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ABSTRACT

The Connectionist Temporal Classification (CTC) and transducer-based models
are widely used for end-to-end (E2E) automatic speech recognition (ASR). These
methods maximize the marginal probability over all valid alignments within the
probability lattice over the vocabulary during training. However, research has
shown that most alignments are highly improbable, with the model often con-
centrating on a limited set, undermining the purpose of considering all possible
alignments. In this paper, we propose a novel differentiable alignment framework
based on a one-dimensional optimal transport formulation, enabling the model to
learn a single alignment and perform ASR in an E2E manner. We define a pseudo-
metric, called Sequence Optimal Transport Distance (SOTD), over the sequence
space and highlight its theoretical properties. Based on the SOTD, we propose
Optimal Temporal Transport Classification (OTTC) loss for ASR and contrast
its behavior with that of CTC. Experimental results on the English Librispeech
and AMI datasets demonstrate that our method achieves competitive performance
compared to CTC in ASR. We believe this work opens up a potential new direction
for research in ASR, offering a foundation for the community to further explore
and build upon.

1 INTRODUCTION

In the literature, two primary approaches to automatic speech recognition (ASR) have emerged, i.e.,
hybrid systems and end-to-end (E2E) models. In hybrid approaches, a deep neural network-hidden
Markov model (DNN-HMM) (Morgan & Bourlard, [1990; Bourlard & Morgan, 2012} |Young], [1996;
Poveyl, |2005; |Abdel-Hamid et al.l 20125 |Graves et al.| 2013a; |Dahl et al., [2012)) system is typically
trained, where the DNN is optimized by minimizing cross-entropy loss on the forced alignments
generated for each frame of audio embeddings from a hidden Markov model-Gaussian mixture
model (HMM-GMM). One notable disadvantage of the hybrid approach is that the model cannot be
optimized in an E2E manner, which may result in suboptimal performance (Hannun, [2014). More
recently, E2E models for ASR have become very popular due to their superior performance. There
are three popular approaches for training an E2E model: (i) attention-based encoder-decoder (AED)
models (Chan et al., 2015 [Radford et al .| [2023; Watanabe et al.,|2017; |Prabhavalkar et al.,|2023)), (ii)
using Connectionist Temporal Classification (CTC) loss (Graves et al., 2006 |Graves & Jaitly,|2014),
and (iii) neural Transducer-based models (Graves, 2012; Kuang et al., [2022} (Graves et al., 2013b).
AED models use an encoder to convert the input audio sequence into a hidden representation. The
decoder, which is typically auto-regressive, generates the output text sequence by attending to spe-
cific parts of the input through an attention mechanism, often referred to as soft alignment (Yan
et al., [2022) between the audio and text sequences. This design, however, can make it challenging
to obtain word-level timestamps and to do teacher-student training with soft labels. Training AED
models also requires a comparatively large amount of data, which can be prohibitive in low-resource
setups. In contrast to AED models, CTC and transducer-based models maximize the marginal prob-
ability of the correct sequence of tokens (transcript) over all possible valid alignments (paths), often
referred to as hard alignment (Yan et al.,2022). However, recent research has shown that only a few
paths, which are dominated by blank labels, contribute meaningfully to the marginalization, lead-
ing to the well-known peaky behavior that can result in suboptimal ASR performance (Zeyer et al.,
2021). Unfortunately, it is not possible to directly identify these prominent paths, or those that do
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not disproportionately favor blank labels, in advance within E2E models. This observation serves as
the main motivation of our work.

In this paper, we introduce the Optimal Temporal Transport Classification (OTTC) loss function, a
novel approach to ASR where our model jointly learns temporal sequence alignment and audio frame
classification. OTTC is derived from the Sequence Optimal Transport Distance (SOTD) framework,
which is also introduced in this paper and defines a pseudo-metric for finite-length sequences. At the
core of this framework is a novel, parameterized, and differentiable alignment model based on one-
dimensional optimal transport, offering both simplicity and efficiency, with linear time and space
complexity relative to the largest sequence size. This design allows OTTC to be fast and scalable,
maximizing the probability of exactly one path, which, as we demonstrate, helps avoid the peaky
behavior commonly seen in CTC based models.

To summarize, our contributions are the following:

1. We propose a novel, parameterized, and differentiable sequence-to-sequence alignment
model with linear complexity both in time and space.

2. We introduce a new framework, Sequence Optimal Transport Distance (SOTD), to compare
finite-length sequences, examining its theoretical properties and providing guarantees on
the existence and characteristics of a minimum.

3. We derive a new loss function, Optimal Temporal Transport Classification (OTTC), specif-
ically designed for Automatic Speech Recognition (ASR) tasks.

4. Finally, we conduct proof-of-concept experiments on the English Librispeech (Panayotov
et all 2015) and AMI (Carletta et al., 2005 datasets, demonstrating that our method
achieves promising performance in E2E ASR while addressing the peaky behavior issues.

2 RELATED WORK

CTC loss. The CTC criterion (Graves et al., 2006) is a versatile method for learning alignments
between sequences. This versatility has led to its application across various sequence-to-sequence
(seq2seq) tasks (Liu et al., 20205 |Chuang et al., 2021} [Yan et al., [2022; |Gu & Kong] 2021} |Graves
& Schmidhuber, 2008} [Molchanov et al., [2016). However, despite its widespread use, CTC has
numerous limitations that impact its effectiveness in real-world applications. To address issues such
as peaky behavior (Zeyer et al., 2021), label delay (Tian et al., |2023), and alignment drift (Sak
et al.l [2015)), researchers have proposed various extensions. These extensions aim to refine the
alignment process, ensuring better performance across diverse tasks. Delay-penalized CTC (Yao
et al., [2023) and blank symbol regularization (Yang et al.l |2023; Zhao & Bell| 2022} Bluche et al.,
2015) attempt to mitigate label delay issues. Other works have tried to control alignment through
teacher model spikes (Ghorbani et al., 2018} |Kurata & Audhkhasi, [2019) or external supervision
(Zeyer et al.| [2020; |Senior et al.l 2015} |Plantinga & Fosler-Lussier, 2019), though this increases
complexity. Recent advancements like Bayes Risk CTC offer customizable, end-to-end approaches
to improve alignment without relying on external supervision (Iian et al.l 2023).

Transducer loss. The transducer loss was introduced to address the conditional independence as-
sumption of CTC by incorporating a predictor network (Graves, [2012)). However, similarly to CTC,
transducer models suffer from label delay and peaky behavior (Yu et al.| |2021). To mitigate these
issues, several methods have been proposed, such as e.g., Pruned RNN-T (Kuang et al.,|2022) which
prunes alignment paths before loss computation, FastEmit (Yu et al.,[2021)) which encourages faster
symbol emission, delay-penalized transducers (Kang et al.,2023) which add a constant delay to all
non-blank log-probabilities, and minimum latency training (Shinohara & Watanabe, [2022) which
augments the transducer loss with the expected latency. Further extensions include CIFTransducer
(CIF-T) for efficient alignment (Zhang et al., [2024), self-alignment techniques (Kim et al.| |2021)),
and lightweight transducer models using CTC forced alignments (Wan et al., 2024).

Over the years, the CTC and transducer-based ASR models have achieved state-of-the-art perfor-
mance. Despite numerous efforts to control alignments and apply path pruning, the fundamental
formulation of marginalizing over all valid paths remains unchanged and directly or indirectly con-
tributes to several of the aforementioned limitations. Instead of marginalizing over all valid paths
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Figure 1: Example of an alignment between embeddings of frames and target sequence. The red
bullets represent the elements of the target sequence {y },,,, while the blue bullets indicate the frame
embeddings {x},. In OTTC, the alignment guides the prediction model F' in determining which
frames should map to which labels. Additionally, the alignment model has the flexibility to leave
some frames unaligned, as represented by the blue-and-white bullets, allowing those frames to be
dropped during inference.

as in CTC and transducer models, we propose a differential alignment framework based on optimal
transport which can jointly learn a single alignment and perform ASR task in an E2E manner.

3 PROBLEM FORMULATION

We define Ué ~ = U, < U2 to be the set of all d-dimensional vector sequences of length at most V.
Let us consider a distribution Du% xud , and pairs of sequences ({x; }i_, {y: };Z,) of length n and

m drawn from Dyja 40 . For notational simplicity, the sequences of the pairs ({a; }7,, {:}7,)

will be respectively denoted by {x}, and {y},, in the following. The goal in seq2seq tasks is
to train a classifier that can accurately predict the target sequence {y},, from the input sequence
{x},, enabling it to generalize to unseen examples. Typically, n # m, creating challenges for
accurate prediction as there is no natural alignment between the two sequences. In this paper, we
introduce a framework to address this class of problems, applying it specifically to the ASR domain.
In this context, the first sequence {x},, represents an audio signal, where each vector x; € RY
corresponds to a time frame in the acoustic embedding space. The second sequence {y},, is the
textual transcription of the audio, where each element y; belongs to a predefined vocabulary L =
{l1,..., |}, such that {y},, € L™, where L™ denotes the set of all m-length sequences formed
from the vocabulary L.

4  OPTIMAL TEMPORAL TRANSPORT CLASSIFICATION (OTTC)

The core idea is to model the alignment between two sequences as a mapping to be learned along
with the frame labels (see Figure[I). Actually, as the classification of audio frames improves, in-
ferring the correct alignment becomes easier. Conversely, accurate alignments also improve frame
classification. This mutual reinforcement between alignment and classification highlights the benefit
of addressing both tasks simultaneously, contrasting with traditional hybrid models that treat them
as separate tasks (Morgan & Bourlard, [1990). To achieve this, we propose the Sequence Optimal
Transport Distance (SOTD), a framework for constructing pseudo-metrics over the sequence space
U2, based on a differentiable, parameterized model that learns to align sequences. Using this
framework, we derive the Optimal Temporal Transport Classification (OTTC) loss, which allows
the model to learn both the alignment and the classification in a unified manner.

Notation. In the following we will denote [1,n] = {1,...,n}.

4.1 PRELIMINARIES

Definition 1. Discrete monotonic alignment. Given two sequences {x}, and {y}m, and a set of
index pairs A C [1,n] x [1, m] representing their alignment, we say that A is a discrete monotonic

alignment between the two sequences if:

» Complete alignment of {y},,: Every element of {y},, is aligned, i.e.,

Vi e [1,m],3k € [1,n], (k,j) € A.
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Figure 2: Discrete monotonic alignment as 1D OT solution. A discrete monotonic alignment rep-
resents a temporal alignment between two sequences (target on top, frame embeddings on bottom).
It can be modeled by 4™ A, as illustrated in the graph. The thickness of the links reflects the amount
of mass v7#(av);, ; transported, with thicker links corresponding to higher mass.

* Monotonicity: The alignment is monotonic, meaning that for all (¢, 5), (k,1) € A

1<k = j<lI.

Discrete monotonic alignments model the relationship between temporal sequences, such as those in
ASR, by determining which frame should predict which target. The conditions imposed on the target
sequence {y},, ensure that no target element is omitted, while the absence of similar constraints
on the source sequence {x},, allows certain audio frames to be considered irrelevant and dropped
(see Figure [2). The monotonicity condition preserves the temporal order, ensuring the sequential
structure is maintained. In the following sections, we will develop a model capable of differentiating
within the space of discrete monotonic alignments.

4.2 DIFFERENTIABLE TEMPORAL ALIGNMENT WITH OPTIMAL TRANSPORT

In the following, we introduce 1D OT and define our alignment model. Consider the 1D discrete
distributions u[a, n] and v[3, m], expressed as superpositions of ¢ measures, a distribution that is
zero everywhere except at a single point, where it integrates to 1 :

pula,n] = Zoz,;&; and v[B,m]= Zﬂiéi. (D)
i=1 i=1

The bins of p[a,n] and v[3,m] are [1,n] and [1,m], respectively, whereas the weights «; and
B are components of the vectors &« € A™ and 8 € A™, with A" the simplex set defined as
A" = {v e R*0<v; <1,>." ,v; =1} C R™. Optimal transport theory provides an elegant
and versatile framework for computing distances between distributions such as p[a, n] and v[3, m],
depending on the choice of the cost function (Peyré & Cuturi,2019) (chapter 2.4). One such distance
is the 2-Wasserstein distance W,, which measures the minimal cost of transporting the weight of
one distribution to match the other. This distance is defined as

W ’ ) = i 1,7 L —J 2; 2
2l 18, ml) = i, 3 il =l @

were | i — j|3 is the cost of moving weight from bin i to bin j and ~; ; is the amount of mass moved

from i to j. The optimal coupling matrix 4* is searched within the set of valid couplings T'®#
defined as
I*f = {y € RT"v1,, = a and 41, = B}. 3)

This constraint ensures that the coupling conserves mass, accurately redistributing all weights be-
tween the bins. A key property of optimal transport in 1D is its monotonicity (Peyré, 2019). Specifi-
cally, if there is mass transfer between bins ¢ and j (i.e., 7; ;> 0) and similarly between bins k and [
(i.e.,v;; > 0), then it must hold that ¢ < k = j < [. Consequently, when 3 has no zero components

—meaning every bin from v is reached by the transport— the set {(7, j) € [1,n]x |1, m[ |~;; > 0}
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satisfies the conditions of Definition 1, thereby forming a discrete monotonic alignment. This
demonstrates that the optimal coupling can effectively model such alignments (see Figure[2).

Note: In the 1D case, the solution v* is unique and depends only on the number of distinct bins
and their weights, not their specific values. Thus, the choice of [1,n] and [1,m] as bins is arbi-
trary (Peyré, 2019).

Parameterized and differentiable temporal alignment. Given any sequences length n and m and
3 with no zero components, we can define the alignment function 43

AmB L R — TP ) 4)

a - v = argmin W (par, n), v[8, m)), )
~yeT

where I'*#[n] is the space of all 1D transport solutions between p[c, n] and v[3, m] for any .
Differently from 3, a may have zero components, giving the model the flexibility to suppress certain
bins, which acts similarly to a blank token in traditional models. In the context of ASR, o and 3
can be termed as OT weights and label weights, respectively.

Lemma 1: The function o — 4™ is bijective from R™ to T*P[n] .
Proof. The proof can be found on Appendix [A.2.T]

Proposition 1. Discrete Monotonic Alignment Approximation Equivalence. For any (3 that satis-
fies the condition above, any discrete set of alignments A C |1,n] x |1, m| between sequences of
lengths n and m can be modeled by ™ through the appropriate selection of o, i.e.,

VA, € A", (i,j) € A <= y"P(a);; > 0. (6)

Proof. The proof can be found on Appendix [A.2.2]

Thus, we have defined a family of alignment functions 4™ that are capable of modeling any dis-
crete monotonic alignment, which can be chosen or adapted based on the specific task at hand. The
computational cost of these alignment functions is low, as the bins are already sorted, eliminating
the need for additional sorting. This results in linear complexity O(max(n,m)) depending on the
length of the longest sequence (see Algorithm in the Appendix). Furthermore, these align-
ments are differentiable, with v7#(av);, ; explicitly expressed in terms of o and 3, allowing direct

dvy

Bla) . .
computation of the derivative % via its analytical form.

4.2.1 SEQUENCES-TO-SEQUENCES DISTANCE

In this section, we will use the previously designed alignment functions to build a pseudo-metric
over sets of sequences U2 .

Definition 1. Sequences Optimal Transport Distance (SOTD). Consider an n-length sequence
{z}, € L{gN, an m-length sequence {y},, € Z/lgN, p = max(n,m), and ¢ = min(n,m). Let
C :R? x R? — R, be a differentiable positive cost function. Considering r € N* and a family of
vectors {B}n = {B1 € R, B2 € R?,..., Bn € RN} with no zero components, we define the SOTD
Sr({}tn, {y}m) as

o 1/r
Sr({w}ru {y}m) = aneliAnn ( Z ’)’g”@q (a)i,j . C(zci,yj)T) . 7
Q=1

Note that 3, obviously depends on ¢, but could a priori depend on {x},, and {y},,. To simplify the
notation, we will only denote its dependence on q. However, all the results in this section remain
valid under such dependencies, as long as 3, components never becomes zero.

Proposition 2. Validity of the definition. SOTD is well-defined, meaning that a solution to the
problem always exists, although it may not be unique.

Proof. The proof and the discussion about the non-unicity is conducted in Appendix
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Proposition 3. SOTD is a Pseudo-Metric. If the cost matrix C' is a metric on RY, then S, defines a
pseudo-metric over the space sequences with at most N elements U N

Proof. The proof can be found in Appendix [A.2.4]

Since S, is a pseudo-metric, there are sequences {x}, # {y}m such that S,({x},,{y}m) = 0.
The following proposition describes the conditions under which this occurs.

Proposition 4. Non-Separation Condition. Let A be the sequence aggregation operator which
removes consecutive duplicates, i.e, A{...,x,x,...}) ={...,x,...}. Let Py be the sequence
pruning operator which removes any element x; from sequences corresponding to an o; = 0, i.e.,
Pol{- @iz, @iy ®igr, .. 1) = {. ., @iz1, ®iy1, - .- | iff oy = 0. Further, let us consider {x},,
and {y}m such that {x},, # {y}m. Without loss of generality, we assume that n > m. Then

Se({hn, {y}m) = 0 iff A(Pa-({z}n)) = Al{y}m), (®)

where a* is a minimum for which S, ({x}n, {y}m) = 0. It should be noted that this condition holds
also when C' is neither symmetric nor satisfies the triangular inequality, but is separated (like the
cross-entropy C for example).

Proof. See Appendix

The consequence of the previous proposition is that we can learn a transformation through gradient
descent using a trainable network F' which maps input sequences {x},, to target sequences {y},
(with n > m) by solving the optimization problem

1/r

mP;nST(F({:c}n)7{y}m) = min ( Z 2P () -C(F({w}n)i,yj)r> . )
’ i,j=1

We are then guaranteed that a solution F*{x},, allows us to recover the sequence A({y},,). In
cases where retrieving repeated elements in {y},, (e.g., double letters) is important, we can in-
tersperse blank labels ¢ ¢ L between repeated labels as follows: {y},, = {...,l;,l;,...} —
{ b, o, .. )

Note on Dynamic Time Warping (DTW): It is important to highlight the distinction between
our approach and DTW-based (Itakural [1975) alignment methods, particularly the differentiable
variations such as soft-DTW (Cuturi & Blondel, [2018)). These methods generally have quadratic
complexity (Cuturi & Blondel, 2018)), making them significantly more computationally expensive
than ours. Furthermore, in DTW-based methods, the alignment emerges as a consequence of the
sequences themselves. When the function F' is powerful, the model can collapse by generating a
sequence F'({x},) that induces a trivial alignment Haresh et al.| (2021). To mitigate this issue,
regularization losses (Haresh et al.l 2021; Meghanani & Hain| [2024) or constraints on the capac-
ity of F' (Vayer et al.l 2022; [Zhou & la Torrel 2009) are commonly introduced. However, using
regularization losses lacks theoretical guarantees and introduces additional hyperparameters, while
constraining the capacity of F, although more theoretically sound, makes tasks requiring power-
ful encoders on large datasets impractical. In contrast, our method decouples the computation of
the alignment from the transformation function F', offering more flexibility to the model as well as
built-in temporal alignment constraints and theoretical guarantees against collapse.

4.3  APPLICATION TO ASR: OTTC LOSS

In ASR, the target sequences {y},, are d-dimensional one-hot encodings of elements from the set
LU{¢}, where ¢ is a blank label used to separate repeated labels. The encoder F' predicts the label
probabilities for each audio frame, such that

F({w}n) = {[pll(wi)7""pl\L\+1(wi)]T :I:l (10)

The alignment between F'({x},) and {y},, is parameterized by a[{x},,, W] € A", defined as
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where W is a network that outputs a scalar for each frame x;. Using the framework built in Sec-
tion[d.2.1(with r = 1 and C' = C., where C. is the cross-entropy) to predict {y},, from {x},, we
train both W and F' by minimizing the OTTC objective

al{z}n, W] = (1)

n,m

Lorre == Y P (al{z}n, W) ; - log py, (). (12)

ij=1

The choice of the cross-entropy C. as the cost function arises naturally from the probabilistic encod-
ing of the predicted output of F' and the one-hot encoding of the target sequence. Additionally, since
C. is differentiable, it makes the OTTC loss differentiable with respect to F', while the differentia-
bility of the OTTC with respect to W stems from the differentiability of 4= with respect to its
input a[{x},,, W]. Thus, by following the gradient of this loss, we jointly learn both the alignment
(via W) and the classification (via F).

Note: The notation v™# in Eq. is valid in the context of ASR since n > m.

4.4 LINK WITH CTC LOSS

In this section, we contrast the CTC with the proposed OTTC loss. In the context of CTC, we
denote by B the mapping which reduces any sequences by deleting repeated vocabulary (similarly
to the previously defined .A mapping in Proposition 5) and then deleting the blank token ¢ (e.g.,
B({GGOOpODD}) = {GOODY}). The objective of CTC is to maximise the probability of all
possible paths {7}, of length n through minimizing

- > logp{mh)=- >, log][p(m), (13)

{r}ne€B 1 ({y}m) {m}n€B-1({y}m) i=1

where {w} € L™ is an n-length sequence and B~ ({y},,) is the set of all sequences collapsed by
B into {y}m.

space labels
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Figure 3: A CTC alignment. Here, we illustrate one of the valid alignments for CTC. The CTC
loss maximizes the marginal probability over all such possible alignments.

Let us consider a path {m},, € B~*({y},). Such a path can be seen as an alignment (see Figure [3)),
where {x;} and {y;} are aligned iff w; = y;. By denoting A, as the corresponding discrete
monotonic alignment, one can write (C, represents the Cross-Entropy) :

n n,m E| An n,m
logp({m}n) =Y logpa, (&) =— Y Ce(mjy) = — Ce(mj,y1).
=1 i,j=1 i,j=1

(i:1) €A AR (@) ;>0
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The last equality arises from Proposition 1 and that A represents a discrete monotonic alignment.

The continuous relaxation (i.e. making the problem continuous with respect to the alignment) of
the last term in this sequence of equalities results in —Lorrc. Therefore, OTTC can be seen as
a relaxation of the probability associated with a single path, enabling a differentiable path search
mechanism. Essentially, OTTC optimization focuses on maximizing the probability of exactly one
path, in contrast to CTC, which maximizes the probability across all valid paths. Additionally,
OTTC does not incentivize paths containing many blank tokens, unlike CTC, as blanks are solely
used to separate repeated labels (e.g., consecutive tokens). Instead of relying on a blank token to
indicate that a frame ¢ should not be classified, the model can simply set the corresponding weight
a; to 0 (see Figure[2).

5 EXPERIMENTAL SETUP

To demonstrate the viability of the proposed OTTC loss framework, we conduct proof-of-concept
experiments on the ASR task, which is an important problem from the perspective of seq2seq learn-
ing. To this end, we compare results obtained through the OTTC loss framework in terms of the
Word Error Rate (WER) with those obtained from a CTC-based model. Note that an efficient
batched implementation of OTTC along with the full code to reproduce our experimental results
will be made publicly available.

Datasets. We conduct our experiments on popular open-source datasets, i.e., the Lib-
riSpeech (Panayotov et al.|[2015)) and AMI (Carletta et al.,[2005)) datasets. LibriSpeech is an English
read-speech corpus derived from audiobooks, containing 1000 hours of data. For our experiments
on this dataset, we train models on the official 100-hour, 360-hour, and 960-hour splits, and report
results on the two official test sets. AMI is an English spontaneous meeting speech corpus, which
differs significantly from read-speech. For our experiments on this dataset, we train models on the
individual head microphone (IHM) split comprising 80 hours of audio, and report results on the
official dev and eval sets.

Model architecture. We use the 300M parameter version of the well-known XLS-R model (Babu
et al., [2021) as the base model for acoustic embeddings in all the experiments conducted in this
work. The XLS-R is a self-supervised model pre-trained on 436K hours of unlabeled multilingual
speech from 128 different languages. For the baseline CTC-based models, we stack a dropout layer
followed by a linear layer for logits prediction, termed the logits prediction head. For the proposed
OTTC loss based models, we use a dropout and a linear layer (identical to the baseline) for logits
prediction. In addition, as described in Section[4.3] we apply a dropout layer followed by two linear
layers on top of the XLS-R model for OT weight prediction, with a GeLU (Hendrycks & Gimpel,
2016) non-linearity in between, termed the OT weights prediction head. Note that the output from
the XLS-R model is used as input for both the logit and OT weight prediction heads, and the entire
model is trained using the OTTC loss.

Training details. In all our experiments, we use the AdamW optimizer (Loshchilov & Hutter,
2019) for training. For LibriSpeech, the initial learning rate is set to Ir = 2e¢~%, with a linear
warm-up for the first 500 steps followed by a linear decay until the end of training. For AMI, the
initial learning rate is set to I7 = 1.25¢~3, with a linear warm-up during the first 10% of the steps,
also followed by linear decay. We train both CTC-based and OTTC-based models for 40 epochs,
reporting the test set WER at the final epoch. In our OTTC-based models, both the logits and OT
weight prediction heads are trained for the first 30 epochs. During the final 10 epochs, the OT weight
prediction head is fixed, while training continues on the logits prediction head. For experiments
on the LibriSpeech dataset, we use character-level tokens to encode text. Given the popularity of
subword-based units for encoding text (Sennrich et al.l 2016), we sought to observe the behavior
of OTTC-based models when tokens are subword-based, where a token can contain more than one
character. For the experiments on the AMI dataset, we use the SentencePiece tokenizer (Kudo &
Richardson, |2018) to train subwords from the training text. Greedy decoding is used for both the
CTC and OTTC models to generate the hypothesis text.

Choice of label weights (3,). To simplify the training setup for our OTTC-based models, we use a
fixed and uniform 3, (see Sections 2] & [#.3), where the length ¢ of 3 is equal to the total number
of tokens in the text after augmenting with the blank (¢) label between repeating characters.
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Table 1: WER(%) comparison between the CTC loss-based ASR model and our proposed OTTC
loss-based ASR model. On the LibriSpeech dataset, models are trained using the three official
training splits with varying amounts of supervised data, and results are reported on the two official
test sets. For the AMI dataset, models are trained on the I[HM split, and results are reported on both
the dev and eval sets. Note that for WER, lower is better.

100h-LibriSpeech 360h-LibriSpeech 960h-LibriSpeech AMI-IHM

Model test-clean test-other | test-clean test-other | test-clean test-other | dev  eval
CTC \ 493 12.09 \ 3.53 10.04 \ 29 7.46 \ 158 13.9
OTTC \ 7.43 17.34 \ 5.19 13.49 \ 4.24 10.36 \ 18.5 16.8

6 RESULT AND DISCUSSION

We start by analyzing the performance of the considered models on the LibriSpeech dataset, with the
results reported in Table[I] Using the 100-hour split for training, the OTTC model achieves a WER
of 7.43% on test-clean, demonstrating remarkable alignment learning capability, even when the OT
weights for the labels (3,) are uniform and independent of the acoustic embedding information. As
we scale the training dataset (100h — 360h — 960h), we see a monotonic improvement in WER
for the proposed OTTC-based models, similarly to the CTC-based models. Although the WERs
achieved by the OTTC-based models are higher than the WERs achieved by the CTC-based models,
the presented results underscore the experimental validity of the SOTD as a metric and demonstrate
that learning a single alignment can yield promising results in E2E ASR.

Next, we conduct experiments on the AMI dataset, which contains spontaneous meeting speech, to
understand how effectively the OTTC loss can learn alignment with varying speaking rates while
using a fixed and uniform 3,. From the results shown in Table E] (last column), the OTTC model
achieves encouraging performance on the AMI dataset (albeit not yet as competitive as the perfor-
mance of the CTC model) highlighting the robustness of our proposed alignment framework. The
model effectively adapts to the variability in speaking rates, demonstrating that it can learn accurate
alignment even with a 3 independent of acoustic frames.

Additional insights. Training OTTC models. As described in Section[3} the OT weights prediction
head (o predictor) remains frozen during the last 10 epochs of training (out of a total of 40 epochs)
for the OTTC models. In the 960h-LibriSpeech training setup, we observed a WER of 4.77% at
epoch 30 for the OTTC model, resulting in an 11% relative reduction by epoch 40. Interestingly,
when the model is trained for the full 40 epochs without freezing the OT weights prediction head,
no meaningful improvement in WER is observed between epochs 30 and 40. This suggests that
the alignment stabilizes early in the training, with the OTTC model learning sufficiently robust
alignments by epoch 30. Consequently, further joint optimization of both the alignment and logit
prediction may be unnecessary in the later stages, as the alignment undergoes minimal changes
beyond that point. However, given the mutual reinforcement between the correctness of alignments
and classification in the OTTC loss, we hypothesize that an improved curriculum learning framework
(Hacohen & Weinshall, 2019) could further improve ASR performance, which we leave for future
work.

Target YOU WILL BE FRANK WITH ME I ALWAYS AM

PPPPPPPPPPPDPPPPPPPPE Y pOUpodpWpILpd Lo BoEdpdoodF pdRRPOAPOIN K po. . WIPTHep-
CTC ¢¢

LoEppp..
olololo]

YYYYYYYYYYYYYYYYYYYOOOUU..WWIILL¢LL..BBBEEE.._.FFFRRRAAANNKK._.._.WWIITTHH._.MMMEEE
OTTC E 111 AAALLLWWAAYYYSS...AAAAAAMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMM

Figure 4: Comparison of CTC and OTTC alignments. For CTC, the path with highest probability is
shown. CTC shows a high occurrence of blank tokens with sparse non-blank assignments, resulting
in peaky behavior. OTTC rarely aligns frames to blank tokens, avoiding this peaky pattern.
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Figure 5: Evolution of alignment in the OTTC model during the course of training. The red
bullets represent elements of the target sequence {y},,, while the blue bullets indicate the predicted
OT weights for each frame. The size of the blue bullets is proportional to the predicted OT weight.

Obtained alignments in CTC and OTTC models. To additionally support our motivations for propos-
ing OTTC, we show an alignment from the CTC- and OTTC-based models in Figure ] For CTC, it
can be seen that the best path aligns most of frames to the blank token, resulting in a peaky behavior
Zeyer et al.[(2021). In contrast, the OTTC model learns to align nearly all frames, except for one
frame involving a repeating character, to non-blank tokens. This effectively mitigates the peaky be-
havior observed in the CTC model. Note that OTTC allows dropping frames during alignment (see
Section f.4), however, in practice, we observed that only a few frames are dropped. For additional
insights, we plot the evolution of the alignment for the OTTC model during the course of training in
Figure[3] It is evident that the alignment learned early in the training process remains relatively sta-
ble as training progresses. The most notable changes occur at the extremities of the predicted label
clusters. This observation led us to the decision to freeze the OT weight predictions for the final 10
epochs, otherwise, even subtle changes in alignment could adversely impact the logits predictions
because same base model is shared for predicting both the logits and the alignment OT weights.

In summary, the presented results show that while the proposed OTTC models yield an advantageous
performance, there remains a performance gap to CTC models. While we considered fixed label
weights ({8} ) in our experiments, the framework allows for learnable label weights. However,
without proper constraints on the minimum values of the label weights, this could lead to a degen-
erate solution where all acoustic frames align with a random label, causing alignment collapse. We
envision that learning label weights with suitable constraints can bridge the performance gap with
CTC models. Furthermore, our framework effectively addresses the peaky behavior commonly seen
in CTC models, resulting in improved alignments.

7 CONCLUSION AND FUTURE WORK

Learning effective sequence-to-sequence mapping along with its corresponding alignment has di-
verse applications across various fields. Building upon our core idea of modeling the alignment
between two sequences as a learnable mapping while simultaneously predicting the target sequence,
we define a pseudo-metric known as the Sequence Optimal Transport Distance (SOTD) over se-
quences. Our formulation of SOTD enables the joint optimization of target sequence prediction and
alignment, which is achieved through one-dimensional optimal transport. We theoretically show
that the SOTD indeed defines a distance with guaranteed existence of a solution, though uniqueness
is not assured. We then derive the Optimal Temporal Transport Classification (OTTC) loss for au-
tomatic speech recognition (ASR) where the task is to map acoustic frames to text. Experiments
on the LibriSpeech and AMI datasets show that our method achieves encouraging performance in
ASR. Importantly, multiple alignment plots for the OTTC model demonstrate that it does not lead
to the peaky behavior observed in CTC-based models.

While we use fixed label weights in our experiments, the framework supports learnable label
weights, a promising direction for future work. Additionally, exploring alternative curriculum learn-
ing strategies between alignment and logits during training could enhance performance. Finally,
other sequence-to-sequence tasks could be investigated using the proposed framework, particularly
those involving the alignment of multiple sequences, such as audio, video, and text.
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Figure 6: ID OT transport computation. Illustration of the optimal transport process, computed
iteratively by transferring probability mass from the smallest bins to the largest.

A APPENDIX

A.1 ALGORITHM AND IMPLEMENTATION DETAILS
A.1.1 ALIGNMENT COMPUTATION

The algorithm to compute " is given in Algorithm [I| This algorithm computes the 1D opti-
mal transport between p[c, n] and v[3, m|, exploiting the monotonicity of transport in this dimen-
sion. To do so the first step consist in sorting the bins which has the complexity O(nlogn) +
O(mlogm) = O(max(n,m)logmax(n,m)). Then we transfer the probability mass from one
distribution to another, moving from the smallest bins to the largest. A useful way to visualize this
process is by imagining that the bins of y each contain a pot with a volume of a; filled with water,
while the bins of v each contain an empty pot with a volume of b;. The goal is to fill the empty
pots of v using the water from the pots of p. At any given step of the process, we always transfer
water from the smallest non-empty pot of p to the smallest non-full pot of v. The volume of water
transferred from i to j is denoted by 7, ;. An example of this process is provided in Figure @

In the worst case, this process requires O(n + m) comparisons. However, since the bins are already
sorted in SOTD, the overall complexity remains O(n + m) = O(max(n,m)). In practice, this
algorithm is not directly used in this work, as we never compute optimal transport solely; it is
provided here to illustrate that the dependencies of 4/*# on «v are explicit, making it differentiable
with respect to . An efficient batched implementation version for computing SOTD will be released
soon.

A.2 PROPERTIES OF OTTC

Here can be found proof and more insight about the properties of SOTD, S,..

A.2.1 LEMMA 1 : BIJECTIVITY

Proof of Lemma 1. Surjectivity: The surjectivity come from definition of I'*#[n]. Injectiv-
: m m m m m m
ity: Suppose v (a) = ¥iP(o), so a = L vt (@i, X P (@) =
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Algorithm 1 : Transport Computation - v () -

Ensure: Compute v7?(cv).
Require: o € R".
Sety € R™™™ = 0,,x/n-
Seti,j = 0.
while 7" == True do
if a; < 3; then

Yi,j = 5]' — Q4

i=1+1

if i == n then
T = false

Bj =B —ay

else

Yi,jg = Q4 — 53'

j=J3+1

if j == m then
T = false

o = o —

return -~y

Do WP ()i e P ()i )T = o (because P (a) € TP and +"P(0) €
I‘”’ﬁ), which conclude the proof.

A.2.2 PROPOSITION 1 : DISCRETE MONOTONIC ALIGNEMENT APPROXIMATION
EQUIVALENCE.

Proof of proposition 1. Let’s consider the following proposition P(k) :

P(k): 3a’ € A", Vi, Vi <k, (i,j) € A <= y"P(a’);; > 0. (15)
Initialisation - P(1). P(1) is true. Consider the set £y = {j € [1,m] | (1,j) € A}, which
can be written as Fy = {1,2,...,max(F1)} since A is a discrete monotonic alignment. Define
at = jem Bis-- .]¥, where the remaining coefficients are chosen to sum to 1.

Since the alignment 4™# is computed monotonically (see Appendix , m.B (ab)y,; > 0if
and only if a% < B1 + -+ + B4, which corresponds exactly to the set of indices j € Ey, i.e., the
aligned indices in A. This proves P(1).

Heredity - P(k) = P(k + 1). The proof follows similarly to P(1). However two cases need to be
considered :

* When (k + 1, max(E}))) € A, in this cases we must consider Ey11 = {j € [1,m]| (k +

1,7) € A} = {max(E) = min(Fgy1), min(Exy1) + 1,...,max(Fry1)} (because

el 1 k Bmax(Ey,)
o= etk - T Y e, B -

,...]T, where the remaining parameters are chosen to sum to 1.

B has no components) and define o

ﬂmax(Ek)
2

* When (k + 1,max(FE})) ¢ A, we must consider Fry1 = {j € [1,m]| (k+ 1,j) €
A} = {max(Ey) # min(Ek+1)amin(Ek+12 + 1,...,max(FExy1)} (because B has no
components) and define a**! = [a},... af, D jeEp, Bir- .]¥, where the remaining
parameters are chosen to sum to 1.

By induction, the proposition holds for all n. Therefore, Proposition 1 (i.e., P(n)) is true. An o
verifying the condition is :
a=lal,...,a"T
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A.2.3 PROPOSITION 2 :VALIDITY OF SOTD DEFINITION

Proof of proposition 2. Since 4P is differentiable so continuous, it follows that o +
e ymB(a); ; - C(x;,y;) is continuous over A™. Given that A" is a compact set and ev-
ery continuous function on a compact space is bounded and attains its bounds, the existence of an
optimal solution a* follows.

Non-unicity of the solution. The non unicity come from that if their is a solution o* and two integer
k, I such that y™B(a*)x; > € > 0 and ¥™P ()41, > € > 0 and Oz, y1) = C(Trr1, Y1),
therefore the transport 4 such that :

* Vie I]Lnuajve I]Lml]: (Za.]) 7é (k"7l) 7’%73' = 7g176(a*)i7j‘
* Akt =P (@ )k —€/2
* Ar1n = Y0P (0 kg1, + €/2

Let’s denote o = {7"P}~1(, ;). First o # a because o, = >0 Y1 = >y YR (@) gy —
€/2 = aj, — €/2. Second, it’s clear that Y7 7P (), j - Clai, y;) = 2070 Y™ P (0)i; -
C(z;,y;). Then o is distinct solution.

A.2.4 PROPOSITION 3 : SOTD 1S A PSEUDO METRIC

Proof of proposition 3.  Pseudo-separation. 1t’s clear that S, ({z},,{x},) = 0, this value is
attained for a* = 3,,; where the corresponding alignment 4”*A» (a*) corresponds to a one-to-one
alignment. Since the two sequences are identical, all the costs are zero.

Symmetry. We have S, ({x}n, {y}mm) = Sr({y}m, {x},) because the expression for S, in Eq.
is symmetric. Specifically, because C' is symmetric as it is a metric.

Triangular inequality. Consider three sequences {x},, {y}., and {z},. Let p = max(n,m), ¢ =

min(n,m), v = max(m,o0), v = min(m, o). Define the optimal alignments 7;”‘*“(0[*) between

{x}, and {y},,; and v2P+ (p*) between {y},, and {z},. Vi € [1,n],Vj, k € |[1,m], VIl € |1,0],
we define :

N = VP ar);y ifn>m 6
" 7{3’6" (a*);; otherwise.
v OB (p* Vs if k> -
ol .y B (p*)1k  otherwise.
'ij,% = '7;270* (Ba)jk (18)
and we define :
- Z?:1 'Ylm?; if >0
bi = { 1 otherwise. (19)
g if >0
= { 1 otherwise. (20

YUY yYE .
optimal transport can be composed, the composition “/,,,_7;],:% L is an optimal transport between
J =R
pula*, p] and v[B,, v]. Therefore by bijectivity of 7:;1((1; ’Z))"B"‘i“@””), there is a @ € R™*(?%) such

that :
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Y Yy Y=
min(p,v),Bmin(p,v) (0) Vi3 Vi Vel
max(p,v) bic

Thus, by the definition of S, ({x},, {z},):

n,0o m,m

S,({x}n, {z}0) (Z 3 r‘;l;i(ivv)ﬁmin(p,w(g),C(m“zl)r)

i,l=1j,k=1
n,0 m,m _xy Yy Yz

So({@hn, {2}0) (Z Z iy Y5k Vet .C(mhzl)T)l/r

bjc
i,l=1j,k=1 k

n,0o mm _xTYy_ Yy Yz

So({@he (o) < (33 P (Gl y) 4 Olym) + Cluez)))

bjc
i,l=17,k=1 k

Applying the Minkowski inequality:

n,0 m,m _xTY Yy Yz

St (b (X Y B (e

bic
=1 k=1 3%k

n,0o m,m Y _ Yy Yz

(Z > LR (C(yj,yk))r)w+

bic
i,1=1j,k=1 3¢k

n,0o m,m Yy _ Yy Yz

(303 R cyzy)

bic
=1 k=1 3¢k

Then :

S(@h (210) <( X 7 Clawnyy) T+

m,m

(Zﬁ%a%%mm+

Jik=1

(3 ot Car)”

k=1

By definition :

Sr({ztn, 12}o) < Sr{zhn, {ytm) + Sr({ytm, {ytm) + S-({y}m, {2}0)

So finally since S, ({y}m, {y}m) = 0, the triangular inequality holds :

Sr({zx}n, {2}o) < Se{xhn, {Y}m) + S-({Y}m, {2}0)-

This concludes the proof.

18

1/r

2L

(22)

(23)

(24)

(25)

(26)

27)

(28)

(29)

(30)

€2y

(32)



Under review as a conference paper at ICLR 2025

A.2.5 PROPOSITION 4 : NON-SEPARATION CONDITION

Proof. Suppose S, ({}n, {y}m) = 0, and A(Po-({x}n)) # A{y}n). So:

> APt Claiy;)" =0 (33)
i,j=1

Let Az}, denote the aggregation operator on A", which groups indices where consecutive el-
ements in {z}, are identical (i.e, A([..., ..., sk, 7)) = [ .., i+ + @i, .. | T iff
T; = -+ = T;+). By expanding the right term, we show that; Vo € R. :

S By Clanys) = 3 A @ (4 (@) CAPa{mhn), Ay )

ij=1 ij=1

(34)
Therefore :
A (B oy .
D> (AP, fa}, (@7))ij - C(APar ({#}n)), A{y}n))" =0 (35)
i,j=1
Since A(Po+ ({x}n)) # A({y}n) theiris a k € |1, m[ such that :
VE <k, A({z}n)w = Ay} and A({z},)r # A{y}n)s (36)
Because the optimal alignement is monotonous and lead to a 0 cost, necessarly :
VE <k, Ap, ({a}.) (@) = Agyy,, (B)r (37

which is the only way to have alignmennt between the % first element which led to 0 cost. Because

of the monoticity of =, Adwrm (B) (Ap, {a}, (")) the next alignement (s,t) is between the next

element with a non zeros weights for both sequences. Since  has non zero component and by the

definition of Py, s = k and t = k. Therefore the term ;" ¥m ¥ (Ap.. () (@)K, k is non
null and the term :

M ALy *
i A (Ap (0, (@) CAPa: (@), A{y}a)e)
belong to the sum in depicted in Eq. So C(A(Po({x}n)), A{y}tn)k) = 0 ie.,

A(Pox({x}n)) = A({y}n)k because C is separated. Here a contradiction so we can conclude
that :

APo({z}n)) = A{y}n)

A.3 EXPERIMENTAL DETAILS

A.3.1 ALIGNMENT

In figure[/| we can see another representation of the alignment learned during training when the last
10 epochs are not frozen. This figure is indicative of the behavior observed in other sequences.
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Figure 7: Alignment evolution in the OTTC model during training for 40 epochs without freezing
OT weights prediction head (o predictor). On the z-axis, each pixel corresponds to one audio
frame, while the y-axis represents the epoch. Frames grouped by tokens are shown in alternating
colors (yellow and dark blue), with the boundaries of each group highlighted in light blue/green.
One can note that during the initial phase of training, there is significant left/right movement of
boundary frames for all groups. As training progresses, the movement typically stabilizes to around
1-2 frames.
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