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Abstract
Model merging aims to integrate the strengths of
multiple fine-tuned models into a unified model
while preserving task-specific capabilities. Ex-
isting methods, represented by task arithmetic,
are typically classified into global- and local-
aware methods. However, global-aware meth-
ods inevitably cause parameter interference, while
local-aware methods struggle to maintain the ef-
fectiveness of task-specific details in the merged
model. To address these limitations, we propose
a Consensus-Aware Localized Merging (CALM)
method which incorporates localized informa-
tion aligned with global task consensus, ensur-
ing its effectiveness post-merging. CALM con-
sists of three key components: (1) class-balanced
entropy minimization sampling, providing a
more flexible and reliable way to leverage un-
supervised data; (2) an efficient-aware frame-
work, selecting a small set of tasks for sequential
merging with high scalability; (3) a consensus-
aware mask optimization, aligning localized bi-
nary masks with global task consensus and merg-
ing them conflict-free. Experiments demonstrate
the superiority and robustness of our CALM, sig-
nificantly outperforming existing methods and
achieving performance close to traditional MTL.

1. Introduction
Multi-task learning (MTL) facilitates knowledge transfer
across different tasks through a shared backbone, improving
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both model efficiency and performance (Liu et al., 2019a;b;
Dong et al., 2015; Yang et al., 2024c; Qiu et al., 2024; Xin
et al., 2024). This approach has been widely applied in
fields such as computer vision (Cai et al., 2024a; Lu et al.,
2020; Qiu et al., 2024; Yang et al., 2024c; Cai et al., 2024b),
natural language processing (Liu et al., 2019b; Dong et al.,
2015; Audibert et al., 2023; Xin et al., 2024), and so on.
However, in the context of large foundational models, tradi-
tional MTL methods often require the centralized collection
and processing of vast amounts of data, leading to high costs
in data labeling and computational resources. At the same
time, with the widespread use of pre-trained models, down-
stream tasks typically fine-tune the same pre-trained model
(e.g., ViT (Dosovitskiy, 2020) or BERT (Devlin, 2018)) in-
dependently, and the fine-tuned models are usually released
without disclosing the specifics of the original training data
to protect privacy. In recent years, researchers have changed
their focus towards exploring how to effectively integrate
multiple independently trained models to achieve MTL with-
out re-training on the original data.

In response, model merging (or fusion) methods have been
employed to address challenges in traditional MTL (Yang
et al., 2024b; Yadav et al., 2023; Ilharco et al., 2023; Tang
et al., 2023; Yang et al., 2024a; Wang et al., 2024; He et al.,
2024; Chen & Kwok, 2024). A key approach in this field is
task arithmetic (Ilharco et al., 2023), which introduces the
task vector to represent task-specific weight adjustments.
A task vector is created by subtracting task-specific weights
from pre-trained weights, producing a unique representation
for each task. Research has demonstrated that by strategi-
cally merging multiple task vectors and incorporating them
into a pre-trained model, a new model can be created to
effectively support MTL. As a result, most model merging
methods rely on task vectors to construct integrated models.

Task vector-based model merging methods can currently be
categorized into two groups based on the information focus
between task vectors: global-aware methods (as illustrated
in Figure 1(a)) and localized-aware methods (as illustrated
in Figure 1(b)). Global-aware methods, such as those uti-
lizing arithmetic mean (Ilharco et al., 2023) and learned
merging weights (Yang et al., 2024b), process the models
in a global manner, performing arithmetic operations on
all the parameters of the fine-tuned models. However,
parameters from different fine-tuned models inevitably inter-

1



CALM: Consensus-Aware Localized Merging for Multi-Task Learning

���� = �1�1 + �2�2 ���� = �1⨀�1 + �2⨀�2 ���� = (1 − �)⨀�1 + �⨀�2

Global Aware CALM

1 − �
� = �(�1, �2)

Merging
Coefficient 

�2

Merging
Coefficient 

�1

�1 �2

Localized Aware Localized Aware

�1 �2 �1 �2

(a) (b) (c) (d)

�1 = �(�1) �2 = �(�2)
�

Figure 1. (a) Global-aware methods: Process the models holistically by applying arithmetic operations to all parameters of the fine-tuned
models. (b) Localized-aware methods: Rely on task-specific optimized masks to extract local information from task vectors. (c) Our
CALM method: Utilize masks to extract locally effective information with global task consensus and merge it without information conflict.
(d) Experimental validation: Present the accuracy curve of the merged model which gradually interpolates the information extracted by
global-aware and localized-aware methods with our approach, validating that CALM integrates more effective localized information.

fere with each other, which leads to suboptimal performance
in the merged model. Prateek et al (Yadav et al., 2023) vali-
dates that redundant parameter updates during fine-tuning
often serve as a significant source of conflicts.

In contrast, localized-aware methods extract local informa-
tion from task vectors, which mitigates conflicts between
global parameters. The core of these methods lies in iden-
tifying effective local information, with criteria varying
across approaches. For instance, Ties-merging (Yadav et al.,
2023) emphasizes parameters with larger magnitudes, while
Localize-and-stitch (He et al., 2024) prioritizes parameters
that preserve local task performance. Although these meth-
ods ensure strong local task performance before merging,
the overall performance of the merged model tends to de-
grade significantly, indicating that this local information
may not be universally effective for all tasks. This natu-
rally raises a pivotal question:

How to identify and extract effective information in model
merging to enhance performance on all tasks?

Given the above analysis, we propose that effective infor-
mation in model merging should possess two key char-
acteristics: (1) effective information can be represented
by localized parameters, minimizing interference from
global merging; and (2) effective information should align
with the global task consensus, maintaining its efficacy
in the merged model. Based on this criterion, we propose
a Consensus-Aware Localized Merging (CALM) method.
The core idea of CALM is illustrated in Figure 1 (c). In
merging two task vectors, a mask M extracts effective infor-
mation from each task vector, which is optimized through
the global tasks, ensuring alignment with the global consen-

sus. During merging, the effective information from both
task vectors is merged without conflict. Figure 1 (d) presents
experimental validation. By interpolating the information
extracted by global-aware and localized-aware methods with
our approach, we observe that as the merged model’s infor-
mation approaches ours, its performance improves. This
confirms the superiority of the global consensus-based in-
formation extraction in model merging.

Specifically, CALM consists of three key components: First,
we introduce a class-balanced entropy minimization sam-
pling method. Unlike minimizing the entropy of unsuper-
vised data or using supervised training data, this method
provides a more flexible and reliable way to leverage un-
supervised data. Second, we propose an efficient-aware
framework, which only requires selecting a small num-
ber of tasks for sequential merging, offering a more effi-
cient solution with good scalability. Finally, we present a
consensus-aware mask optimization method, which lo-
cates masks with global consensus using credible datasets
and merges them without conflict. Experimental results
demonstrate the superiority and robustness of our approach,
significantly outperforming existing baseline methods and
approaching the performance of traditional MTL. Code is
available at https://github.com/yankd22/CALM.

Our main contributions of this paper are three-fold:

• We explore a core issue in model merging: how to
identify and extract effective information on each task.
We argue that effective information should be localized
and aligned with global task consensus.

• We propose a novel model merging framework, CALM,
which leverages reliable unsupervised data to extract
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local information aligned with global task consensus,
and enables efficient and conflict-free merging.

• We conduct extensive experiments on various datasets
and demonstrate that CALM exhibits superior perfor-
mance in model merging, surpassing other state-of-the-
art global-aware and localized-aware methods.

2. Related Work
2.1. Model Merging for Multi-Task Learning

Model merging represents the process of combining multi-
ple independent models into a single model (Ilharco et al.,
2023), with two primary application scenarios: (1) merg-
ing models trained on the same task to enhance the final
model’s resistance to forgetting and improve its generaliza-
tion (Wortsman et al., 2022; Yao et al., 2023; Zhu et al.,
2024; Panigrahi et al., 2023). (2) merging models trained on
different tasks to achieve MTL (Yang et al., 2024b; He et al.,
2024; Matena & Raffel, 2022; Yu et al., 2024; Yang et al.,
2024a), which is more aligned with real-world applications
and is the focus of this paper. These MTL model merging
methods can currently be categorized into two groups based
on the information focus between task vectors: global-aware
methods and localized-aware methods.

Global-aware methods. Global-aware methods, such as
those employing arithmetic mean (Ilharco et al., 2023) or
learned merging weights (Yang et al., 2024b), process mod-
els holistically by applying arithmetic operations across all
parameters of fine-tuned models. For instance, AdaMerg-
ing (Yang et al., 2024b) leverages unlabeled test data to
automatically learn merging coefficients at the task or layer
level. Similarly, DARE (Yu et al., 2024) reduces redun-
dant neuron updates before scaling neurons for merging.
However, combining parameters from different fine-tuned
models inevitably leads to interference with each other, re-
sulting in suboptimal performance in the merged model.

Localized-aware methods. In contrast, localized-aware
methods (Yadav et al., 2023; He et al., 2024; Wang et al.,
2024; Chen & Kwok, 2024) emphasize extracting task-
specific, localized information from task vectors to reduce
conflicts among global parameters. These approaches cen-
ter on selecting effective local information, with selection
criteria differing between methods. For example, (Yadav
et al., 2023) prioritizes parameters with larger magnitudes,
whereas (He et al., 2024) focuses on parameters that main-
tain local task performance. While these methods help
preserve strong local task performance before merging, the
overall performance of the merged model often suffers, sug-
gesting that this localized information may not generalize
effectively across tasks. Therefore, we propose that the ef-
fective information extracted in model merging should be
localized information with global task consensus.

2.2. Traditional Multi-Task Learning

Traditional multi-task learning (MTL) improves model per-
formance and efficiency by transferring knowledge across
multiple tasks through a shared backbone (Liu et al., 2019b;
Dong et al., 2015; Yang et al., 2024c; Zhang et al., 2024;
2023; 2022). However, MTL often faces the problem of
negative transfer due to conflicts and interference between
tasks (Lin et al., 2019; 2020). Current research address-
ing negative transfer primarily focuses on two areas: (1)
The classic SharedBottom architecture (Caruana, 1997) per-
forms poorly when task correlations are weak, whereas mod-
ern architectures alleviate negative transfer through modular
design (Ponti et al., 2022; Chen et al., 2023; Swamy et al.,
2024), sparsification (Sun et al., 2022; Calandriello et al.,
2014; Ma et al., 2022), and soft sharing of the backbone
network (Shi et al., 2023). (2) Other research tackles task
interference from an optimization perspective, such as ad-
justing the loss weights for each task (Yu et al., 2020; Liu
et al., 2021), resolving conflicts in multi-task gradient di-
rections or signs, or suppressing the dominance of learning
rates and gradients (Chen et al., 2018). Unlike these tradi-
tional methods that focus on loss weights or gradient space,
our proposed CALM improves MTL performance and ad-
dresses conflicts through emphasizing local information
aligned with global consensus in model merging.

3. Preliminaries
In this section, we first give the notation and definition, then
provide a detailed explanation of model merging solutions.

Notation. Let the neural network model be denoted as
f : X ×Θ 7→ Y , where the parameters are represented by
θ ∈ Θ ∈ Rn, the input by xi ∈ X ∈ Rd, and output by yi ∈
Y ∈ Rc. Here, n denotes the number of parameters, d is the
input dimension, and c means the number of output classes.
Consider a scenario involving T independent tasks, where
each task t has an associated training dataset Dt

tr(X ,Y).
Given a pre-trained model θpre, such as ViT (Dosovitskiy,
2020) or BERT (Devlin, 2018), each task’s training dataset
is used to fine-tune the pre-trained model, resulting in T
fine-tuned models, denoted as {θtft}Tt=1.

Traditional multi-task learning. Model merging is to
merge the weights {θtft}Tt=1 into a unified model θmtl with-
out retraining, such that the combined model performs ef-
fectively across all tasks. Specifically, given the test datasets
Dt

te for each task t, the goal is to minimize the empirical
loss L of the merged model θmtl, defined as:

L(θmtl) =
1

T

T∑
t=1

1

|Dt
te|

∑
(xi,yi)∈Dt

te

l(fθmtl
(xi), yi), (1)

where l(·) is the loss function, e.g., cross-entropy.
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Task vector-based model merging. Following task arith-
metic (Ilharco et al., 2023), the task vector τt is defined
as the difference between the fine-tuned model parame-
ters θtft and the pretrained model parameters θpre, i.e.,
τt = θtft − θpre. It captures the model parameter updates
during fine-tuning, reflecting adjustments for task adapta-
tion. Task vector plays a crucial role in model merging,
providing a compact yet highly informative representation
of task-specific modifications that facilitates efficient MTL.

Representative model merging solutions.

• Task Arithmetic (Ilharco et al., 2023) is a global-
aware approach that merges task vectors with the pre-
trained model θpre using weighted coefficients λ. This
allows for a significant improvement over simple aver-
aging. The formula is θmtl = θpre + λ

∑T
t=1 τt.

• Ties-Merging (Yadav et al., 2023) is a localized-aware
method that focuses on the parameters with the largest
magnitudes in the task vectors. It employs the elect
strategy to selectively merge these parameters with
minimal conflict, resulting in a merged parameter δties.
The formula is θmtl = θpre + λδties.

• Adamerging (Yang et al., 2024b) is a global-aware
method that optimizes the merging weights of task
vectors by minimizing the entropy of unsupervised
samples. This approach refines the merging process
across tasks and allows for layer-level adjustments.
The formula is θmtl = θpre +

∑T
t=1 λtτt.

4. Methodology
This section details the implementation of CALM. Sec-
tion 4.1 explains the method for obtaining a reliable unsu-
pervised dataset, while Section 4.2 introduces the efficient-
aware framework, which extracts only a small number of
task execution sequences for merging. Building on this,
Section 4.3 presents a method for identifying localized pa-
rameters with global task consensus using binary masks.
The overall process is summarized in Algorithm 1.

4.1. Class-Balanced Entropy Minimization Sampling

Utilizing additional sample information to aid model merg-
ing often significantly improves performance. For example,
Adamerging (Yang et al., 2024b) learns from the entropy
of unsupervised samples, allowing for balanced task perfor-
mance, while Localize-and-Stitch (He et al., 2024) relies
on training set data to identify effective parameter points.
In contrast, acquiring a subset of unsupervised samples is
more practical in real-world scenarios.

However, we argue that the entropy values used in Adamerg-
ing (Yang et al., 2024b) are not entirely reliable, as shown
in Figure 8, and may be affected by the merged model. Inac-

curate entropy estimates can misdirect optimization, leading
to suboptimal merged models. To address this, we pro-
pose class-balanced entropy minimization sampling, which
adaptively selects credible samples, using pseudo-labels to
ensure reliable information remains intact during merging.

Shannon entropy measure. Given a dataset D = {xi}Ni=1

and a finetuned model with parameters θ, the model’s logit
output P (ŷ|xi, θ) provides the class probabilities. The Shan-
non entropy (Shannon, 1948) for each sample is defined as:

H(xi, θ) = −
C∑

c=1

P (ŷ = c|xi, θ) logP (ŷ = c|xi, θ), (2)

where C is the total number of classes. High entropy indi-
cates greater uncertainty in the model’s prediction, while
low entropy suggests higher confidence.

Entropy minimization sampling (EMS). EMS aims to se-
lect samples with the lowest entropy to construct a credible
sample set from the unsupervised dataset. This approach is
widely used in fields like active learning (Wu et al., 2022;
Xie et al., 2022) and anomaly detection (Yoon et al., 2023)
to reduce uncertainty and enhancing model stability and
robustness. Here, we apply EMS to model merging.

Given multiple task-specific unsupervised datasets
{Dt(X )}Tt=1, our goal is to select low-entropy samples for
each task t, which can be formulated as:

D̂t = argmin
Dt

∑
xi∈Dt

H(xi, θ
t
ft). (3)

This selection improves model merging robustness at the
data level. Additionally, to prevent interference with entropy
information during parameter merging, we assign pseudo-
labels to unsupervised data based on logits:

ŷi = argmax
c

P (ŷ = c|xi, θ). (4)

Thus, we obtain a credible dataset with pseudo-labels that re-
main unaffected when merging, denoted as {D̂t(X , Ŷ)}Tt=1.

Class-balanced entropy minimization sampling (CB-
EMS). To address class imbalance that may occur from
selecting only low-entropy samples, we propose class-
balanced entropy minimization sampling (CB-EMS). The
core idea is to select an equal number of low-entropy sam-
ples from each class to ensure balanced representation. For
the dataset of class c, Dt

c, we define:

D̂t
cb =

C⋃
c=1

{xi ∈ Dt
c|H(xi, θ

t
ft) ≤ H(k)(Dt

c, θ
t
ft)}, (5)

where H(k)(Dt
c, θ

t
ft)} is the entropy of the k-th lowest en-

tropy sample in Dt
c. Finally, we assign pseudo-labels to

create the class-balanced credible dataset {D̂t
cb(X , Ŷ)}Tt=1.
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Figure 2. Illustration of Our CALM Approach. CALM involves three stages: (a) Efficient Aware: Task vectors are split, with most
merged efficiently into τc via Task Arithmetic, and a smaller part used for sequential merging; (b) Class-Balanced Entropy Minimization
Sampling: Finetuned models extract credible samples from the unlabeled dataset while maintaining class balance; (c) Consensus-Aware
Mask Optimization: Sequential tasks are merged into the τc model using a mask, which is then refined using the credible samples.

4.2. Efficient-Aware Framework

We propose an efficient-aware model merging framework.
Unlike traditional methods, for a given set of tasks, repre-
sented by task vectors {τt}Tt=1, we divide these vectors into
two parts: S and S, with the majority of tasks belonging to
S. For the tasks in S, we perform efficient merging utilizing
task arithmetic (Ilharco et al., 2023), resulting in an initial
merged model defined as τc = λ

∑
i∈S τi.

The remaining tasks in S are merged sequentially. We use τc
as the base model, denoted as τ (0)seq , and then incrementally
merge each task from S. For each task j ∈ S, the current
merged model τ (j−1)

seq is updated by merging with the task
vector τj , resulting in τ

(j)
seq = f(τ

(j−1)
seq , τj), where f(·) is an

applicable model merging method. This process is repeated
until all sequential tasks have been merged, yielding the
final merged task vector τmtl. Figure 2(b) illustrates the
merging process when S contains only one model.

The efficient-aware framework demonstrates substantial ad-
vantages, leading to a significant enhancement in merging
efficiency, while simultaneously mitigating the rapid in-
crease in computational complexity as the number of tasks
expands. Therefore, it shows impressive scalability, particu-
larly when dealing with an increasing volume of tasks.

Furthermore, our framework shows high flexibility in han-
dling new tasks. In practical scenarios, task asynchrony is
very common, with different tasks often completing at dif-
ferent times. Traditional methods typically require all tasks
to be completed before merging, which inevitably leads to
delays. Additionally, in resource-constrained environments,
it is challenging to merge all tasks simultaneously using
conventional approaches. In contrast, our framework effi-

ciently integrates new tasks without needing to recombine
all previous tasks, thereby showing greater practicality.

4.3. Consensus-Aware Mask Optimization

Based on the CB-EMS dataset and the efficient-aware frame-
work, this part aims to address how to identify and extract
effective information during the model merging process.
As demonstrated by the validation experiments in Figure 1,
effective information is not uniformly present across all
parameter points. Instead, extracting appropriate localized
parameters can significantly improve the performance of
model merging. Furthermore, the extraction of effective
information should not be limited to individual tasks; due to
the interference among tasks in model merging, the effec-
tiveness should be the consensus of all tasks globally.

Building on this understanding, we propose two guiding
principles for our design approach: First, model merging
should focus on localized parameters. Second, the selection
of these localized parameters should take into account global
task information to achieve consensus.

Mask is an effective tool for focusing on local parame-
ters. Several existing studies have explored the idea of using
masks. For instance, Ties-Merging (Yadav et al., 2023) ap-
proximates the selection of the largest parameter points
through a mask, while Localize-and-Stitch (He et al., 2024)
aims to find a mask that better represents a single task. In
this study, we propose a novel masked model merging strat-
egy. Given a current merged task vector τ (j−1)

seq , a sequential
task vector τj awaiting merging, and a binary mask M , we
define the masked model merging as follows:

τ (j)seq = (1−M)⊙ τ (j−1)
seq +M ⊙ τj . (6)
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Our masked model merging strategy has three main advan-
tages: (1) effectively extracts information from the new
task τj ; (2) removes interference present in τ

(j−1)
seq from

the efficient merging process; and (3) ensures conflict-free
parameter merging. Compared to existing methods, our
approach is better suited for complex tasks and improves
the robustness of model merging. Since the mask is useful,
the next challenge is how to obtain an effective mask.

Mask optimization should consider global tasks consen-
sus. Current localized-aware methods often focus solely
on individual tasks, but effectiveness in a single task does
not guarantee effectiveness after merging. Therefore, it is
crucial to evaluate effectiveness from a global task perspec-
tive. In the context of serializing the merging task j, let Sv

denote the current set of visible tasks, which includes task
j and all preceding visible tasks. Leveraging the credible
dataset obtained through the CB-EMS method, for each visi-
ble task tv ∈ Sv , we can compute the empirical loss Ltv (θ).
Therefore, the optimization objective for the mask is:

min
M

∑
tv∈Sv

Ltv (θ
(j)
seq) + α∥M∥1, (7)

where θ(j)seq = θpre+τ
(j)
seq . As shown, our mask optimization

takes into account all current visible tasks, allowing effective
consensus to be extracted on a broader scale. In addition,
we introduce the L1 norm ∥M∥1 to promote sparsity in the
mask, with α as the hyperparameter of the L1 term.

Through the masked model merging and optimization pro-
cesses, we successfully obtained the binary mask M re-
quired for merging the task j, and completed the merging
of task j, resulting in τ

(j)
seq . However, effectively optimizing

a binary mask is challenging. In practice, following (Pan-
igrahi et al., 2023; He et al., 2024), we re-parametrize the
binary mask as the sigmoid of a real-valued vector R, i.e.,
M = σ(R) to facilitate the optimization process. Combin-
ing the above mask optimization method with the efficient-
aware framework, we implement a serialized merging ap-
proach, as detailed in Algorithm 1. The final binary mask
is obtained by rounding the sigmoid output, represented as
M∗ = Round(σ(R)), resulting in the next-step task vector:

τ (j)seq = (1−M∗)⊙ τ (j−1)
seq +M∗ ⊙ τj . (8)

Finally, we obtain the merged model as follow:

θ
(final)
mtl = θpre + τ (final)seq . (9)

5. Experiments
This section outlines our experimental setup and presents
performance comparisons. Additionally, we provide a com-
prehensive analysis of the robustness and convergence of
our CALM, as well as the effectiveness of CB-EMS.

Algorithm 1 CALM
Input: Number of tasks T , pretrained model θpre, fine-
tuned models {θtft}Tt=1, task-specific unsupervised datasets
{Dt(X )}Tt=1, efficient merging coefficient λ, regularization
parameter α.

1: Step 1: Compute Task Vectors
2: for each task t from 1 to T do
3: Compute task vector τt = θtft − θpre
4: end for
5: Step 2: Class-Balanced EMS
6: for each task t from 1 to T do
7: Obtain class-balanced credible samples as Eq. 5;
8: Assign pseudo-labels to create D̂t

cb(X , Ŷ);
9: end for

10: Step 3: Efficient-Aware
11: Randomly select a few tasks as sequential tasks S;
12: The rest form efficient merged tasks S;
13: Efficiently merge S to obtain τ

(0)
seq = λ

∑
t∈S τt;

14: Step 4: Consensus-Aware Mask Optimization
15: visible tasks Sv = S, real-valued mask R;
16: for each task j in S do
17: Add task j to Sv;
18: Masked model merging:
19: θ

(j−1)
seq = θpre + (1− σ(R))⊙ τ

(j−1)
seq + σ(R)⊙ τj ;

20: Masked model optimization:
21: R∗ = argminR

∑
tv∈Sv

Ltv (θ
(j−1)
seq ) + α∥σ(R)∥1;

22: Binarization: M∗ = Round(σ(R∗));
23: Update: τ (j)seq = (1−M∗)⊙ τ

(j−1)
seq +M∗ ⊙ τj ;

24: end for
25: Output: Merged model θ(final)mtl = θpre + τ

(final)
seq

5.1. Experimental Setup

Baselines. We compare CALM with eight representative
model merging approaches. These baselines fall into three
categories. The first includes traditional model merging
methods that do not rely on task vectors, such as Simple
Averaging, Fisher Merging (Matena & Raffel, 2022), and
RegMean (Jin et al., 2023). The second category comprises
global-aware methods, including Task Arithmetic (Ilharco
et al., 2023), AdaMerging (Yang et al., 2024b) and Pareto
Merging (Chen & Kwok, 2024). We evaluate two strategies
for AdaMerging: task-wise (TW AdaMerging) and layer-
wise (LW AdaMerging). The third category encompasses
localized-aware methods, such as TIES-Merging (Yadav
et al., 2023), Consensus TA (Wang et al., 2024), Consen-
sus TIES (Wang et al., 2024) and Localize-and-Stitch (He
et al., 2024). Additionally, we present three comparison
results: the performance of pretrained models without merg-
ing (the lower bound), individual models and traditional
MTL, which serve as the upper bound.

Datasets. Following previous work on generic datasets (Il-
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Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc

Pretrained 62.3 59.7 60.7 45.5 31.4 32.6 48.5 43.8 48.0
Individual 75.3 77.7 96.1 99.7 97.5 98.7 99.7 79.4 90.5
Traditional MTL 73.9 74.4 93.9 98.2 95.8 98.9 99.5 77.9 88.9

Weight Averaging 65.3 63.4 71.4 71.7 64.2 52.8 87.5 50.1 65.8
RegMean (Jin et al., 2023) 65.3 63.5 75.6 78.6 78.1 67.4 93.7 52.0 71.8
Fisher Merging (Matena & Raffel, 2022) 68.6 69.2 70.7 66.4 72.9 51.1 87.9 59.9 68.3

Task Arithmetic (Ilharco et al., 2023) 55.2 54.9 66.7 78.9 80.2 69.7 97.3 50.4 69.1
TW AdaMerging (Yang et al., 2024b) 58.0 53.2 68.8 85.7 81.1 84.4 92.4 44.8 71.1
LW AdaMerging (Yang et al., 2024b) 64.5 68.1 79.2 93.8 87.0 91.9 97.5 59.1 80.1
Pareto Merging (Chen & Kwok, 2024) 71.4 74.9 87.0 97.1 92.0 96.8 98.2 61.1 84.8

Ties-Merging (Yadav et al., 2023) 59.8 58.6 70.7 79.7 86.2 72.1 98.3 54.2 72.4
Consensus TA (Wang et al., 2024) 63.9 64.1 75.5 79.4 81.6 69.9 98.0 55.1 73.7
Consensus TIES (Wang et al., 2024) 62.3 62.2 74.5 80.0 87.7 77.5 98.6 55.3 74.8
Localize-and-Stitch (He et al., 2024) 67.2 68.3 81.8 89.4 87.9 86.6 94.8 62.9 79.9

CALM (ours) 72.6 74.8 91.9 98.6 95.2 96.4 99.1 72.8 87.7

Table 1. Multi-task performance with CLIP ViT-B/32 architecture on eight vision classification tasks.

harco et al., 2023; Yang et al., 2024b; He et al., 2024),
we evaluate the performance of CALM on 8 visual clas-
sification tasks and 12 natural language tasks. The eight
visual classification datasets include SUN397 (Xiao et al.,
2016), Cars (Krause et al., 2013), RESISC45 (Cheng et al.,
2017), EuroSAT (Helber et al., 2019), SVHN (Netzer et al.,
2011), GTSRB (Stallkamp et al., 2011), MNIST (LeCun,
1998), and DTD (Cimpoi et al., 2014). The natural language
tasks consist of 12 GLUE tasks (Wang, 2018), including six
single-sentence tasks: SST-2 (Socher et al., 2013), CR (Hu
& Liu, 2004), MR (PaNgB, 2005), MPQA (Wiebe et al.,
2005), TREC (Voorhees et al., 1999) and SUBJ (Lee &
Pang, 2004), and six pairwise-sentence tasks: QNLI (Wang,
2018), SNLI (Bowman et al., 2015), MNLI (Williams et al.,
2017), RTE (Wang, 2018), MRPC (Dagan et al., 2005) and
QQP (Iyer et al., 2017). To avoid information leakage from
the test set, 8 visual tasks use unsupervised training sam-
ples for optimization. For 12 NLP tasks, the validation set
is used, while some datasets without a validation set use
training samples. All data are unsupervised.

Models and details. For the visual experiments, we use
the ViT-B/32 architecture from CLIP (Radford et al., 2021)
as the pre-trained model, while for the NLP experiments,
we use the RoBERTa-base (Liu, 2019) model, with pre-
trained and fine-tuned models consistent with previous ex-
periments (Yang et al., 2024b; He et al., 2024). The merging
process randomly selects two tasks for sequential merging,
while others apply task arithmetic (Ilharco et al., 2023) with
a coefficient of 0.3. For the visual tasks, 90% of the credible
samples are used, and for the NLP tasks, 80% are used. Each
task is optimized for 100 iterations, with the regularization
parameter λ = 1. For details, please refer to Appendix A.

5.2. Visual Experimental Results

Our experimental evaluations, conducted across various
visual classification datasets, conclusively demonstrate the

Figure 3. Multi-task performance with RoBERTa-base architecture
on twelve NLP tasks, with results presented as absolute accuracy
(%) compared to individual tasks.

superior performance of our CALM. Our analysis of the
results presented in Table 1 leads to two primary insights:

CALM significantly outperforms other baselines and ap-
proaches traditional MTL performance. On most tasks,
CALM demonstrates a 1%-3% performance improvement
over existing global-aware and localized-aware model merg-
ing methods. Furthermore, when compared to traditional
MTL, the performance of CALM is nearly on par with the
theoretical upper bound achievable through retraining with
data, a result attained with minimal computational cost.

CALM ensures a more balanced performance across
tasks. While baseline methods excel on tasks like MNIST
and SVHN, they suffer substantial performance declines (up
to almost 20%) on tasks like RESISC45 and DTD when
compared to the individual models. In comparison, CALM
demonstrates minimal accuracy degradation on any task,
achieving a more balanced performance. This highlights the
reliability of CALM in multi-task model merging.
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Figure 4. Variation of average accuracy with sampling proportion
for CB-EMS across visual and NLP tasks.

Figure 5. Average accuracy and standard deviation for entropy
minimization sampling and its ablation methods.

5.3. NLP Experimental Results

In the NLP experiments, we compared several representative
baselines with our method, as shown in Figure 3. The
results in the figure are presented as absolute accuracy (%)
compared to individual tasks, where an accuracy of 100%
indicates that the performance of the merged model closely
matches that of the individual fine-tuned models.

The experimental results demonstrate that our CALM ap-
proach achieves nearly the same performance as the individ-
ual models on most tasks, and even outperforms individual
models on some tasks, such as RTE and MRPC, leading
to an overall improvement in performance after merging.
Additionally, CALM consistently performs well across all
datasets, exhibiting superior consistency compared to the
baselines, which show weaker performance on some tasks.

5.4. Analysis of CB-EMS

The experimental results have demonstrated that consensus-
aware mask process successfully extracts effective informa-
tion for model merging. Next, we analyze the influence of
the sampling information on the results.

Figure 6. Average accuracy and standard deviation on visual tasks
with different numbers of sequential merging tasks.

Figure 4 depicts the effect of sampling proportion on average
accuracy across visual and NLP tasks. The accuracy initially
increases and then decreases as the sampling proportion
for CB-EMS rises, indicating that while more samples can
improve performance, too many unreliable samples harm
aggregation. The results demonstrate that a 30% sampling
rate is sufficient for state-of-the-art(SOTA) performance in
visual tasks, while a 50% sampling rate achieves individual
task performance, also at SOTA, for NLP tasks.

Figure 5 compares CB-EMS with its ablation methods: the
unsupervised EM method used by Adamerging and the su-
pervised method with ground-truth labels. CB-EMS per-
forms similarly to the supervised method and significantly
outperforms the unsupervised EM method, suggesting that
it retains a majority of the correct information. Furthermore,
the standard deviation reveals that CB-EMS exhibits greater
robustness, with a more stable merging process.

5.5. Analysis of Efficient-Aware Framework

In our sequential framework, two factors may introduce sen-
sitivity into the experimental results: the order of sequential
task merging and the number of tasks merged sequentially.
In this section, we present experiments demonstrating that
CALM exhibits substantial robustness in both aspects.

Figure 6 presents the average accuracy and variance of
CALM on visual tasks with different numbers of sequen-
tial merging tasks |S|. As the number of sequential tasks
increases, computational complexity rises, and the aver-
age accuracy shows a slight increase, stabilizing around
87.7%.This indicates CALM’s robustness to the number of
sequential tasks, achieving effective model merging even
with fewer tasks. The standard deviation also increases with
more sequential tasks, introducing some randomness. How-
ever, the maximum standard deviation is about 0.4%, which
does not significantly impact performance. Thus, CALM
remains robust to the order of sequential tasks, with more
stable performance when fewer tasks are used.
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Model Parameters SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc

θpre 62.3 59.6 60.3 45.7 31.6 32.6 48.3 44.4 48.1

θpre + τ1 48.8 54.9 46.3 35.4 46.7 32.9 74.8 35.0 46.9
θpre + (1−M∗)⊙ τ1 60.4 64.8 69.8 85.6 76.5 68.6 89.5 54.0 71.2

θpre + τ2 75.3 77.7 96.1 99.7 97.5 98.7 99.7 79.4 90.5
θpre +M∗ ⊙ τ2 69.9 69.5 80.0 88.1 72.7 71.7 90.4 59.7 75.3

θpre + (1−M∗)⊙ τ1 +M∗ ⊙ τ2 71.9 73.9 88.3 96.9 93.4 93.9 98.0 69.0 85.7

Table 2. Multi-task performance under different model parameters. In contrast to Table 1, this experiment involves only one sequential
merging task, where τ2 denotes the task vector for this task, M∗ represents its optimized binary mask, and τ1 corresponds to the task
vector from the remaining seven tasks via task arithmetic.

Figure 7. Effective weight proportions per layer across tasks visualized via consensus-aware mask.

5.6. Analysis of Consensus-Aware Mask

As shown in Table 2, we validate the effectiveness of the
extracted consensus-aware mask. To intuitively demonstrate
the mask’s value for each task vector, we employ only one
sequential merging task, while merging the remaining tasks
efficiently via task arithmetic. Here θpre denotes the pre-
trained model, τ1 is the task vector from the remaining seven
tasks via task arithmetic, τ2 is the target task vector, and
M∗ is the optimized binary mask. We evaluate the target
task performance under five configurations.

As illustrated in the table, CALM effectively accomplishes
model merging by precisely localizing 5% of critical local
parameters with global consensus. Removing 5% of inter-
ference parameters from τ1 improves the average accuracy
by nearly 25% and enhances target task adaptability, demon-
strating its capability to accurately identify interference re-
gions; restricting τ2 to 5% of masked parameters maintains
strong performance, indicating minimal loss of task-relevant
information and successful retention of critical transfer sig-
nals; simultaneously applying θpre + (1 −M∗) ⊙ τ1 and
M∗ ⊙ τ2 achieves conflict-free model merging and outper-
forms independent adjustment strategies, verifying effective
multi-task merging capability of CALM.

5.7. Visualization of Effective Weight Proportions

As illustrated in Figure 7, the effective weight proportions of
each layer are depicted when each task serves as a serialized
task, providing an intuitive representation of the importance
of each layer. From the figure, it can be observed that there is
a strong consistency across tasks: if a layer is important for
one task, it is likely important for others as well. Addition-
ally, some layers exhibit significant differences in weight
proportions, highlighting the specificity between tasks.

6. Conclusion
In this study, we explore how to identify and extract effective
information in model merging. By analyzing global-aware
and local-aware methods, we propose that effective infor-
mation is found in localized parameters aligned with global
task consensus. Based on this insight, we introduce CALM,
a new approach that uses reliable unsupervised data and an
efficient-aware framework to identify and integrate param-
eters with global consensus. Extensive experiments show
CALM’s superiority over existing methods. This study pro-
vides a new perspective on model merging, focusing on
aligning localized knowledge with global consensus, and of-
fers a potential solution for multi-task and transfer learning.
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A. Experimental Details
A.1. Datasets

Following the standard practices in the multi-task model merging field (Ilharco et al., 2023; Yadav et al., 2023; Yang et al.,
2024b; He et al., 2024), we employe eight image classification datasets and twelve NLP datasets to evaluate the effectiveness
of our proposed method. A detailed introduction to these eight datasets is provided below.

Visual datasets:

• SUN397(Xiao et al., 2016) is a large-scale scene recognition dataset with 397 categories and over 108,000 images,
covering a diverse range of indoor and outdoor scenes to support scene-level attribute analysis.

• Stanford Cars(Krause et al., 2013) consists of 16,185 images from 196 car models, labeled by make, model, and year,
aimed at fine-grained vehicle classification tasks.

• RESISC45(Cheng et al., 2017) is a remote sensing dataset with 31,500 images spanning 45 scene categories, represent-
ing different land-use types such as residential, industrial, and agricultural areas.

• EuroSAT(Helber et al., 2019) contains 27,000 satellite images from Sentinel-2 data, classified into 10 land-use
categories, useful for applications in earth observation and environmental monitoring.

• SVHN(Netzer et al., 2011) includes over 600,000 images of house numbers from Google Street View, categorized into
10 classes (digits 0-9), with complex natural scene backgrounds, posing challenges for digit recognition.

• GTSRB(Stallkamp et al., 2011) contains more than 50,000 images of 43 types of traffic signs, used for evaluating
traffic sign detection and classification, especially in autonomous driving systems.

• MNIST(LeCun, 1998) is a well-known dataset with 70,000 grayscale images of handwritten digits (0-9), serving as a
benchmark for evaluating models in digit classification tasks.

• DTD(Cimpoi et al., 2014) consists of 5,640 images of 47 texture classes, each representing different texture types like
”striped” or ”dotted,” commonly used for texture recognition and visual attribute understanding.

NLP datasets:

• SST-2(Socher et al., 2013) is a sentiment analysis dataset consisting of 67,349 sentences from movie reviews, labeled
as either positive or negative, commonly used for binary sentiment classification tasks.

• CR(Hu & Liu, 2004) (Customer Review) is a sentiment classification dataset containing 1,000 product reviews, labeled
as positive or negative, used to analyze customer opinions.

• MR(PaNgB, 2005) (Movie Review) contains 10,662 movie reviews, labeled as positive or negative, widely used for
sentiment analysis in text classification tasks.

• MPQA(Wiebe et al., 2005) is a sentiment analysis dataset with 10,000 sentences from news articles, annotated for
subjective and objective sentences, and used for polarity and subjectivity classification.

• TREC(Voorhees et al., 1999) is a question classification dataset with 6,000 labeled questions categorized into six broad
topic categories, used for task-specific question classification.

• SUBJ(Lee & Pang, 2004) contains 10,000 subjective and objective sentences, labeled as subjective or objective, used
for subjectivity classification tasks.

• QNLI(Wang, 2018) (Question Natural Language Inference) is a dataset with 104,000 pairs of questions and sentences,
used to test if a sentence contains the answer to the given question (semantic entailment task).

• SNLI(Bowman et al., 2015) (Stanford Natural Language Inference) consists of 570,000 sentence pairs, labeled with
entailment, contradiction, or neutral, used for natural language inference tasks.
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• MNLI(Williams et al., 2017) (Multi-Genre Natural Language Inference) is a dataset containing 433,000 sentence pairs
from various genres, used to classify if two sentences are in an entailment, contradiction, or neutral relationship.

• RTE(Wang, 2018) (Recognizing Textual Entailment) consists of 2,500 sentence pairs, focused on determining if one
sentence logically follows from another, and is used for natural language inference tasks.

• MRPC(Dagan et al., 2005) (Microsoft Research Paraphrase Corpus) contains 3,600 sentence pairs, labeled as either
paraphrases or non-paraphrases, used for paraphrase detection tasks.

• QQP(Iyer et al., 2017) (Quora Question Pairs) consists of 400,000 pairs of questions from Quora, labeled as duplicate
or non-duplicate, commonly used for question pair similarity and paraphrase detection.

A.2. Baselines

CALM is evaluated with respect to the following baseline approaches, which are introduced in further detail below.

• Pretrained. The model is pretrained on general-purpose datasets without any task-specific information. It serves as the
lower bound for evaluating model merging methods, validating their effectiveness by demonstrating moderate task
performance.

• Individual. These are models fine-tuned on each specific task based on the pretrained model. They serve both as
foundational modules for model merging and as an upper bound to evaluate the performance loss during the merging
process.

• Traditional MTL. This is a multi-task learning model trained directly on the combined training dataset. It serves as an
upper bound for model merging methods, as these approaches aim to achieve similar performance without reusing
training data.

• Weight Averaging averages the parameters of all individual models without considering parameter conflicts. It shows
moderate improvement, slightly outperforming the pretrained model.

• RegMean (Jin et al., 2023) aims to ensure that the merged model remains close to individual fine-tuned models in L2
distance by using the covariance matrix of the training dataset to guide the merging process.

• Fisher Merging (Matena & Raffel, 2022) uses the Fisher information matrix, derived from training data, to guide the
merging process. It treats the Fisher matrix as a measure of each parameter’s importance in the model.

• Task Arithmetic (Ilharco et al., 2023) introduces the concept of task vectors, which are calculated as the difference
between fine-tuned and pretrained models. It preserves task-specific information and merges task vectors using
weighted aggregation to achieve significant performance gains.

• TW AdaMerging (Yang et al., 2024b) applies task-wise AdaMerging, where each task is assigned a merging weight.
The merging weights are optimized using an unsupervised test dataset, enhancing the merging process over the Task
Arithmetic method.

• LW AdaMerging (Yang et al., 2024b) utilizes layer-wise AdaMerging, providing finer granularity by assigning
merging weights to individual layers. This approach effectively resolves parameter conflicts and achieves state-of-the-
art performance on benchmark datasets.

• Ties-Merging (Yadav et al., 2023) focuses on merging parameters from a localized perspective. It uses strategies
like Trim, Elect Sign, and Disjoint Merge to identify the most crucial parameters from each model while minimizing
conflicts during the merging process.

• Pareto Merging (Chen & Kwok, 2024) formulates model merging as a multi-objective optimization problem, generating
a diverse set of Pareto-optimal models in a single process. This approach outperforms existing methods by tailoring
models to user-specific preferences.

• Consensus TA (Wang et al., 2024) proposes identifies the task supports given a collection of task vectors. This method,
combined with Task Arithmetic, aggregates the selected task supports.
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• Consensus TIES (Wang et al., 2024) proposes replacing the original Task Arithmetic module with Ties-Merging,
achieving a strategy for selecting effective parameter points.

• Localize-and-Stitch (He et al., 2024) aims to identify important localized parameters by using partial training data for
optimization. It strives to represent task information effectively with fewer parameters, compared to the TIES-Merging
method.

A.3. Implementation Details.

CALM employs an efficient-aware sequential merging approach, and we describe our experimental setup using the main
experimental configuration as an example. First, we randomly select two tasks as the sequential tasks, while the remaining
task vectors are merged using task arithmetic, formulated as τc = λ

∑n
i=1 τi, where λ = 0.3, following Task Arithmetic.

Next, we conduct sequential merging for the two randomly selected tasks. Using the class-balanced entropy minimization
sampling method, We select 90% of the samples from the unlabeled samples of the visual task as the credible sample set,
and 80% of the samples from the text task as the credible sample set. We initialize a real-valued mask R of the same size
as the model and set 1e-5 of the parameter points to be active. The mask R is then iteratively trained with the credible
sample set, which contains pseudo-labels, using a batch size of 128 and a learning rate of 1e7—a large learning rate to
ensure effective information feedback to the mask. For each iteration, only two batch of the reliable sample set per task is
used, with a total of 100 iterations.

The trained real-valued mask R is converted to a binary mask M using the sigmoid function, and a new task vector is
merged accordingly. Once all sequential tasks are merged, the final merged model is obtained. The same process is followed
for other numbers of sequential tasks.

A.4. Computing Resources

Part of the experiments is conducted on a local server with Ubuntu 16.04 system. It has two physical CPU chips which are
Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz with 20 cpu cores. The other experiments are conducted on a remote server.
It has 8 GPUs which are GeForce RTX 3090.

B. Class-Balanced Entropy Minimization Sampling Analysis

EMS vs. CB-EMS: validation comparison. Figure 8 shows the accuracy of pseudo-labels versus ground truth across eight
tasks at different EMS sampling rates. As the entropy increases, the accuracy of the pseudo-labels decreases significantly,
indicating a strong correlation between entropy and sample confidence. Therefore, compared to Adamerging, our selected
samples exhibit greater robustness. Additionally, comparing (a) and (b) reveals that the accuracy of CB-EMS decreases more
rapidly, This suggests that there are significant differences in entropy across classes, making EMS prone to class imbalance.

(a) CB-EMS (b) EMS

Figure 8. Accuracy of EMS and CB-EMS pseudo-labels compared to ground truth across different sampling rates
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B.1. Entropy Imbalance Analysis

Figure 9 illustrates the boxplots of entropy for each class in the DTD and RESISC45 datasets. The boxplots visually
represent the median entropy for each class, with the bottom and top of the box indicating the first quartile (Q1) and third
quartile (Q3), respectively. The whiskers extend to the minimum and maximum values within the dataset. From these
boxplots, it is evident that there are significant differences in entropy across classes—some classes have consistently low
entropy, while others show predominantly higher values. Thus, employing the class-balanced entropy minimization sampling
method is justified, as it helps prevent sample selection from being dominated by only a few classes.

Figure 9. Binned boxplot of entropy distribution for DTD and RESISC45 datasets

B.2. Entropy Minimization Reliability Analysis

This subsection aims to demonstrate that directly using the entropy minimization method is insufficient due to the unreliability
of the resulting entropy. As illustrated in Figure 10, both the adamerging and CALM methods start with an initial model
equivalent to task arithmetic. Therefore, we visualize the confusion matrices of this initial model for the DTD and RESISC45
tasks. From the figure, it is evident that the initial model yields suboptimal predictions for these tasks, with many classes
being almost entirely misclassified. Consequently, the entropy estimated from these samples points in an incorrect direction.

Using an entropy minimization approach in this context could further enhance the credibility of these incorrect entropy
values, causing these erroneous signals to negatively impact model merging. In contrast, the CALM method alleviates the
impact of these misleading entropies by first sampling a reliable dataset, thus mitigating the harm. Moreover, CALM sets
pseudo-labels to ensure that entropy information remains unaffected during model merging, ultimately leading to more
reliable outcomes.

Figure 10. Confusion matrix of initial model predictions on DTD and RESISC45 tasks
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C. Supplementary Experiment
C.1. Merging Strategy Analysis

CALM introduces a consensus-aware, conflict-free merging strategy, and we explore the effectiveness of this merging
approach below. Given a binary mask M , CALM’s merging method is defined as τmtl = (1−M)⊙ τseq +M ⊙ τj . The
advantage of this approach is that all tasks’ task vectors participate in mask training, while ensuring that the parameters of
the new task vector do not conflict with those of the original task vectors. In our ablation study, we also investigate the
performance of merging strategies with only (1−M) and only M .

The experimental results are shown in Table 3. It can be observed that the merging strategies using only M or only (1−M)
exhibit distinct characteristics. The strategy with only M maintains the state of the original tasks better, as it does not affect
the information of the existing tasks, while the new task is impacted due to parameter interference. In contrast, the strategy
using only (1−M) retains the new task information well but results in a decrease in the original tasks’ performance due to
information loss and parameter conflicts. By comparison, CALM achieves a better balance by combining both approaches,
leading to superior performance overall.

Method Merging Strategy SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc

LW AdaMerging global 64.5 68.1 79.2 93.8 87.0 91.9 97.5 59.1 80.1
Localize-and-Stitch local 67.2 68.3 81.8 89.4 87.9 86.6 94.8 62.9 79.9
CALM only M 72.9 73.4 89.6 98.1 95.1 95.1 98.8 69.9 86.6
CALM only 1−M 69.0 70.6 87.2 96.6 93.0 93.3 98.0 77.5 85.7
CALM both (ours) 72.6 74.8 91.9 98.6 95.2 96.4 99.1 72.8 87.7

Table 3. Multi-task performance on eight vision classification tasks under different merging strategies.

C.2. Learning Rate Analysis

Table 4 investigates the influence of learning rate on our proposed method. In the main experiment, the learning rate is set
to 1e7. We further evaluate the effects of learning rates 5e6 and 2e7, and compare the results with those obtained by the
localize-and-stitch method under identical learning rates. The results indicate that the impact of different learning rates on
CALM is negligible, with each dataset showing consistent performance fluctuations. This demonstrates the stability of our
method across varying learning rates, underscoring the robustness of CALM.

Method Learning Rate SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc

Localize-and-Stitch 1e7 67.2 68.3 81.8 89.4 87.9 86.6 94.8 62.9 79.9
CALM 5e6 72.4 74.6 91.8 98.7 95.2 96.4 98.9 71.6 87.5
CALM 2e7 72.2 74.3 92.1 98.7 95.3 96.2 99.1 73.2 87.6
CALM 1e7 72.6 74.8 91.9 98.6 95.2 96.4 99.1 72.8 87.7

Table 4. Multi-task performance on eight vision classification tasks under different learning rates.

C.3. Regularization Coefficient Analysis

Table 5 investigates the impact of the L1 norm regularization coefficient on the performance of CALM. This coefficient
controls the extent to which regularization influences the final result, with larger coefficients encouraging a sparser mask.
The results indicate that the regularization coefficient has minimal effect on overall performance. While larger coefficients
may lead to a slight decline in CALM’s performance, CALM generally maintains stability across different values of the
regularization coefficient, demonstrating its robustness.
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Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc

Pretrained 66.8 77.7 71.0 59.9 58.4 50.5 76.3 55.3 64.5
Individual 82.3 92.4 97.4 100 98.1 99.2 99.7 84.1 94.2
Traditional MTL 80.8 90.6 96.3 96.3 97.6 99.1 99.6 84.4 93.5

Weight Averaging 72.1 81.6 82.6 91.9 78.2 70.7 97.1 62.8 79.6
RegMean (Jin et al., 2023) 73.3 81.8 86.1 97.0 88.0 84.2 98.5 60.8 83.7
Fisher Merging (Matena & Raffel, 2022) 69.2 88.6 87.5 93.5 80.6 74.8 93.3 70.0 82.2

Task Arithmetic (Ilharco et al., 2023) 73.9 82.1 86.6 94.1 87.9 86.7 98.9 65.6 84.5
Ties-Merging (Yadav et al., 2023) 76.5 85.0 89.3 95.7 90.3 83.3 99.0 68.8 86.0
AdaMerging (Yang et al., 2024b) 79.0 90.3 90.8 96.2 93.4 98.0 99.0 79.9 90.8
Pareto Merging (Chen & Kwok, 2024) 82.5 91.4 92.0 98.5 95.4 98.6 99.0 78.3 92.0

CALM (ours) 80.2 90.8 94.6 98.8 96.2 97.5 99.3 79.3 92.1

Table 6. Multi-task performance with CLIP ViT-L/14 architecture on eight vision classification tasks.

Method Coefficient SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc

Localize-and-Stitch 1 67.2 68.3 81.8 89.4 87.9 86.6 94.8 62.9 79.9
CALM 0.5 72.9 75.2 92.3 99.0 95.3 96.3 99.1 72.9 87.8
CALM 2 72.5 74.8 91.8 98.7 95.3 96.3 99.1 72.1 87.6
CALM 1e7 72.6 74.8 91.9 98.6 95.2 96.4 99.1 72.8 87.7

Table 5. Multi-task performance on eight vision classification tasks under different regularization coefficients.

C.4. ViT-L/14 Experimental Results

Following the experimental settings used in previous work on model merging (Ilharco et al., 2023; Yadav et al., 2023; Yang
et al., 2024b), we extend our results on the same datasets and methods using the CLIP ViT-L/14 architecture, as shown
in Table 6. Given the larger scale of this model, the fine-tuned task information is well preserved, allowing even simpler
approaches like weight averaging to achieve relatively strong model merging performance. Methods like adaMerging are
already approaching the upper limit of model merging for this architecture, as demonstrated by individual and traditional
MTL baselines, leaving limited room for further improvement.

Nonetheless, our approach still achieves state-of-the-art performance, improving the average accuracy by 0.1% over Pareto
Merging, with only a 1.5% gap from the theoretical upper bound. This consistent, strong performance highlights both the
effectiveness and stability of our method. Upon further analysis of individual datasets, it is evident that some datasets, such
as Cars and MNIST, have nearly reached their theoretical upper bound, where CALM shows similar results to baselines.
However, for datasets with greater room for improvement, such as RESISC45 and SVHN, CALM demonstrates significant
performance gains. It is noteworthy that our method shows a slight decrease in performance on the DTD dataset, likely due
to the fact that extracting reliable information for DTD as a serialized task requires more iterations. Increasing the iteration
count presents a potential opportunity for further improvement in our approach.

C.5. Convergence Analysis

We analyze the convergence of the CALM iterative process. Figure 11 exhibits the task sequence for the CALM(|S| = 2)
setup, where MNIST and DTD datasets are sequentially merged into the model. Each task undergoes 100 iterations, with
performance evaluated across all tasks every 10 iterations. The red curve represents the average accuracy at each evaluation
point. Initially, the model is initialized using task arithmetic (Ilharco et al., 2023) over the first six tasks, resulting in the
initial merged model. After 100 iterations, DTD is merged as the sequential task.

From Figure 11, we observe that CALM achieves rapid convergence, with performance improving significantly after just
10 iterations, almost reaching a stable state. The model exhibits high stability, with a consistent and smooth increase in
accuracy. When DTD is added, the model experiences a slight perturbation, but previous performance is largely maintained.
As training continues, the model’s predictive ability improves further, indicating that CALM converges quickly and remains
resilient to the integration of new tasks.
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Figure 11. Accuracy and average accuracy curves over iterations for each dataset.

D. Binary Mask Analysis
In the preceding sections, we have analyzed the effectiveness and robustness of the CALM method in model merging from a
macro perspective. Below, we shift our focus to the binary mask representation to examine the specific characteristics of the
parameter points identified by CALM.

D.1. Binary Mask Activation Trend

We selected the CALM(|S| = 7, |S| = 1) configuration to explore the characteristics of the binary mask, which is generated
for the final task to extract effective parameters while removing the influence of the previous seven merged tasks. Figure 12
illustrates the variation in the proportion of parameters set to 1 in the binary mask throughout the iterations. As shown in
the figure, CALM identifies approximately 3.5%-4% of parameters as effective, indicating a high degree of redundancy in
the model parameters. Initially, the mask randomly selects only 1e-5 of parameters to be set to 1, and this ratio increases
gradually during iterations, demonstrating consistency across different datasets.

Additionally, an interesting phenomenon is observed: for more challenging tasks, such as SUN397, Cars, and DTD, the
proportion of selected effective parameters is relatively higher, whereas for simpler tasks, like MNIST and SVHN, the ratio
is lower. This aligns with our expectations, as more difficult tasks require more parameters to adequately represent their
complexity.

Figure 12. Effective weight proportions across iterations.
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D.2. Magnitude and Importance Correlation Analysis

For a long time, many studies have intuitively assumed that parameters with larger magnitudes in the task vector are more
important, providing theoretical guidance for some data-free approaches, such as ties-merging (Yadav et al., 2023). In
CALM, we identified better local parameter points with the assistance of unsupervised samples, which allows us to further
analyze the relationship between parameter magnitude and its importance within the task vector. As shown in Table 7, the
proportion of effective parameters with mask value 1 that rank within the top k% in terms of magnitude is presented for each
task. If there were no correlation, the proportion in the table should approximately equal k. However, the results indicate that
the magnitude of parameters in the task vector is correlated with their importance—parameters with larger magnitudes are
more likely to be important. However, this does not imply that parameters with the highest magnitudes are always critical;
rather, magnitude is merely one of several factors influencing importance. Therefore, methods like ties-merging do not
necessarily identify the most significant parameters, but require sample information to more accurately determine these key
parameters.

Magnitude Selection SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD

Top 1% 4.9 4.6 3.5 2.3 3.6 4.9 3.9 3.9
Top 5% 17.5 16.0 14.1 10.7 14.1 16.4 14.6 14.9
Top 10% 29.2 26.8 24.6 19.9 24.6 27.0 24.8 25.5
Top 20% 46.6 43.3 41.0 35.0 40.9 42.8 40.4 41.6
Top 50% 76.8 73.9 72.0 66.3 71.4 71.9 70.1 71.9

Table 7. Proportion of effective parameters within the mask ranked in the top k% of magnitude across eight vision classification tasks.

E. Time Cost Analysis
Benefiting from the efficient-aware framework, despite employing a sequential merging approach, we still achieve remarkable
model merging performance with relatively low time cost. Analyzing from a convergence perspective, as demonstrated
in Section 5.5, CALM achieves nearly a 10% improvement within just 10 iterations, almost reaching convergence. This
process takes only about 4 minutes on a single GeForce RTX 3090, which is significantly faster compared to other model
merging methods that rely on sample-based optimizations. After 10 iterations, our method converges gradually to the
optimal solution with high stability. This feature allows for flexible adjustment of the number of iterations depending on
computational resources and time constraints in practical scenarios.

Below, we compare the overall runtime of model merging optimization methods that require data. As shown in Table 8, we
report the runtime costs for different numbers of serialized tasks. The localize-and-stitch method optimizes for a single task
with 80 iterations, resulting in relatively low time consumption. By randomly selecting one serialized task for merging, we
achieve a comparable runtime, while our performance far surpasses that of localize-and-stitch. As the number of serialized
tasks increases, the runtime for CALM exhibits a sub-linear growth trend. This is due to the fact that each serialization
step only considers previously seen tasks. Even in the most complex scenario, our runtime remains lower than that of
adamerging, highlighting the efficiency of our approach.

Method Run-time Consumption Iterations

Adamerging 210.23min 500
CALM(|S| = 7) 163.47min 700
CALM(|S| = 2) 71.24min 200
CALM(|S| = 1) 36.42min 100
Localize-and-Stitch 31.76min 80

Table 8. Run-time consumption of across different methods.

F. Privacy Discussion
Model merging offers superior privacy protection compared to traditional multi-task learning, as it does not require retraining
with the original training datasets. The information we use is identical to adamerging, relying solely on unsupervised test
data, ensuring there is no risk of data leakage or privacy breaches. Moreover, CALM provides greater security and flexibility
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compared to methods that either extract information from training data or directly use the training dataset. Specifically,
CALM does not require direct interaction with data providers, which reduces the complexity of data access and minimizes
privacy risks. Furthermore, unsupervised test samples may originate from diverse environments or distributed sources,
making the approach adaptable for decentralized applications. Importantly, there is no need for additional manual labeling,
enhancing both scalability and ease of implementation.
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