
Published as a conference paper at ICLR 2021

FEDMIX: APPROXIMATION OF MIXUP UNDER MEAN
AUGMENTED FEDERATED LEARNING

Tehrim Yoon & Sumin Shin & Sung Ju Hwang & Eunho Yang
Korea Advanced Institute of Science and Technology (KAIST)
Daejeon, South Korea
{tryoon93,sym807,sjhwang82,eunhoy}@kaist.ac.kr

ABSTRACT

Federated learning (FL) allows edge devices to collectively learn a model with-
out directly sharing data within each device, thus preserving privacy and elim-
inating the need to store data globally. While there are promising results under
the assumption of independent and identically distributed (iid) local data, cur-
rent state-of-the-art algorithms suffer from performance degradation as the het-
erogeneity of local data across clients increases. To resolve this issue, we propose
a simple framework, Mean Augmented Federated Learning (MAFL), where clients
send and receive averaged local data, subject to the privacy requirements of target
applications. Under our framework, we propose a new augmentation algorithm,
named FedMix, which is inspired by a phenomenal yet simple data augmenta-
tion method, Mixup, but does not require local raw data to be directly shared
among devices. Our method shows greatly improved performance in the standard
benchmark datasets of FL, under highly non-iid federated settings, compared to
conventional algorithms.

1 INTRODUCTION

As we enter the era of edge computing, more data is being collected directly from edge devices such
as mobile phones, vehicles, facilities, and so on. By decoupling the ability to learn from the delicate
process of merging sensitive personal data, Federated learning (FL) proposes a paradigm that allows
a global neural network to learn to be trained collaboratively from individual clients without directly
accessing the local data of other clients, thus preserving the privacy of each client (Konečný et al.,
2016; McMahan et al., 2017). Federated learning lets clients do most of the computation using its
local data, with the global server only aggregating and updating the model parameters based on
those sent by clients.

One of the standard and most widely used algorithm for federated learning is FedAvg (McMahan
et al., 2017), which simply averages model parameters trained by each client in an element-wise
manner, weighted proportionately by the size of data used by clients. FedProx (Li et al., 2020b)
is a variant of FedAvg that adds a proximal term to the objective function of clients, improving
statistical stability of the training process. While several other methods have been proposed until
recently (Mohri et al., 2019; Yurochkin et al., 2019; Wang et al., 2020), they all build on the idea
that updated model parameters from clients are averaged in certain manners.

Although conceptually it provides an ideal learning environment for edge devices, the federated
learning still has some practical challenges that prevent the widespread application of it (Li et al.,
2020a; Kairouz et al., 2019). Among such challenges, the one that we are interested in this paper is
the heterogeneity of the data, as data is distributed non-iid across clients in many real-world settings;
in other words, each local client data is not fairly drawn from identical underlying distribution. Since
each client will learn from different data distributions, it becomes harder for the model to be trained
efficiently, as reported in (McMahan et al., 2017). While theoretical evidence on the convergence of
FedAvg with non-iid case has recently been shown in (Li et al., 2020c), efficient algorithms suitable
for this setting have not yet been developed or systematically examined despite some efforts (Zhao
et al., 2018; Hsieh et al., 2020).

1

Published as a conference paper at ICLR 2021

(a) Global Mixup (b) Local Mixup (c) NaiveMix (d) FedMix

Figure 1: Brief comparisons of Mixup strategies in FL and MAFL. (a) Global Mixup: Raw data is exchanged
and directly used for Mixup between local and received data, which violates privacy. (b) Local Mixup: Mixup
is only applied within client’s local data. (c) NaiveMix: Under MAFL, Mixup is performed between local data
and received averaged data. (d) FedMix: Under MAFL, our novel algorithm approximates Global Mixup using
input derivatives and averaged data.

In addition to non-iid problem, another important issue is that updating model parameters indi-
vidually trained by each client is very costly and becomes even heavier as the model complexity
increases. Some existing works Smith et al. (2016); Sattler et al. (2019) target this issue to decrease
the amount of communications while maintaining the performance of FedAvg. A more practical
approach to reduce communication cost is to selectively update individual models at each round,
rather than having all clients participate in parameter updates. This partial participation of clients
per round hardly affects test performance in ideal iid settings but it can exacerbate the heterogeneity
of weight updates across clients and as a result, the issue of non-iid (McMahan et al., 2017).

In order to mitigate the heterogeneity across clients while protecting privacy, we provide a novel yet
simple framework, mean augmented federated learning (MAFL), in which each client exchanges the
updated model parameters as well as its mashed (or averaged) data. MAFL framework allows the
trade-off between the amount of meaningful information exchanged and the privacy across clients,
depending on several factors such as the number of data instances used in computing the average.
We first introduce a naive approach in our framework that simply applies Mixup (Zhang et al., 2018)
between local data and averaged external data from other clients to reduce a myopic bias.

Here, we go further in our framework and ask the following seemingly impossible question: can
only averaged data in our framework that has lost most of the discriminative information, bring
the similar effect as a global Mixup in which clients directly access others’ private data without
considering privacy issues? Toward this, we introduce our second and more important approach in
our framework, termed Federated Mixup (FedMix), that simply approximates the loss function of
global Mixup via Taylor expansion (it turns out that such approximation only involves the averaged
data from other clients!). Figure 1 briefly describes the concept of our methods.

We validate our method on standard benchmark datasets for federated learning, and show its effec-
tiveness against the standard federated learning methods especially for non-iid settings. In particular,
we claim that FedMix shows better performance and smaller drop in accuracy with more hetero-
geneity or fewer clients update per communication round, further increasing difficulty of federated
learning.

Our contribution is threefold:

• We propose a simple framework for federated learning that averages and exchanges each
local data. Even naive approach in this framework performing Mixup with other clients’
mashed data shows performance improvement over existing baselines on several settings.

• We further develop a novel approximation for insecure global Mixup accessing other
clients’ local data, and find out that Taylor expansion of global Mixup only involves the
averaged data from other clients. Based on this observation, we propose FedMix in our
framework approximating global Mixup without accessing others’ raw data.

• We validate FedMix on several FL benchmark datasets especially focusing on non-iid data
settings where our method significantly outperforms existing baselines while still preserv-
ing privacy with minimal increases in communication cost.

2

Published as a conference paper at ICLR 2021

2 RELATED WORK

Federated learning Federated learning was first proposed in Konečný et al. (2016) where the
prevalent asynchronous SGD (Dean et al., 2012) is used to update a global model in a distributed
fashion. A pioneering work in this field proposed the currently most widely used algorithm, Fe-
dAvg (McMahan et al., 2017), which is also the first synchronous algorithm dedicated to federated
setting. Shortly after, Li et al. (2020b) proposed a variant of FedAvg, named FedProx, where the
authors claimed to overcome statistical heterogeneity and increase stability in federated learning.
Recent studies attempt to expand federated learning with the aim of providing learning in more di-
verse and practical environments such as multi-task learning (Smith et al., 2017), generative models
(Augenstein et al., 2020), continual learning (Yoon et al., 2020), semi-supervised learning (Jeong
et al., 2020), and data with noisy labels (Tuor et al., 2020). Our paper focuses on general federated
settings, but it could be considered in such various situations.

However, these algorithms may obtain suboptimal performance when clients participating in FL
have non-iid (Zhao et al., 2018; Hsieh et al., 2020) distributions. While the convergence of FedAvg
on such settings was initially shown by experiments in McMahan et al. (2017) and later proved in
Li et al. (2020c), it does not guarantee performance as good as it would have been for iid setting.
Existing algorithms that pointed out this issue have major limitations, such as privacy violation
by partial global sharing of local data (Zhao et al., 2018) or no indication of improvement over
baseline algorithms such as FedAvg (Hsieh et al., 2020). Our method aims to improve performance
particularly on these non-iid situations, without compromising privacy.

Mixup Mixup (Zhang et al., 2018) is a popular data augmentation technique that generates addi-
tional data by linear interpolation between actual data instances. Mixup has been usually applied to
image classification tasks and shown to improve test accuracy on various datasets such as CIFAR10
and ImageNet-2012 (Russakovsky et al., 2015), and, on popular architectures such as ResNet (He
et al., 2016) and ResNeXt (Xie et al., 2017), for various model complexity. It is also reported in
Zhang et al. (2018) that Mixup helps with stability, adversarial robustness (Zhang et al., 2018),
calibration, and predictive certainty (Thulasidasan et al., 2019). Mixup is expanding from various
angles due to its simplicity and popularity. First, beyond image classification tasks, its effectiveness
has been proven in various domains such as image segmentation (Eaton-Rosen et al., 2020), speech
recognition (Warden, 2018), and natural language processing (Guo et al., 2019). Also, several ex-
tensions such as Manifold Mixup (Verma et al., 2018), which performs Mixup in latent space, or
CutMix (Yun et al., 2019), which replaces specific regions with others patches, have been proposed.

In most of the previous studies on federated learning, Mixup was partially (or locally) used as a gen-
eral data augmentation technique. Some recent studies (Oh et al., 2020; Shin et al., 2020) proposed
to send blended data to server using Mixup, but they require sending locally- and linearly-mixed
(mostly from two instances) data to server at every round, therefore being susceptible to privacy
issues with huge communication costs. Our work properly modifies Mixup under the restrictions of
federated learning and mitigates the major challenges of federated learning such as non-iid clients.

3 MEAN AUGMENTED FEDERATED LEARNING (MAFL) AND FEDMIX

We now provide our framework exchanging averaged data for federated learning and main method
approximating insecure global Mixup under our framework, after briefly introducing the setup.

3.1 SETUP AND BACKGROUND

Federated learning and FedAvg Federated Averaging (FedAvg) (McMahan et al., 2017) has
been the most popular algorithmic framework for federated learning. For every communication
round t = 0, . . . , T − 1, a client k ∈ 1, . . . , N selected for local training sends back its model
wk
t (or only difference to reduce communication cost) to a global server. For every round, K

number of clients are selected to locally update and send model parameters. The server simply
averages parameters received, so that the global model wt after t rounds of communications be-
comes wt =

∑n
k=1 pkw

k
t where pk is the importance of client k based on the relative number of

data in k among all selected clients at t. The updated global model is sent back to clients for the
next round, which undergoes the following E local updates via stochastic gradient descent (SGD):

3

Published as a conference paper at ICLR 2021

wk
t+1,i+1 ← wk

t+1,i − ηt+1∇`(f(xki ;wt+1,i), y
k
i) for i = 0, 1, . . . , E − 1, batch size B, and local

learning rate η. Here, ` is the loss function for learning and f(x;wt) is the model output for input
x given model weight wt.

Mixup Mixup (Zhang et al., 2018) is a simple data augmentation technique using a linear inter-
polation between two input-label pairs (xi, yi) and (xj , yj) to augment x̃ = λxi + (1 − λ)xj and
ỹ = λyi + (1 − λ)yj . The variable λ ∈ [0, 1] is a hyperparameter that is chosen from the beta
distribution for each training step.

3.2 MAFL: MEAN AUGMENTED FEDERATED LEARNING

The most obvious and powerful way for local models to receive information about data from other
clients is to simply receive raw individual data. However, under typical federated setting, each client
does not have direct access to individual external data due to privacy constraints, leading to overall
performance degradation. We propose a federated learning framework that relaxes the limitation of
accessing others’ raw data and allows a more granular level of privacy depending on applications. In
our new framework, termed mean augmented federated learning (MAFL), clients not only exchange
model parameters but also its mashed (or averaged) data.

In MAFL, only the part that exchanges averaged data of each client has been added to the standard
FL paradigm (Algorithm 1). Here, the number of data instances used in computing the average,
Mk, controls the key features of MAFL such as privacy and communication costs. Lower Mk value
results in more relevant information passed over, but only in cost of less secure privacy and larger
communication cost. In one extreme of Mk = 1, raw data is thoroughly exchanged and privacy is
not protected at all, which is clearly inappropriate for FL. But, in the other extreme, all data of each
client is averaged to ensure a considerable degree of privacy. In addition, it also has an advantage
on communication cost; each client sends a set of nk/Mk averaged data where nk is local data size
of client k. The remaining question is whether it is possible to improve performance even when
exchanging information that is averaged from all local data and loses discriminative characteristics.

The most naive way we can consider in our MAFL framework is to directly use the mashed data
from other clients, just like regular local data. However, since mashed data has a lot less usable

Algorithm 1: Mean Augmented Federated
Learning (MAFL)
Input: Dk = {Xk,Yk} for k = 1, . . . , N
Mk: number of data instances used for

computing average x̄, ȳ

Initialize w0 for global server
for t = 0, . . . , T − 1 do

for client k with updated local data do
Split local data into Mk sized batches
Compute x̄, ȳ for each batch
Send all x̄, ȳ to server

end
St ← Kclients selected at random
Send wt to clients k ∈ St
if updated then

Aggregate all x̄, ȳ to Xg,Yg
Send Xg,Yg to clients k ∈ St

end
for k ∈ St do

wk
t+1 ← LocalUpdate(k,wt;Xg,Yg)

end
wt+1 ← 1

K

∑
k∈St pkw

k
t+1

end

Algorithm 2: FedMix
LocalUpdate(k,wt;Xg,Yg) under
MAFL (Algorithm 1):
w ← wt

for e = 0, . . . , E − 1 do
Split Dk into batches of size B
for batch(X,Y) do

Select an entry xg,yg from
Xg,Yg
`1 =

(1− λ)`
(
f((1− λ)X;w),Y

)
`2 = λ`

(
f((1−λ)X;w),yg

)
`3 = λ∂`1∂x · xg

(derivative calculated at
x = (1− λ)xi and y = yi for
each of xi, yi in X,Y)
` = `1 + `2 + `3
w ← w − ηt+1∇`

end
end
return w

4

Published as a conference paper at ICLR 2021

information than local data, we can think of a method of mixing it with local data:

`NaiveMix = (1− λ)`
(
f
(
(1− λ)xi + λx̄j

)
, yi

)
+ λ`

(
f
(
(1− λ)xi + λx̄j

)
, ȳj

)
(1)

where (xi, yi) is an entry from local data and (x̄j , ȳj) corresponds to means of (inputs,labels) from
other client j. Note that Eq. (1) can be understood as the generalization of the loss of directly using
the mashed data mentioned above in the sense that such loss can be achieved if λ in Eq. (1) is set
deterministically to 0 and 1.

In the experimental section, we confirm the effectiveness of MAFL using `NaiveMix. However, in
the next subsection, we will show how to achieve better performance by approximating the global
Mixup in a more systematical way in our MAFL framework.

3.3 FEDMIX: APPROXIMATING GLOBAL MIXUP VIA INPUT DERIVATIVE

We now provide our main approach in the MAFL framework that aims to approximate the effect of
global Mixup only using averaged data from other clients. Consider some client i with its local data
(xi, yi). It is not allowed in federated learning, but let us assume that client i has access to client j’s
local data (xj , yj). Then, client i would leverage (xj , yj) to improve the performance of its local
model especially in non-iid settings by augmenting additional data via Mixup:

x̃ = (1− λ)xi + λxj and ỹ = (1− λ)yi + λyj . (2)
If Mixup rate λ is 1, (xj , yj) from client j is again directly used like a regular local data, and it
would be much more efficient than indirect update of local models through the server.

The essence of our method is to approximate the loss function `
(
f(x̃), ỹ

)
for the augmented data

from Eq. (2), with Taylor expansion for the first argument x. Specifically, we derive the following
proposition:

Proposition 1 Consider the loss function of the global Mixup modulo the privacy issues,

`GlobalMixup
(
f(x̃), ỹ

)
= `
(
f
(
(1− λ)xi + λxj

)
, (1− λ)yi + λyj

)
(3)

for cross-entropy loss `1. Suppose that Eq. (3) is approximated by applying Taylor series around the
place where λ� 1. Then, if we ignore the second order term (i.e., O(λ2)), we obtain the following
approximated loss:

(1− λ)`
(
f
(
(1− λ)xi

)
, yi

)
+ λ`

(
f
(
(1− λ)xi

)
, yj

)
+ λ

∂`

∂x
· xj (4)

where the derivative ∂`
∂x is evaluated at x = (1− λ)xi and y = yi.

While Eq. (4) still involves xj and yj , invading the privacy of client j, the core value of Proposition 1
gets clearer when mixing up multiple data instances from other clients. Note that the vanilla Mixup
is not mixing one specific instance with other data, but performing augmentations among several
random selected data. In a non-iid FL environment, we can also expect that the effect will be greater
as we create Mixup data by accessing as much private data as possible from other clients. From this
point of view, let us assume that client i has received a set of M private instances, J , from client j.
Then, the global Mixup loss in Eq. (3) is

1

|J |
∑
j∈J

`
(
f
(
(1− λ)xi + λxj

)
, (1− λ)yi + λyj

)
,

and the approximated FedMix loss in Proposition 1 becomes

`FedMix =
1

|J |
∑
j∈J

(1− λ)`
(
f
(
(1− λ)xi

)
, yi

)
+ λ`

(
f
(
(1− λ)xi

)
, yj

)
+ λ

∂`

∂x
· xj

= (1− λ)`
(
f
(
(1− λ)xi

)
, yi

)
+ λ`

(
f
(
(1− λ)xi

)
, ȳj

)
+ λ

∂`

∂x
· x̄j (5)

where we utilize the linearity of Equation 4 in terms of xj and yj , and x̄j and ȳj correspond to mean
of M inputs and labels in J , respectively. The algorithmic details are provided in the appendix due
to the space constraint (see Algorithm 2 in Appendix A).

1Throughout the paper, we implicitly assume the classification tasks. For regression tasks, we can consider
the squared loss function, and the proposition still holds.

5

Published as a conference paper at ICLR 2021

3.4 PRIVACY ISSUES AND ADDITIONAL COSTS OF MAFL
Privacy issues of MAFL MAFL requires exchanging averaged data by construction. Even though
MAFL exchanges only the limited information allowed by the application, it may causes new types
of privacy issues. The potential privacy risk of FL or MAFL is beyond the main scope of our study,
but in this section, we briefly discuss some basic privacy issues of MAFL and potential solutions.

• There is possibility that local data distribution can be inferred relatively easily from aver-
aged data. This issue simply arises as Mk is not large enough, so that individual data could
be inferred from the averaged data easily. On the other hand, if nk is not big enough, each
entry in Xg,Yg could reveal too much about the whole local distribution of the client it
came from.

• It could be easy to infer ownership of each entry in Xg,Yg , if it contains client-id specific
information. If clients could identify what other client each entry came from, information
about local data of that client could be inferred.

• Additional concerns involve identification of data by detecting change in exchanged av-
eraged data, in case of continual learning, which involves local data change across time.
This issue is exacerbated as there is update of averaged data for every minute change on
local data, which makes the client receiving Xg,Yg easier to infer the changed portion.
One simple suggestion to alleviate this issue would be to only update Xg,Yg when there is
enough change in local data across enough number of clients, so that such changes are not
easily exploitable.

• As a way to strengthen privacy protection under MAFL (and possibly to help with issues
mentioned above), we in the server can average within entries of Xg,Yg . If this additional
average is done across every random m entries at the server, it would effectively provide
averaged data across all local data of m clients, but would result in an m-fold decrease in
the number of averaged data. This variant is considered in Appendix J.

• In case where the global server is not credential, the averaged data itself should ensure
privacy as it is sent to the server. A most obvious concern comes from when Mk is not
large enough, so that each entry of Mk reveals more of information of each individual
input. Simply using a sufficiently large value of Mk can alleviate this issue, although this
might result in worse performance.

• However, for clients whose nk is quite small, there is a limit for Mk to be large enough.
One way to alleviate this issue is to introduce a cut-off threshold for allowing clients to
send averaged data to server. We report the results in Appendix H.

Communication cost Since MAFL requires sending averaged input data between server and
clients, additional communication costs are incurred. However, it turns out that this additional cost
is very small compared to communication cost required for exchanging model parameters. This is
mainly due to the fact that input dimension is typically much smaller than number of model param-
eters. Specifically, for input dimension di, exchange of averaged data among N clients incurs 2Ndi
cost (factor of 2 for server receiving and sending the values). Meanwhile, the cost for exchange of
model parameters is 2Npm where pm is number of model parameters. Under typical circumstances,
averaged data is only exchanged at the beginning of the first communication round, while model
parameters have to be exchanged every round. Thus the ratio between the two costs after T commu-
nication rounds is di/(Tpm). Since di � pm in general, we consider extra communication burden
to be negligible (even in the worst case where we update averaged data every round, the ratio is still
di/(pm).

FedMix also requires calculation of input derivative term in its loss function, so potentially extra
memory is required. We further provide additional computation costs of MAFL in Appendix G.

4 EXPERIMENTS

We test our result on various benchmark datasets with NaiveMix (direct mixup between local data
and averaged data) and FedMix, then compare the results with FedAvg (McMahan et al., 2017) and
FedProx (Li et al., 2020b), as well as other baseline Mixup scenarios. We create a highly non-iid
environment to show our methods excel in such situations.

6

Published as a conference paper at ICLR 2021

(a) FEMNIST (b) CIFAR10 (c) CIFAR100

Figure 2: Learning curves for various algorithms on benchmark datasets. Learning curves correspond
to results in Table 1. (For simplicity, we only show key algorithms to compare.)

Table 1: Test accuracy after (target rounds) and number of rounds to reach (target test accu-
racy) on various datasets. Algorithms in conjunction with FedProx are compared separately (bot-
tom). MAFL-based algorithms are marked in bold.

Algorithm FEMNIST CIFAR10 CIFAR100
test acc. (200) rounds (80%) test acc. (500) rounds (70%) test acc. (500) rounds (40%)

Global Mixup 88.2 8 88.2 85 61.4 54
FedAvg 85.3 26 73.8 283 50.4 101

LocalMix 82.8 28 73.0 267 54.8 91
NaiveMix 85.9 23 77.4 198 53.8 85
FedMix 86.5 18 81.2 162 56.7 34
FedProx 84.6 29 77.3 266 51.2 79

FedProx + LocalMix 84.1 39 74.1 314 54.0 90
FedProx + NaiveMix 85.7 37 76.7 230 53.1 74
FedProx + FedMix 86.0 32 78.9 223 54.5 63

4.1 EXPERIMENTAL SETUP

Dataset We implement the typical federated setting where clients have their own local data and
one centralized server that receives and sends information from/to the clients. We utilize a large
number of clients and only utilize partial set of clients chosen each round to locally update. We used
three popular image classification benchmark datasets: FEMNIST (Caldas et al., 2019), CIFAR10,
and CIFAR100, as well as a popular natural language processing benchmark dataset, Shakespeare.
See Appendix B for more details about dataset, models, and hyperparameters used. We introduce
data size heterogeneity for FEMNIST dataset: each client has different size of local data, each from
a unique writer. Meanwhile, we introduce label distribution heterogeneity for CIFAR datasets, with
clients having data with only a limited number of classes.

Algorithms We study the performance of FedMix and NaiveMix and compare with FedAvg and
FedProx. We also compare our method against FedAvg with Mixup within local data (labeled Lo-
calMix; see Figure 1(b)), to show whether Mixup within local data is sufficient to allow the model
to perform well on external data. To show the effectiveness of FedMix, we also compare our method
to the case where we perform direct Mixup with external data (and thus violating privacy, labeled
Global Mixup; see Figure 1(a)).

4.2 PERFORMANCE OF FEDMIX AND NAIVEMIX ON NON-IID FEDERATED SETTINGS

We compare the learning curves of each method under the same federated settings, in terms of num-
ber of communication rounds conducted. Comparing MAFL-based algorithms, NaiveMix shows
slight performance increases than FedAvg, FedProx, and Localmix, while FedMix outperforms and
shows faster convergence than all of FedAvg, FedProx, Localmix and NaiveMix for all datasets
tested as in Figure 2.

While NaiveMix and FedMix is already superior to FedProx, they are parallel to FedProx modifi-
cation and can be applied in conjunction with FedProx. We compare performances across FedProx

7

Published as a conference paper at ICLR 2021

Table 2: Test accuracy after 50 rounds on Shakespeare dataset.

Algorithm Global Mixup FedAvg FedProx LocalMix NaiveMix FedMix

Test Acc. (%) 54.4 54.7 54.4 53.7 56.9 56.9

Table 3: Test accuracy on CIFAR10, under varying
number of clients (N). Number of samples per client
is kept constant.

of Clients(N) 20 40 60

Global Mixup 86.3 89.2 88.2
FedAvg 65.8 73.4 73.8

LocalMix 46.9 71.4 73.0
NaiveMix 62.2 75.1 77.4
FedMix 68.5 76.4 81.2

Table 4: Test accuracy on CIFAR10, under varying
number of local data per client. Number of clients
(N) is kept constant. Number of data is indicated in
percentage of the case where all 50,000 data are used.

Local data (%) 20 50 100

Global Mixup 71.4 86.1 88.2
FedAvg 61.8 74.7 73.8

LocalMix 43.7 60.3 73.0
NaiveMix 51.5 69.6 77.4
FedMix 65.2 77.8 81.2

variants of various Mixup algorithms in Table 1. FedMix outperforms vanilla FedProx for various
datasets, although they do fall short of default version of FedMix used for the main experiment.

To confirm whether received information is properly incorporated, we compare FedMix with possi-
ble Mixup scenarios under MAFL. We show the results in Appendix D.

While Mixup is usually performed for image classification tasks, it could be applied for language
models. For language datasets, since Mixup cannot be performed on input, we perform Mixup on
embeddings (for a detailed explanation of Mixup between hidden states, see Appendix E). When
tested on Shakespeare dataset, FedMix and NaiveMix both show better performance than baseline
algorithms (Table 2). Note that for this task, LocalMix has the lowest performance, and global Mixup
does not result in the superior performance above federated algorithms as expected. We think Mixup
does not provide performance boost for this specific task, but claim that MAFL algorithms still result
in better performance compared to FedAvg.

We also claim that FedMix is superior compared to other methods under various settings, in terms
of varying number of clients (N) and varying number of local data per clients. We observe superior
performance of FedMix compared to other algorithms for all settings (see Tables 3 and 4). We
also vary the number of local epochs (E) between global updates, and still observe that FedMix
outperforms other methods (see Appendix F).

FedMix compared to global Mixup with fixed mixup ratio Since FedMix approximates loss
function of global Mixup for fixed value of λ� 1, we can evaluate the efficiency of approximation
by comparing between FedMix and a global Mixup scenario with fixed λ value. Table 5 shows
varying performance between global Mixup and FedMix under various values of λ. As λ increases,
Mixup data reflects more of the features of external data, resulting in better performance in case
of global Mixup. However, this also results in our approximation being much less accurate, and we
indeed observe performance of FedMix decreasing instead. The result shows that the hyperparameter
λ should be chosen to balance between better Mixup and better approximation. However, it seems
that high λ results in significant decrease in both methods, probably due to external data (which is
out-of-distribution for local distribution) being overrepresented during local update.

Table 5: Test accuracy on CIFAR10, under varying mixup ratio λ.

λ 0.05 0.1 0.2 0.5
Global Mixup 79.4 80.4 81.1 63.6

FedMix 81.2 80.5 77.7 67.1

8

Published as a conference paper at ICLR 2021

Mk 5 10 20 50 All

FEMNIST NaiveMix 85.7 86.3 86.2 86.1 85.9
FedMix 86.0 85.7 86.4 86.2 86.5

CIFAR10 NaiveMix 79.6 77.9 79.1 77.1 77.4
FedMix 81.4 79.9 80.4 79.5 81.2

Figure 3: Performance of MAFL-based algorithms for various Mk values (left), and samples of
averaged images from EMNIST/CIFAR10 for various Mk values (right).

Table 6: Test accuracy after 500 rounds on
CIFAR10, under varying number of classes
per client.

———class/client———
Algorithm 2 3 5 10 (iid)

Global Mixup 88.2 90.7 90.9 91.4
FedAvg 73.8 84.2 86.8 89.3

Localmix 73 83.3 86.4 89.1
NaiveMix 77.4 84.5 87.7 89.4
FedMix 81.2 85.1 87.9 89.1

Table 7: Test accuracy after 500 rounds on CI-
FAR10, under varying number of clients trained
per communication round.

—————K/N—————
Algorithm 0.1 0.15 0.25 0.5 1.0

Global Mixup 89.3 89.7 88.2 91.2 90.7
FedAvg 63.3 73.2 73.8 76.3 83.1

Localmix 64.7 64.5 73 77.9 79.8
NaiveMix 73.6 74.7 77.4 81.4 83.5
FedMix 74.7 76.9 80.5 82.1 84.3

Effect of Mk to compute mean In our algorithm, we chose to calculate Xg,Yg with all local data
for each client. To observe a potential effect of Mk, we varied Mk used to compute the averaged
data that is sent from other clients. Inevitably, reducing Mk will result in Xg,Yg having much more
rows, imposing additional computation burden and less preservation of privacy. In general, for both
FEMNIST and CIFAR10, there is only small performance decline as privacy is enhanced, as can
be seen in Figure 3. We show that using all local data to calculate each mean is sufficient to both
preserve privacy and still have good performance.

Mixup between hidden states Manifold Mixup (Verma et al., 2018) was proposed to show im-
provements over input Mixup (Zhang et al., 2018) in various image classification tasks such as
CIFAR10, CIFAR100, and SVHN. We discuss the possibilities and implications of applying Mixup
between hidden states in Appendix E. In summary, we show that variants of using hidden states
do not show meaningful advances over FedMix using input Mixup, suggesting that in general, it is
relatively inefficient since it imposes additional communication burden.

Effect of non-iid-ness and client participation We claim that our method is efficient when faced
with non-iid federated settings. For example, our setting of CIFAR10 having only data from 2 classes
per client is very non-iid, as in average a pair of clients share only roughly 20% of data distribution.
We test settings for CIFAR10 where clients have data from greater number of classes, and while
there is little difference for iid (10 class/client) setting, we observe that FedMix outperform other
methods and suffer less from increased heterogeneity from highly non-iid settings (Table 6). In
addition, we also observe less decline and better performance for MAFL-based algorithms, FedMix
in particular, as we train less number of clients per round, reducing communication burden in cost
of performance (Table 7).

5 CONCLUSION

We proposed MAFL, a novel framework, that exchanges averaged local data, to gain relevant infor-
mation while still ensuring privacy. Under the new framework, we first suggested NaiveMix, which
is a naive implementation of Mixup between local and received data. More interestingly, we pro-
posed FedMix, which provides approximation of global Mixup only using averaged data. MAFL,
and FedMix in particular, showed improved performance over existing algorithms in various bench-
marks, particularly in non-iid environments where each client has data distributed heterogeneously.
While our method is very effective and still preserving privacy, future work needs to be done to deal
with various non-iid environments, desirably with better privacy and beyond image classification
tasks.

9

Published as a conference paper at ICLR 2021

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of Korea (NRF) grants
(No.2018R1A5A1059921, No.2019R1C1C1009192) and Institute of Information & Communica-
tions Technology Planning & Evaluation (IITP) grants (No.2017-0-01779, XAI, No.2019-0-01371,
Development of brain-inspired AI with human-like intelligence, and No.2019-0-00075, Artificial
Intelligence Graduate School Program(KAIST)) funded by the Korea government (MSIT).

REFERENCES

Sean Augenstein, H. Brendan McMahan, Daniel Ramage, Swaroop Ramaswamy, Peter Kairouz,
Mingqing Chen, Rajiv Mathews, and Blaise Aguera y Arcas. Generative models for effective ml
on private, decentralized datasets. International Conference on Learning Representations (ICLR),
2020.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný, H. Brendan McMa-
han, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. Inter-
national Conference on Machine Learning (ICML) Workshop on Federated Learning for Data
Privacy and Confidentiality, 2019.

Olivier Chapelle, Jason Weston, Léon Bottou, and Vladimir Vapnik. Vicinal risk minimization.
Conference on Neural Information Processing Systems (NIPS), 2000.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. Emnist: an extension of
mnist to handwritten letters. International Joint Conference on Neural Networks (IJCNN), 2017.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’aurelio
Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc V. Le, and Andrew Y. Ng. Large scale
distributed deep networks. Conference on Neural Information Processing Systems (NIPS), 2012.

Z. Eaton-Rosen, Felix J. S. Bragman, Sébastien Ourselin, and M. Cardoso. Improving data aug-
mentation for medical image segmentation. Conference on Medical Imaging with Deep Learning
(MIDL), 2020.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confi-
dence information and basic countermeasures. Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, 2015.

Hongyu Guo, Yongyi Mao, and Richong Zhang. Augmenting data with mixup for sentence classifi-
cation: An empirical study. CoRR, abs/1905.08941, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. Conference on Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip B. Gibbons. The non-iid data quagmire of
decentralized machine learning. International Conference on Machine Learning (ICML), 2020.

Wonyong Jeong, Jaehong Yoon, Eunho Yang, and Sung Ju Hwang. Federated semi-supervised
learning with inter-client consistency. International Workshop on Federated Learning for User
Privacy and Data Confidentiality in Conjunction with ICML 2020 (FL-ICML’20), 2020.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L.
D’Oliveira, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón,
Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He,
Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail
Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède
Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh,
Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Sebas-
tian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu
Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances and open
problems in federated learning. ArXiv, abs/1912.04977, 2019.

10

Published as a conference paper at ICLR 2021

Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. Conference
on Neural Information Processing Systems (NIPS) Workshop on Private Multi-Party Machine
Learning, 2016.

Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 1998.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37:50–60, 2020a.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Sys-
tems (MLSys), 2020b.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. International Conference on Learning Representations (ICLR), 2020c.

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. International Con-
ference on Artificial Intelligence and Statistics (AISTATS), 2017.

H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private
recurrent language models. International Conference on Learning Representations (ICLR), 2018.

Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. Interna-
tional Conference on Machine Learning (ICML), 2019.

Seungeun Oh, Jihong Park, Eunjeong Jeong, Hyesung Kim, Mehdi Bennis, and Seong-Lyun Kim.
Mix2fld: Downlink federated learning after uplink federated distillation with two-way mixup.
IEEE Communication Letters, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet
large scale visual recognition challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015.

Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek. Robust and
communication-efficient federated learning from non-iid data. IEEE Transactions on Neural Net-
works and Learning Systems, 2019.

MyungJae Shin, Chihoon Hwang, Joongheon Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun
Kim. Xor mixup: Privacy-preserving data augmentation for one-shot federated learning. Interna-
tional Workshop on Federated Learning for User Privacy and Data Confidentiality in Conjunction
with ICML 2020 (FL-ICML’20), 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. International Conference on Learning Representations (ICLR), 2015.

Virginia Smith, Simone Forte, Chenxin Ma, Martin Takac, Michael I. Jordan, and Martin Jaggi.
Cocoa: A general framework for communication-efficient distributed optimization. Journal of
Machine Learning Research (JMLR), 2016.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar. Federated multi-task learn-
ing. Conference on Neural Information Processing Systems (NIPS), 2017.

Sunil Thulasidasan, Gopinath Chennupati, Jeff Bilmes, Tanmoy Bhattacharya, and Sarah Michalak.
On mixup training: Improved calibration and predictive uncertainty for deep neural networks.
Conference on Neural Information Processing Systems (NIPS), 2019.

Tiffany Tuor, Shiqiang Wang, Bong Jun Ko, Changchang Liu, and Kin K. Leung. Overcoming
noisy and irrelevant data in federated learning. International Conference on Pattern Recognition
(ICPR), 2020.

11

Published as a conference paper at ICLR 2021

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, Aaron Courville,
David Lopez-Paz, and Yoshua Bengio. Manifold mixup: Better representations by interpolating
hidden states. International Conference on Machine Learning (ICML), 2018.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. International Conference on Learning Representa-
tions (ICLR), 2020.

Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition. ArXiv,
abs/1804.03209, 2018.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

Jaehong Yoon, Wonyong Jeong, Giwoong Lee, Eunho Yang, and Sung Ju Hwang. Federated con-
tinual learning with adaptive parameter communication. ArXiv, abs/2003.03196, 2020.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. International
Conference on Computer Vision (ICCV), 2019.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and
Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. International
Conference on Machine Learning (ICML), 2019.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empiri-
cal risk minimization. International Conference on Learning Representations (ICLR), 2018.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

12

Published as a conference paper at ICLR 2021

A ALGORITHMS

We present a brief depiction of FedAvg in Algorithm 3.

Algorithm 3: FedAvg

Input: N,T,K,E,B, pk,Dk = {Xk,Yk}, k =
1, . . . , N, ηt, t = 0, . . . , T − 1

Initialize w0 for global server
for t = 0, . . . , T − 1 do

St ← Kclients selected at random
Send wt to clients k ∈ St
for k ∈ St do

wk
t+1 ← LocalUpdate(k,wt)

end
wt+1 ← 1

K

∑
k∈St pkw

k
t+1

end

LocalUpdate(k,wt):
w ← wt

for e = 0, . . . , E − 1 do
Split Dk into batches of size B
for batch(X,Y) do

w ← w − ηt+1∇`(f(X;w),Y)
end

end
return w

B EXPERIMENTAL DETAILS

FEMNIST FEMNIST is EMNIST (Cohen et al., 2017), a handwritten MNIST dataset, organized
into federated setting, as in Caldas et al. (2019). EMNIST is very similar to MNIST, but has several
differences. It includes all 26 capital and small letters of alphabet as classes along with numbers,
making it 62 classes in total to classify. Also, each image contains information of the writer of the
letter. In a realistic non-iid setting, each client has local data consists of only one writer, which is
about 200 to 300 samples per client in average, with differing number of samples. We use N = 100
clients and trained only K = 10 clients per communication round.

We used LeNet-5 (Lecun et al., 1998) architecture for client training. LeNet is consisted of 2 conv
layers followed by 2x2 maxpool layer then 3 fc layers. We used 5x5 conv layers with 6 and 16
channels. Following fc layers have exactly the same hidden dimension of original LeNet-5 model.

CIFAR10 and CIFAR100 CIFAR10 and CIFAR100 are very popular and simple image classifi-
cation datasets for federated setting. Both contain 50,000 training data and 10,000 test data. We split
the data into each client, N = 60 in case of CIFAR10 and N = 100 in case of CIFAR100. To create
an artificial non-iid environment, we allocate data such that each client only has data from 2 (20 for
CIFAR100) randomly chosen classes. We train only K = 15 clients per round for CIFAR10 and
K = 10 for CIFAR100. No validation data was split and we used all training data for local training.

We used modified version of VGG architecture (Simonyan & Zisserman, 2015). Modified VGGnet
is consisted of 6 convolutional layers with 3 max pooling layers. 3x3 conv layers are stacked and 2x2
maxpool layer is stacked after every 2 conv layers. Conv layers have channel sizes of 32, 64, 128,
128, 256, 256. Then 3 fc layers are stacked with hidden dimension 512. We use Dropout layer three
times with probability 0.1 after the second, third maxpool layers and before the last fc layer. We re-
move all batch normalization layers since it is reported that they hurt federated learning performance
(Hsieh et al., 2020).

Shakespeare We use dataset from The Complete Works of William Shakespeare, which is a popu-
lar dataset for next-character prediction task. We partition the dataset so that each client has conver-
sations of one speaking role, as in Caldas et al. (2019), which naturally results in a heterogeneous
setting, as in FEMNIST. We use N = K = 60, each with different number of data (minimum
is 200). Since input-level Mixup cannot be performed for discrete character labels, we performed
Mixup on the embedding layer. Additional concerns for this variation is considered at Appendix E.

We used 2-layer LSTM, both with hidden dimension of 256. The recurret network is followed by an
embedding layer. The output of LSTM is passed to a fully-connected layer, with softmax output of
one node per character. There are 84 characters used in the dataset.

Local clients are trained by SGD optimizer with learning rate 0.01 and learning decay rate per round
0.999. We set local batch size as 10 for training. Specific hyperparameter setting for each dataset is

13

Published as a conference paper at ICLR 2021

Table 8: Hyperparameter settings for each dataset.

dataset FEMNIST CIFAR10 CIFAR100 Shakespeare

local epochs (E) 10 2 10 2
local batch size 10 10 10 10
class per clients - 2 20 -

fraction of Clients (K/N) 0.1 0.25 0.1 1
total dataset classes 62 10 100 84
λ (for NaiveMix) 0.2 0.1 0.1 0.1
λ (for FedMix) 0.2 0.05 0.1 0.1
µ (for FedProx) 0.1 0.1 0.01 0.001

explained in following Table 8. Throughout the experiment,Mk is fixed to local client’s dataset size.
Changes in these parameters are indicated, if made, are stated for all experiments. Note that we use
a fixed small value of λ for MAFL-based algorithms to show superior performance.

C PROOF OF PROPOSITION 1

We demonstrate mathematical proof of Proposition 1 for FedMix.

Starting from Eq. (3), since the loss function is linear in y for cross-entropy loss `2, we have

`
(
f(x̃), ỹ

)
= (1− λ)`

(
f
(
(1− λ)xi + λxj

)
, yi

)
+ λ`

(
f
(
(1− λ)xi + λxj

)
, yj

)
. (6)

Unlike the original paper, if we assume λ � 1, we can treat this loss as objective loss function for
vicinal risk minimization (VRM). Under this assumption, each term in Eq. (6) can be approximated
by independent Taylor expansion on the first and second argument of `, so that we have

(1− λ)`
(
f
(
(1− λ)xi

)
, yi

)
+ (1− λ)× ∂`

∂x

∣∣∣∣
(1−λ)xi,yi

· (λxj)

+λ`
(
f
(
(1− λ)xi

)
, yj

)
+ λ× ∂`

∂x

∣∣∣∣
(1−λ)xi,yj

· (λxj). (7)

Since λ� 1, we can ignore the last term in the second row of Eq. (7), which isO(λ2). We simplify
this equation and switch the second term in the first row and the first term in the second row, to
finally obtain

`
(
f(x̃), ỹ

)
≈ (1− λ)`

(
f
(
(1− λ)xi

)
, yi

)
+ λ`

(
f
(
(1− λ)xi

)
, yj

)
+ λ

∂`

∂x
· xj . (8)

The derivative ∂`
∂x is calculated at x = (1 − λ)xi and y = yi. The coefficient of the last term is

changed to λ from λ(1− λ) since we are ignoring O(λ2) terms.

D COMPARISON OF FEDMIX WITH BASELINE MIXUP SCENARIOS

Since our MAFL-based algorithms could be considered as VRM, it could be considered as a data
augmentation (Chapelle et al., 2000). Thus, it is important to confirm that increased performance
from MAFL not only comes from data augmentation but also from relevant information received
from other clients. To check whether this is true, we compare FedMix with algorithms where we use
either randomly generated noises as averaged data for Mixup (labeled Mixup w/ random noise) and
where we use only locally averaged data for Mixup (labeled Mixup w/ local means).

In Table 9, we observe that if averaged data for MAFL is substituted for randomly generated noise
or locally generated images, it does not show the level of performance FedMix is able to show. Thus,
we claim that FedMix properly incorporates relevant information received.

2We implicitly assume the classification tasks. For regression tasks, we can consider the squared loss func-
tion and use the equivalent loss that is linear in y

14

Published as a conference paper at ICLR 2021

Figure 4: Results for variants of Mixup algorithms for Mixup between hidden states. (a) Learning
curves for various algorithms with hidden representation Mixup after k = 2 layers. (b) Learning
curves for FedMix when Mixup is applied after different numbers of layers.

(a) (b)

E VARIANT OF FEDMIX AND NAIVEMIX WITH MIXUP BETWEEN HIDDEN
STATES

While input Mixup methods promise significant enhancements, one can expect similar performance
from hidden state Mixup, originally proposed by Verma et al. (2018). The authors of this work
suggest that Manifold Mixup demonstrates similar, if not greater, advantage in terms of performance
and adversarial robustness. We can think of variants of FedMix and NaiveMix that implement hidden
state Mixup, and test if this variant outperforms vanilla methods based on input Mixup.

Although the original paper proposed randomizing the layer k just before hidden states that undergo
Mixup for each batch, we propose setting this layer k constant. This is to reduce communication
cost significantly, since selecting randomized layer for Mixup will require other clients having to
send multiple hidden states (which usually have large dimensions), further imposing communication
burden.

Another change is that while original Manifold Mixup (Verma et al., 2018) suggests backpropagat-
ing the entire computational graph through the whole network, including the encoder (part of model
projecting input to designated hidden representation) and the decoder (rest of the model projecting
hidden representation to output). Such thing is impossible to do in typical federated setting, since
the computational graph to calculate hidden representation of local data and the graph to calculate
hidden representation of other clients’ data is separated, and they cannot be updated simultaneously
through local update (doing so requires communicating encoder weights across clients every local
update, which is highly inefficient in terms of communication). Thus, during Mixup between hid-
den representations, only the decoder weights can be updated, since only updating encoder of the
selected local client will desynchronize encoder weight values for calculating hidden states of local
data from those for calculating hidden states of other clients’ data every local update, so that the
model does not learn properly.

Table 9: Test accuracy after (target rounds) and number of rounds to reach (target test accuracy) on
various datasets. We compare FedMix with baseline Mixup algorithms.

Algorithm FEMNIST CIFAR10 CIFAR100
test acc. (200) rounds (80%) test acc. (500) rounds (70%) test acc. (500) rounds (40%)

NaiveMix 85.9 23 77.4 198 53.8 85
Mixup w/ random noise 86.1 23 77.9 201 51.2 105
Mixup w/ local means 85.5 21 73.5 233 51.0 87

FedMix 86.5 18 81.2 162 56.7 34

15

Published as a conference paper at ICLR 2021

Table 10: Test accuracy after 500 rounds on CI-
FAR10, under varying local epochs (E).

of Local Epochs (E) 1 2 5 10

FedAvg 74.4 73.8 80.7 78.9
LocalMix 63.7 73.0 74.7 80.0
NaiveMix 72.0 77.4 81.0 82.6
FedMix 75.8 81.2 83.0 82.5

To compensate for this downside, we propose performing vanilla SGD updates without Mixup after
Manifold Mixup SGD (which updates weights only in decoder). The vanilla updates will have both
local encoder and decoder weights to be updated, thus driving the model to have better hidden
representations for Mixup. However, this difference not only imposes additional computation cost,
but also does not guarantee that it will show better performance compared to input Mixup methods.

While utilizing hidden representations from other clients sound like a safe idea, it does not ensure
data privacy, primarily because the updating client has knowledge of the exact encoder weight val-
ues used to calculate hidden states received, and based on our modification, the received hidden
states are treated as constants during Mixup. Model inversion attacks (Fredrikson et al., 2015) have
been suggested to recover input images from hidden states or outputs, with access to weight val-
ues. Thus, direct Mixup between hidden states does not guarantee data privacy. Variant of FedMix
and NaiveMix can be applied during decoder training phase, so that privacy is ensured while we
successfully approximate Mixup.

The performance of proposed algorithms is shown in Figure 4 on CIFAR10 (same settings with main
experiment for dataset, model, and training is used; see Appendix B). Comparison between methods
in Figure 4(a) shows that while variants of FedMix and NaiveMix show improved performance over
existing methods, they still do not outperform our method based on input Mixup (compare with
dotted line). Meanwhile, comparison between using different layers for Mixup is shown in Figure
4(b). It is shown that k = 4 has fastest learning curve but converges similarly to case of k = 2, both
being slightly outperformed by case of input Mixup.

Considering additional computation burden required to communicate hidden states (which often
have larger dimensions than raw input) and necessity to communicate the hidden states every com-
munication round (since hidden representations change with encoder weights), we propose that Fed-
Mix using input Mixup is superior, and use this method for our main analyses.

F EFFECT OF LOCAL EPOCHS

Previous works (McMahan et al., 2017; Caldas et al., 2019) show that number of local epochs,
E, affects federated learning performance. We tested the effect of E on CIFAR10. In general, we
showed that test performance increases as E increases. In addition, we observed that under various
values ofE, FedMix shows the best performance compared to other algorithms (see Table 10), being
a close second after NaiveMix for E = 10. MAFL-based algorithms outperform existing algorithms
for all values of E tested.

G ADDITIONAL COMPUTATION COST INCURRED BY MAFL

For FedMix, additional computation and memory are required on edge devices during model training
for each communication round, since `FedMix requires additional terms, including gradient by input,
∂`
∂x , compared to vanilla FedAvg. We claim that FedMix does not result in an additional computation
burden. Specifically, we trained FedMix on CIFAR10 with the same settings as the main experiment
to 70% accuracy in 1.94 hours; FedAvg takes 1.95 hours. FedMix spends a comparable amount
of time to reach a similar level of performance of FedAvg. While in the memory aspect, FedMix
requires about twice more GPU memory allocation compared to FedAvg, this phenomenon is also
observed on LocalMix and NaiveMix. The extra memory burden comes from Mixup by enlarging
the input dimension twice. For instance, FedAvg requires 46.00MB to allocate, LocalMix requires
94.00MB and 98.00MB for FedMix. Calculating gradient of the input derivative gives only negligi-

16

Published as a conference paper at ICLR 2021

ble 2-3MB additional memory usage, which is reasonable concerning the substantial performance
increase from LocalMix to FedMix.

H INTRODUCTION OF CUT-OFF THRESHOLD IN MAFL

To better ensure privacy, a cut-off threshold that prevents clients with fewer data to send averaged
data could be introduced. We performed this in FEMNIST, since for such procedure to be effective,
heterogeneous size of local client data is necessary. We test with N = 300 clients, and introduce
different threshold levels to test its efficiency. In addition, we also test with multiple λ values, to see
whether threshold level affects optimal value of λ for FedMix.

We present the results in Table 11. While threshold does not hugely affect performance, we observe
that a moderately small threshold level of 100 results in the best performance. We suggest that as
the threshold level is heightened, there is less overfitting to clients with small size local data, but it
also results in a decrease in the number of averaged data received by each client. We indeed find an
appropriate value of threshold that maximizes performance.

In case where there are a different number of data per client, the sensitivity of λ could also be
different compared to when all clients have the same number of data. Results in Table 13 show that
there is little change in performance by change in λ, especially compared to Table 5. In addition, an
inspection of the performance of a global model on individual test data of clients does not reveal any
noticeable pattern by the size of local data (see Table 13).

Table 11: Test accuracy on FedMix with introduc-
tion of cut-off threshold, tested on a number of
threshold level. Optimal value of λ is also shown.

———–threshold———–
λ 1 100 150 200

Test Acc. (%) 83.0 83.3 83.1 82.9
λoptimal 0.2 0.05 0.1 0.2

Table 12: Test accuracy on FEMNIST, N =
300 under various Mixup ratio λ.

λ 0.05 0.1 0.2

Test Acc(%) 82.8 82.8 83.0

Table 13: Mean and standard variation of local test accuracy of FedMix on FEM-
NIST, tested on clients with varying local data size, under varying λ.

nk < 100 100 ≤ nk ≥ 199 nk > 199
λ mean std mean std mean std

0.05 85.8 15.1 77.6 14.8 85.4 9.3
0.1 81.1 17.4 76.4 14.1 86.2 9.5
0.2 83.9 16.2 77.6 14.8 85.8 10.0

I MAFL IN CONJUNCTION WITH GAUSSIAN NOISE

With results in Figure 3, we expressed concern with small values of Mk causing privacy issues with
only a small performance boost, if at all. A common practice of introducing additional privacy is
adding Gaussian noise. This is a popular method associated with differential privacy (McMahan
et al., 2018), but adding noise alone does not guarantee differential privacy, since the noise level
should be explicitly linked to differential privacy levels, ε and δ. Addition of artificial pixel-wise
noise will enhance privacy but will result in a quality drop of averaged data. While privacy added
by noise and privacy from averaging data cannot be directly compared, we can select a noise level
which in conjunction with smallMk, visually provides data privacy similar to that of maximumMk.

Results show that the introduction of Gaussian noise does result in a decline in performance (Table
14),although the decline is very small. Interestingly as noise gets larger as σ = 0.3, random noise

17

Published as a conference paper at ICLR 2021

Table 14: Performance of FedMix with Gaussian
noise. σ refers to standard deviation of Gaussian
noise.

σ 0 0.05 0.075 0.15 0.3

Mk = 5 81.4 80.1 81.1 78.7 81.5
Mk = 10 79.9 80.8 79.1 79.4 81.7
Mk = 20 80.4 80.5 79.7 80.7 81.0

Table 15: Test accuracy on CIFAR10 varying
m, number of entries in Xg,Yg to be further
averaged.

m 1 4 10

Test acc (%) 81.2 81.6 78.4

provides an effect as data augmentation and results in a performance increase compared to σ = 0.
This experiment is in line with Appendix D. We conclude that introduction of noise in averaged data
could provide us with a reasonable alternative to FedMix with large Mk. While our method does
not align directly with differential privacy, we leave as future work how FedMix could be smoothly
combined with DP-related methods and how its privacy could be quantified in terms of differential
privacy.

J ADDITIONAL EXPERIMENTS: VARIATIONS OF FEDMIX

Averaging within Xg,Yg Further averaging between entries of Xg,Yg practically provides an
extension of the range of viable Mk such that it exceeds nk, in the sense that each averaged data
is from multiple clients’ data. Such a process would also result in fewer data included in Xg,Yg ,
so we tested effect of this procedure on model performance. Table 15 shows that for m-fold extra
averaging, we even observe increase in performance, but it quickly declines asm gets too large. This
method provides an improvement in privacy while even possibly resulting in better performance.

Effect of same-class split for averaging We perform random split of local data for averaging, but
an unbalanced split, such as only averaging data with the same class labels, could result in better
performance. We compared between random split and same-class split while keeping Mk = 0.5nk
be equal for both methods. Same-class split resulted in a significant decline in performance, and we
conclude that there is no advantage of such split over random split that we are using for our main
results.

Table 16: Test accuracy on CIFAR10, with
class/client = 2, under different split meth-
ods. Mk = 0.5nk for both splits.

random split class split

FedMix 81.2 78.8

Table 17: Test accuracy of NaiveMix on CI-
FAR10, under varying Mixup ratio λ.

λ 0.05 0.1 0.2 0.5

NaiveMix 79.5 79.9 80.6 29.8

NaiveMix with varying Mixup ratio λ We varied Mixup ratio λ for NaiveMix as well. Results in
Table 17 shows that NaiveMix also has an intermediate optimal value of λ. The drop in performance
for λ = 0.5 is much more dramatic than for FedMix (see Table 5 for comparison with Global Mixup
and FedMix). We think that NaiveMix loss also suffers as it gives more weight to the averaged data,
especially for large Mk.

Heterogeneity from skewed label distribution Recent papers (Yurochkin et al., 2019; Wang
et al., 2020) suggested an alternative heterogeneous environment, which does not limit the num-
ber of classes per client but skews label distribution in local data. We used a Dirichlet distribution
of α = 0.2, 0.5 as described by Yurochkin et al. (2019) and Wang et al. (2020). Results show that
FedMix still outperforms all other algorithms. We think that such label skewing introduces less het-
erogeneity compared to our practice of limiting the number of classes per client, but nevertheless,
FedMix is still the most powerful method in terms of performance.

18

Published as a conference paper at ICLR 2021

Table 18: Test accuracy on CIFAR10 under label-skewed heterogeneous envi-
ronment. We used Dirichlet distribution for uneven label distribution.

α FedAvg GlobalMix LocalMix NaiveMix FedMix

0.2 83.9 91.1 84.0 85.0 86.4
0.5 87.6 91.1 88.0 88.2 88.4

19

	Introduction
	Related Work
	Mean Augmented Federated Learning (MAFL) and FedMix
	Setup and Background
	MAFL: Mean Augmented Federated Learning
	FedMix: Approximating global Mixup via input derivative
	Privacy issues and additional costs of MAFL

	Experiments
	Experimental Setup
	Performance of FedMix and NaiveMix on Non-IID Federated Settings

	Conclusion
	Algorithms
	Experimental Details
	Proof of Proposition 1
	Comparison of FedMix with Baseline Mixup Scenarios
	Variant of FedMix And NaiveMix with Mixup between Hidden States
	Effect of Local Epochs
	Additional Computation Cost Incurred by MAFL
	Introduction of Cut-Off Threshold in MAFL
	MAFL in Conjunction with Gaussian Noise
	Additional Experiments: Variations of FedMix

