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ABSTRACT

Despite its widespread success on vision tasks, standard attention employs a shared
dot-product mechanism that uniformly scores all query–key interactions before
applying softmax. In this paper, we hypothesize that explicitly controlling the
amplification or suppression of individual query-key token-pair interactions can
lead to more expressive and discriminative representations. To this end, we propose
Pairwise Logit Gating (PLuG) attention, a simple yet effective plug-in approach
that introduces a learnable gating mechanism operating on each token-pair to
modulate attention logits prior to softmax. This gating enables the model to
selectively amplify informative interactions and suppress spurious ones through
gating coefficient matrix, improving its ability to capture spatial and semantic
relationships critical for vision tasks. Experimental results demonstrate that PLuG
can be seamlessly integrated into various attention mechanisms and attention-
based architectures, including ViTs and Mask2Former, as well as multi-scale
deformable attention in Deformable DETR, without requiring architectural redesign
or hyperparameter tuning. These results highlight the effectiveness of PLuG as a
general-purpose plug-in enhancement broadly applicable to attention-based vision
tasks.

1 INTRODUCTION

Since the Transformer’s introduction (Vaswani et al., 2017), attention mechanisms have established
themselves as a foundational component of deep learning, enabling advances in natural language pro-
cessing (Devlin et al., 2019; Radford et al., 2018). The self-attention mechanism computes pairwise
token interactions via dot-product similarity between query and key representations, followed by soft-
max normalization to produce attention weights that modulate the aggregation of value features. This
design enables the modeling of global context and long-range dependencies, addressing the locality
limitations inherent in convolutional architectures with fixed receptive fields. Based on this approach,
a wide range of vision architectures such as Vision Transformers (ViT) (Dosovitskiy et al., 2021)
for image classification, DETR (Carion et al., 2020) for object detection, and Mask2Former (Cheng
et al., 2022) for semantic segmentation have successfully extended attention-based models to diverse
visual recognition tasks.

Despite their remarkable success, standard attention mechanisms employ a shared dot-product
mechanism that uniformly scores all query–key interactions before softmax, regardless of their
semantic or spatial relevance. This uniform scoring can lead the model to focus on background
regions or non-informative structures while overlooking salient visual cues. As a result, the lack
of dynamic modulation at the token-pair level may limit the model’s ability to adapt its focus
based on image content, reducing its effectiveness on vision tasks that require fine-grained spatial
understanding and semantic awareness.

In this paper, we hypothesize that explicitly controlling the amplification or suppression of individual
token-pair interactions can lead to more expressive and discriminative representations. To this end,
we propose Pairwise Logit Gating (PLuG) attention, a simple yet effective plug-in mechanism
that introduces learnable, token-pair-specific gating mechanisms to modulate attention logits prior to
softmax normalization. Specifically, PLuG computes auxiliary query-key projections using linear
layers with dimensionality equal to the per-head dimension. These auxiliary queries and keys are
then projected into a shared space and compared using scaled dot-product similarity, yielding a raw
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pairwise gating matrix. This matrix captures token-pair interactions in a low-dimensional gating
space. To transform this raw matrix into meaningful modulation signals, we introduce a Gating
Modulation Layer (GML), a lightweight two-factor scheme that maps the raw gating matrix to two
learned components through a small linear layer. These components are then multiplied elementwise
and passed through a tanh activation to produce a bounded gating coefficient matrix, which plays
a crucial role in improving the expressiveness of attention mechanisms. Finally, as illustrated in
Figure 1(a), this gating coefficient matrix is applied multiplicatively to the standard attention logits
before softmax.

(a) (b)

Figure 1: (a) Overview of PLuG Attention. (b)
Visualization of the average gating coefficient ma-
trix for DeiT-S (Touvron et al., 2021a) with PLuG
applied, computed over all heads and layers on
ImageNet-1k (Russakovsky et al., 2015) val im-
ages. Blue indicates suppression, while red sig-
nifies amplification, reflecting the modulation ap-
plied to the pre-softmax attention logits between
query–key pairs.

Figure 1(b) demonstrates that PLuG enables
fine-grained control by learning to modulate at-
tention logits at the token-pair level in DeiT-
S (Touvron et al., 2021a), suppressing self and
local interactions while amplifying medium and
long-range dependencies. This structured mod-
ulation helps the model reduce reliance on un-
informative or spurious correlations, guiding at-
tention toward more semantically and spatially
meaningful dependencies. Notably, PLuG inte-
grates seamlessly into ViT-based architectures
and Mask2Former by modifying only the atten-
tion module, and it also applies to multi-scale
deformable attention in Deformable DETR (Zhu
et al., 2020), without altering the rest of the
architecture. Importantly, this improvement is
achieved with only a small increase in compu-
tational cost and works effectively without hy-
perparameter tuning, making PLuG a practical,
plug-in solution for attention-based vision mod-
els. The contributions of this paper are summa-
rized as follows:

• We propose PLuG attention, which modulates attention logits prior to softmax through learn-
able token-pair-specific gating mechanisms, enabling selective amplification of informative
interactions while suppressing spurious ones.

• We demonstrate that PLuG can be seamlessly integrated into various attention mechanisms
and attention-based architectures, including ViTs, Mask2Former, and multi-scale deformable
attention in Deformable DETR. To the best of our knowledge, this is the first work to intro-
duce and validate a logit-level gating mechanism consistently across domains, architectures,
and attention variants in vision tasks.

• Extensive experiments show that PLuG is a true plug-in, applied only within within the
attention module, requiring no architectural redesign or hyperparameter tuning, and serving
as a practical, general-purpose enhancement for attention-based vision models.

2 RELATED WORKS

Token-Pair Modulations Several recent approaches alter how token pairs interact. Talking-Heads
Attention (Shazeer et al., 2020) learns small projections that remix pre-softmax logits across heads,
providing pairwise modulation. Synthesizer (Tay et al., 2021) replaces dot-products by generating
full attention maps with tokenwise MLPs or global random weights, removing explicit query–key
similarity while retaining strong performance. ConViT (d’Ascoli et al., 2021) instead mixes post-
softmax content and positional distributions with a per-head sigmoid gate and then renormalizes,
applying the same scalar mixture weight to all token pairs within a head rather than rescaling
logits directly. Selective Self-Attention (Zhang et al., 2024a) applies a query-specific temperature
to an entire row, not individual pairs. Another method, also titled Selective Attention (Leviathan
et al., 2025), derives a parameter-free, non-negative mask from one of the existing attention heads
and subtracts it from the logits, thereby suppressing specific token pairs but not amplifying them.
Compared with these, PLuG applies lightweight, learnable gates directly on pre-softmax logits at
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the token-pair level, allowing it to both amplify and suppress specific pairs for precise, fine-grained
modulation.

Attentions using Gating Mechanisms Another line of research integrates gating mechanisms after
attention weight computations. For instance, Gated Attention Unit (GAU) (Hua et al., 2022) and
MEGA (Ma et al., 2023) apply learned gates to token representations after the attention operation,
achieving improved efficiency in long-range modeling. Gated Linear Attention (GLA) (Yang et al.,
2024) introduces data-dependent forget gates within linear-time Transformers, enabling scalability to
extended sequences and high-resolution image generation tasks such as (Zhu et al., 2025). Gated Slot
Attention (GSA) (Zhang et al., 2024b) further augments bounded-memory attention with a gating
mechanism while retaining softmax, improving recall-intensive performance and training/inference
efficiency. Task-specific architectures also apply gating at different stages of the attention process.
AVIGATE (Jeong et al., 2025) applies learned scalar gates to the outputs of cross-attention and FFN
within a gated fusion transformer, modulating cross-modal features after attention rather than altering
pre-softmax logits. The Gated Attention Transformer (Doering & Gall, 2023) fuses appearance and
pose similarity at the logit level via an α−Gate, forming a weighted sum of pairwise scores before
softmax. Unlike prior methods, PLuG requires no architectural changes and hyperparameter tuning.
We further show that it integrates seamlessly into diverse attention mechanisms and architectures,
including ViTs, Mask2Former, and multi-scale deformable attention in Deformable DETR, achieving
strong results across image classification, detection, and segmentation. To the best of our knowledge,
this is the first logit-level gating mechanism validated consistently across domains, architectures, and
attention variants in vision tasks. Further discussion is provided in Appendix F.

(a) (b) (c)

Figure 2: Illustration of PLuG Attention Mechanism. (a): Standard multi-head attention computes
attention weights from the similarity between Qmain and Kmain, followed by softmax normalization.
(b): PLuG attention introduces learnable gating matrix G that modulate attention logits prior to
softmax. The gates are computed from separate Qgate and Kgate projections, enabling selective
amplification or suppression of token-pair interactions. Darker region highlights the GML process,
which produces the gating coefficient matrix G. (c): PLuG is applied by modifying only the attention
module, without altering the rest of the architecture.

3 METHODOLOGY

3.1 PLUG ATTENTION

We introduce Pairwise Logit Gating (PLuG) Attention, enabling dynamic modulation of the token-pair
interaction weights based on learned gating functions. PLuG operates as a true plug-in enhancement,
requiring only changes to multi-head self-attention (MHSA) layer of existing attention architectures.
The overall architecture is illustrated in Figure 2.

Main Attention Path In a standard self-attention block of a ViT (Dosovitskiy et al., 2021), an input
image of spatial resolution (H,W ) is divided into non-overlapping patches of size (P, P ). Each
patch is flattened to form a token sequence x ∈ RN×C , where N = HW/P 2 + 1 includes the class
token. The sequence is linearly projected into queries, keys, and values:

Qmain = xWq, Kmain = xWk, V = xWv, (1)
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where Wq,Wk,Wv ∈ RC×Cv and Cv = h dh denotes the projection dimension, which is typically
equal to C. Scaled dot-product attention logits are then computed as

Amain =
QmainK

⊤
main√

dh
, (2)

with h denoting the number of heads and dh the per-head dimension. Each head attends independently,
and the outputs are concatenated to dimension Cv before being projected back to the embedding
space.

Gating Path To explicitly modulate each token-pair interaction, we introduce a gating mechanism
operating in parallel to the main attention path. The gating mechanism begins by computing gating-
specific queries Qgate and keys Kgate:

Qgate = xWqg ,Kgate = xWkg
, (3)

where Wqg ,Wkg ∈ RC×dg . Qgate and Kgate are shared across heads and form the raw pairwise
gating matrix R ∈ RN×N via a scaled dot-product:

R =
Qgate ·K⊤

gate√
dg

, (4)

This raw gating matrix R captures token-pair interactions in a low-dimensional gating space. Here,
the gating dimension dg is chosen as a fraction of the head dimension dh. The effect of different
gating dimensions is illustrated in Figure 4.

Figure 3: Illustration of the Gating Modulation
Layer (GML). GML maps pairwise raw gating ma-
trix R into a gating coefficient matrix G, which
plays a critical role in enhancing model perfor-
mance by dynamically modulating attention logits
in a token-pair-specific manner.

Gating Modulation Layer Subsequently, we
introduce a simple nonlinear gating module, Gat-
ing Modulation Layer (GML), that maps the
raw gating matrix R into a flexible modulated
gating coefficient matrix G. Specifically, each
scalar value in raw gating matrix rij ∈ R is
transformed by a lightweight linear layer param-
eterized by Wϕ ∈ R1×2, yielding two scalar
modulation factors denoted as gA, gB ∈ RN×N .
For clarity, the bias term is omitted from the
notation but included in implementation. The
two factors are then multiplied elementwise
and passed through a hyperbolic tangent ac-
tivation to produce the gating coefficient ma-
trix G = tanh(gA ⊙ gB) ∈ RN×N , where ⊙
denotes elementwise multiplication. The tanh
activation stabilizes training by preventing un-
bounded logits that can lead to loss divergence,
while the resulting gating matrix G enables dy-
namic, token-pair-specific modulation of attention that enhances model performance. The full process
of GML is illustrated in Figure 3.

Attention Modulation The final attention logits are obtained by multiplicatively modulating the
main attention logits Amain with the learned gating coefficients G:

Ãmain = Amain ⊙ (1 +G), (5)

where G ∈ RN×N operates at the token-pair level and is broadcast across all heads in ViT-based
settings (Dosovitskiy et al., 2021). The residual term “1+” preserves the original attention logits,
allowing the model to flexibly amplify or suppress them as needed. This modulation explicitly
increases attention on informative pairs (G > 0) and decreases it on less relevant ones (G < 0).
Finally, Ãmain is normalized by softmax and the output is computed as in standard MHSA:

headh = Ã
(h)
mainV

(h), (6)

y = Concat(head1, ...,headH)WO, (7)

followed by linear projection WO ∈ RCv×C and dropout layers (Srivastava et al., 2014).
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3.2 PLUG ATTENTION FOR MULTI-SCALE DEFORMABLE ATTENTION

Unlike ViT (Dosovitskiy et al., 2021), which models pairwise query–key interactions across a dense
attention matrix, multi-scale deformable attention (MSDeformAttn) (Zhu et al., 2020) computes
attention by sampling a fixed set of points for each head and feature level, rather than evaluating all
query–key pairs. To match this design, we employ a head-specific, level-specific, point-shared gate
that modulates logits at the (h, ℓ) granularity and is broadcast across sampling points. This avoids
a dense pairwise gate while preserving efficiency and demonstrates PLuG’s applicability beyond
MHSA (Vaswani et al., 2017).

Specifically, given a query embedding zq ∈ RC , we first compute the unnormalized attention logits
as

Amain = zqWq, Wq ∈ RC×Cv , Cv = H × L× P, (8)

and reshape Amain to RH×L×P . Here H , L, and P denote the number of heads, feature levels,
and sampling points per head–level pair, respectively. Next, we compute raw gate logits for each
head–level combination:

r = zqWg, Wg ∈ RC×C′
v , C ′

v = H × L, (9)

and reshape r to RH×L×1. Each scalar rh,ℓ is passed through a lightweight linear map Wϕ ∈ R1×2

(bias omitted in notation but included in implementation), producing two factors gA, gB ∈ RH×L×1.
We then define the gate via:

G = gA ⊙ gB ∈ RH×L×1. (10)
Because Amain has an additional sampling-point dimension, the same G is broadcast along P :

G̃h,ℓ,p = Gh,ℓ,1, p = 1, . . . , P, (11)

giving G̃ ∈ RH×L×P . We then apply a residual multiplicative modulation to the logits as

Ãmain = Amain ⊙ (1 + G̃), (12)

followed by a softmax over the L × P elements within each head. Unlike the ViT-based PLuG
mechanism, no additional nonlinearity is applied to G̃ in the MSDeformAttn setting. All remaining
operations follow (Zhu et al., 2020).

4 EXPERIMENTS

We apply PLuG to various attention-based architectures by modifying only the attention modules.
Unless specified, all other components, including backbone design, training settings, loss functions,
and hyperparameters remain unchanged. All models were trained from scratch. Detailed information
for producing our results are provided in Appendix C.

4.1 RESULTS

PLuG to ViT-based Architectures We evaluate PLuG on a range of ViT-based (Dosovitskiy
et al., 2021) architectures with diverse design characteristics, as summarized in Table 1. On DeiT-Ti
and DeiT-S (Touvron et al., 2021a), which rely entirely on global self-attention without convo-
lutional locality, PLuG reaches 73.2% and 80.3%, showing strong benefits in pure Transformer
baselines. TinyViT-5M (Wu et al., 2022), which incorporates window attention and depthwise convo-
lutions (Chollet, 2017), attains 79.7%. Visformer-Ti (Chen et al., 2021), with early convolutional
blocks before global attention, achieves 78.5%, confirming that PLuG provides added value even
in hybrids that already encode locality. LV-ViT-T (Yuan et al., 2021), equipped with a convolu-
tional stem and dense token-label supervision, improves to 79.4%, while XCiT-T12/16 (El-Nouby
et al., 2021), which reformulates attention as cross-covariance along channels, reaches 77.4%. For
PVT-Tiny (Wang et al., 2021), which employs spatial-reduction attention, PLuG yields 75.2%.
GCViT-XXT (Hatamizadeh et al., 2023), alternating local and global attention within fused MBConv
layers, gains substantially, reaching 80.5%. ViTAE-T (Xu et al., 2021), which augments Transformers
with convolutional reduction and normal cells to inject locality and multi-scale context, similarly
reaches 75.7%. T2T-ViT-10 (Yuan et al., 2021), which introduces a tokens-to-token module for
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Table 1: Results of applying PLuG to various ViT-based models on ImageNet-1k (Russakovsky et al.,
2015) classification.

Model Top-1
Acc (%) #Params FLOPs

DeiT-Ti (Touvron et al., 2021a) 72.2 5.7M 1.3G
+ PLuG 73.2 6.0M 1.4G

DeiT-S (Touvron et al., 2021a) 79.8 22.0M 4.6G
+ PLuG 80.3 22.6M 4.9G

TinyViT-5M (Wu et al., 2022) 79.1 5.3M 1.3G
+ PLuG 79.7 5.5M 1.4G

Visformer-Ti (Chen et al., 2021) 78.1 10.3M 1.3G
+ PLuG 78.5 10.8M 1.3G

LV-ViT-T (Yuan et al., 2021) 79.1 8.5M 2.9G
+ PLuG 79.4 8.8M 3.1G

XCiT-T12/16 (El-Nouby et al., 2021) 77.1 6.7M 1.2G
+ PLuG 77.4 6.9M 1.3G

PVT-Tiny (Wang et al., 2021) 75.1 13.2M 1.9G
+ PLuG 75.2 13.3M 2.0G

GCViT-XXT (Hatamizadeh et al., 2023) 79.9 12.0M 2.1G
+ PLuG 80.5 12.2M 2.3G

ViTAE-T (Xu et al., 2021) 75.3 4.8M 1.5G
+ PLuG 75.7 5.1M 1.6G

T2T-ViT-10 (Yuan et al., 2021) 75.2 5.9M 1.5G
+ PLuG 75.3 6.2M 1.6G

progressive structural modeling, also shows an improvement, although the gain is modest. Overall,
PLuG improves accuracy across backbones, and the scale of the gains and the related increases in
parameters and FLOPs depend on the underlying architectural design.

Table 2: Results of applying PLuG to Mask2Former (Cheng et al., 2022) across different backbones
on ADE20K (Zhou et al., 2019).

Model Backbone Crop Size mIoU #Params FLOPs
Mask2Former (Cheng et al., 2022) R50 512× 512 47.2 44.0M 70.8G
+ PLuG R50 512× 512 47.9 44.1M 70.8G

Mask2Former (Cheng et al., 2022) Swin-T 512× 512 47.7 47.4M 73.7G
+ PLuG Swin-T 512× 512 48.7 47.6M 73.7G

Mask2Former (Cheng et al., 2022) Swin-S 512× 512 51.3 68.8M 97.4G
+ PLuG Swin-S 512× 512 51.7 68.9M 97.5G

Mask2Former (Cheng et al., 2022) Swin-B 640× 640 52.4 106.9M 223.4G
+ PLuG Swin-B 640× 640 52.6 107.1M 223.5G

PLuG to Mask2Former For semantic segmentation on ADE20K (Zhou et al., 2019), PLuG
consistently improves Mask2Former (Cheng et al., 2022) across different backbones, as shown in
Table 2. With ResNet-50 (He et al., 2016), PLuG achieves 47.9 mIoU, while Swin-T, Swin-S, and
Swin-B (Liu et al., 2021) reach 48.7, 51.7, and 52.6, respectively. Despite adding only negligible
computational overhead, these improvements demonstrate the effectiveness of PLuG as a plug-in
module for dense prediction tasks, further underscoring its generality across both recognition and
segmentation.

PLuG to Deformable DETR As shown in Table 3, PLuG consistently improves performance across
diverse Deformable DETR (Zhu et al., 2020) configurations. In single-scale experiments where only
a single feature level is employed, the parameter overhead introduced by PLuG is minimal (∼ 0.07%).
Despite this negligible increase, we observe a slight but consistent performance gain from 39.4 AP
to 39.7 AP and 41.4 AP to 41.7 AP, demonstrating the effectiveness of PLuG even in the simplest
configuration. Remarkably, PLuG also demonstrates effectiveness when applied exclusively within
the cross-attention modules of the decoder. Specifically, when PLuG is applied only to the decoder,
AP improves from 44.4 to 44.7, indicating that the gating mechanism not only benefits encoder
self-attention and decoder cross-attention layers but can also effectively modulate object queries.
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Table 3: Results of applying PLuG to Deformable DETR (Zhu et al., 2020). † denotes our re-
implementation and ∗ indicates tests performed under mmdetection (Chen et al., 2019) framework in
our setting.

Model AP AP50 AP75 APS APM APL #Params FLOPs Inference
FPS

Deformable DETR (single scale)† (Zhu et al., 2020) 39.4 60.1 41.9 19.8 43.6 56.2 33.8M 78G 42.6∗

+ PLuG 39.7 60.1 42.3 20.1 43.5 56.2 33.8M 78G 41.5∗

Deformable DETR (single scale, DC5)† (Zhu et al., 2020) 41.4 61.6 44.6 23.4 45.2 56.9 33.8M 128G 37.4∗

+ PLuG 41.7 61.7 44.9 23.3 45.6 57.0 33.8M 129G 36.4∗

Deformable DETR† (Zhu et al., 2020) 44.4 63.2 48.5 25.7 47.8 59.4 39.8M 173G 27.4∗

+ PLuG (encoder only) 44.7 63.7 48.5 26.6 48.3 59.4 39.8M 173G -
+ PLuG (decoder only) 44.7 63.4 48.4 27.0 48.0 59.4 39.8M 173G -
+ PLuG 44.9 63.7 48.8 26.9 48.3 59.3 39.9M 174G 26.8∗

Iterative bounding box refinement† (Zhu et al., 2020) 45.7 64.4 49.4 27.7 48.9 61.7 40.6M 173G 25.6∗

+ PLuG 46.1 64.8 49.8 27.9 49.4 62.1 40.7M 174G 25.6∗

Two-stage Deformable DETR† (Zhu et al., 2020) 46.8 65.8 50.6 29.3 49.9 61.9 40.9M 173G 25.4∗

+ PLuG (encoder only) 47.0 65.8 50.9 29.0 50.1 62.4 41.0M 174G 25.4∗

Furthermore, in the full Deformable DETR and the variant with iterative bounding box refinement,
PLuG achieves 0.4 AP gain with only a slight increase in parameters (∼ 0.24%), underscoring its
efficiency and effectiveness. In the two-stage Deformable DETR configuration, however, applying
PLuG to both the encoder and decoder leads to a slight performance drop, likely due to reduced
proposal diversity. Therefore, we restrict PLuG to the encoder in this setting, which still yields
an improvement from 46.8 to 47.0 AP with minimal parameter overhead. A marginal decrease in
inference speed (FPS) is observed due to additional gating operations in single-scale setting, but as
model complexity increases, the FPS difference introduced by PLuG becomes insignificant. Since
multi-scale deformable attention is a key component in various vision architectures, the consistent
improvements indicate strong potential for extending PLuG to a broad range of vision tasks and
modalities.

4.2 ABLATION STUDIES

We conduct ablation studies to examine the effects of key design choices: (1) varying the gating-
dimension fraction, (2) comparing Gating Modulation Layer (GML) variants, (3) assessing the
activation function, and (4) evaluating head-specific versus shared gating. All ablations are conducted
on DeiT (Touvron et al., 2021a), a pure attention-based architecture that enables clear analysis of
each component’s impact.
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Figure 4: Ablation on gating dimension fraction.
Accuracy and parameter count are shown.

Ablation on Gating Dimension Fraction Fig-
ure 4 shows an exploration the gating dimen-
sion fraction in PLuG on DeiT-Ti (Touvron
et al., 2021a), varying it from 0.125 to 2.0
relative to each head’s subspace. Even small
fractions (0.125–0.5) already beat the 72.2%
baseline—72.48%, 72.46%, and 72.60%—with
only 5.75–5.86M parameters. Increasing to 1.0
yields the best result, 73.2% at 6.01M parame-
ters. Pushing further to 2.0 inflates parameters
to 6.3M but drops accuracy to 72.8%, indicating that exceeding the head dimension adds cost without
benefit. Accordingly, we adopt a gating fraction of 1.0 for all experiments.

Ablation on GML Variants We perform an ablation study to assess the impact of Gating Modula-
tion Layer (GML) variants in Table 4. The simplest variant (A), which excludes learnable modulation
parameters, achieves 72.6% accuracy. Variant (B) adds two learned scalar factors in an additive
manner and yields 72.8%, while variant (C) uses a single learned scalar and reaches 73.0%. Variant
(D) incorporates a two-layer MLP with an intermediate hidden dimension (hint = 4) but results in a
slightly lower accuracy of 72.9%, possibly due to increased optimization complexity. Our proposed
variant (E) combines two learned factors via elementwise multiplication and achieves the highest
accuracy of 73.2%, demonstrating the effectiveness of pairwise multiplicative gating in modulating
token-pair interactions.
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Table 4: Ablation study of gating modulation
layers (GML). Variant (E) performs best.

Variant Method Top-1 Acc (%)
(A) G = tanh(QgateK

⊤
gate) 72.6

(B) G = tanh(gA + gB) 72.8

(C) G = tanh(g), Wϕ∈R1×1 73.0

(D) W
(1)
ϕ ∈R1×hint , W

(2)
ϕ ∈Rhint×2 72.9

(E) G = tanh(gA ⊙ gB) 73.2

Table 5: Effect of activation functions in PLuG
applied to DeiT (Touvron et al., 2021a).

Model Function Top-1 Acc (%)

DeiT-Ti (Touvron et al., 2021a) + PLuG tanh 73.2

DeiT-Ti (Touvron et al., 2021a) + PLuG hardtanh 71.0

DeiT-Ti (Touvron et al., 2021a) + PLuG softsign 72.8

DeiT-Ti (Touvron et al., 2021a) + PLuG w/o tanh 73.2

DeiT-S (Touvron et al., 2021a) + PLuG w/o tanh ✗

Effect of Activation Functions The influence of the activation function in the PLuG is summarized
in Table 5. Hardtanh and softsign were included in the ablation as they behave similarly to tanh by
providing bounded, symmetric nonlinear mappings. On DeiT-Ti (Touvron et al., 2021a), hardtanh
reduced accuracy to 71.0%, softsign improved results to 72.8%, and tanh achieved 73.2%. Removing
the nonlinearity entirely also reached 73.2% on DeiT-Ti, but training on DeiT-S became unstable and
the loss diverged to NaN. These findings indicate that while bounded nonlinearity helps stabilize
optimization, tanh provides the best trade-off between expressiveness and robustness.

Table 6: Comparison of head-specific gating in terms of accuracy, parameter count, and FLOPs. h.s
denotes head-specific gating.

Method Top-1 Acc (%) #Params FLOPs
DeiT-Ti (Touvron et al., 2021a) + PLuG w/o h.s 73.2 6.0M 1.4G
DeiT-Ti (Touvron et al., 2021a) + PLuG w/ h.s 73.1 6.6M 1.5G
DeiT-S (Touvron et al., 2021a) + PLuG w/o h.s 80.3 22.6M 4.9G
DeiT-S (Touvron et al., 2021a) + PLuG w/ h.s 80.1 25.5M 5.5G

Effect of Head-Specific Gating We further examine the effect of applying gating coefficient matrix
G independently to each attention head (head-specific) versus sharing across all heads (our default).
As shown in Table 6, head-specific gating on DeiT-Ti (Touvron et al., 2021a) increases the parameter
count from 6.0M to 6.6M while slightly reducing accuracy from 73.2% to 73.1%. For the larger
DeiT-S model, head-specific gating increases the parameter count increases from 22.6M to 25.5M
and yields a small drop in accuracy from 80.3% to 80.1%. In addition, head-specific gating leads to
a non-trivial increase in computational cost, with FLOPs rising from 1.4G to 1.5G on DeiT-T and
from 4.9G to 5.5G on DeiT-S. These results indicate that head-shared gating is more efficient in both
parameter count and computational cost, while remaining sufficient for capturing effective token-pair
interactions.

4.3 FURTHER ANALYSIS
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(b) DeiT-S

Figure 5: Layerwise mean G values for (a) DeiT-Ti
and (b) DeiT-S (Touvron et al., 2021a).

Depthwise Analysis of G We investigate the
gating behavior of PLuG across different trans-
former layers by analyzing the average G val-
ues within DeiT-Ti and DeiT-S (Touvron et al.,
2021a) in Figure 5. G values are computed using
images across all ImageNet-1K (Russakovsky
et al., 2015) validation set. Across both architec-
tures, we observe a consistent layerwise gating
pattern: strongly positive gate values in the ini-
tial layer, near-zero values in the middle, and
increasingly negative values in deeper layers.
This progressive shift from amplification to sup-
pression of token interactions emerges consistently across different model capacities. Interestingly,
despite notable variability across layers, the mean G value across layers remain near zero (DeiT-Ti:
0.0221, DeiT-S: 0.0155). These results suggest that PLuG operates as a depth-aware gating mecha-
nism that adaptively reallocates attention strength across token pairs in a balanced manner, rather
than applying uniform scaling across layers of the model.
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Figure 6: CKA (Kornblith et al., 2019) between
attention patterns of DeiT-S (Touvron et al., 2021a):
(a) original and (b) PLuG.

Attention-Pattern Similarity On DeiT-S,
we measure Centered Kernel Alignment
(CKA) (Kornblith et al., 2019) between per-
layer attention patterns, where the class token
distributes attention over image regions, using
the full ImageNet-1k validation set. Figure 6
shows that applying PLuG reduces similarity
across the middle layers (3–8), reflecting lower
redundancy and more gradual attention changes,
while similarity increases in the upper layers
(8–12), indicating smaller adjustments closer to
the output. These patterns emerge naturally dur-
ing training and highlight how PLuG reshapes
attention across depth.

4.4 VISUALIZATION
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Figure 7: Attention rollout (Abnar & Zuidema, 2020) maps of (a) TinyViT-5M (Wu et al., 2022) and
(b) GCViT-XXT (Hatamizadeh et al., 2023). Colour bars indicate relative attention strength.

We visualize the impact of PLuG using attention rollout (Abnar & Zuidema, 2020) maps, comparing
against a vanilla TinyViT-5M (Wu et al., 2022) and GCViT-XXT (Hatamizadeh et al., 2023). The
rollout aggregates attention weights across transformer layers, revealing how effectively the model
attends from the class token to image patches. Figure 7 shows that PLuG consistently guides the
model to focus on semantically informative regions (e.g., foreground objects) while suppressing
spurious background features, highlighting PLuG’s ability to enhance interpretability and robustness
in vision transformers.

5 LIMITATIONS AND FUTURE WORK

Although PLuG consistently improves accuracy, the performance gain becomes less substantial as
model capacity increases. As described in Section 4, smaller backbones benefit more noticeably,
while larger models see more modest improvements, suggesting that the impact of token-pair gating
is reduced when the base model is already highly expressive. In addition, the introduction of gating
projections inevitably increases parameters, FLOPs, and memory usage. Future work will explore
strategies to reduce these overheads and enhance efficiency, particularly for high-capacity models
where the performance gains are limited.

6 CONCLUSION

In this paper, we present PLuG attention, a simple yet effective plug-in enhancement to self-attention
that introduces learnable token-pair-specific gates to modulate attention logits prior to softmax
operation. This mechanism selectively amplifies informative interactions and suppresses spurious
ones, yielding more expressive and discriminative representations. PLuG integrates seamlessly
into diverse attention variants and architectures, applied only within the attention module, with no
architectural redesign and no hyperparameter tuning required. Across image classification, detection,
and segmentation task, PLuG achieves consistent gains, demonstrating a broadly applicable and
scalable enhancement for attention-based vision models.
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A PSEUDOCODE

Algorithm 1 Pseudocode for PLuG-Attention.

# X: [B, N, C] tokens
# h: number of heads; d = C / h

def PLuGAttention(X, W_qkv, W_g):
# main & gate projections
Q, K, V = split(X @ W_qkv, 3)
Qg, Kg = split(X @ W_g, 2)

s = 1 / sqrt(d)

# main logits
A = (Q @ K.transpose(-1, -2)) * s

# raw gating logits
R = (Qg @ Kg.transpose(-1, -2)) * s

# GML
gA, gB = split(Linear(R), 2)
G = tanh(gA * gB)

# apply and normalize
W = softmax(A * (1 + G), dim=-1)
O = W @ V

return O

Algorithm 1 presents the PyTorch-style (Paszke et al., 2019) pseudocode for PLuG attention. The
formulation allows seamless integration into existing architectures with minimal modification, sup-
porting both experimental research development and efficient deployment.

B BASELINE ARCHITECTURES

B.1 VISION TRANSFORMER

The Vision Transformer (ViT) (Dosovitskiy et al., 2021) partitions an input image into non-
overlapping patches, linearly projects each patch into an embedding, and prepends a learnable
class token to form the input sequence. This sequence is processed by an encoder composed of
stacked Transformer blocks (Vaswani et al., 2017), each containing a multi-head self-attention
(MHSA) layer and a position-wise feed-forward network (FFN), with residual connections (He et al.,
2016) and layer normalization (Ba et al., 2016). Positional encodings are added to retain spatial
information, enabling ViT to operate directly on patch tokens without convolutional inductive biases.

B.2 DEFORMABLE DETR.

DETR (Carion et al., 2020) is composed of a backbone, an encoder, and a decoder. The backbone (He
et al., 2016) extracts feature map and the encoder applies stacked layers of multi-head self-attention
(MHSA) and feed-forward networks (FFN) to refine these features. The decoder applies layers of
cross-attention, MHSA, and FFNs to iteratively update object queries and predict class labels and
bounding boxes. During training, each query is supervised to correspond to either a foreground
object or background. Deformable DETR (Zhu et al., 2020) replaces the MHSA layers in the encoder
and the cross-attention modules in the decoder with multi-scale deformable attention for improved
efficiency and multi-scale feature aggregation.
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B.3 MASK2FORMER

Mask2Former (Cheng et al., 2022) is a universal architecture for image segmentation tasks, including
semantic, instance, and panoptic segmentation. It employs a hierarchical backbone (He et al.,
2016; Liu et al., 2021) to extract multi-scale features, which are encoded by a pixel decoder into
a shared feature representation. A transformer decoder processes a fixed set of learnable queries
through layers of cross-attention, self-attention, and feed-forward networks, iteratively predicting
segmentation masks. By decoupling mask prediction from class prediction, Mask2Former achieves
strong generalization across diverse segmentation tasks.

C EXPERIMENTAL SETTINGS

C.1 DATASETS

Image Classification. ImageNet-1K (Russakovsky et al., 2015) is the standard large-scale bench-
mark for image classification, containing 1.2M training images and 50K validation images across
1,000 object categories. Its broad diversity of object categories makes ImageNet-1K a strong bench-
mark for evaluating the generalization of visual backbones.

Object Detection. COCO 2017 (Lin et al., 2014) is widely adopted for object detection, consisting
of 118K training and 5K validation images annotated with bounding boxes for 80 categories. Images
depict complex natural scenes with multiple instances and large-scale variation, posing significant
challenges for localization and detection.

Semantic Segmentation. ADE20K (Zhou et al., 2019) provides a diverse benchmark for semantic
segmentation, with 20K training and 2K validation images labeled at the pixel level across 150
semantic categories. Its indoor-outdoor scenes and fine-grained boundaries require models to leverage
both global context and local detail.

C.2 IMPLEMENTATION DETAILS

ViT-based Architectures We evaluate PLuG on several vision transformer models, including
DeiT (Touvron et al., 2021a), TinyViT (Wu et al., 2022), Visformer (Chen et al., 2021), LV-ViT (Yuan
et al., 2021), XCiT (El-Nouby et al., 2021), PVT (Wang et al., 2021), GV ViT (Hatamizadeh et al.,
2023), ViTAE (Xu et al., 2021), and T2T-ViT (Yuan et al., 2021). For XCiT, we apply PLuG within
the cross-covariance attention (XCA) layer. We follow the training configurations from the original
papers or official repositories and all experiments were conducted using 4 NVIDIA RTX 3090 GPUs.
For DeiT-S and GCViT, we use the training setups from the timm1 implementation.

Deformable DETR We apply PLuG to the multi-scale deformable attention modules in Deformable
DETR (Zhu et al., 2020). To reproduce performance close to the official github2 implementation in
our GPU setting, we use a batch size of 4 with gradient accumulation over 8 steps and reduce the
weight decay to 5e-5. All other training settings follow the original configuration and PLuG is applied
under this reimplementation setup across all evaluated variants of Deformable DETR. Training was
performed on two NVIDIA RTX 4090 GPUs. Each configuration was run three times, and we report
the mean over the three runs. Inference speed was measured on a single NVIDIA RTX 4090 GPU.

Mask2Former We insert PLuG only into the transformer decoder’s MHSA layers, leaving the pixel
decoder’s multi-scale deformable attention and the decoder’s masked cross-attention unchanged. No
additional hyper-parameter tuning is applied beyond the default Mask2Former (Cheng et al., 2022)
settings. The experiments were performed on 4 NVIDIA RTX 3090 GPUs.

1https://github.com/huggingface/pytorch-image-models
2https://github.com/fundamentalvision/Deformable-DETR
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D COMPLEXITY ANALYSIS

D.1 COMPLEXITY OF STANDARD ATTENTION

In a Vision Transformer (Dosovitskiy et al., 2021), the forward cost comprises projections and
attention. Forming Qmain,Kmain, V costs 3NC2, and the output projection adds NC2. Computing
scores QmainK

⊤
main costs HN2d = N2C, and applying weights to values costs another N2C.

Softmax/dropout over the N ×N scores are lower-order O(HN2). The leading compute is

4NC2 + 2N2C. (13)

When N ≳ 2C, the N2C terms dominate, otherwise the NC2 projections dominate. Activations are
O(NC) for input and output, O(3NC) for Q,K, V , and O(HN2) for attention maps.

D.2 COMPLEXITY OF PLUG ATTENTION

PLuG augments MHSA with a head-shared gating branch. Main projections cost 4NC2 in total,
and gate projections x→ (Qgate,Kgate) ∈ RN×dg cost 2NC dg. Main scores and application to
V cost 2N2C, and the head-shared gated score QgateK

⊤
gate costs N2dg. The Gating Modulation

Layer (GML) contributes O(N2) elementwise work, and logit modulation adds O(HN2). Summing
leading terms:

4NC2 +
(
2N2C +N2dg

)
+ 2NC dg︸ ︷︷ ︸

gate projection

+O(N2)︸ ︷︷ ︸
GML

+ O(HN2)︸ ︷︷ ︸
logit modulation

. (14)

No new C2 terms beyond projections are introduced. Activations remain O(NC) for input and
output, O(3NC) (Q,K, V ), and O(HN2) (per-head maps), plus O(Ndg) for (Qgate,Kgate) and
one head-shared O(N2) gate matrix.

D.3 COMPLEXITY OF MSDEFORMATTN

Let C be channels, H heads, L feature levels, P sampling points per head–level, Nq queries, and
Nk =

∑L
ℓ=1 Sℓ total key–value tokens. The value projection over keys costs NkC

2, the output
projection costs NqC

2. Query linears for offsets/logits map C → HLP and cost 3NqCHLP .
Bilinear sampling and aggregation over LP points contribute 5NqLP C. The leading cost is

NkC
2 +NqC

2 + 3NqCHLP + 5NqLP C. (15)

There is no NqNk attention matrix, so cost scales linearly with spatial tokens.

D.4 COMPLEXITY OF PLUG MSDEFORMATTN

PLuG adds a head-specific, level-specific (point-shared) gate on the query side. Relative to equa-
tion 15, the additional costs are

NqCHL︸ ︷︷ ︸
gate projection

+O(NqHL)︸ ︷︷ ︸
GML

+O(NqHLP )︸ ︷︷ ︸
logit modulation

. (16)

Thus the total leading cost is equation 15 + equation 16. No new C2 terms are introduced. For large
C and modest H,L, P , the C2 terms dominate, and PLuG overhead is small. Activations match
MSDeformAttn order, with one additional O(NqHL) gate tensor.
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E FURTHER ABLATIONS

E.1 MORE DETAILS OF PLUG TO MULTI-SCALE DEFORMABLE ATTENTION

Table 7: Results of applying PLuG to the decoder’s self-attention layer. † denotes our re-
implementation.

Model Method AP
Deformable DETR† (Zhu et al., 2020) Vanilla 44.5
Deformable DETR (Zhu et al., 2020) + PLuG Decoder self-attn 44.2

PLuG to Decoder Self-Attention As reported in Table 3, inserting PLuG into the encoder’s multi-
scale deformable attention and the decoder’s cross-attention layers leads to consistent performance
improvements. In contrast, applying PLuG to the decoder’s self-attention layer results in a slight
drop in AP, as shown in Table 7, suggesting that logit-level gating is less effective for self-attention
refinement than for enhancing cross-attention or multi-scale aggregation in Deformable DETR (Zhu
et al., 2020).

Table 8: Effect of applying tanh to G in multi-scale deformable attention. † denotes our re-
implementation

Model Method AP
Deformable DETR† (Zhu et al., 2020) Vanilla 44.5
Deformable DETR (Zhu et al., 2020) + PLuG w/o tanh 44.9
Deformable DETR (Zhu et al., 2020) + PLuG w/ tanh 44.2

Effect of Nonlinear Activation Experiments on ViT-based architectures reported in Table 5 indicate
that bounded activations such as tanh or softsign yield stable or slightly improved accuracy. On the
other hand, introducing a tanh nonlinearity to G in multi-scale deformable attention reduces AP to
44.2, as shown in Table 8. These findings suggest that saturation functions help regularize dense
query–key interactions in ViT (Dosovitskiy et al., 2021), but disrupt the fine-grained head–level
gating signals in Deformable DETR, thereby diminishing its effectiveness.

Table 9: Ablation of gating granularity. Per-head and per-level gating with point sharing performs
best.

Model Gating granularity AP
Head-specific, Level-specific, Point-shared (default) 44.9

Head-specific, Level-specific, Point-specific 44.8
Deformable DETR (Zhu et al., 2020) + PLuG Head-specific, Level-shared, Point-shared 44.5

Head-shared, Level-specific, Point-specific 44.5
Head-shared, Level-specific, Point-shared 44.5

Gating granularity of MSDeformAttn We vary the gating granularity of MSDeformAttn across
heads, levels, and sampling points in Table 9. The default head-specific, level-specific, point-shared
design achieves the best result with 44.9 AP. Making the gate point-specific offers no benefit, yielding
44.8 AP. A similar pattern is shown in Table 6, where head-specific gating in DeiT (Touvron et al.,
2021a) models increases parameters and FLOPs without improving accuracy. Sharing across heads or
across levels consistently reduces accuracy to 44.5 AP, showing that per-head and per-level specificity
is important. These findings indicate that finer granularity is not always beneficial. Effective gating
requires balancing expressiveness and efficiency, and we therefore adopt head-specific and level-
specific gating with point sharing as the most effective choice.

E.2 PRE-SOFTMAX VS. POST-SOFTMAX

We analyze the impact of gating position of G within the PLuG attention mechanism on the DeiT-
Ti (Touvron et al., 2021a). Specifically, we compare two gating strategies: pre-softmax gating (the
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Table 10: Effect of gating position in PLuG on DeiT-Ti (Touvron et al., 2021a). Pre-softmax gating
outperforms post-softmax gating.

Model Method Top-1 Acc (%)
DeiT-Ti (Touvron et al., 2021a) Vanilla 72.2
DeiT-Ti (Touvron et al., 2021a) + PLuG Pre-softmax 73.2
DeiT-Ti (Touvron et al., 2021a) + PLuG Post-softmax 72.3

proposed approach) versus post-softmax gating. When G is applied after softmax normalization, final
attention logits Ãmain become:

Ãmain = softmax(Amain)⊙ (1 +G), (17)

This strategy yields only a minor accuracy improvement from 72.2% to 72.3%, as can be seen in
Table 10. The limited effectiveness of post-softmax gating can be attributed to two factors: (1) Post-
softmax gating disrupts the probability distribution, causing attention weights to no longer sum to one
and negatively impacting the learned attention balance. (2) Since softmax normalization compresses
logits into a narrow probability range, gating applied afterward has limited ability to substantially
adjust attention distribution patterns. This ablation underscores the importance of applying G at the
logit level (pre-softmax), enabling more expressive and beneficial modulation of attention scores, and
supports logit-level gating as the superior design choice within the PLuG framework.

E.3 ROLE OF RESIDUAL GATING.

Table 11: Effect of residual gating in PLuG applied to DeiT (Touvron et al., 2021a).

Model Method Top-1 Acc (%)
DeiT-Ti (Touvron et al., 2021a) + PLuG w/ residual 73.2

DeiT-Ti (Touvron et al., 2021a) + PLuG w/o residual 68.9

Table 12: Effect of residual gating in PLuG applied to Deformable DETR (Zhu et al., 2020).

Model Method AP
Deformable DETR (Zhu et al., 2020) + PLuG w/ residual 44.9
Deformable DETR (Zhu et al., 2020) + PLuG w/o residual 43.3

Table 11 and Table 12 present the effect of incorporating a residual connection in the gating pathway.
For DeiT-Ti (Touvron et al., 2021a), removing the residual connection leads to a clear drop in Top-1
accuracy from 73.2% to 68.9%. For Deformable DETR (Zhu et al., 2020), AP decreases from 44.9
to 43.3 without residual gating. These results indicate that residual gating is essential for stable
optimization and reliable accuracy across both dense and sparse attention mechanisms within PLuG.
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F COMPARISON WITH OTHER METHODS

In this section, we compare PLuG against prior attention variants, including those covered in Section 2
as well as more recent approaches, using four simple criteria.

• Pre-softmax: Does the method explicitly modify attention scores before the softmax?

• Granularity: Is it modulating individual query–key scores, either amplifying or suppressing
them?

• Generalizability: Has it shown gains across multiple architectures and tasks in its demon-
strated domain?

• Scalability: Can it seamlessly integrated into various attention variants?

Table 13: Comparison of attention variants under four criteria. ✓ indicates the criterion is satisfied,
while ✗ does not.

Model Pre-softmax Granularity Generalizability Scalability
Talking Heads (Shazeer et al., 2020) ✓ ✓ ✓ ✗

Synthesizer (Tay et al., 2021) ✓ ✗ ✓ ✗

Gated Attention (Doering & Gall, 2023) ✓ ✗ ✗ ✗

Selective Self-Attention (Zhang et al., 2024a) ✓ ✗ ✓ ✗

Selective Attention (Leviathan et al., 2025) ✓ ✗ ✓ ✗

Forgetting Transformer (Lin et al., 2025) ✓ ✗ ✓ ✓

Structured Attention (Kuang et al., 2025) ✓ ✓ ✓ ✓

PLuG (Ours) ✓ ✓ ✓ ✓

Talking-Heads Talking-Heads (Shazeer et al., 2020) augments attention by mixing across heads
through small learned projections on the pre-softmax logits together with a light post-softmax mix,
which improves inter-head coordination without requiring special hyperparameter tuning. PLuG takes
a different approach by rescaling each logit with a learned, content-dependent factor G, enabling
per-token-pair modulation directly in pre-softmax and avoiding any post-softmax step. Both methods
are lightweight and can be used as plug-in replacements. Talking-Heads has been validated primarily
in NLP (Lan et al., 2019; Devlin et al., 2019; Raffel et al., 2020), while PLuG shows consistent
gains across vision tasks. Although Talking-Heads has also been applied to vision models such as
CaiT (Touvron et al., 2021b) with improvements, it has not been demonstrated to integrate seamlessly
with diverse attention variants as PLuG does.

Synthesizer Synthesizer (Tay et al., 2021) replaces the dot-product operation with either a Dense
variant, where a token-wise MLP produces a row-wise attention map for each query, or a Random
variant, where weights are sampled without content dependence. These designs show that competitive
language modeling performance is possible even without explicit query–key similarity. PLuG takes a
different approach by augmenting rather than discarding the dot product, applying a content-dependent
gate to each logit to preserve pairwise structure while improving selectivity. Both operate in pre-
softmax space, but Synthesizer produces full attention maps directly, whereas PLuG modulates logits
at the per-token-pair level. While Synthesizer demonstrates generalizability across NLP benchmarks,
it cannot replace cross-attention, whereas PLuG has been successfully applied to cross-attention in
Deformable DETR (Zhu et al., 2020).

Gated Attention The Gated Attention Transformer (Doering & Gall, 2023) is designed for multi-
person pose tracking. It forms association scores by mixing two pre-softmax affinity maps, appearance
similarity and pose-based geometric consistency, via a global α − Gate that creates a weighted
sum before softmax, which yields coarse control rather than independent per-pair modulation. The
approach introduces additional components for pose encoding, matching, and track management
and depends on task-level thresholds and heuristics, so it is not a drop-in attention replacement.
In contrast, PLuG is not tied to any specific task and provides a general logit-level modulation
mechanism that can be seamlessly applied across architectures and vision tasks.
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Selective Self-Attention Selective Self-Attention (SSA) (Zhang et al., 2024a) introduces token-
aware temperatures on queries and values: the query temperature scales the entire row of the logit
matrix for each query (sharpening or smoothing its distribution over all keys), while the value
temperature modulates the aggregation path. PLuG instead adjusts individual query–key logits,
enabling finer-grained control. SSA shows improvements in language modeling, is lightweight and
hyperparameter-free, and is mainly evaluated in causal language modeling, where each token attends
only to previous tokens. PLuG focuses on vision models and tasks such as classification, detection,
and segmentation, and is not tailored to causal language modeling.

Selective Attention Selective Attention (Leviathan et al., 2025) derives a parameter-free, non-
negative mask from an existing attention head and subtracts it from the pre-softmax logits, selectively
suppressing query–key scores but never amplifying them. The method preserves the architecture
and introduces no hyperparameters. In contrast, PLuG performs token-pair-wise logit rescaling that
enables both amplification and suppression for finer control. Empirically, Selective Attention reports
consistent gains in decoder-only language models and small improvements in the T5 decoder (Raffel
et al., 2020), while also providing strong KV-cache pruning benefits. However, current evidence is
limited to standard dense attention (Vaswani et al., 2017) rather than multi-query (Shazeer, 2019) or
grouped-query (Ainslie et al., 2023) variants.

Forgetting Transformer FoX (Lin et al., 2025) augments softmax attention with a data-dependent
forget gate that adds a pairwise bias to the query–key scores before softmax. In terms of granularity,
the method computes a bias for each query–key pair. Crucially, this bias is defined as the log of a
product of forget factors, and because each factor is at most one, the resulting log term is non-positive.
Thus, FoX can decrease a pair’s score or leave it unchanged, but it cannot increase it. The paper
reports consistent gains within NLP, including long-context language modeling, length extrapolation,
and several downstream evaluations. Regarding scalability, FoX is a light change compatible with
standard causal attention and FlashAttention (Dao, 2023).

Structured Attention This approach replaces the standard dot-product scorer with structured
matrices (MLR and BTT) that impose inductive biases and directly modify pre-softmax scores. The
structured scorer produces a value for each query–key pair, enabling both increases and decreases at
the pairwise level. Reported gains include in-context regression, language modeling with distance-
aware compute, and long-range time-series forecasting, using standard Transformer backbones and a
Chronos (Ansari et al., 2024) variant. For scalability, the method uses batched matrix multiplications
and remains compatible with grouped-query attention and RoPE Su et al. (2024). However, unlike
PLuG, it introduces structural hyperparameters such as ranks, levels, and block sizes, which typically
require design-specific tuning.
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G FURTHER VISUALIZATIONS

(a) DeiT-Ti (b) DeiT-S

Figure 8: Comparison of attention maps from the class token of DeiT-Ti (Touvron et al., 2021a).
Brighter regions indicate stronger attention.

Per-Head Attention Map To qualitatively illustrate the effect of the proposed PLuG mechanism,
we visualize per-head attention maps for both the baseline DeiT (Touvron et al., 2021a) and the DeiT
enhanced with PLuG. Specifically, we extract attention weights from the class token to all image
regions in the final transformer block. For DeiT-S, we select representative heads that exhibit strong
activations and present their corresponding maps. As shown in Figure 8, PLuG yields attention
patterns that are more semantically concentrated than those of the baseline, suggesting that its
improved focus on salient regions contributes to the observed performance gains.

Figure 9: Qualitative comparison of sampling point distributions. Left: input image, middle:
vanilla MSDeformAttn, right: PLuG-MSDeformAttn. Green boxes denote ground-truth object
locations. White dots represent aggregated sampling points from the top-k object queries at the
highest-resolution feature level, and the jet-colored overlay shows their kernel density estimate.

Sampling-Point Visualization We visualize sampling points from the final decoder layer of
Deformable DETR (Zhu et al., 2020) to illustrate the effect of PLuG. We compare a baseline and a
PLuG applied model that differ only in the multi-scale attention module. During inference, we record
the sampling locations produced by the decoder’s cross-attention. For each image, we select the
top-k object queries based on classification confidence, extract their sampling points from the highest-
resolution feature map, and project them onto the resized input image. We overlay these points
and their Gaussian kernel density estimates to qualitatively assess how PLuG alters the sampling
distribution. As shown in Fig 9, PLuG places greater emphasis on informative regions while reducing
sampling in irrelevant background areas.
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