAFormer (Hoyer et al.|(2022a))), HRDA (Hoyer
et al.[ (2022b)), MIC (Hoyer et al.| (2023)), DAFaster (Chen et al.| (2018))), SW-DA (Saito et al.
(2019)), SC-DA (Zhu et al.[(2019)), MTOR (Cai et al|(2019)), SIGMA (Li et al.| (2022b)), SADA
(Chen et al.[(2021)).

4.3.1 LAMDA WITH CLOSE-VOCABULARY

At the very first, we evaluate basic UDA performance on semantic segmentation and object detec-
tion, under various UDA scenes, without open-vocabulary setting.

Single-Source: As the most fundamental UDA scene, we firstly validate LAMDA on single-source
UDA on semantic segmentation and object detection. At this setting, we unify the multi-task joint
training with all the categories input in the language prompt,



Under review as a conference paper at ICLR 2024

Segmentation (mIoU) ‘ Detection (mAP)

Open-Vocabulary Open-Vocabulary
Close-Vocabulary

\
| LMC HVA Cross-modal Fusion EMA
‘ Close-Vocabulary

\
\
‘ ‘ Seen  Unseen ‘ ‘ Seen  Unseen
v 68.28 63.43 34.39 37.68 45.76 13.35
Single-source v v 70.42 65.34 34.28 40.23 47.23 14.98
v v v 71.32 66.95 35.37 42.54 48.65 15.34
v v ' 76.50 70.48 3946 48.32 48.74 19.61
Table 4: Ablation study of components.
\ Segmentation (mloU) | Detection
Method Close Vocabulary Open Vocabulary Close Vocabulary Open Vocabulary
Seen  Unseen Seen  Unseen
Train Paradiem Single-Task 75.59 69.01 37.14 47.20 47.56 15.47
& Multi-Task 76.50 70.48 39.46 48.32 48.74 19.61
Prompt Ordinary 73.91 68.32 35.99 45.78 46.02 16.19
P Lean-able 76.50 70.48 39.46 48.32 48.74 19.61

Table 5: Analysis of PLL and Prompt Engineering

Source-Only: The source-only UDA can better validate the generality of adaption to unknown
target domain since the model can not access the target domain images.

Multi-Source: In the case of the labeled data available coming from multiple domains with differ-
ent distributions, multi-source UDA is able to take advantage of the diverse and abundant knowledge
to improve the generalization ability on target domain, while mitigating the mutual interference dis-
crepancy between different sources. At this setting, in order to fit the multi-dataset training, we
realize the mask decoding by multiplying text embedding and visual concept followed by the clas-
sification for segmentation, and we realize the region decoding with RPN head followed by the
original contrastive alignment loss for detection.

The results of the above experiments settings are shown in Table [1| (segmentation) and Tabel
(detection). LAMDA obtains consistent improvements over all scenes and target domains.

4.3.2 LAMDA wWITH OPEN-VOCABULARY

Further, we report the results of unified language-driven UDA for both semantic segmentation and
object detection, with open-vocabulary setting. We mainly conduct experiments on single-source,
and multi-source UDA.

Single-Source: We validate the generality of LAMDA on four datasets settings with three adaption
scenes. Specifically, we select five categories from the common set of these target datasets as the
unseen categories, and the rest others are as seen categories. During the training, the model can not
access to the unseen categories and only be trained on the seen categories.

Multi-Source: We follow the same realization of decoders as full-language-driven experiments.
And the setting of unseen categories are consistent with the single-source UDA settings.

The results of the above experiments are shown in Table 5] LAMDA also achieves remarkable im-
provements on both seen and unseen categories over all scenes and target domains.

4.4 IN-DEPTH ANALYSIS

Ablation Study of Components: We delve into each component of LAMDA. Specifically, we per-
form ablation study on LMC, HVA, Cross-model fusion, and EMA teacher. In the setting, “w/o
LMC” indicates using randomly masking, “w/o HVA” indicates only aligning the source outputs
with text embedding, “w/o EMA” indicates directly using the prediction of fy as LMC supervision.
The results shown in Table 4] demonstrate their effectiveness.

Closer Observation on PLL with UPD: We show that the shared decoder with individual queries
in UPD is a win-win for learning both detection and segmentation, since good box predictions are
typically indicative of good masks, and vice versa. With UPD, PLL is able to effectively disentangle
the parameter spaces to avoid the training conflicts in different tasks. In Table[5] we conduct multiple
experiments on various PLL and UPD settings to prove the efficacy.
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road CTCMIEE fence  pole  tr. light tr. sign JJFGEEH terrain rider [ bus  train mbike bike n/a.

Figure 2: Upper: open-vocabulary segmentation ability of LAMDA on unseen target domain.
Middle: open-vocabulary detection ability of LAMDA on unseen target domain. Lower: intuitive
UDA improvements of LAMDA on target domain over previous methods (Synthia—Cityscapes,
Cityscapes— ACDC, Cityscapes— DarkZurich).

Prompt Engineering: Further, we evaluation the impact of lean-able prompt templates on PLL by
comparing with ordinary templates using the sentence “A photo of [CLASS/TASK]”. As shown in
Table[3] the learn-able prompts significantly outperform the ordinary ones regarding seen and unseen
categories.

Quantitative Results: For more intuitive comparisons, we given some quantitative results in Figure
In the upper row, LAMDA demonstrates considerable open-vocabulary ability on unseen images
with unseen categories in target domain. In the lower row, LAMDA shows intuitive improvements
on target domain over previous methods including HRDA (Hoyer et al| (2022b)), MIC
(2023)), on both Synthia—Cityscapes, Cityscapes—ACDC, Cityscapes— DarkZurich. More Visu-
alizations are in Appendix.

5 CONCLUSION

In this paper, we commence by conducting a comprehensive analysis of the prevalent limitations
found in existing UDA methods. Then we introduce an innovative formulation of LAMDA which
addresses the limitations and offers the unique advantage of unsupervised transfer to novel domains
featuring custom vocabularies. We conduct extensive experiments on diverse datasets encompassing
segmentation and detection tasks, which provides compelling evidence for the remarkable perfor-
mance of LAMDA. Additionally, it is important to note that LAMDA serves as a universal frame-
work with the potential to facilitate language-driven UDA in various other core vision tasks, includ-
ing but not limited to instance segmentation and depth estimation.
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