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ABSTRACT

Diffusion models are powerful generative models that simulate the reverse of dif-
fusion processes using score functions to synthesize data from noise. The sam-
pling process of diffusion models can be interpreted as solving the reverse stochas-
tic differential equation (SDE) or the ordinary differential equation (ODE) of the
diffusion process, which often requires up to thousands of discretization steps
to generate a single image. This has sparked a great interest in developing effi-
cient integration techniques for reverse-S/ODEs. Here, we propose an orthogonal
approach to accelerating score-based sampling: Denoising MCMC (DMCMC).
DMCMC first uses MCMC to produce initialization points for reverse-S/ODE in
the product space of data and variance (or diffusion time). Then, a reverse-S/ODE
integrator is used to denoise the initialization points. Since MCMC traverses close
to the data manifold, the cost of producing a clean sample for DMCMC is much
less than that of producing a clean sample from noise. To verify the proposed con-
cept, we show that Denoising Langevin Gibbs (DLG), an instance of DMCMC,
successfully accelerates all six reverse-S/ODE integrators considered in this work
on the tasks of CIFAR10 and CelebA-HQ-256 image generation. Notably, com-
bined with integrators of Karras et al. (2022) and pre-trained score models of Song
et al. (2021b), DLG achieves state-of-the-art results among score-based models.
In the limited number of score function evaluation (NFE) settings on CIFAR10,
we have 3.86 FID with≈ 10 NFE and 2.63 FID with≈ 20 NFE. On CelebA-HQ-
256, we have 6.99 FID with ≈ 160 NFE, which beats the current best record of
Kim et al. (2022) among score-based models, 7.16 FID with 4000 NFE.

1 INTRODUCTION

Sampling from a probability distribution given its score function, i.e., the gradient of the log-density,
is an active area of research in machine learning. Its applications range far and wide, from Bayesian
learning (Welling & Teh, 2011) to learning energy-based models (Song & Kingma, 2021), synthe-
sizing new high-quality data (Dhariwal & Nichol, 2021), and so on. Typical examples of traditional
score-based samplers are Markov chain Monte Carlo (MCMC) methods such as Langevin dynamics
(Langevin, 1908) and Hamiltonian Monte Carlo (Neal, 2011).

Recent developments in score matching with deep neural networks (DNNs) have made it possible to
estimate scores of high-dimensional distributions such as those of natural images (Song & Ermon,
2019). However, natural data distributions are often sharp and multi-modal, rendering naı̈ve appli-
cation of traditional MCMC methods impractical. Specifically, MCMC methods tend to skip over
or get stuck at local high-density modes, producing biased samples (Levy et al., 2018).

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021a) depart from
MCMC and use the concept of diffusion, the process of gradually corrupting data into noise, to
generate samples. Song et al. (2021b) observed that for each diffusion process, there is a reverse
stochastic differential equation (SDE) and an ordinary differential equation (ODE). Hence, given a
noise sample, integrating the reverse-S/ODE produces a data sample. Only a time-dependent score
function of the data during the diffusion process is required to simulate the reverse process.

This discovery generated great interest in finding better ways to integrate reverse-S/ODEs. For
instance, Song et al. (2021b) uses black-box ODE solvers with adaptive stepsizes to accelerate sam-
pling. Furthermore, multitude of recent works on score-based generative modeling focus on improv-
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Figure 1: Top: a conceptual illustration of a VE diffusion model sampling process and DMCMC
sampling process. VE diffusion models integrate the reverse-S/ODE starting from maximum diffu-
sion time / maximum noise level. So, samples are often noisy with small computation budget due to
large truncation error. DMCMC produces an MCMC chain which travels close to the image mani-
fold (compare the noise level σ). So, the MCMC samples can be denoised to produce high-quality
data with relatively little computation. Bottom: Visualization of sampling processes without (left)
and with (right) DMCMC on CelebA-HQ-256 under a fixed computation budget.

ing reverse-S/ODE integrators (Jolicoeur-Martineau et al., 2021; Lu et al., 2022; Karras et al., 2022;
Zhang & Chen, 2022).

In this work, we develop an orthogonal approach to accelerating score-based sampling. Specifically,
we propose Denoising MCMC (DMCMC) which combines MCMC with reverse-S/ODE integra-
tors. MCMC is used to generate initialization points {(xn, tn)} in the product space of data x and
variance exploding (VE) diffusion time t / noise level σ (see Fig. 1 top panel). Since all modes
are connected in the product space, MCMC mixes well. Then, a reverse-S/ODE integrator solves
the reverse-S/ODE starting at xn from time t = tn to t = 0. Since MCMC explores high-density
regions, the MCMC chain stays close to the data manifold, so tn tends to be close to 0, i.e., noise
level tends to be small (see Fig. 1 top and bottom panels). Thus, integrating the reverse-S/ODE from
t = tn to t = 0 is much faster than integrating the reverse-S/ODE from maximum time t = T to
t = 0 starting from noise. This leads to a significant acceleration of the sampling process.

Our contributions can be summarized as follows.

• We introduce the product space of data and diffusion time, and develop a novel score-based
sampling framework called Denoising MCMC on the product space. Our framework is
general, as any MCMC, any VE process noise-conditional score function, and any reverse-
S/ODE integrator can be used in a plug-and-play manner.

• We develop Denoising Langevin Gibbs (DLG), which is an instance of Denoising MCMC
that is simple to implement and is scalable. The MCMC part of DLG alternates between a
data update step with Langevin dynamics and a noise level prediction step, so all that DLG
requires is a pre-trained noise-conditional score network and a noise level classifier.
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• We verify the effectiveness of DLG by accelerating six reverse-S/ODE integrators. No-
tably, combined with the integrators of Karras et al. (2022), DLG achieves state-of-the-art
results among score-based models. On CIFAR10 in the limited number of score function
evaluation (NFE) setting, we obtain 3.86 FID with ≈ 10 NFE and 2.63 FID with ≈ 20
NFE. On CelebA-HQ-256, we have 6.99 FID with ≈ 160 NFE, which is currently the best
result with score-based models. The computation cost of evaluating a noise level classifier
is negligible, so we obtain acceleration essentially for free.

2 BACKGROUND

2.1 DENOISING SCORE MATCHING

Given a distribution p(x), a noise level σ, and a perturbation kernel pσ(x | x̃) = N (x | x̃, σ2I),
solving the denoising score matching objective (Vincent, 2011)

min
θ

Ep(x̃)Epσ(x|x̃)
[
∥sθ(x)−∇x log pσ(x | x̃)∥22

]
(1)

yields a score model sθ(x) which approximates the score of
∫
pσ(x | x̃)p(x̃) dx̃. Denoising score

matching was then extended to train Noise Conditional Score Networks (NCSNs) sθ(x, σ) which
approximate the score of data smoothed at a general set of noise levels by solving

min
θ

Eλ(σ)Ep(x̃)Epσ(x|x̃)
[
∥sθ(x, σ)−∇x log pσ(x | x̃)∥22

]
(2)

where λ(σ) can be a discrete or a continuous distribution over (σmin, σmax) (Song & Ermon, 2019;
Song et al., 2021b). We note

∫
pσ(x | x̃)p(x̃) dx̃ approaches p(x) as σ → 0, since the perturbation

kernel pσ(x | x̃) converges to the Dirac delta function centered at x.

2.2 MARKOV CHAIN MONTE CARLO (MCMC)

Given an unnormalized version of p(x) or the score function ∇x log p(x), MCMC constructs a
Markov chain in the data space whose stationary distribution is p(x). An MCMC which uses the
unnormalized density is the Metropolis-Hastings MCMC (Metropolis et al., 1953; Hastings, 1970)
that builds a Markov chain by sequentially accepting or rejecting proposal distribution samples ac-
cording to a density ratio. A popular score-based MCMC is Langevin dynamics (Langevin, 1908).
Langevin dynamics generates a Markov Chain {xn}∞n=1 using the iteration

xn+1 = xn + (η/2) · ∇x log p(xn) +
√
η · ϵ (3)

where ϵ ∼ N (0, I). {xn}∞n=1 converges to p(x) in distribution for an appropriate choice of η.

To sample from a joint distribution p(x,y), we may resort to Gibbs sampling (Geman & Geman,
1984). Given a current Markov chain state (xn,yn), Gibbs sampling produces xn+1 by sampling
from p(x | yn) and yn+1 by sampling from p(y | xn+1). The sampling steps may be replaced with
MCMC. Hence, Gibbs sampling is useful when conditional distributions are amenable to MCMC.

Annealed MCMC. Despite their diversity, MCMC methods often have difficulty crossing low-
density regions in high-dimensional multimodal distributions. For Langevin dynamics, at a low-
density region, the score function vanishes in Eq. (3), resulting in a meaningless diffusion. More-
over, natural data often lies on a low-dimensional manifold. Thus, once Langevin dynamics leaves
the data manifold, it becomes impossible for Langevin dynamics to find its way back.

One way to remedy this problem is to use annealing, i.e., constructing a sequence of increasingly
smooth and wide distributions and running MCMC at different levels of smoothness. As smoothness
is increased, disjoint modes merge, so MCMC can cross over to other modes. Annealing has been
used to empower various types of MCMC (Geyer & Thompson, 1995; Neal, 2001). In this work,
we shall refer to the collection of MCMC that use annealing as annealed MCMC.

An instance of annealed MCMC is annealed Langevin dynamics (ALD) (Song & Ermon, 2019).
For a sequence of increasing noise levels {σi}Ni=1, Langevin dynamics is sequentially executed with∫
pσi

(x | x̃)p(x̃) dx̃ in place of p(x) in Eq. (3) for i = N,N − 1, . . . , 1. Since p(x) smoothed
at a large noise level has wide support and connected modes, ALD overcomes the pitfalls of vanilla
Langevin dynamics. However, ALD has the drawback that thousands of iterations are required to
produce a single batch of samples.

3



Under review as a conference paper at ICLR 2023

2.3 DIFFUSION MODELS

Diffusion models and differential equations. Diffusion models opened up a new avenue towards
fast sampling with score functions via SDEs and ODEs (Song et al., 2021b). Suppose data is dis-
tributed in Rd. Given a diffusion process of data sample x0 ∼ p(x) into a sample from a simple
prior noise distribution, the trajectory of data during diffusion can be described with an Itô SDE

dx = f(x, t) dt+ g(t) dw (4)

for some drift coefficient f : Rd × [0, T ]→ Rd, diffusion coefficient g : [0, T ]→ R, and Brownian
motion w. Here, T is the diffusion termination time. With initial condition x(0) = x0, integrating
Eq. (4) from time t = 0 to t = T produces a sample from the prior distribution.

For each diffusion SDE, there exists a corresponding reverse-SDE:

dx = [f(x, t)− g(t)2∇x log pt(x)] dt+ g(t) dw̄ (5)

where pt(x) is the density of x(t) evolving according to Eq. (4) and w̄ is a Brownian motion if time
flows from t = T to t = 0. Given a sample xT from the prior distribution, integrating Eq. (5) with
initial condition x(T ) = xT from t = T to t = 0 results in a sample from p(x). Moreover, to each
reverse-SDE, there exists a corresponding deterministic reverse-ODE

dx =
[
f(x, t)− (1/2) · g(t)2∇x log pt(x)

]
dt (6)

which also can be integrated from t = T to t = 0 to produce samples from p(x).

Diffusion models generate data by simulating the reverse of the diffusion process, i.e., by solving
the reverse-S/ODE of the diffusion process. Initial works on diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020) used computationally expensive ancestral sampling to solve the reverse dif-
ferential equations. Later works discovered that using adaptive numerical integrators to solve the
reverse-S/ODE could accelerate the sampling process. This led to great attention on developing bet-
ter reverse-S/ODE integrators (Jolicoeur-Martineau et al., 2021; Song et al., 2021b; Lu et al., 2022;
Karras et al., 2022; Zhang & Chen, 2022). Our work is orthogonal to such works as focus on finding
good initialization points for integration via MCMC. Hence, a better integration technique directly
translates to even better generative performance when plugged into Denoising MCMC.

Variance exploding (VE) diffusion model. A VE diffusion model considers the diffusion process

dx =

√
d[σ2(t)]

dt
dw. (7)

where σ(t) increases from σmin = σ(0) to σmax = σ(T ). Distribution of x(t) evolves as

pt(x) =
∫
pσ(t)(x | x̃)p(x̃) dx̃ (8)

so if σmin is sufficiently small, p0(x) ≈ p(x), and if σmax is sufficiently large, so variance explodes,
pT (x) ≈ N (x | 0, σ2

maxI). If we have a score model sθ(x, σ) trained with Eq. (2),∇x log pt(x) ≈
sθ(x, σ(t)). It follows that with xT ∼ N (x | 0, σ2

maxI), we may integrate the reverse-S/ODE
corresponding to Eq. (7) with x(T ) = xT from t = T to t = 0 using a score model to generate
data. In the next section, we bridge MCMC and reverse-S/ODE integrators with VE diffusion to
form a novel sampling framework that improves both MCMC and diffusion models.

3 DENOISING MARKOV CHAIN MONTE CARLO (DMCMC)

We now develop a general framework called Denoising MCMC (DMCMC) which combines MCMC
with reverse-S/ODE integrators. We denote the data space as X ⊆ Rd and the noise level space as
S = [σmin, σmax]. The construction of DMCMC is comprised of two steps. In the first step, we
build MCMC to generate initialization points in the product space X × S , i.e., X augmented by
the smoothness parameter σ. Since σ(t) is a monotone increasing function, this is equivalent to
augmenting the data space with diffusion time t. In the second step, we incorporate denoising
steps, where we denoise the generated initialization points via reverse-S/ODE integrators. Note that
while the predictor-corrector (PC) method (Song et al., 2021b) also uses MCMC, PC uses MCMC to
improve the denoising process. Thus, DMCMC and PC contribute to orthogonal aspects of diffusion
sampling. More discussion on the differences between DMCMC and PC is in Appendix D.
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3.1 CONSTRUCTION STEP 1: MCMC ON THE PRODUCT SPACE X × S

Suppose p(x) is a high-dimensional multimodal distribution, supported on a low-dimensional man-
ifold. If the modes are separated by wide low-density regions, MCMC can have difficulty moving
between the modes. Indeed, convergence time for such distributions can grow exponential in di-
mension d (Roberts & Rosenthal, 2001). Intuitively, for MCMC to move between disjoint modes,
the Markov Chain would have to step off the data manifold. However, once MCMC leaves the data
manifold, the density or the score vanishes. Then, most random directions produced by the pro-
posal distribution do not point to the manifold. Thus, MCMC gets lost in the ambient space, whose
volume grows exponentially in d.

Annealing via Gaussian smoothing, used in both ALD and VE diffusion, circumvents this problem.
As p(x) smoothed with perturbation kernel pσ(x | x̃) of increasing σ, the modes of p(x) grow
wider and start to connect. Thus, MCMC can easily transition between modes. However, running
MCMC in the manner of ALD is inefficient since we do not know how many iterations within each
noise level is sufficient. To address this problem, we propose to augment X with the smoothness
scale σ and run MCMC in the product space X × S such that MCMC automatically controls the
value of σ. Below, we formally describe MCMC on X × S.

Let us define the σ-conditional distribution
p̂(x | σ) :=

∫
pσ(x | x̃)p(x̃) dx̃. (9)

We also define a prior p̂(σ) on S. Then by the Bayes’ Rule,
p̂(x, σ) = p̂(x | σ) · p̂(σ). (10)

In Appendix E.2, we discuss the effect of varying the prior. MCMC with p̂(x, σ) will produce
samples {(xn, σn)} in X × S such that

σn ∼ p̂(σ), xn ∼ p̂(x | σn). (11)
Hence, if σn ≫ σmin, xn will be a noisy sample, i.e., a sample corrupted with Gaussian noise of
variance σ2

n, and if σn ≈ σmin, xn will resemble a sample from p(x).

Since our goal is to generate samples from p(x), naı̈vely, we can keep samples (xn, σn) with σn ≈
σmin and discard other samples. However, this could lead to a large waste of computation resources.
In the next section, we incorporate reverse-S/ODE integrators to avert this problem.

3.2 CONSTRUCTION STEP 2: INCORPORATING DENOISING STEPS

Let us recall that integrating the reverse-S/ODE for the VE diffusion SDE Eq. (7) from time t = T
to t = 0 sends samples from pT (x) to samples from p0(x) ≈ p(x). In general, integrating the
reverse-SDE or ODE from time t = t2 to t = t1 for t1 < t2 sends samples from pt2(x) to samples
from pt1(x) (Song et al., 2021b). We use this fact to denoise MCMC samples from p̂(x, σ).

Suppose we are given a sample (xn, σn) ∼ p̂(x, σ). With tn := σ−1(σn), Eq. (11) tells us
xn ∼ ptn(x) (12)

so integrating the reverse-S/ODE with initial condition x(tn) = xn from t = tn to t = 0 produces
a sample from p0(x) ≈ p(x). Here, we note that any reverse-S/ODE solver may be used to carry
out the integration. In Appendix F.2, we show the necessity of the denoising step.

Let us briefly explain how DMCMC accelerates sampling. Given an MCMC chain {(xn, σn)} in
X×S and a prior p̂(σ) which places high mass near σmin, MCMC traverses high probability regions,
so σn ≪ σmax for most n, i.e., tn ≪ T for most n. This also means the sequence {xn} generally
stays close to the data manifold. So, the average length of integration intervals (0, tn) will tend to
be much shorter than T . Thus, integrating the reverse-S/ODE over (0, tn) to denoise xn is much
faster than integrating the reverse-S/ODE over (0, T ), i.e., standard diffusion sampling. This idea is
illustrated in Figure 1, and more detailed explanation is given in Appendix E.1.

4 DENOISING LANGEVIN GIBBS (DLG)

In Section 3, we described an abstract framework, DMCMC, for accelerating score-based sampling
by combining MCMC and reverse-S/ODE integrators. We now develop a concrete instance of DM-
CMC. As the second construction step of DMCMC is simple, we only describe the first step.
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Naı̈vely, we could extend denoising score matching Eq. (1) to estimate the score ŝθ(x, σ) : Rd ×
R→ Rd ×R of p̂(x, σ) and apply Langevin dynamics in the first step of DMCMC. But, this would
prevent us from using pre-trained score models, as we would have to solve (for some small ν > 0)

min
θ

Eϵ∼N (0d+1,ν2Id+1)Ep̂(x,σ)[∥ŝθ(x− ϵ1:d, σ − ϵd+1)− ϵ/ν2∥22] (13)

which differs from Eq. (2). Gibbs sampling provides a simple path around this problem. Let us recall
that given a previous MCMC iterate (xn, σn), Gibbs sampling proceeds by alternating between an
x update step xn+1 ∼ p̂(x | σn) and a σ update step σn+1 ∼ p̂(σ | xn+1). Below, we describe our
score-based sampling algorithm, Denoising Langevin Gibbs (DLG) (pseudocode in Appendix C).

Updating x. Suppose we are given an MCMC iterate (xn, σn) and a score model sθ(x, σ) from
Eq. (2). We generate xn+1 by a Langevin dynamics step on p̂(x | σn). Specifically, by Eq. (9),

∇x log p̂(x | σn) ≈ sθ(x, σn) (14)
and so an Langevin dynamics update on x, according to Eq. (3) is

xn+1 = xn + (η/2) · sθ(xn, σn) +
√
η · ϵ (15)

for ϵ ∼ N (0, I). Here, we call η the step size.

Updating σ. We now have xn+1 and need to sample σn+1 ∼ p̂(σ | xn+1). To this end, we first
train a DNN noise level classifier qϕ(σ | x) to approximate p̂(σ | x) by solving

max
ϕ

Ep̂(x,σ)[log qϕ(σ | x)]. (16)

Specifically, we discretize [σmin, σmax] into M levels τ1 = σmin < τ2 < · · · < τM = σmax. Given
τm where 1 ≤ m ≤ M , m serves as the label and clean training data corrupted by Gaussian noise
of variance τ2m serves as the classifier input. The classifier is trained to predict m by minimizing the
cross entropy loss. Having trained a noise level classifier, we sample σn+1 by drawing an index m
according to the classifier output probability for xn+1 and setting σn+1 = τm. In practice, using
the index of largest probability worked fine. We denote this process as σn+1 ∼ qϕ(σ | xn+1). In
Appendix F.1 we verify whether DLG with the approximated conditional works as intended.

4.1 PRACTICAL CONSIDERATIONS

Computation cost of σ prediction. We found that using shallow neural networks for the noise clas-
sifier qϕ was sufficient to accelerate sampling. Concretely, using a neural net with four convolution
layers and one fully connected layer as the classifier, one evaluation of qϕ was around 100 ∼ 1000
times faster than one evaluation of the score model sθ. So, when comparing sampling methods, we
only count the number of score function evaluations (NFE). We also note that the training time qϕ
was negligible compared to the training time of sθ. For instance, on CelebA-HQ-256, training qϕ
with the aforementioned architecture for 100 epochs took around 15 minutes on an RTX 2080 Ti.

Starting points for DLG. Theoretically, an MCMC chain {(xn, σn)}∞n=0 will converge to p̂(x, σ)
regardless of the starting point (x0, σ0). However, theory shows that setting starting points close
to the stationary distribution, i.e., using “warm start”, can significantly accelerate convergence of
the Markov chain (Dalalyan, 2017; Dwivedi et al., 2019). Thus, we set x0 by generating a clean
data sample with a reverse-S/ODE solver starting from prior noise, adding some Gaussian noise to
the clean data sample, and running Gibbs sampling for a few iterations. Pseudocode is shown in
Appendix C. The NFE involved in generating x0 is included in the final per-sample average NFE
computation for DLG when comparing methods in Section 5. But, we note that this cost vanishes in
the limit of infinite sample size.

Reducing autocorrelation. Autocorrelation in MCMC chains, i.e., correlation between consecutive
samples in the MCMC chain, could reduce the sample diversity of MCMC. A typical technique to
reduce autocorrelation is to use every nskip-th samples of the MCMC chain for some nskip > 1.
For DMCMC, this means we denoise every nskip-th sample. So, if we use nden NFE to denoise
MCMC samples, the average NFE for generating a single sample is around nskip + nden.

Choosing iterates to apply denoising. The MCMC chain can be partitioned into blocks which
consist of nskip consecutive samples. Using every nskip-th sample of the MCMC chain corresponds
to denoising the last iterate of each block. Instead, to further shorten the length of integration, within
each block, we apply denoising to the sample of minimum noise scale σ.

Choice of prior p̂(σ). We use p̂(σ) ∝ 1/σ to drive the MCMC chain towards small values of σ.
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Figure 2: Ablation study of σ update step in DLG.

Figure 3: Sampling acceleration of DLG on CIFAR10. FID of notable points are written in the
corresponding color. Top row: deterministic integrators. Bottom row: stochastic integrators.

5 EXPERIMENTS

5.1 MIXING OF DMCMC CHAINS

Here we provide experimental proof that DMCMC is capable of visiting diverse modes as a con-
sequence of running MCMC in the product space X × S. To this end, we compare DLG with and
without σ updates. DLG without σ updates is just Langevin dynamics at fixed σ, so we run fifty
Langevin dynamics chains and fifty DLG chains on a mixture of Gaussians (MoG) with 1k modes
at CIFAR10 images. All chains are initialized at a single mode. For each method, we compute the
mode coverage of the samples, the class distribution of the samples, and the autocorrelation of sam-
ple image class sequence. Since the noise conditional score function can be calculated analytically
for MoGs, this setting decouples sampler performance from score model approximation error.

Figure 2 shows the results. In the left panel, we observe that Langevin dynamics is unable to escape
the initial mode. Increasing the step size η of Langevin dynamics caused the chain to diverge. On
the other hand, DLG successfully captures all modes of the distribution. DLG samples cover all 1k
modes at chain length 432. Middle panel provides evidence that DLG samples correctly reflect the
statistics of the data distribution. Finally, the right panel indicates that the DLG chain moves freely
between classes, i.e., distant modes. These observations validate our claim that DLG mixes well.

5.2 ACCELERATING IMAGE GENERATION WITH SCORE NETWORKS

We compare six integrators with and without DLG on CIFAR10 and CelebA-HQ-256 image gener-
ation. The deterministic integrators are: the deterministic integrator of Karras et al. (2022) (KAR1),
the probability flow integrator of Song et al. (2021b), and the RK45 solver. The stochastic integra-
tors are: the stochastic integrator of Karras et al. (2022) (KAR2), the reverse diffusion integrator of
Song et al. (2021b), and the Euler-Maruyama method. We use the Fréchet Inception Distance (FID)
(Heusel et al., 2017) to measure sample quality. For CIFAR10, we generate 50k samples, and for
CelebA-HQ-256, we generate 10k samples. We use pre-trained score models of Song et al. (2021b).
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Figure 4: Sampling acceleration of DLG on CelebA-HQ-256. A dot indicates an integrator without
DLG, and a cross of the same color indicates corresponding integrator combined with DLG. Dotted
lines indicate performance improvement due to DLG.

Figure 5: Non-cherry-picked samples on CelebA-HQ-256 using the settings for Fig. 4. Each row
shows samples for an integrator without (left col.) and with (right col.) DLG.

Method NFE 10 NFE 20 NFE 50

DPM-Solver-2 (VP) 5.28 (+2 NFE) 3.02 (+4 NFE) 2.69 (−2 NFE)
DPM-Solver-3 (VP) 6.03 (+2 NFE) 2.75 (+4 NFE) 2.65 (−2 NFE)

DEIS (VP) 4.17 (+0 NFE) 2.86 (+0 NFE) 2.57 (+0 NFE)
DEIS (VE) 20.89 (+0 NFE) 16.59 (+0 NFE) 16.31 (+0 NFE)
KAR1 (VP) 9.70 (+1 NFE) 3.23 (+5 NFE) 2.97 (+1 NFE)
KAR1 (VE) 14.12 (+1 NFE) 4.46 (+5 NFE) 4.1 (+1 NFE)

DLG+KAR1 (VE) 3.86 (+0.1 NFE) 2.63 (+0.1 NFE) 2.45 (−0.9 NFE)

Table 1: Comparison of fast samplers on CI-
FAR10 FID. Number in parenthesis indicates ex-
tra or less NFE used. Best numbers are bolded.

CIFAR10. In Figure 3, we make two important
observations. First, DLG successfully acceler-
ates all six integrators by a non-trivial margin.
In particular, if an integrator without DLG al-
ready performs well, the integrator combined
with DLG outperforms other integrators com-
bined with DLG. For instance, compare the re-
sults for KAR1 with those of other determinis-
tic integrators. Second, DLG improves the per-
formance lower bound for some deterministic
integrators. While the performance of KAR1
and RK45 saturates at around 4 FID, KAR1 and RK45 with DLG achieve around 2.4 FID.

CelebA-HQ-256. Figure 4 shows the results on CelebA-HQ-256. We observe that DLG improves
computational efficiency and sample quality simultaneously. Indeed, in Figure 5, we observe re-
markable improvements in sample quality despite using fewer NFE. This demonstrates the scalabil-
ity of DLG to generating high-resolution images. We also note that we did not perform an exhaustive
search of DLG hyper-parameters for CelebA-HQ-256, so fine-tuning could yield better results.

Achieving SOTA. DLG combined with KAR1 sets a new SOTA record for CIFAR10 in the limited
number of NFE setting: 3.86 FID with 10.11 NFE and 2.63 FID with 20.11 NFE which beats the
results of Zhang & Chen (2022), 4.17 FID with 10 NFE and 2.86 FID with 20 NFE. DLG combined
with KAR2 sets a new record on CelebA-HQ-256 among score-based models: 6.99 FID with 158.96
NFE which beats the current best result of Kim et al. (2022), 7.16 FID with 4000 NFE.
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Figure 6: Ablation study of DLG with KAR1. Dots indicate the points of lowest FID.

5.3 HYPER-PARAMETER ABLATION STUDY

Given an integrator, DLG is determined by total NFE per sample n, NFE spent on denoising samples
nden, and Langevin dynamics step size η. We fix the integrator to be KAR1 and observe the effect
of each component on CIFAR10 image generation. We observed similar trends with other samplers.

η vs. nden/n. In the left panel of Figure 6, we fix NFE and vary η and nden/n. nden governs
individual sample quality, and nskip = n − nden governs sample diversity. Thus, we observe
optimal FID is achieved when nden/n has intermediate values, not extreme values near 0 or 1. Also,
lower nden/n is needed to attain optimality for lower η. This is because lower η means the MCMC
chain travels closer to the image manifold at the cost of slower mixing.

NFE vs. nden/n. In the middle panel of Figure 6, we fix η and vary NFE and nden/n. We observe
two trends. First, in the small NFE regime, where 10 ≤ NFE ≤ 50, it is beneficial to decrease
nden/n as NFE increases. Second, in the large NFE regime, where NFE > 50, it is beneficial to
increase nden/n as NFE increases. This is because if nskip is sufficiently large, MCMC chain starts
producing essentially independent samples, so increasing nskip further provides no gain.

Also, as we increase NFE, the set of nden/n which provides near-optimal performance becomes
larger. Moreover, we see that most of the time, optimal FID is achieved when nden/n > 0.5, i.e.,
when nden > nskip. So, a reasonable strategy for choosing nden given η and NFE budget n is to
find smallest nskip which produces visually distinct samples, and then allocate nden = n− nskip.

η vs. NFE. In the right panel of Figure 6, we choose optimal (in terms of FID) nden/n for each
combination of η and NFE. We see choosing overly small or large η leads to performance degrada-
tion. If η is within a certain range, we obtain similarly good performance. In the case of CIFAR10,
we found it reasonable to set η ∈ [0.05, 1.0].

To choose η for data of general dimension d, we define a value κ := η/
√
d called displacement per

dimension. If we see Eq. (14), Gaussian noise of zero mean and variance η is added to the sample
at each update step. Gaussian annulus theorem tells us that a high-dimensional Gaussian noise with
zero mean and variance η has Euclidean norm approximately η

√
d. So, the average displacement of

the sample per dimension by the random noise is around η/
√
d. Since κ is a dimension-independent

value, given κ and d, we can set η =
√
dκ. On CIFAR10, we have η ∈ [0.05, 1.0], which translates

to κ ∈ [0.0009, 0.018]. This means, on CelebA-HQ-256, we can choose η ∈ [0.4, 8.0]. If the
sampler was inefficient, we chose a smaller κ to trade-off diversity for sample quality.

6 CONCLUSION

In this work, we proposed DMCMC which combines MCMC with reverse-S/ODE integrators. This
has led to improvements for both MCMC and diffusion models. For MCMC, DMCMC allows
Markov chains to visit disjoint modes. For diffusion models, DMCMC accelerates sampling by
reducing the average integration interval length of reverse-S/ODE. We developed a practical instance
of DMCMC called DLG, and demonstrated the practicality and scalability of DLG through various
experiments. In particular, DLG achieved state-of-the-art results on CIFAR10 and CelebA-HQ-256
among score-based models. Overall, our work opens up an orthogonal approach to accelerating
score-based sampling. We leave exploration of other kinds of MCMC or diffusion process such as
VP diffusion (see Appendix E.3) in DMCMC as future work.
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7 REPRODUCIBILITY STATEMENT

We provide an anonymous Google drive link to a zip file containing code and noise clas-
sifier checkpoints for our main experiments. https://drive.google.com/file/d/
1C5RO4UB6x8eatIHDxGiGLV_oLsEKcyOI/view?usp=share_linkWe have also added
a pseudocode of DMCMC in Appendix C, and hyper-parameters are described in Appendix A.
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A DETAILED EXPERIMENT SETTINGS

Device. We use an RTX 2080 Ti or two Quadro RTX 6000 depending on the required VRAM.

Codes. For probability flow, RK45, reverse diffusion, and Euler-Maruyama integrators, we modify
the code provided by Song et al. (2021b) in the GitHub repository https://github.com/
yang-song/score_sde_pytorch. For KAR1 and KAR2, since Karras et al. (2022) did not
release their implementation of the samplers, we used our implementation based on their paper. For
evaluation, we use the FID implementation provided in the GitHub repository https://github.
com/mseitzer/pytorch-fid.

Datasets. We use the CIFAR10 dataset (Krizhevsky, 2009) and the CelebA-HQ-256 dataset (Karras
et al., 2018).

Data processing. All data are normalized into the range [0, 1]. Following Song et al. (2021b), for all
methods, a denoising step using Tweedie’s denoising formula is applied at the end of the sampling
process.

Noise predictor network qϕ. The noise predictor network qϕ has four convolution layers followed
by a fully connected layer. The convolution layers have channels 32, 64, 128, 256, and (σmin, σmax)
is discretized into 1k points σmin(σmax/σmin)

t for t spaced evenly on [0, 1]. On CIFAR10, qϕ is
trained for 200 epochs, and on CelebA-HQ-256, qϕ is trained for 100 epochs. We use the Adam
optimizer (Kingma & Ba, 2015) with learning rate 0.001.

Mixture of Gaussians. MoG has 1k modes at randomly sampled CIFAR10 training set images.
For Langevin dynamics, we use step size η = 0.0001. Using a larger step size caused the Langevin
dynamics chain to diverge. For DLG, we use step size η = 1.0, nskip = 1, nden = 20, and the
reverse diffusion integrator. For each method, all chains were initialized at a single mode to test
mixing capabilities in the worst-case scenario.

CIFAR10 image generation. We use a pre-trained NCSN++ (cont.) score model provided by Song
et al. (2021b). For the baseline methods, we use the recommended settings. For DLG, the chain was
initialized by generating samples with the deterministic integrator of Karras et al. (2022) using 37
NFE, adding Gaussian noise of variance 0.25, and running 20 iterations of Langevin-Gibbs. Table
2 lists the hyper-parameters for DLG and the corresponding FID used to produce Figure 3.

KAR1 Probability Flow RK45
nden nskip η FID nden nskip η FID nden nskip η FID

9 1 0.5 3.86 9 1 0.01 153.48 59.98 10 0.5 2.45
17 3 0.5 2.63 24 1 0.01 35.58 83.74 10 0.5 2.58
27 24 0.5 2.44 49 1 0.01 15.75 128.99 10 0.5 2.55

90 10 0.01 6.8
190 10 0.05 5.25

KAR2 Reverse Diffusion Euler-Maruyama
nden nskip η FID nden nskip η FID nden nskip η FID

9 1 0.5 6.99 9 1 0.01 300.18 9 1 0.01 306.98
23 2 0.5 3.17 24 1 0.01 94.98 24 1 0.01 47.83
31 20 0.5 2.64 49 1 0.01 22.1 49 1 0.02 12.73
51 50 0.5 2.19 90 10 0.01 8.61 90 10 0.05 4.79

190 10 0.1 4.45 190 10 0.1 2.69
370 30 1.0 2.64 370 30 1.0 2.22
570 30 1.0 2.14

Table 2: DLG hyper-parameters and FID for integrators in Figure 3.
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CelebA-HQ-256 image generation. We use a pre-trained NCSN++ (cont.) score model provided
by Song et al. (2021b). For the baseline methods, we use the recommended settings. For DLG,
the chain was initialized by generating samples with the stochastic integrator of Karras et al. (2022)
using 37 NFE, adding Gaussian noise of variance 0.25, and running 70 iterations of Langevin-Gibbs.
Table 3 lists the hyper-parameters for DLG and the corresponding FID used to produce Figure 4.

KAR1 Probability Flow RK45
nden nskip η FID nden nskip η FID nden nskip η FID

17 4 0.8 14.11 140 5 0.25 28.37 125.95 4 0.8 15.29

KAR2 Reverse Diffusion Euler-Maruyama
nden nskip η FID nden nskip η FID nden nskip η FID

37 10 0.8 8.78 100 25 0.1 26.43 100 4 0.8 23.19

Table 3: DLG hyper-parameters and FID for deterministic samplers in Figure 4.

Achieving SOTA. On CIFAR10, we use KAR1 settings of Table 2. On CelebA-HQ-256, we use
nden = 131, nskip = 27, η = 4.0, which achieves 6.99 FID.

B ADDITIONAL SAMPLES

B.1 DLG CHAIN VISUALIZATION

Figures 7 and 8 each show a DLG chain on CIFAR10 and CelebA-HQ-256, respectively. The chain
progresses from left to right, from right end to left end of row below. On CIFAR10, we can see that
the chain visits diverse classes. On CelebA-HQ-256, we can see that the chain transitions between
diverse attributes such as gender, hair color, skin color, glasses, facial expression, posture, etc.

Figure 7: Visualization of a DLG chain on CIFAR10.

Figure 8: Visualization of a DLG chain on CelebA-HQ-256.

B.2 ADDITIONAL UNCONDITIONAL SAMPLES

In Figures 9 and 10, we show additional samples for CIFAR10 without and with DLG. In Figures
11 and 12, we show additional samples for CelebA-HQ-256 without and with DLG.
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Figure 9: Additional non-cherry-picked samples for deterministic integrators on CIFAR10 without
(left col.) and with (right col.) DLG.
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Figure 10: Additional non-cherry-picked samples for stochastic integrators on CIFAR10 without
(left col.) and with (right col.) DLG.
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Figure 11: Additional non-cherry-picked samples for deterministic integrators on CelebA-HQ-256
without (left col.) and with (right col.) DLG.
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Figure 12: Additional non-cherry-picked samples for stochastic integrators on CelebA-HQ-256
without (left col.) and with (right col.) DLG.
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C PSEUDOCODES

Let us denote a reverse-S/ODE integrator as π(sθ,x, σ, n). Given a point x at noise level σ, score
function sθ, and NFE budget n, π returns the result of integrating reverse-S/ODE from σ to σmin

starting from x. That is, π returns a sample from p0(x).

Algorithm 1 MCMC Starting Point Generation

1: Input: Integration NFE budget n1, number of Langevin-Gibbs steps n2, Langevin step size η
2: Sample x̃0 ∼ N (0, σ2

maxI)
3: x̃0 ← π(sθ, x̃0, σmax, n1)
4: x̃0 ← x̃0 + 0.5 · ϵ where ϵ ∼ N (0, I)
5: σ0 ← 0.5
6: for t = 1, 2, . . . n2 do
7: x̃0 ← x̃0 + 0.5 · η · sθ(x̃0, σ0) +

√
η · ϵ where ϵ ∼ N (0, I)

8: σ0 ∼ qϕ(σ | x0)
9: end for

10: Return (x̃0, σ0)

Algorithm 2 Denoising Langevin Gibbs

1: Input: nden, nskip, MCMC starting point (x̃0, σ0), Langevin step size η, number of samples
needed N

2: (x̃, σ)← (x̃0, σ0)
3: for k = 1, 2, . . . N do
4: Initialize minimum noise level tracking variables (x̂, σ̂)← (x̃, σ)
5: for t = 1, 2, . . . , nskip do
6: x̃← x̃+ 0.5 · η · sθ(x̃, σ) +

√
η · ϵ where ϵ ∼ N (0, I)

7: σ ∼ qϕ(σ | x̃)
8: if σ < σ̂ then
9: (x̂, σ̂)← (x̃, σ)

10: end if
11: end for
12: xk ← π(sθ, x̂, σ̂, nden)
13: end for
14: Return {xk}Nk=1

D MORE RELATED WORKS

D.1 COMPARISON OF DMCMC WITH THE PREDICTOR-CORRECTOR SAMPLER

As both DMCMC and the predictor-corrector (PC) algorithm (Song et al., 2021b) rely on MCMC,
one may ask whether DMCMC is a straightforward extension of PC. However, we assure the reader
that DMCMC is not a trivial generalization of PC.

On a high level, the main message of our paper is that we can significantly improve diffusion sam-
pling by choosing better initial points for the denoising process. This claim was verified through
extensive experiments. On the other hand, the focus of the corrector step of PC is on improving the
denoising process by refining the predictor / integrator steps. So, DMCMC and PC contribute to
orthogonal aspects of diffusion sampling. Indeed, the improvements offered by MCMC corrector
step are rather marginal (see Table 1 in (Song et al., 2021b)) compared to the improvements offered
by DMCMC (see Figure 3 in our paper). On a low level, we distinguish DMCMC from PC on three
levels: theoretical, implementation-wise, and empirical.

Theoretically, MCMC in DMCMC and MCMC in PC reduce truncation error (error arising from
numerically integrating reverse-S/ODE) in entirely distinct ways. We observe that diffusion model
sampling can be broken down into two parts: (part 1) generating an initialization point, and (part 2)
integrating the reverse-S/ODE starting from the initialization point to generate clean data. MCMC
in PC aims to improve part 2 whereas MCMC in DMCMC aims to improve part 1.
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In PC, MCMC is used as a corrector. That is, MCMC corrects the distributions of intermediate points
during integration of the reverse-S/ODE (part 2). That is why PC sampling proceeds by alternating
between taking a predictor step and running Langevin dynamics at a fixed noise level.

In DMCMC, MCMC generates initialization points for reverse-S/ODE (part 1) that lie near the
image manifold. This is possible because MCMC runs in the augmented space X ×S by adaptively
updating the noise level. This leads to reduced truncation error, or equivalently, acceleration, as it is
easier for reverse-S/ODE integrators to generate clean data from points near the data manifold than
from prior noise distribution samples (e.g., Gaussian noise). For a more detailed explanation of the
acceleration mechanism of DMCMC, we refer the reader to Appendix E.1.

DMCMC does not resemble PC even from the perspective of implementation. MCMC in PC runs
during reverse-S/ODE integration, and MCMC in DMCMC runs before reverse-S/ODE integration:

• PC : (prior noise)→ (integ. step)→ (MCMC)→ (integ. step)→ (MCMC)→ . . .→ (data)
• DMCMC : (MCMC to generate points near image manifold)→ (integration)→ (data)

Moreover, as already mentioned, MCMC in PC runs in X at a fixed σ whereas MCMC in DMCMC
runs in X × S by adaptively updating σ.

Finally, DMCMC can also be used to accelerate PC algorithms as well, as shown in Figure 13. This
means MCMC in DMCMC and PC play orthogonal roles in generating clean data. If DMCMC were
a straightforward extension of PC, we would not see such acceleration.

Figure 13: PC acceleration with DLG on CIFAR10.

D.2 ON THE NOISE PREDICTOR NETWORK IN DMCMC

Nichol & Dhariwal (2021) and Roman et al. (2021) have also used noise predictor networks to im-
prove diffusion sampling. Although both works employed a neural net to predict the noise level /
diffusion time for a given data input, we emphasize that the works do not overlap with the contri-
butions of DMCMC. The main contribution of our paper is not the noise prediction network itself.
The novelty of DMCMC arises from how we use the noise prediction network.

On a high level, the main message of our paper is that we can significantly improve diffusion sam-
pling by choosing better initial points for denoising. A noise predictor network was used in the
process of finding initial points. On the other hand, the focus of the mentioned works is on improv-
ing the denoising process with a noise predictor network. So, DMCMC and the mentioned works
contribute to orthogonal aspects of diffusion sampling.

Let us elaborate. We first note that diffusion model sampling can be broken down into two parts:
(part 1) generating an initialization point, and (part 2) integrating the reverse-S/ODE to generate
data from the initialization point.

Nichol & Dhariwal (2021) and Roman et al. (2021) use the noise prediction network to accelerate
integration of the reverse-S/ODE (improve part 2). This is achieved by learning the covariance of
the reverse distribution (Nichol & Dhariwal, 2021) or by adjusting the noise schedule with a neural
net (Roman et al., 2021).

In DMCMC, MCMC generates initialization points for reverse-S/ODE that lie near the image man-
ifold (improve part 1). This is possible because MCMC runs in X × S by adaptively updating the
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noise level with a noise prediction network. This leads to acceleration, as it is easier for reverse-
S/ODE integrators to generate clean data from points near the data manifold than from prior noise
distribution samples (e.g., Gaussian noise). Hence, our paper proposes an acceleration approach
entirely different from those of and Nichol & Dhariwal (2021) and Roman et al. (2021).

In fact, DMCMC does not resemble Nichol & Dhariwal (2021) and Roman et al. (2021) even from
the perspective of implementation. Noise predictors in Nichol & Dhariwal (2021) and Roman et al.
(2021) are used during reverse-S/ODE integration, and the noise predictor in DMCMC is used before
reverse-S/ODE integration as a sub-step of MCMC.

E MORE DISCUSSIONS

E.1 MORE EXPLANATION ON HOW DMCMC ACCELERATES SAMPLING

The discussion at the end of Section 3.2 describes why DMCMC combined with a reverse-S/ODE
integrator is faster than using a reverse-S/ODE integrator alone. Here, we provide a more detailed
explanation of the acceleration phenomenon. To begin, we note that DMCMC consists of two
steps that are executed sequentially: (a) MCMC on p̂(x, σ), and (b) denoising MCMC samples
by reverse-S/ODE. Since DMCMC without (a) is just standard diffusion, we see the acceleration
behavior comes from using p̂(x, σ) samples as initial points for reverse-S/ODE. Thus, we need to
show how using p̂(x, σ) samples as initial points for reverse-S/ODE accelerates image generation.

This proceeds in two steps. We first explain how MCMC produces samples (xn, σn) from p̂(x, σ)
such that σn is significantly smaller than σmax. Then, we explain how integrating over (σmin, σn)
is faster than integrating over (σmin, σmax) as in standard diffusion.

To begin, we first explain how MCMC produces samples (xn, σn) from p̂(x, σ) such that σn is
significantly smaller than σmax. We observe that

∫
pσ(x|x̃)p(x̃)dx̃ becomes flatter and wider as σ

increases. This is because
∫
pσ(x|x̃)p(x̃)dx̃ means we are applying Gaussian smoothing to p(x)

with a Gaussian kernel of variance σ2. For instance, if p(x) is a normal distribution with variance
γ2,

∫
pσ(x|x̃)p(x̃)dx̃ is a normal distribution with variance σ2 + γ2. It follows that high density

values of p̂(x, σ) occur when x is near the data manifold and σ is small. Since MCMC traverses
high-probability regions, we can expect {xn} will be close to the data manifold and {σn} will be
smaller than σmax. Indeed, in Appendix F.1, we see that actual σn values are significantly smaller
than σmax = 50 in CIFAR10.

Standard diffusion needs to integrate the reverse-S/ODE over the large interval (σmin, σmax) to
produce clean images. On the other hand, in DMCMC, MCMC produces samples (xn, σn) from
p̂(x, σ) such that σn is significantly smaller than σmax. So, in the DMCMC framework, to generate
clean images, we only need to integrate the reverse-S/ODE over the small interval (σmin, σn). This
means the cost of integrating over (σn, σmax) vanishes for DMCMC, leading to accelerated image
generation. (To be precise, the cost of integrating over (σn, σmax) is replaced by the cost of running
MCMC to sample from p̂(x, σ), but we observe in Section 5.1 that DLG mixes rapidly, so this cost
is negligible.)

More rigorously, given the same computation budget and the same integration method, integrating
over (σmin, σn) has less truncation error than integrating over (σmin, σmax). Computation budget
roughly corresponds to the number of discretization points of the integration interval we can use to
approximate the reverse-S/ODE. Thus, a shorter interval of integration means we can use smaller
step size h during integration, which implies smaller error. For instance, Euler’s method has O(h2)
local error. A more rigorous exposition is given in Chapter 7 of Stoer & Bulisch (2002).

This justifies how DMCMC can generate better samples than standard diffusion under a fixed com-
putation budget. In other words, DMCMC can use less computation budget than standard diffusion
to achieve similar sample quality as standard diffusion, i.e., DMCMC can accelerate sampling.

E.2 TRADE-OFF BETWEEN THE CONVERGENCE SPEED OF MCMC AND SHARPNESS OF p̂(σ)

Let us assume that − log p̂(x | σ) is strongly convex and has L Lipschitz continuous gradients. We
also assume − log p̂(σ) is strongly convex and has M Lipschitz continuous gradients. We use such
assumptions, because in the setting where either − log p̂(x | σ) or − log p̂(σ) is nonconvex, it is
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difficult to say anything theoretically meaningful about convergence of MCMC on the joint p̂(x, σ).
We also assume the MCMC of choice is Langevin dynamics for ease of analysis.

The sharpness of the prior p̂(σ) can then be characterized by M . Intuitively, if p̂(σ) is more peaked
around zero, − log p̂(σ) will have a gradient which changes more rapidly, and so M will be larger.
We then note that since − log p̂(x, σ) = − log p̂(x | σ) − log p̂(σ), − log p̂(x, σ) is also strongly
convex and − log p̂(x, σ) has L+M Lipschitz continuous gradients.

We now resort to Theorem 3 in (Cheng & Bartlett, 2018), which shows that the convergence time of
Langevin dynamics on− log p̂(x, σ) in terms of KL divergence grows in the order of O((L+M)2)
(ignoring log terms). So, we indeed see there is a trade-off between the mixing time of MCMC and
the choice of the prior. Using a prior that is sharper around zero will increase M and thus increase
convergence time quadratically. We speculate that a similar analysis will hold for Langevin Gibbs
as well, but a rigorous analysis of Langevin Gibbs is worthy of a paper of its own.

However, in practice, we do note that Langevin Gibbs with the prior used in our paper converges
quite fast, as shown in Section 5.1. In the rightmost panel of Figure 2, we observe that the autocor-
relation of image labels vanishes after only a few iterations. If the sampler mixed poorly in the x
space, image labels would have high autocorrelation. For visualization of DLG chains, we refer the
readers to Appendix B.1. So, we can say Langevin Gibbs reliably produces samples from p̂(x, σ)
even with a small number of steps.

E.3 VE DIFFUSION VS. VP DIFFUSION IN DMCMC

A natural question is whether we can join MCMC with reverse-S/ODE using the VP diffusion frame-
work as well. It is true that the VP setting could be more stable than the VE setting, and that is why
some recent solvers work in the VP setting. For instance, DPM-Solver (Lu et al., 2022) only pro-
vides experiment results in the VP setting, despite the fact that DPM-Solver can be applied to the
VE setting as well. In the case of DEIS (Zhang & Chen, 2022), there is a large performance gap in
the VE and VP settings. Specifically, the performance of DEIS deteriorates significantly in the VE
setting.

We used VE diffusion because, from the perspective of generating better initialization points via
MCMC, VE setting was better than VP setting. We believe the benefits outweigh the downsides,
since, as shown in Table 1, DLG beats all recent fast solvers regardless of whether that fast solver
works in the VP setting or the VE setting. We conjecture that stability does not have a large influence
on DMCMC because the reverse-S/ODE initialization points generated by MCMC are close to the
image manifold, such that the variance of initialization points is small compared to the variance
of prior noise. This is possibly why DMCMC improves the performance lower bound for some
deterministic integrators (Section 5.2).

We also give a detailed explanation of why DMCMC is more compatible with VE. Concretely,
we observed two differences between VE diffusion and VP diffusion that made MCMC with VP
diffusion difficult.

We first establish some notations. For α ∈ [0, 1), we define the perturbation kernel pα(x | x̃) :=
N (x |

√
αx̃, (1 − α)I) and the α-conditional distribution p̂(x | α) :=

∫
pα(x | x̃)p(x̃) dx̃. If

α = 0, we get the prior noise distribution, which is the standard normal distribution. If α = 1,
we recover the data distribution. VP diffusion proceeds by decreasing α from 1 to 0 (Song et al.,
2021b). We can generate clean data from Gaussian noise by using a numerical integrator to solve
the reverse-S/ODE for VP diffusion from α = 0 to α = 1. With a prior p̂(α) on A := [0, 1), we
then have a joint distribution

p̂(x, α) = p̂(x | α) · p̂(α) (17)

on the product spaceX×A. Then, analogous to DMCMC with VE diffusion, we may use MCMC to
produces samples {(xn, αn)} from p̂(x, α) with the help of an α-classifier qϕ and then integrate the
reverse-S/ODE from αn to 1 to generate clean data. However, we observed two differences between
VE diffusion and VP diffusion that made MCMC with VP diffusion difficult.
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In VE diffusion, the support1 of
∫
pσ(x | x̃)p(x̃)dx̃ grows wider as σ increases. Thus, wherever

the current MCMC x iterate is, there always is some noise level σ such that x is in the support of∫
pσ(x | x̃)p(x̃)dx̃ so the score function provides a meaningful (i.e., non-zero) direction. The noise

classification network qϕ predicts this optimal noise level σ for x, as shown in Appendix F.1.

On the other hand, in the VP diffusion framework, the prior noise distribution (standard normal
distribution) has finite support. To be precise, the standard normal distribution has non-zero density
everywhere, but numerically, density becomes zero at points sufficiently far from the origin. As the
data distribution also has finite support, all intermediate distributions p̂(x | α) of VP diffusion have
finite support as well. Since MCMC takes random steps, it is possible for an MCMC iterate to land
at a point where no intermediate distribution p̂(x | α) of VP diffusion provides meaningful density
or gradient. Even worse, the mean of the corruption process of VP diffusion shifts in the process of
changing data samples to zero mean standard normal samples. So, high-density paths between prior
noise samples and data samples can become very narrow in high-dimensional scenarios.

Due to these pathologies of VP diffusion, what we observed happening in practice was that Langevin
Gibbs would repeat the following behavior: try to approach the image manifold in the x update step
so α increases, step off the high-density path leading to the data manifold in the x update step, and
get absorbed into the prior noise distribution so α decays to 0. Indeed, in Figure 14 we observe
α values oscillating around zero. This implies xn are essentially prior noise samples, so using
{(xn, αn)} as initial points for the reverse-S/ODE has no practical benefit.

This type of problem with narrow, high-density regions often plagues MCMC. For a toy example,
see Figure 3 of Cobb et al. (2019). We postulate that a better MCMC sampling scheme could enable
us to run DMCMC under the VP diffusion framework. For instance, one could use MCMC with
rejection steps that would reject points that step off high-density regions, or incorporate Riemannian
manifold structure into the sampling scheme. However, we believe this is a topic for future work.

Figure 14: αn trajectories for DLG with VP diffusion in the MoG setting.

F MORE EXPERIMENTS

F.1 EVOLUTION OF σ DURING LANGEVIN GIBBS ON X × S

In Figure 15, we have visualized Langevin Gibbs trajectories of σ in the MoG setting with 1k modes
at CIFAR10 images (this setting decouples sampler behavior from score function approximation
error) and the score network setting. We indeed observe that σ moves up and down, allowing x to
travel between disjoint modes of the distribution. Moreover, in Figure 2 of Section 5.1, x samples
cover all 1k modes of the MoG. This experimentally proves x sequence of DLG is exploring the
entire image distribution.

In the MoG setting, let us define δn as the distance of xn to the closest mode in the MoG. In Figure
16, we see σn ∼ qϕ(σ | xn) is almost identical to δn/

√
d, where d is the dimension of xn. This

1When we mention the support of a distribution, we mean the set of points where the numerical value (value
represented on a computer) of the density is nonzero. This is because, even when a distribution theoretically
has nonzero density everywhere, it is possible that the numerical value of the density vanishes outside some
bounded region.
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is reasonable, as the Gaussian annulus theorem tells us samples from a high-dimensional Gaussian
distribution of mean µ and variance σ2 come from a shell of radius σ

√
d centered at µ.

Specifically, due to the Gaussian annulus theorem, the samples of
∫
pσ(x | x̃)p(x̃)dx̃ are most

likely to come from a shell of radius σ
√
d centered around the image manifold. (See Figure 2 (a)

in Chung et al. (2022)) Then, given certain x which is distance δ from the image manifold, we can
intuitively argue that optimal σ for x, i.e., σ of highest likelihood under p(σ | x), can be determined
by equating δ = σ

√
d such that σ = δ/

√
d. In the MoG case, this δ is approximated by the distance

of x to the closest mode in the MoG. Since the σ values predicted by the noise classifier agree with
approximated δ/

√
d, we can see that the noise classifier is a good approximation of p(σ | x).

Figure 15: Visualization of σn trajectories in MoG and score network settings.

Figure 16: qϕ prediction and (approximate) distance to image manifold in the MoG setting.
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F.2 DENOISING STEP ABLATION

One may ask whether the denoising step in DMCMC is a necessary component to generate clean
samples. To answer this question, we compare DLG with and without the denoising step. We use
the reverse diffusion integrator as the reverse-SDE solver in the denoising step. Figure 17 shows
DLG without the denoising step completely fails to generate valid clean image samples, regardless
of how large nskip we use.

Figure 17: Ablation of the denoising step in DMCMC.
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