STRUCTURED VISUAL LANDSCAPE: GENERATING PREFERRED REPRESENTATIONS IN MULTI-MODAL BIOLOGICAL AND ARTIFICIAL NEURAL NETWORKS

Anonymous authorsPaper under double-blind review

ABSTRACT

Understanding how neurons responding to visual stimulus inputs is an important question in both deep learning and neuroscience. It has significant implications in enhancing the interpretability of black-box artificial neural networks and understanding the visual representation in biological neural networks. We proposed a structured visual representation landscape and design an activation score based prior that allows effectively regularizing the landscape with either activations from a brain region or units in neural networks. Our model **Vis-Lens** integrates a variational auto-encoder and diffusion model as an image generative model. It allows generation of natural realistic preferred images with directly modifying the activation-regularized latents, which avoids the tedious optimization procedure. We demonstrate the effectiveness of our framework in both artificial neural networks and biological neural networks with multi-modal response data derived from human visual cortex, including functional Magnetic Resonance Imaging (fMRI) and electroencephalography (EEG). Our framework outperforming state-of-the-art method on generating visual representations of those networks.

1 Introduction

The exploration of visual representations in both biological and artificial neural networks has advanced our understanding in how complex visual stimuli are processed and represented in neural networks (Marr, 2010; Hubel & Wiesel, 1962; Bashivan et al., 2019). Previous studies that demonstrate the capacity of neurons in the medial temporal lobe (MTL) of the human brain to form invariant representations of complex stimuli (Quiroga et al., 2005), such as faces, landmarks, and objects, regardless of visual variations. These findings illustrate how single neurons can encode high-level, abstract percepts with remarkable specificity, leading to the hypothesis of sparse and invariant coding mechanisms in the brain (Olshausen & Field, 2004).

While methods exploring visual representation in some brain regions work fine by learning directly from embeddings of popular image encoders like CLIP (Garcia Cerdas et al., 2025; Luo et al., 2023b), understanding the feature representations for many brain regions that are not well-studied remains challenging. For example, some higher-order brain regions can demonstrate mix-selectivity (Rigotti et al., 2013) where they can respond to images with small overlap in shared features. As presented in Figure 1, the top images that maximally activate the brain region distributed across the embeddings space of CLIP encoder (Radford et al., 2021a).

Additionally, brain activity measured is often noisy, low-resolution, and partially observed, which introduces the difficulties for analysis and modeling. Unlike previous works that aim to reconstruct entire images from brain activities (Naselaris et al., 2011; Nishimoto et al., 2011; Shen et al., 2019; Horikawa & Kamitani, 2017), our work focuses on understanding the feature representation of brain regions by generating new preferred images that maxmizing or minizing the activity of those regions. Those synthetic visual stimuli can be deployed in follow-up neuroscience experiments to test new hypotheses, refine ROI functional maps, and accelerate discovery by guiding stimulus design.

To achieve this goal, we proposed Vis-Lens, an effective approach to interpret the feature represented by brain regions. Given the noisy nature of brain recordings, instead of using brain activities directly as input to the decoding model, our method refines the landscape of visual representation by em-

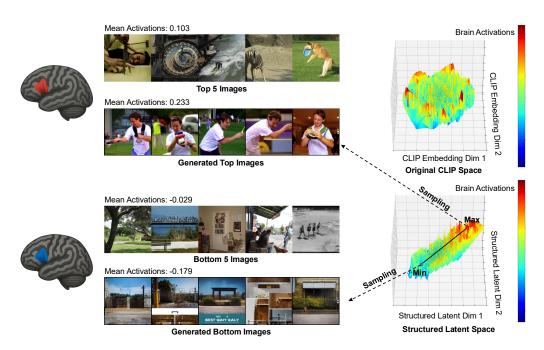


Figure 1: **Original CLIP Space (Top):** Original CLIP embedding space without any activation constraint: image embeddings that elicit high and low neural responses are dispersed and not clustered throughout the space without shared visual structure. **Structured Landscape (Bottom):** By encoding CLIP embeddings into the regularized latent space constrained with neuronal activations as the *prior*, our method Vis-Lens could provide a more structured and representative landscape to better identify the representations and preferences of brain regions than sorting top-k images in dataset. The results are based on brain activations from the NSD dataset (Allen et al., 2021). In the landscape plots, the color bar and z axis indicate the activation of brain region given different images as inputs, x and y axis represent two latent dimensions, respectively.

ploying brain activation to regularize the prior, serving as a soft constraint. We further integrate the structured landscape with powerful variational auto-encoder (VAE) and diffusion generative models to generate realistic preferred images that can effectively modulate the brain activations.

Our method can facilitate the exploration of visual representations of brain regions while maintaining interpretability. It is validated with multi-modal data, including fMRI data from the Natural Scenes Dataset (NSD) (Allen et al., 2021) and EEG data from THINGS-EEG dataset (Grootswagers et al., 2022; Gifford et al., 2022), analyzing responses in the human visual cortex to complex natural stimuli. Meanwhile, due to the scarcity of image response data from human brains, our proposed framework is also extended to artificial neural networks (ANNs), allowing controlled testing of visual feature representations and interpretability in artificial systems. By integrating insights from both biological and artificial neural networks, we aim to bridge understanding of visual representation strategies across natural and engineered systems. Our contributions are outlined as follows:

- We introduce an activation-regularized prior for VAE (Kingma & Welling, 2022) that organizes its latent space into two distinct clusters, corresponding to codes that increase or decrease a target brain region's activation. This design enables easy plug-and-play integration with conventional generative models.
- Our method synthesizes visual representations from specified brain regions, outperforming
 the state-of-the-art in both activation change and perceptual realism. Moreover, it provides
 a generalized framework showing robustness on multi-modal and cross-subject biological
 data, and can also transfer to visualizing features in artificial neural networks.
- By generating controllable, high-quality visual stimuli that can modulate specific regions, our framework demonstrates new potentials in vision-based brain computer interface applications and can be used to generate new hypothesis for future neuroscience studies.

2 RELATED WORKS

Image generative models. Advances in generative models have significantly transformed image synthesis. Foundational approaches such as GANs (Goodfellow et al., 2014) led to extensions like Wasserstein GANs (Arjovsky et al., 2017) and Conditional GANs (Mirza & Osindero, 2014), with fidelity improvements using spectral normalization (Miyato et al., 2018), while VAEs (Kingma & Welling, 2013) introduced probabilistic encoding, later combined with latent space regularization (Ho et al., 2022; Van den Oord et al., 2016). Further, Cascaded generation (Ho et al., 2022) and autoregressive modeling (Chen et al., 2018) enhanced synthesis quality. More superior generation models like Diffusion models (Ho et al., 2020; Rombach et al., 2022) advanced controllable, high-fidelity synthesis, integrating structured perturbations via SDEdit (Meng et al., 2022) and texto-image alignment through CLIP (Radford et al., 2021b). IP-Adapter (Ye et al., 2023) refined latent spaces for semantic consistency, while GLIDE (Nichol et al., 2022) and Stable Diffusion (Saharia et al., 2022) further demonstrated photorealistic, text-guided image generation. Our work is developed based on these conventional generative model frameworks, which adopts VAEs to build up our proposed structured landscape and a Stable Diffusion model generation pipeline to synthesize preferred image conditioned on CLIP embeddings derived from the structured landscape.

Feature visualization. Visualization techniques provide deep insights into neural network interpretability and functionality, spanning both biological and artificial systems. Early work by Erhan *et al.* (Erhan et al., 2009) focused on minimal regularization approaches, while adversarial examples exposed vulnerabilities in neural networks (Szegedy et al., 2013). Mahendran and Vedaldi (Mahendran & Vedaldi, 2015) and Nguyen *et al.* (Nguyen et al., 2015) further expanded on interpretability with total variation regularization, counterexamples, and image blurring. Meanwhile, techniques such as DeepDream by Mordvintsev *et al.* (Mordvintsev et al., 2015; 2016), employing jitter, multiscale visualization, and gradient normalization (Ø ygard, 2015; Tyka, 2016), enhanced clarity in feature visualization. For prior related work, Nguyen *et al.* (Nguyen et al., 2016) demonstrated generative adversarial synthesis of preferred inputs, emphasizing controlled image generation through learned priors. Our work extends this line by generating images with preferred features based on pre-defined priors in landscape shaped by activations.

Brain decoding and most exciting images. Generative models leveraging brain activity as direct input have substantially advanced neural-to-visual synthesis. Direct neural-to-image synthesis methods convert fMRI activity into high-fidelity pictures with diffusion or GAN backbones—for example BrainDiffusion and NeuroDM (Luo et al., 2023a; Qian et al., 2024), Brain2GAN (Dado et al., 2024), latent-diffusion variants (Ferrante et al., 2024; Ozcelik & VanRullen, 2023), and energy-guided approaches (Pierzchlewicz et al., 2023), while activation-optimized methods like Inception Loops (Walker et al., 2019) and NeuroGen (Gu et al., 2022) reveal neuronal tuning by iterating stimuli based on neural responses. Recent multi-modal approaches (Huang et al., 2021b;a; Ding et al., 2023; van Gerven, 2021; Qiu et al., 2025; Benara et al., 2024) integrate generative models for improved synthesis precision, while Controllable Mind Visual Diffusion (Zeng et al., 2023), Seeing Beyond the Brain (Chen et al., 2023), and Reconstructing the Mind's Eye (Scotti et al., 2023) leverage structured diffusion priors for enhanced visual reconstructions. Though dominated by fMRI data, (Song et al., 2024; Li et al., 2024) explored this task on EEG data, obtained promising results.

To further modulate activations, computational models (Papale et al., 2024; Murty et al., 2021) and frameworks targeting single neuron contributions (Bau et al., 2017; Olah et al., 2017; Ritter et al., 2017) provide interpretable mappings of cortical activations to specific visual features. Latent space optimization strategies (Robinson et al., 2023; Xia et al., 2024) extend foundational decoding frameworks (Naselaris et al., 2011; Nishimoto et al., 2011; Shen et al., 2019; Horikawa & Kamitani, 2017) to achieve targeted neural activation modulation. BrainDiVE and BrainSCUBA(Luo et al., 2023b; 2024) uses a CLIP-based encoder and diffusion models to improve stimulus quality and semantic specificity. BrainACTIV (Garcia Cerdas et al., 2025), as the recent state-of-the-art and the first work on using diffusion models to generating images to regulate brain activations, extends these paradigms by conditioning synthesis with linearly fitting CLIP embeddings with brain activation pattern. Though modeling activations via CLIP embeddings does work in previous work, our method tries to take the noisy and mix-selective nature of brain activity data into consideration, building a novel structured landscape in VAE through CLIP embeddings, permitting more controllable and effective activation manipulation, and avoiding falling into local minimum in the optimization process.

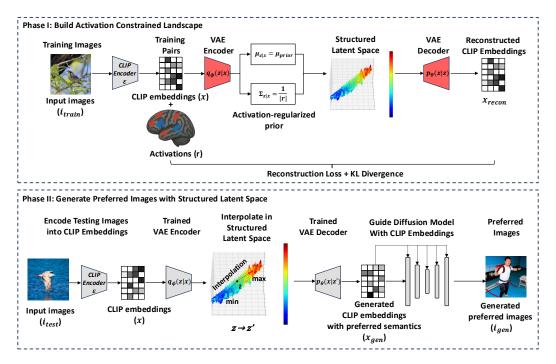


Figure 2: Overview of Vis-Lens. The illustration depicts a two-stage approach integrating a structured landscape and variational autoencoder (VAE) generation with CLIP encoder and diffusion based generative model. Phase I: The input image, i_{train} , is encoded by a pretrained CLIP encoder \mathcal{E} , CLIP embeddings x are encoded into a latent representation z by the VAE encoder. A regularization step using a activation-based prior $\mathcal{N}(\mu_{\text{prior}}, \frac{1}{|r|})$ modifies the latent space for better alignment with activations, producing a regularized latent z. The VAE is also trained to reconstruct the input CLIP embeddings x with x_{recon} . Phase II: The test images i_{test} , is encoded by same CLIP encoder \mathcal{E} . Then, with fully trained VAE and the structured visual latent representation space, we can directly modify latents constrained by a specific feature represented by the selected regions, obtaining a new latent z'. This transformed latent is decoded back into an intermediate generated CLIP embeddings x_{gen} , which is used to guild the image generation through a diffusion pipeline, yielding the final output i_{gen} as preferred images to modulate the activation r.

3 METHODOLOGY

3.1 PROBLEM SETTING AND NOTATION

Let $\mathcal I$ be the space of natural images, $\mathcal X$ be the space of CLIP embeddings, and $\mathcal Z$ the latent space of a variational auto-encoder (VAE). For an input image $i \in \mathcal I$, the pretrained CLIP encoder $\mathcal E$ maps i to a CLIP embedding $x = \mathcal E(i) \in \mathcal X$. Subsequently, the VAE encoder $q_\phi(z\,|\,x)$ produces a latent $z \in \mathcal Z$ with mean μ and diagonal covariance $\Sigma = \mathrm{diag}(\sigma^2)$; the VAE decoder $p_\theta(x\,|\,z)$ reconstructs an embedding x_{rec} . Throughout, r denotes the (scalar) activation of a chosen region of interest (ROI) in human brain or neural networks, and λ , ω_{rec} , ω_{KLD} are scalar hyper-parameters.

3.2 CONSTRUCT STRUCTURED VAE LANDSCAPE WITH NEURONAL ACTIVATION AS PRIOR

To achieve explainable and controllable visual representation generation of a specific region or unit given the corresponding activations, we integrate the activation r into the VAE prior and then construct a structured latent space in VAE. The details are described as follows:

The KL divergence (KLD) term in the VAE measures the divergence between the encoder's approximate posterior, $q_{\phi}(\mathbf{z}|\mathbf{x})$, and the prior, $p_{\theta}(\mathbf{z})$. We begin with its standard definition:

$$D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\theta}(\mathbf{z})) = \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p_{\theta}(\mathbf{z})} d\mathbf{z} = \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log q_{\phi}(\mathbf{z}|\mathbf{x}) - \log p_{\theta}(\mathbf{z}) \right]$$
(1)

Both the posterior and the prior are defined as multivariate Gaussian distributions with diagonal covariance matrices, In our framework, we have the approximate posterior: $q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}; \boldsymbol{\mu}, \operatorname{diag}(\boldsymbol{\sigma}^2))$. For the prior, $p_{\theta}(\mathbf{z})$, we designed a novel **activation constrained prior**: $p_{\theta}(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \boldsymbol{\mu}^{\text{prior}}, \operatorname{diag}((\boldsymbol{\sigma}^{\text{prior}})^2))$, which depends on the activation value r:

$$\sigma^{\text{prior}} = \left| \frac{\lambda}{r + \epsilon} \right|, \qquad \mu_i^{\text{prior}} = \begin{cases} \mu_{\text{pos}}, & \text{if } r > 0, \\ \mu_{\text{neg}}, & \text{otherwise}, \end{cases}$$
 (2)

where λ is a scaling hyperparameter, ϵ is a small constant to prevent division by zero, and μ_{pos} , μ_{neg} are predefined means for positive and negative activations, respectively.

Given the definition of approximate posterior and activation constrained prior, the expectation in Eq 1 can be computed analytically, yielding the closed-form expression for the KLD between two distributions. Also, we assume that VAE latent space has d_z dimensions, and the overall divergence is calculated across the dimensions, so the final KLD affected by activations can be written as:

$$KLD_{activation} = \sum_{i=1}^{d_z} \left[\log \frac{\sigma_i^{prior}}{\sigma_i} - \frac{1}{2} + \frac{\sigma_i^2 + (\mu_i - \mu_i^{prior})^2}{2(\sigma_i^{prior})^2} \right]$$
(3)

where μ_i and σ_i are the mean and standard deviation of the approximate posterior for the *i*-th latent dimension, respectively; μ_i^{prior} and σ_i^{prior} are the mean and standard deviation of the prior distribution for the *i*-th dimension.

With this activation constrained prior, we can build a structured VAE latent space. Intuitively, when r approximates infinite, the constrain would be extremely tight around the center of prior distribution.

3.3 GENERATE PREFERRED VISUAL REPRESENTATIONS WITH MODIFIED VAE

To produce preferred images, our method is divided into two phases: a training phase on previous VAE to construct the structured latent space and a generation phase to generate images. The VAE is the only trainable part in the pipeline, while other modules including pre-trained CLIP encoder (\mathcal{E}) and image-to-image diffusion model—remain frozen.

Training. During the training, only the VAE encoder $q_{\phi}(z|x)$ and decoder $p_{\theta}(x|z)$ that maps the embedding to a latent representation z and reconstructs it back to x_{recon} are optimized by Eq 4.

$$\mathcal{L}_{\text{VAE}} = \omega_{\text{recon}} \cdot \mathcal{L}_{\text{recon}} + \omega_{\text{KLD}} \cdot \text{KLD}_{\text{activation}}, \tag{4}$$

where $\mathcal{L}_{\text{recon}} = \|x - x_{\text{recon}}\|_2^2$ is the reconstruction loss between the original and decoded CLIP embeddings. The terms ω_{recon} and ω_{KLD} are scalar weights that balance the reconstruction fidelity against the activation-based regularization imposed by our modified KLD term in Eq 3.

Generation. To synthesize new images, the generation phase begins by taking an image i and encoding it with frozen CLIP encoder to get CLIP embedding $x = \mathcal{E}(i)$, then, we feed x into the trained VAE encoder to get the latent code $z = q_{\phi}(x)$ in the structured landscape we built. z is then moved across the landscape towards the pre-defined positive or negative priors. The new, modified latent code z' is then given to the VAE decoder, which translates it into a new, modified CLIP embedding $x' = p_{\theta}(x \mid z')$. This new embedding, now imbued with the desired activation-guiding properties, is finally passed to a frozen diffusion model to synthesize the final, preferred image i'.

4 EXPERIMENTS

4.1 DATASETS

Neuroimaging Datasets. To test our framework on multi-modal neuronal data, we utilize two large-scale human neuroimaging datasets. The Natural Scenes Dataset (NSD) (Allen et al., 2021) provides high-resolution fMRI recordings from eight subjects viewing thousands of MS COCO images (Lin et al., 2015). The THINGS-EEG dataset offers comprehensive EEG recordings from ten subjects

viewing thousands of images. (Grootswagers et al., 2022; Gifford et al., 2022). The response data was extracted from ROI masks in NSD and event-related potentials (ERPs) across occipital channels in THINGS-EEG, then averaged to reduce noise. They both serve as essential constraints in our framework to align the VAE latent space with observed brain responses in 4.3.1.

Image Datasets. To evaluate our method on artificial neural networks, we used two common image datasets. ImageNet-mini, a diverse subset of the full ImageNet dataset (Deng et al., 2009), serves as input for large-scale SimCLR (Chen et al., 2020) and ViT (Dosovitskiy et al., 2021) models to obtain unit activations in Section 4.3.2. Additionally, we use the CIFAR-10 dataset (Krizhevsky & Hinton, 2009), comprising 60,000 low-resolution images across ten classes, to validate performance of our method within a smaller three-layer CNN in Section 4.3.3.

4.2 Models

Implementation of our framework. Our VAE encoder employs a linear layer to map the CLIP embeddings to a latent space constrained by activations. The decoder also uses a single linear layer that reconstructs CLIP embeddings from the latent space, enabling controlled image synthesis through targeted latent manipulations. For other models, we use a pre-trained CLIP-ViT-H-14 model as our CLIP encoder(Radford et al., 2021a) that extracts 1024-dimensional embeddings for each input image. We choose Stable Diffusion v1.5 as our image generation model incorporating an IP-Adapter(Ye et al., 2023) that effectively modulates the generation process by injecting the edited CLIP embeddings, ensuring the semantic and structural consistency of the synthesized outputs.

Baseline method. For every ROI we re-implement the method in BrainACTIV (Garcia Cerdas et al., 2025), a ridge-regularised linear model on ℓ_2 -normalized CLIP embeddings, $\left[\frac{x}{\|\mathbf{x}\|} \cdot \mathbf{w} + b\right] \implies r$, yielding a single modulation vector $\mathbf{w} \in \mathbb{R}^{1024}$. This vector is interpreted as the direction of maximal and minimal activation in CLIP space: $\mathbf{z}_{\max} = \mathbf{w}/\|\mathbf{w}\|$ and $\mathbf{z}_{\min} = -\mathbf{w}/\|\mathbf{w}\|$. At inference time, a test CLIP embedding is shifted *only* along \mathbf{z}_{\max} or \mathbf{z}_{\min} before being injected—via an unchanged adapter—into a frozen image-to-image diffusion model.

In-silico brain simulator. In our experiments, brain activations are evaluated with a DINO-ViT encoder (Oquab et al., 2024): DINO acts as a frozen feature extractor whose 12 layer outputs are fed to a single-layer ViT ensemble trained with ridge loss to predict neuronal responses. In line with the findings from Garcia Cerdas et al. (2025), this encoder explains a large proportion of NSD voxel variance (typically $R^2 > 0.6$ in high-level ROIs), validating its use as a reliable neural readout. We also aaply this predictor to EEG data and it can still make reliable prediction with $R^2 \approx 0.45$. Because the encoder is not CLIP-based, it provides an independent estimate of neural activity.

4.3 RESULTS

4.3.1 GENERATE PREFERRED REPRESENTATIONS IN HUMAN BRAIN

With structured landscape, we can get a better representation of certain brain region by sampling around the prior in latent space, and generate images with those latent values, as shown in Figure 1.

In our latent space, we interpolate each latent code z toward a positive or negative prior $z'=\alpha\cdot\mu_{\text{prior}}+(1-\alpha)\cdot z$ —and pass it to a frozen SDEdit diffusion model with $\gamma=1.0$; thus the output image depends solely on the edited embedding, allowing a clean comparison with the baseline.

Figure 3 and Table 1 showed results on NSD dataset, our method could changes activations towards correct direction in all regions, while baseline method makes mistakes. Also, our method produces greater decrease in activation in all regions, demonstrating effectiveness of defining an independent negative prior when constructing landscape rather than simply reverse the maximal direction in baseline. For increasing activation, our method outperforms the baseline in not well-studied regions like SPL, IPS, TE, IP, 31, and might be attributed to their mix-selectivity (Vialatte et al., 2020; Taylor & Xu, 2024; Maranesi et al., 2024). In highly highly category-selective regions like FFA and OPA (Downing et al., 2001; Kanwisher et al., 1999; McCarthy et al., 1997). Our method achieves comparable performance with baseline. Our method also consistently produces more realistic visual representations in all regions with lower FID scores (Heusel et al., 2017), that sampling from a structured latent space in VAE may be more controllable than perturbing CLIP embeddings directly.

Table 1: Comparison of activation change and realism between our method and the baseline. Better values are in **bold face**. For activation changes, \uparrow indicates that higher values are better, and \downarrow indicates that lower values are better. (a) Results on the NSD dataset. (b) Results on the THINGS-EEG dataset. Our method has a consistent direction for activation change as targeted direction.

(a) NSD Results								
	ROIs	TE2p	IP0	IP1	OFA	FFA	EBA	OPA
Activation Increase (†)	Our Method BrainACITV	0.242 0.207	0.498 0.463	0.153 0.044	1.052 1.155	0.891 0.976	0.963 1.160	0.699 0.699
Activation Decrease (↓)	Our Method BrainACTIV	-0.136 0.149	-0.699 0.186	-0.073 0.092	-0.660 0.213	-0.580 -0.484	-0.810 -0.669	-0.824 -0.172
FID @ 2k (↓)	Our Method BrainACTIV	172.71 225.77	173.34 213.17	178.01 200.14	173.66 216.15	153.70 256.44	137.33 188.59	166.01 225.37

(b) THINGS-EEG Results									
	Channels	01	Oz	O2	PO7	PO3	POz	PO4	PO8
Activation Increase (†)	Our Method BrainACTIV	0.079 -0.003	0.146 0.138	0.085 0.005	0.171 0.153	0.116 -0.019	0.111 0.085	0.060 0.083	0.072 0.058
Activation Decrease (↓)	Our Method BrainACTIV	-0.066 0.001	-0.134 -0.298	-0.132 -0.202	-0.137 -0.123	-0.085 -0.072	-0.212 -0.261	-0.031 -0.050	-0.079 -0.027
FID @ 2k (↓)	Our Method BrainACTIV	120.20 157.25	99.54 159.90	108.59 171.77	109.07 164.34	123.41 133.81	107.10 140.48	106.23 164.24	117.18 178.66

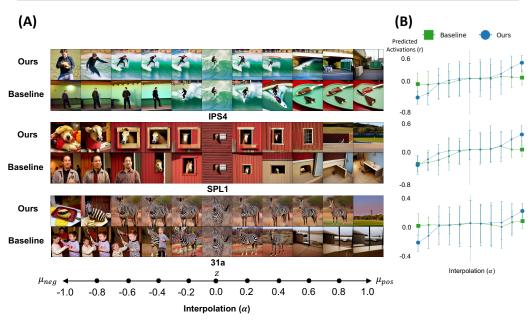


Figure 3: Activation change results of our method and baseline. (A) Generate preferred representations of multiple ROIs with example images from COCO dataset by our method and baselines. The alpha value in interpolation indicates the strength and direction of preferred semantic in generation. (B) Comparison between predicted activations of ROIs made by DINO-ViT encoder. Means and ranges of activations are presented for different alpha settings. Our method outperforms the baseline in terms of maximizing or minimizing the ROI activations.

For THINGS-EEG results in Table 1, our model also consistently produces results with correct signs across the occipital channels in dataset, outperforms baseline. Our method generates representations that better activate the majority of channels and always produces more realistic representations. The results show that our method can be generalized to multi-modal neuronal data.

Besides, to demonstrate the robustness of our predictor, we include a comparison between activation modulation results of original subjects and a held-out subject from NSD dataset. The results are shown in Table 2. The comparable predictions prove the reliability of our results.

Table 2: Cross-subject generalization result on NSD dataset. The table compares the predicted activation change on original subject data versus a held-out subject across several visual ROIs.

ROIs	OFA	FFA	EBA	VWFA	OPA	PPA	RSC
Activation increase (original subj)	0.869	0.851	0.860	0.867	0.731	0.966	0.942
Activation increase (held-out subj)	0.861	0.975	0.790	0.648	0.629	1.061	0.940
Activation decrease (original subj)	-0.526	-0.382	-0.564	-0.279	-0.557	-0.610	-0.775
Activation decrease (held-out subj)	-0.436	-0.302	-0.391	-0.089	-0.485	-0.813	-0.823

4.3.2 GENERATE PREFERRED REPRESENTATIONS IN ARTIFICIAL NEURAL NETWORKS

Besides biological brains , we also test our approach on purely *artificial* targets: a mid-level unit inside a SimCLR encoder (Chen et al., 2020) a contrastive-learning framework with a ResNet-50 backbone, as well as a unit from a more complex Vision Transformer (ViT). Fig. 4 shows natural images that have the largest responses from the chosen units in ANNs. With our model trained on unit activations, editing latent to the positive prior could generate representations that can better activate the given ANN units compared with the baseline as shown in the boxplot.

Figure 4: Generate preferred images with increasing unit activations in ANNs. (A) The top 10 images demonstrate a notable pattern of "green plant & insect" represented by a unit in the middle layer of SimCLR model. our method generates images that strongly match the pattern and increase activation more than the baseline. (B) For a mid-layer unit in a more complex Vision Transformer (ViT), our method synthesizes images that can better activate the unit compared with baseline, though the concept seems to be ambiguous.

4.3.3 OPTIMIZE UNIT ACTIVATIONS WHILE PRESERVING UNRELATED FEATURES

To demonstrate the strength of our structured VAE latent space, we trained two lightweight image-to-image VAEs on the CIFAR-10 dataset. a standard VAE with a Gaussian prior, and our proposed VAE whose latent space is regularized by activations from a pre-trained ConvNet. We constrain VAE latent with multiple units activations, and only edit the latent dimensions controlled by a certain unit. Beside direct modification towards preset priors, we optimize latent with Adam

Figure 5: Generating preferred images with different methods on CIFAR-10. Left 4 columns show optimizing images to increase their activations. Column 1 are two example input images. Column 2-3 are results of our method while column 4 represent optimizing the latent space with standard VAE. Right 4 columns are results of optimization with same methods with target of decreasing activations.

Table 3: Summary of average cosine similarity and unit responses change (Δr) between new images and input images over different optimization methods, corresponding to Figure 5. The best results are marked with **bold face**.

Direction	Model	Optimization Method	Average Similarity (Cosine)	Average Δr
positive	structured landscape	latent modification gradient descent	0.745 0.666	0.046 0.079
	original landscape	gradient descent	0.520	0.067
negative	structured landscape	latent modification gradient descent	0.696 0.661	-0.083 -0.110
	original landscape	gradient descent	0.538	-0.068

optimizer to maximize or minimize the activation of targeted units by combining the activation with a KLD regularization term as target, ensuring the latent code remains aligned with the prior distribution. The results of latent modification and optimization on both VAEs are shown in Figure 5. In Table 3, we measure similarity between original and new images with a pre-trained ResNet18 (He et al., 2016). Those results indicate that our structured landscape approach not only achieves more robust activation changes but also maintains a higher similarity to the original images compared to standard VAE, underscoring the efficacy of incorporating structured priors for latent optimization.

5 DISCUSSION AND LIMITATIONS

We developed Vis-Lens, a framework that imposes a novel activation-regularized priors on VAE to yield structured landscape and then performs direct latent editing to steer activations in biological and artificial networks. This structured landscape can also modulates the activation of target units while preserving unrelated features. Vis-Lens generates visual representations that show stronger activation modulation ability and better realism on brain regions compared with state-of-the-art method, and also proved to be more effective on feature visualization in artificial neural networks.

There are also limitations for our work. Firstly, the image generator and the CLIP encoder are frozen, any biases inherited from their pre-training data might propagate into our newly generated preferred images. Also, the reliability of our results is limited due to the complete in-silico framework design.

In the future, our work may focus on scaling the framework to more data modalities like MEG or larger scale brain datasets. Meanwhile, we aim to proceed beyond evaluations with in-silico human brain simulators, and test the generated preferred images in human experiments; such closed-loop validation would further confirm the effectiveness of our framework and open the door to a broader range of brain computer interface applications.

ETHICS STATEMENT

This research was conducted on datasets which are all publicly available and no ethics concerns, no new data was collected from human subjects. Besides, all experiments in our study are purely in-silico. The goal of our work is to advance the scientific understanding of neural information, and we do not foresee any direct societal risks or negative ethical concerns arising from our methods.

REPRODUCIBILITY STATEMENT

All details for data preprocessing, model training, activation analysis, and figure generation is available in the main text and supplementary materials and will be released on GitHub upon publication. All data used in this research can be accessed from public sources. The computational environment and all model hyperparameters required to reproduce our main experimental results are detailed in the appendix.

REFERENCES

- Emily J. Allen, Ghislain St-Yves, Yihan Wu, Jesse L. Breedlove, Logan T. Dowdle, Brad Caron, Franco Pestilli, Ian Charest, J. Benjamin Hutchinson, Thomas Naselaris, and Kendrick Kay. A massive 7t fmri dataset to bridge cognitive and computational neuroscience. *bioRxiv*, 2021. doi: 10.1101/2021.02.22.432340. URL https://www.biorxiv.org/content/early/2021/02/22/2021.02.22.432340.
- Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. *arXiv preprint arXiv:1701.07875*, 2017.
- Pouya Bashivan, Kohitij Kar, and James J DiCarlo. Neural population control via deep image synthesis. *Science*, 364(6439):eaav9436, 2019.
- David Bau et al. Network dissection: Quantifying interpretability of deep visual representations. In *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2017.
- Vinamra Benara, Chandan Singh, John X. Morris, Richard Antonello, Ion Stoica, Alexander G. Huth, and Jianfeng Gao. Crafting interpretable embeddings by asking llms questions, 2024. URL https://arxiv.org/abs/2405.16714.
- Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In *International Conference on Machine Learning (ICML)*, 2020.
- Xi Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter Abbeel. Pixelsnail: An improved autoregressive generative model. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2018.
- Zijiao Chen, Jiaxin Qing, Tiange Xiang, Wan Lin Yue, and Juan Helen Zhou. Seeing beyond the brain: Conditional diffusion model with sparse masked modeling for vision decoding, 2023. URL https://arxiv.org/abs/2211.06956.
- T Dado, P Papale, et al. Brain2gan: Feature-disentangled neural encoding and decoding of visual perception in the primate brain. *PLoS Computational Biology*, 2024. URL https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012058.
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*, pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.
- Zhiwei Ding, Dat Tran, Kayla Ponder, Erick Cobos, Zhuokun Ding, Paul Fahey, Eric Wang, Taliah Muhammad, Jiakun Fu, Santiago Cadena, Stelios Papadopoulos, Saumil Patel, Katrin Franke, Jacob Reimer, Fabian Sinz, Alexander Ecker, Xaq Pitkow, and Andreas Tolias. Bipartite invariance in mouse primary visual cortex, 03 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale, 2021. URL https://arxiv.org/abs/2010.11929.

- Paul Downing, Jiang YH, Miles Shuman, and N.G. Kanwisher. A cortical area selective for visual processing of the human body. *Science (New York, N.Y.)*, 293:2470–3, 10 2001. doi: 10.1126/science.1063414.
- Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing higher-layer features of a deep network. *University of Montreal*, 2009.
- M Ferrante, T Boccato, and L Passamonti. Retrieving and reconstructing conceptually similar images from fmri with latent diffusion models and a neuro-inspired brain decoding model. *Journal of Neural Engineering*, 2024. URL https://iopscience.iop.org/article/10.1088/1741-2552/ad593c/meta.
- Diego Garcia Cerdas, Christina Sartzetaki, Magnus Petersen, Gemma Roig, Pascal Mettes, and Iris Groen. BrainACTIV: Identifying visuo-semantic properties driving cortical selectivity using diffusion-based image manipulation. In *Proceedings of the International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=CGON8Btleu.
- Alessandro T. Gifford, Kshitij Dwivedi, Gemma Roig, and Radoslaw M. Cichy. A large and rich eeg dataset for modeling human visual object recognition. *bioRxiv*, 2022. doi: 10.1101/2022.03.15. 484473. URL https://www.biorxiv.org/content/early/2022/03/15/2022.03.15.484473.
- Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in Neural Information Processing Systems (NeurIPS)*, 2014.
- Tijl Grootswagers, Ivy Zhou, Martin Hebart, and Thomas Carlson. Human eeg recordings for 1,854 concepts presented in rapid serial visual presentation streams. *Scientific Data*, 9, 01 2022. doi: 10.1038/s41597-021-01102-7.
- Zijin Gu, Keith Wakefield Jamison, Meenakshi Khosla, Emily J. Allen, Yihan Wu, Ghislain St-Yves, Thomas Naselaris, Kendrick Kay, Mert R. Sabuncu, and Amy Kuceyeski. Neurogen: Activation optimized image synthesis for discovery neuroscience. *NeuroImage*, 247:118812, 2022. ISSN 1053-8119. doi: https://doi.org/10.1016/j.neuroimage.2021.118812. URL https://www.sciencedirect.com/science/article/pii/S1053811921010831.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 770–778, 2016.
- Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/8ald694707eb0fefe65871369074926d-Paper.pdf.
- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2020.
- Jonathan Ho, Tim Salimans, Alex Song, Jiaming Chu, X Chen, Ilya Sutskever, and Pieter Abbeel. Cascaded diffusion models for high fidelity image generation. *Journal of Machine Learning Research (JMLR)*, 2022. URL https://arxiv.org/abs/2106.15282.
- Tomoyasu Horikawa and Yukiyasu Kamitani. Generic decoding of seen and imagined objects using hierarchical visual features. *Nature Communications*, 8:15037, 2017.

- Shuo Huang, Wei Shao, Mei-Ling Wang, and Dao-Qiang Zhang. fmri-based decoding of visual information from human brain activity: A brief review. *International Journal of Automation and Computing*, 18, 01 2021a. doi: 10.1007/s11633-020-1263-y.
 - Shuo Huang, Wei Shao, Mei-Ling Wang, and Dao-Qiang Zhang. fmri-based decoding of visual information from human brain activity: A brief review. *International Journal of Automation and Computing*, 18, 01 2021b. doi: 10.1007/s11633-020-1263-y.
 - David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. *The Journal of physiology*, 160(1):106, 1962.
 - Nancy Kanwisher, Josh Mcdermott, and Marvin Chun. The fusiform face area: A module in human extrastriate cortex specialized for face perception. *The Journal of Neuroscience*, 17, 09 1999. doi: 10.1523/JNEUROSCI.17-11-04302.1997.
 - Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint* arXiv:1312.6114, 2013.
 - Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022. URL https://arxiv.org/abs/1312.6114.
 - Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical Report 0, University of Toronto, Toronto, Ontario, 2009. URL https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.
 - Paulo H. Leocadio. Hugging face diffusers chapter 07. *Hugging Face*, January 2025. doi: 10.22541/au.173627634.49343603/v1. URL http://dx.doi.org/10.22541/au.173627634.49343603/v1.
 - Dongyang Li, Chen Wei, Shiying Li, Jiachen Zou, Haoyang Qin, and Quanying Liu. Visual decoding and reconstruction via eeg embeddings with guided diffusion, 2024. URL https://arxiv.org/abs/2403.07721.
 - Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects in context, 2015. URL https://arxiv.org/abs/1405.0312.
 - A Luo, M Henderson, and L Wehbe. Brain diffusion for visual exploration: Cortical discovery using large scale generative models. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2023a. URL https://neurips.cc/Conferences/2023/Schedule.
 - Andrew F. Luo, Margaret M. Henderson, Leila Wehbe, and Michael J. Tarr. Brain diffusion for visual exploration: Cortical discovery using large scale generative models, 2023b. URL https://arxiv.org/abs/2306.03089.
 - Andrew F. Luo, Margaret M. Henderson, Michael J. Tarr, and Leila Wehbe. Brainscuba: Fine-grained natural language captions of visual cortex selectivity, 2024. URL https://arxiv.org/abs/2310.04420.
 - Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by inverting them. In *Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)*, pp. 5188–5196, 2015.
- Monica Maranesi, Marco Lanzilotto, Edoardo Arcuri, and Luca Bonini. Mixed selectivity in monkey anterior intraparietal area during visual and motor processes. *Progress in Neurobiology*, 236:102611, 2024. ISSN 0301-0082. doi: https://doi.org/10.1016/j.pneurobio. 2024.102611. URL https://www.sciencedirect.com/science/article/pii/S0301008224000479.
 - David Marr. Vision: A computational investigation into the human representation and processing of visual information. MIT press, 2010.

- Gregory McCarthy, Aina Puce, John Gore, and Truett Allison. Face-specific processing in the human fusiform gyrus. *Journal of cognitive neuroscience*, 9:605–10, 10 1997. doi: 10.1162/jocn.1997. 9.5.605.
- Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.

 Sdedit: Guided image synthesis and editing with stochastic differential equations, 2022. URL

 https://arxiv.org/abs/2108.01073.
 - Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. In *arXiv preprint* arXiv:1411.1784, 2014.
 - Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for generative adversarial networks. In *International Conference on Learning Representations* (*ICLR*), 2018. URL https://arxiv.org/abs/1802.05957.
 - Alexander Mordvintsev, Chris Olah, and Mike Tyka. Inceptionism: Going deeper into neural networks. *Google Research Blog*, 5, 2015.
 - Alexander Mordvintsev, Chris Olah, and Mike Tyka. Deepdream—a code example for visualizing neural networks. *Google Research Blog*, 2016.
 - N. Murty, Pouya Bashivan, Alex Abate, James Dicarlo, and Nancy Kanwisher. Computational models of category-selective brain regions enable high-throughput tests of selectivity. *Nature Communications*, 12:5540, 09 2021. doi: 10.1038/s41467-021-25409-6.
 - Thomas Naselaris, Kendrick N Kay, Shinji Nishimoto, and Jack L Gallant. Encoding and decoding in fmri. *Neuroimage*, 56(2):400–410, 2011.
 - Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 427–436, 2015.
 - Anh Nguyen, Jason Yosinski, and Jeff Clune. Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. In *Advances in Neural Information Processing Systems* (*NeurIPS*), pp. 3387–3395, 2016.
 - Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with text-guided diffusion models, 2022. URL https://arxiv.org/abs/2112.10741.
 - Shinji Nishimoto, An T Vu, Thomas Naselaris, Yuval Benjamini, Bin Yu, and Jack L Gallant. Reconstructing visual experiences from brain activity evoked by natural movies. *Current Biology*, 21(19):1641–1646, 2011.
 - Tormod Ø ygard. Gradient blurring for improved feature visualization. *Personal communication*, 2015.
 - Chris Olah et al. Feature visualization. Distill, 2017.
 - Bruno A Olshausen and David J Field. Sparse coding of sensory inputs. *Current opinion in neuro-biology*, 14(4):481–487, 2004.
 - Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision, 2024. URL https://arxiv.org/abs/2304.07193.
 - Furkan Ozcelik and Rufin VanRullen. Natural scene reconstruction from fmri signals using generative latent diffusion, 2023. URL https://arxiv.org/abs/2303.05334.

- Paolo Papale, Daniela De Luca, and Pieter R. Roelfsema. Deep generative networks reveal the tuning of neurons in it and predict their influence on visual perception. bioRxiv, 2024. doi: 10. 1101/2024.10.09.617382. URL https://www.biorxiv.org/content/early/2024/10/12/2024.10.09.617382.
 - Paweł A. Pierzchlewicz, Konstantin Willeke, Arne Nix, Pavithra Elumalai, Kelli Restivo, Tori Shinn, Cate Nealley, Gabrielle Rodriguez, Saumil Patel, Katrin Franke, Andreas Tolias, and Fabian Sinz. Energy guided diffusion for generating neurally exciting images, 05 2023.
 - D Qian, H Zeng, et al. Neurodm: Decoding and visualizing human brain activity with eeg-guided diffusion model. *Computer Methods and Programs in Biomedicine*, 2024. URL https://www.sciencedirect.com/science/article/pii/S0169260724002098.
 - Weikang Qiu, Zheng Huang, Haoyu Hu, Aosong Feng, Yujun Yan, and Rex Ying. Mindllm: A subject-agnostic and versatile model for fmri-to-text decoding, 2025. URL https://arxiv.org/abs/2502.15786.
 - Rodrigo Quian Quiroga, Leila Reddy, Gabriel Kreiman, Christof Koch, and Itzhak Fried. Invariant visual representation by single neurons in the human brain. *Nature*, 435(7045):1102–1107, 2005.
 - Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2021a. URL https://arxiv.org/abs/2103.00020.
 - Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision, 2021b. URL https://arxiv.org/abs/2103.00020.
 - Mattia Rigotti, O. Barak, M. Warden, Xiao-Jing Wang, N. Daw, E. Miller, and Stefano Fusi. The importance of mixed selectivity in complex cognitive tasks. *Nature*, 497:585–590, 2013. doi: 10.1038/nature12160.
 - Samuel Ritter et al. Interpretable neural networks with tree regularization. *Advances in Neural Information Processing Systems (NeurIPS)*, 2017.
 - Amanda Robinson, Genevieve Quek, and Thomas Carlson. Visual representations: Insights from neural decoding. *Annual Review of Vision Science*, 9, 03 2023. doi: 10.1146/annurev-vision-100120-025301.
 - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models, 2022. URL https://arxiv.org/abs/2112.10752.
 - Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion models with deep language understanding, 2022. URL https://arxiv.org/abs/2205.11487.
 - Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade W Gordon, Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski, Srivatsa R Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev. LAION-5b: An open large-scale dataset for training next generation image-text models. In *Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2022. URL https://openreview.net/forum?id=M3Y74vmsMcY.
 - Paul S. Scotti, Atmadeep Banerjee, Jimmie Goode, Stepan Shabalin, Alex Nguyen, Ethan Cohen, Aidan J. Dempster, Nathalie Verlinde, Elad Yundler, David Weisberg, Kenneth A. Norman, and Tanishq Mathew Abraham. Reconstructing the mind's eye: fmri-to-image with contrastive learning and diffusion priors, 2023. URL https://arxiv.org/abs/2305.18274.

- Guohua Shen, Tomoyasu Horikawa, Kei Majima, and Yukiyasu Kamitani. Deep image reconstruction from human brain activity. *PLoS Computational Biology*, 15(1):e1006633, 2019.
- Yonghao Song, Bingchuan Liu, Xiang Li, Nanlin Shi, Yijun Wang, and Xiaorong Gao. Decoding natural images from eeg for object recognition, 2024. URL https://arxiv.org/abs/2308.13234.
 - Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In *arXiv preprint arXiv:1312.6199*, 2013.
 - JohnMark Taylor and Yaoda Xu. Using fmri to examine nonlinear mixed selectivity tuning to task and category in the human brain. *Imaging Neuroscience*, 2:1–21, 11 2024. ISSN 2837-6056. doi: 10.1162/imag_a_00354. URL https://doi.org/10.1162/imag_a_00354.
 - Mike Tyka. Regularizing feature visualization with bilateral filters. Personal communication, 2016.
 - Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, and Koray Kavukcuoglu. Conditional image generation with pixelcnn decoders. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2016.
 - Marcel A J van Gerven. Neural decoding with generative models. *Trends in Cognitive Sciences*, 25 (7):593–607, 2021.
 - A. Vialatte, A. Vialatte, Y. Yeshurun, A. Khan, R. Rosenholtz, L. Pisella, and L. Pisella. Superior parietal lobule: A role in relative localization of multiple different elements. *Cerebral cortex*, 2020. doi: 10.1093/cercor/bhaa250.
 - Edgar Walker, Fabian Sinz, Erick Cobos, Taliah Muhammad, Emmanouil Froudarakis, Paul Fahey, Alexander Ecker, Jacob Reimer, Xaq Pitkow, and Andreas Tolias. Inception loops discover what excites neurons most using deep predictive models. *Nature Neuroscience*, 22:1–6, 12 2019. doi: 10.1038/s41593-019-0517-x.
 - Weihao Xia, Raoul de Charette, Cengiz Öztireli, and Jing-Hao Xue. Dream: Visual decoding from reversing human visual system, 2024. URL https://arxiv.org/abs/2310.02265.
 - Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt adapter for text-to-image diffusion models, 2023. URL https://arxiv.org/abs/2308.06721.
 - Bohan Zeng, Shanglin Li, Xuhui Liu, Sicheng Gao, Xiaolong Jiang, Xu Tang, Yao Hu, Jianzhuang Liu, and Baochang Zhang. Controllable mind visual diffusion model, 2023. URL https://arxiv.org/abs/2305.10135.

APPENDIX

THE USE OF LARGE LANGUAGE MODELS

We did not use Large Language Models for this paper.

APPENDIX OVERVIEW

This appendix provides comprehensive details and additional results to support the findings presented in the main paper and ensure that all of the results can be reproduced. The appendix content is organized into the following sections:

- Additional Results: Additional visualizations and analyses that further demonstrate the effectiveness of our proposed methods. More examples of enhanced sampling, local change results, and optimization outcomes are presented, as shown in section A.
- Experimental Settings: Comprehensive information about the datasets settings, like input size and how are the datasets divided and processed, model architectures and implementation details, then training configurations and computational resources. All of them can provide a clear understanding of our experimental setup, which are helpful to reproduce the results, as shown in section B.
- Implementation Details: Detailed information about the algorithms we used to implement our method, including pseudocode, and corresponding explanations. All of them can provide a clear understanding of how the training and optimization are carried out, as shown in section C.
- **Predictive Power of In-silico brain simulator**: Information about how much our trained In-silico brain simulator can predict the brain activity data, as shown in section D.

A ADDITIONAL RESULTS

A.1 More Results for the NSD Dataset

Here is a summarized table of more experimental results on NSD dataset:

Table S1: Activation change and realism on additional ROIs. Better values are in **bold**

Table 51. Activation change and realism on additional ROIs. Better values are in both.									
	ROIs	V1	V2	V3	V4	V8	LO1	LO2	V4t
Activation	Ours	0.257	0.080	0.247	0.486	0.696	0.583	0.498	0.757
Increase (Δr)	Baseline	0.157	0.116	0.226	0.488	0.721	0.582	0.517	0.767
Activation	Ours	-0.291	-0.272	-0.573	-0.690	-0.406	-0.485	-0.490	-0.601
Decrease (Δr)	Baseline	0.102	0.224	0.274	0.501	0.608	0.100	-0.057	-0.511
FID@2k	Ours	164.87	157.84	167.44	173.24	160.07	136.05	186.67	178.62
riD@2k	Baseline	224.29	201.56	240.64	231.60	216.80	208.23	255.06	197.61
	ROIs	VWFA-1	PPA	RSC	OWFA	IP2	TPOJ1	TPOJ2	ТРОЈ3
Activation	ROIs Ours	VWFA-1 1.108	PPA 0.952	RSC 0.923	OWFA 0.718	IP2 0.091	TPOJ1 0.456	TPOJ2 0.661	TPOJ3
Activation Increase (Δr)									
	Ours	1.108	0.952	0.923	0.718 1.088	0.091	0.456 0.509	0.661 0.751	1.014
Increase (Δr)	Ours Baseline	1.108 1.019	0.952 0.926	0.923 0.954	0.718 1.088	0.091 0.084	0.456 0.509	0.661 0.751 -0.384	1.014 1.091
Increase (Δr) Activation	Ours Baseline Ours	1.108 1.019 -0.391	0.952 0.926 -0.809	0.923 0.954 -0.913 -0.804	0.718 1.088 -0.780 0.347	0.091 0.084 -0.213 0.061	0.456 0.509 -0.136 -0.134	0.661 0.751 -0.384 -0.234	1.014 1.091 -0.591 -0.484

The full test-set results for the additional ROIs are provided in Figs. S1–S16.

A.1.1 ROI: IPS4

Figure S1: Full result of activation change on region IPS4, postive direction.

Figure S2: Full result of activation change on region IPS4, negative direction.

A.1.2 ROI: SPL1

Figure S3: Full result of activation change on region SPL1, positive direction.

Figure S4: Full result of activation change on region SPL1, negative direction.

A.1.3 ROI: 31A

Figure S5: Full result of activation change on region 31a, positive direction.

Figure S6: Full result of activation change on region 31a, negative direction.

A.1.4 ROI: 31PD Original Original Vis-Lens Baseline $\alpha = 0.2$ $\alpha = 0.4$ $\alpha = 0.6$ $\alpha = 0.8$ $\alpha = 1.0$

Figure S7: Full result of activation change on region 31pd, positive direction.

Figure S8: Full result of activation change on region 31pd, negative direction.

A.1.5 ROI: V1 Original Original Baseline $\alpha = 0.2$ $\alpha = 0.4$ $\alpha = 0.6$ $\alpha = 0.8$ $\alpha = 1.0$

Figure S9: Full result of activation change on region V1, positive direction.

Figure S10: Full result of activation change on region V1, negative direction.

A.1.6 ROI: V2 Original Original Vis-Lens Baseline $\alpha = 0.2$ $\alpha = 0.4$ $\alpha = 0.6$ $\alpha = 0.8$ $\alpha = 1.0$

Figure S11: Full result of activation change on region V2, positive direction.

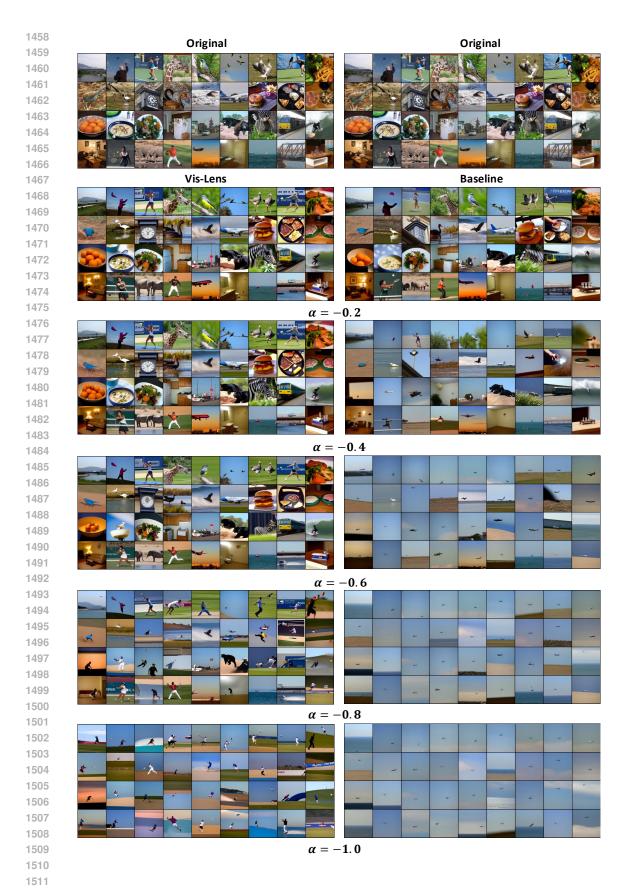


Figure S12: Full result of activation change on region V2, negative direction.

A.1.7 ROI: V3 Original Original Vis-Lens **Baseline** $\alpha = 0.2$ $\alpha = 0.4$ $\alpha = 0.6$ $\alpha = 0.8$ $\alpha = 1.0$

Figure S13: Full result of activation change on region V3, positive direction.

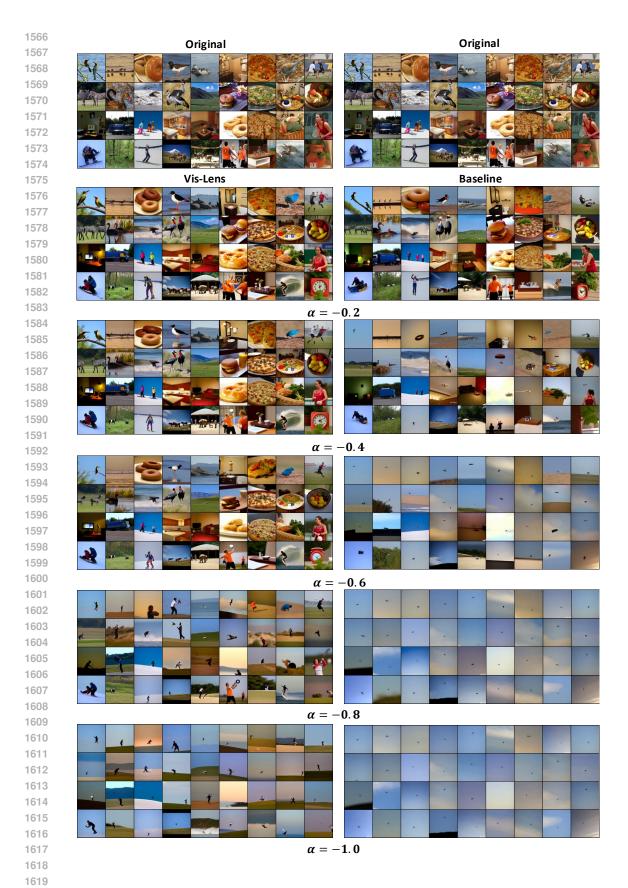


Figure S14: Full result of activation change on region V3, negative direction.

A.1.8 ROI: V4 Original Original Vis-Lens Baseline $\alpha = 0.2$ $\alpha = 0.4$ $\alpha = 0.6$ $\alpha = 0.8$ $\alpha = 1.0$

Figure S15: Full result of activation change on region V4, positive direction.

Figure S16: Full result of activation change on region V4, negative direction.

A.2 VISUAL REPRESENTATIONS OF EEG OCCIPITAL CHANNELS

Here we present the visual representations generated by our method. 'Original' means input images, 'Reconstruction' means image reconstructed with our model with given input, 'Maximize' and 'Minimize' represent images synthesized by out method to increase/decrease activations of a given channel.

Figure S17: Result of activation change on channel O1 & Oz with our method

Figure S18: Result of activation change on channel O2 & PO7 with our method

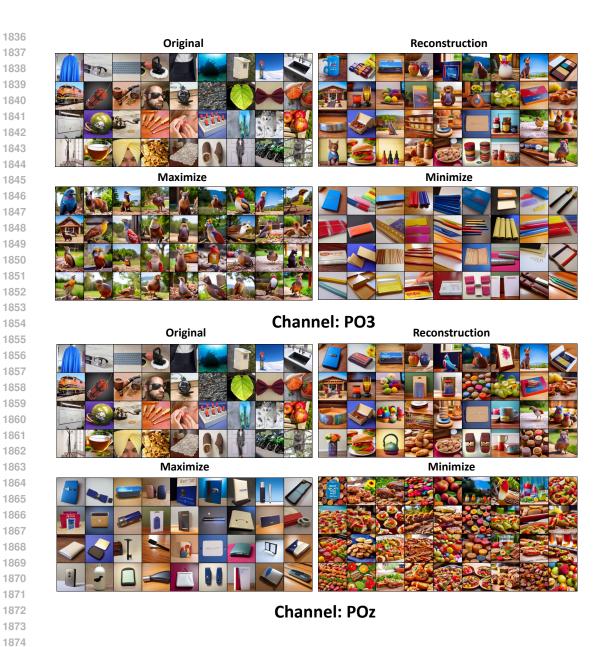
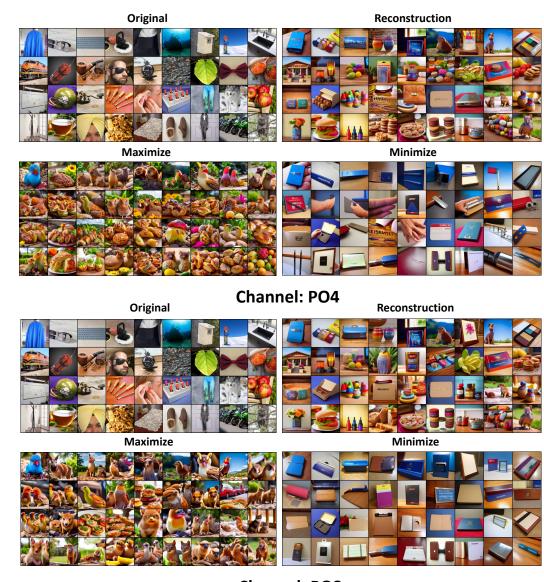


Figure S19: Result of activation change on channel PO3 & POz with our method



Channel: PO8

Figure S20: Result of activation change on channel PO4 & PO8 with our method

A.3 MORE ANN RESULTS

We present more examples on manipulating activations in SimCLR(Chen et al., 2020), shown in Figs. S17–S22, which further demonstrate the effectiveness of our method.

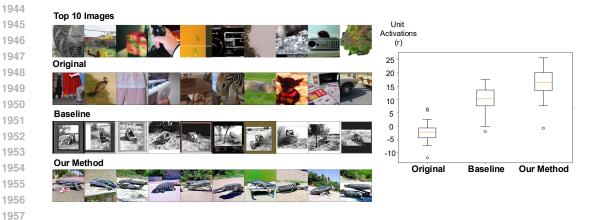


Figure S21: One latent modification example to generate preferred images with increasing unit activations on ImageNet-mini Dataset. Though the top 10 images can not demonstrate a notable pattern represented by the unit in the early layer of SimCLR model, our method can generate a uniform representation and compared with original images from ImageNet-mini, generated preferred images based on modifying the latent to the positive prior mean shows a more apparent change in activation compared with original images and representations from BrainACTIV.

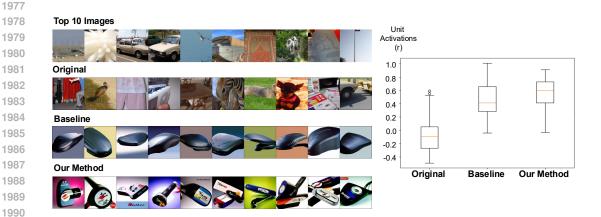


Figure S22: One latent modification example to generate preferred images with increasing unit activations on ImageNet-mini Dataset. Though the top 10 images can not demonstrate a notable pattern represented by the unit in the early layer of SimCLR model, our method can generate a uniform representation and compared with original images from ImageNet-mini, generated preferred images based on modifying the latent to the positive prior mean shows a more apparent change in activation compared with original images and representations from BrainACTIV.

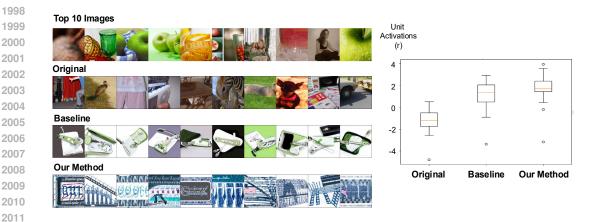


Figure S23: One latent modification example to generate preferred images with increasing unit activations on ImageNet-mini Dataset. Though the top 10 images can not demonstrate a notable pattern represented by the unit in the early layer of SimCLR model, our method can generate a uniform representation and compared with original images from ImageNet-mini, generated preferred images based on modifying the latent to the positive prior mean shows a more apparent change in activation compared with original images and representations from BrainACTIV.

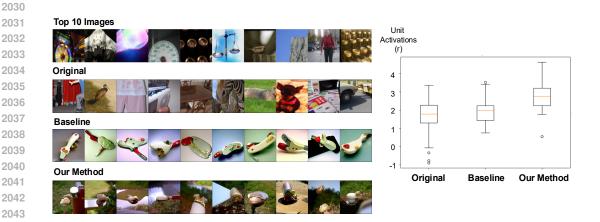


Figure S24: One latent modification example to generate preferred images with increasing unit activations on ImageNet-mini Dataset. The top 10 images demonstrate a notable pattern represented by the unit in the deep layer of SimCLR model, that round objects appear in top images. Our method can also generate a uniform representation and compared with original images from ImageNet-mini, generated preferred images based on modifying the latent to the positive prior mean shows a more apparent change in activation compared with original images and representations from BrainACTIV.

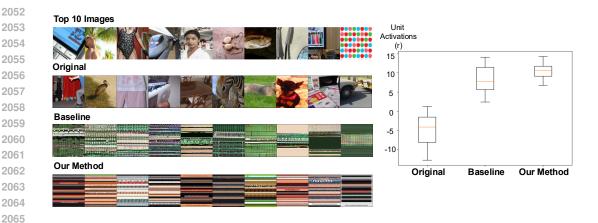


Figure S25: One latent modification example to generate preferred images with increasing unit activations on ImageNet-mini Dataset. The top 10 images demonstrate a notable pattern represented by the unit in the deep layer of SimCLR model, that grid objects appear in top images. Our method can also generate a uniform representation and compared with original images from ImageNet-mini, generated preferred images based on modifying the latent to the positive prior mean shows a more apparent change in activation compared with original images and representations from BrainACTIV.

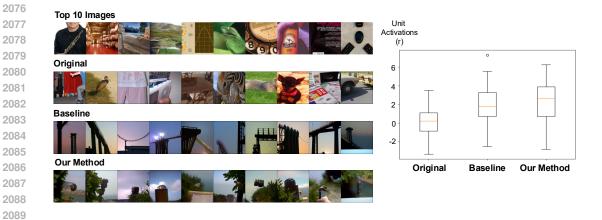


Figure S26: One latent modification example to generate preferred images with increasing unit activations on ImageNet-mini Dataset. Though the top 10 images can not demonstrate a notable pattern represented by the unit in the early layer of SimCLR model, our method can generate a uniform representation and compared with original images from ImageNet-mini, generated preferred images based on modifying the latent to the positive prior mean shows a more apparent change in activation compared with original images and representations from BrainACTIV.

A.4 More Optimization Results

Our Optimization method based on VAE latent can be performed not only on CIFAR-10 dataset. Figure S27 and Table S2 provide additional optimization results on the ImageNet-mini dataset. Our method shows similar advantages in manipulating unit responses and preserving the features of original images.

It is worth noting that, the activation increase with our optimization method slight trails the optimization with Standard VAE, and the similarity advantage shrinks compare to CIFAR-10.

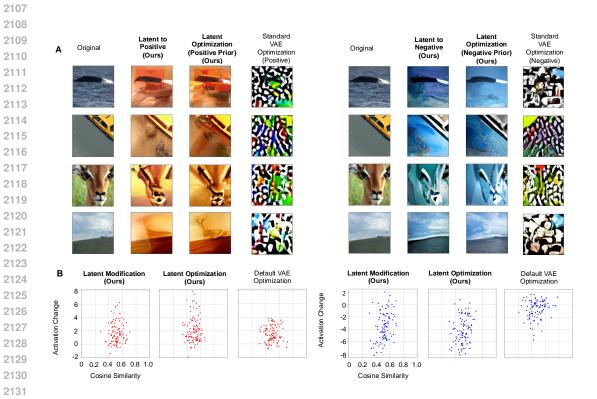


Figure S27: a) Generating preferred images with different methods on ImageNet-mini Dataset. Left 4 columns show optimizing images to increase their activations. Column 1 are four example input images. Column 2-3 are results of our method while column 4 represent optimizing the latent space with a standard VAE. Right 4 columns are results of optimization in the same methods presenting in the same order, with target of decreasing activations. b) shows the shift in the activation value between and the cosine similarity between randomly chosen 100 original images and their optimized results over different methods. Compared with baseline VAE, our method can effectively increase activation better as well as maintain a greater similarity with original images, meaning more unrelated features are preserved.

Table S2: Summary of average cosine similarity and change in unit responses (Δr) between optimization results and input images over different optimization methods on ImageNet-mini dataset, corresponding to Figure S.7 B. The best results are marked with **bold face**.

Direction	Model	Method	Average Similarity (Cosine)	Average Δr
positive	structured landscape	latent modification	0.513	1.710
		latent optimization	0.503	2.140
	original landscape	iatent optimization	0.465	2.266
	structured landscape	latent modification	0.520	-3.595
negative	Structured fandscape	latent optimization	0.514	-4.215
	original landscape	iatent optimization	0.467	-0.526

B EXPERIMENTAL SETTINGS

B.1 Dataset Details

 We will show how the dataset was processed in this part.

Natural Scenes Dataset (NSD): (Allen et al., 2021): we selected 1000 images presented to Subject 1 from the dataset as our test set, while using CLIP embeddings of 9000 images shown to same subject for training. We used same test images selected by the BrainACTIV. And for the measurement of activation change and FID score, we use all 1000 images presented to same subject as test set in COCO dataset (Lin et al., 2015) and their CLIP embeddings. 2k images for FID(Heusel et al., 2017) calculation are the combination of 1k preferred images to maximize/minimize the activations, respectively. The CLIP embeddings are retrieved from the first output of CLIP encoder (Radford et al., 2021a), the dimension is 1024 for every image.

THINGS-EEG: (Grootswagers et al., 2022; Gifford et al., 2022): we selected 200 images presented to Subject 1 from the dataset as our test set, while using CLIP embeddings of 16540 images shown to same subject for training. In this dataset, each image was presented four times, results in 16540 \times 4 = 66160 trials. We averaged the EEG data of four trials. Then, we selected data from those time windows:

- **C1**: [0.05, 0.09](50-90ms).
- **P1**: [0.08, 0.12], Early visual processing.
- N170: [0.13, 0.18], Object recognition stage.
- **P2**: [0.16, 0.24], Higher-order feature processing.
- **P300**: [0.25, 0.40], Attentional evaluation.
- LPP: [0.40, 0.70], Late Positive Potential / Memory.

Beyond averaing trials, we also averaged all data within those time windows, to get a singular value as EEG activation data.

Imagenet-mini (Deng et al., 2009): The train and test split follow the default settings in the orignal dataset, which divided the whole dataset into train/val sets, we use train as our train set and val as our testset. Train set consists of 34,745 images, and test set consists of 3,923 images. For the training process of SimCLR, we used following transform techniques in torchvision.transforms to edit the orignal Imagenet-mini images:

```
2194     transforms . RandomResizedCrop(128, scale = (0.08, 1.0),
2195     interpolation=Image . BICUBIC)
2196     transforms . RandomHorizontalFlip()
2197     transforms . ToTensor()
```

CIFAR-10 (Krizhevsky & Hinton, 2009): Also follows original settings of CIFAR-10, which are 50000 training and 10000 testing images respectively. The CIFAR-10 images in original dataset were processed with this:

```
transforms. Grayscale (num_output_channels=3) transforms. Resize ((32, 32)) transforms. ToTensor() transforms. Normalize ((0.5,), (0.5,))
```

- **B.2** MODEL IMPLEMENTATION DETAILS
- B.2.1 VAE IMPLEMENTATION AND TRAINING

VAE: For **NSD** and **ImageNet** dataset to learn CLIP embeddings, using VAE architecture (Kingma & Welling, 2013) consists of an encoder and a decoder with the following layers:

• Encoder (CLIP \rightarrow latent)

```
2214 - FC_{enc}: 1024 \longrightarrow 2048 (first 1024 dims are \mu, last 1024 dims are \log \sigma^2)

2216

• Latent layer

- \mu \in \mathbb{R}^{1024}, \log \sigma^2 \in \mathbb{R}^{1024}

- Reparameterisation: z = \mu + \epsilon \odot \exp(0.5 \log \sigma^2)

• Decoder (latent \rightarrow CLIP)

- FC<sub>dec</sub>: 1024 \longrightarrow 1024 (reconstructed CLIP embedding)
```

Light-weight Bottleneck CVAE: For **CIFAR-10** dataset, we use an image-to-image Bottleneck CVAE, the structure is:

• Encoder:

- Conv1: 3→16 channels, 3 × 3 kernel, stride 1, padding 1, ReLU
 Conv2: 16→32 channels, 3 × 3 kernel, stride 2, padding 1, ReLU
 Conv3: 32→64 channels, 3 × 3 kernel, stride 2, padding 1, ReLU
- Bottleneck:
 - FC_mu: $64 \times 8 \times 8 \rightarrow 192$ - FC_logvar: $64 \times 8 \times 8 \rightarrow 192$ - FC_bn_mu: $192 \rightarrow 192$ - FC_bn_logvar: $192 \rightarrow 192$

Decoder:

- FC_decode: $192 \rightarrow 64 \times 8 \times 8$, ReLU
- Deconv1: 64→32 channels, 3 × 3 kernel, stride 2, padding 1, output padding 1, ReLU
- Deconv2: $32 \rightarrow 16$ channels, 3×3 kernel, stride 2, padding 1, output padding 1, ReLU
- Deconv3: $16 \rightarrow 3$ channels, 3×3 kernel, stride 1, padding 1, Sigmoid

The VAE training configurations are shown in the Table S3.

B.2.2 IMPLEMENTATION OF DIFFUSION PIPELINE

All images are first converted to a 1024-dimensional representation with the frozen CLIP-ViT-H/14 encoder released by LAION (Schuhmann et al., 2022). For every split of the Natural Scenes Dataset we iterate once over the raw-pixel loader, compute the embeddings and cache the resulting CLIP features. Subsequent experiments therefore operate purely in embedding space and never revisit the expensive vision backbone.

Image synthesis uses the "img-to-img" variant of Stable Diffusion v1.5 from the DIFFUSERS library (Leocadio, 2025). We swap the original PNDM scheduler for DDIM (better speed/quality trade-off) and disable the safety checker to avoid unintended filtering. Every network in the pipeline—U-Net, text encoder, VAE, and the IP-Adapter (Ye et al., 2023) that injects the CLIP embedding into the cross-attention blocks—remains entirely frozen. We use the public 7 MB checkpoint that is aligned with the very same ViT-H/14 encoder employed for feature extraction, ensuring a loss-free conditioning path.

During inference each RGB frame (512×512 px) is supplied together with a target CLIP embedding—either the baseline embedding obtained by ridge regression or the one produced by our activation-aware VAE. Unless noted otherwise we set the SDEdit strength to $\gamma=1.0$; We run 50 DDIM steps per image, draw a single sample, and fix the random seed to 42 for strict comparability across all methods.

B.2.3 IMPLEMENTATION OF OTHER MODELS

SimCLR and ConvNet: For SimCLR, original ImageNet-mini was trained on 256 * 256, I retrained the model with same configurations of SimCLR, only edited the size of input files and edited minor structures in the model to match the input size. For **CIFAR-10**: I designed a three layer ConvNet to train as the CIFAR-10 classfier, the structure is:

• Encoder:

- Conv1: n_channels →32 channels, 3 × 3 kernel, padding 1, BatchNorm, ReLU, Max-Pool2d(2,2)
- Conv2:32→64 channels, 3×3 kernel, padding 1, BatchNorm, ReLU, MaxPool2d(2,2)
- Conv3:64→128 channels, 3 × 3 kernel, padding 1, BatchNorm, ReLU, Max-Pool2d(2,2)

• Fully Connected Layers:

- FC1:128×4×4 →256 units, Dropout(0.5), ReLU
- FC2:256 →num_classes

Table S3: VAE Hyperparameters and Training Settings for NSD, THINGS-EEG, ImageNet, and CIFAR-10 datasets

CITAK-10 datasets					
Hyperparameter	NSD & ImageNet	THINGS-EEG	CIFAR-10		
Data Hyperpara	meters				
input_size n_channels	1024 dim embeddings 1	1024 dim embeddings 1	32 × 32 images 3		
Model Hyperpar	ameters				
latent_dim	2048	2048	192		
Training Setting	s				
seed	0	0	0		
batch_size	128	128	128		
epochs	150	300	150		
optimizer	Adam	Adam	Adam		
lr	1×10^{-4}	1×10^{-3}	1×10^{-4}		
scheduler	StepLR (step_size=10,	StepLR (step_size=10,	StepLR (step_size=10,		
	$\gamma = 0.9$)	$\gamma = 0.9$)	$\gamma = 0.9$)		
grad_clip	1.0	1.0	1.0		

B.3 METRIC DETAILS

Quantifying Similarity To further evaluate the structured landscape, we used similarity and realism metrics. For similarity between original images and images with activation optimized but unrelated features preserved, we use cosine similarity as follows. Given a set of images $\{I_i\}$ with feature embeddings $\{f_i\}$, the similarity score is expressed as:

Cosine Similarity
$$(\mathbf{f}_i, \mathbf{f}_j) = \frac{\mathbf{f}_i \cdot \mathbf{f}_j}{\|\mathbf{f}_i\| \|\mathbf{f}_j\|}$$

Implementation of Similarity Calculation: For the measurement of the feature preserve capacity of different optimization methods, I used pretrained ResNet18 encoder output to represent the features on **CIFAR-10** images and Inception-V3 on **ImageNet** dataset, with consine similarity between features of original images and their corresponding output images calculated after that.

Quantifying Realism: Frechét Inception Distance (FID): To quantify overall realism we report the Frechét Inception Distance, computed on the 2 048-D pool-3 activations of a frozen Inception-v3 network. Let μ_r , Σ_r and μ_g , Σ_g be the empirical means and covariances of the real and generated image features, respectively. The FID is

$$FID = \|\mu_r - \mu_g\|_2^2 + Tr(\Sigma_r + \Sigma_g - 2(\Sigma_r \Sigma_g)^{1/2}).$$

Lower values indicate that the generated distribution is closer to the real one. In all experiments we follow the protocol of evaluating on 2 000 samples (1 000 originals duplicated for the real set and 1 000 synthetics per method for the generated set) and report FID computed with the TORCHMETRICS implementation under feature = 2048.

B.4 Computational Resources

All experiments were carried out on a single workstation equipped with **8 × NVIDIA RTX A5000 GPUs** (each with 24 GB on-board memory, CUDA 12.2, driver 535.183), an AMD EPYC 7543 CPU (32 cores, 2.8 GHz) and 512 GB of system RAM. One GPU was used for model training or inference at a time. Training a CLIP-to-CLIP VAE on the NSD train split (\approx 9 k images) with a batch-size of 256 took \approx 6.5 hours on a single A5000; Optimizing on CIFAR-10 completed in under 40 minutes. For diffusion-based generation (IP-Adapter + Stable-Diffusion v1.5, 50 DDIM steps) , producing one full 2 k-image evaluation set (positives + negatives) took about 70 minutes.

C IMPLEMENTATION DETAILS

237823792380

2381

2376

2377

C.1 TRAINING DETAILS

2382238323842385

23862387

Below are the pseudo-code of training and inferrence pipeline.

238823892390

2391

2394

Algorithm 1 VAE Training with Activation Regularization

1: vae: Variational Autoencoder model

```
2392 Algorithi
Require:
```

```
2: optimizer: Optimizer (Adam)
2395
         3: scheduler: Learning rate scheduler (StepLR)
2396
         4: num_epochs: Number of training epochs
2397
        Ensure:
2398
         5: VAE with structured latent space and high-quality reconstruction
2399
2400
         6: procedure TRAINVAE(vae, optimizer, ...)
2401
         7:
                for epoch = 1 to num_epochs do
2402
         8:
                    for each batch do
2403
         9:
                        optimizer.zero_grad()
        10:
                        Forward Pass:
2404
2405
        11:
                        z \leftarrow \text{vae.encode}(\text{data})
        12:
                        \hat{x} \leftarrow \text{vae.decode}(z)
2406
                        Compute Loss:
        13:
2407
        14:
                        Reconstruction Loss \leftarrow MSE(\hat{x}, data)
2408
        15:
                        Compute Prior Parameters:
2409
2410
        16:
```

 $activation_values + \epsilon$

 μ_{neg} , otherwise.

KLD Loss $\leftarrow KLD_{loss}(\mu_i, \mu_i^{\text{prior}})$

Backpropagation:

scheduler.step()

end for

end for

26: end procedure

Total Loss.backward()

optimizer.step()

 $\mu_i^{\text{prior}} \leftarrow \left\{ \mu_{\text{pos}}, \text{ if activation_values}_i > 0, \right.$

Total Loss $\leftarrow \omega_{\text{recon}} \times \text{Reconstruction Loss} + \omega_{\text{KLD}} \times \text{KLD Loss}$

242124222423

24242425242624272428

2429

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

17:

18: 19:

20:

21:

22:

23:

24:

25:

```
Latent Modification and Image Generation To generate high-quality preferred images that enhance activations based on the latent modification, the algorithm is shown as following block 2:
```

2430 Algorithm 2 Vis-Lens: Preferred-Image Generation 2431 **Require:** 2432 $i_{\rm in}$... RGB input image 2433 clip_enc... frozen CLIP-ViT-H encoder 2434 $x \dots 1024$ -d CLIP embedding of i_{in} 2435 vae ... activation-aware CLIP→CLIP VAE 2436 $z, \mu \dots$ latent code / mean; $\mu_{pos}, \mu_{neg} \dots$ activation priors 2437 ip_adapter ... frozen IP-Adapter sd15... Stable-Diffusion v1.5 (DDIM) 2438 α ... slerp weight, γ ... SDEdit strength 2439 $r_{\rm dir} \in \{ { m pos, neg} \} \dots$ desired ROI shift 2440 **Ensure:** preferred image i_{out} 2441 1: **procedure** GenPreferred (i_{in}, r_{dir}) 2442 2: $x \leftarrow \text{clip_enc}(i_{\text{in}})$ 2443 $(\mu, \log \sigma^2) \leftarrow \text{vae.encode}(x); z \leftarrow \mu$ 3: 2444 4: if $r_{\rm dir} = {\rm pos}$ then $z' \leftarrow {\rm slerp}(\alpha, z, \mu_{\rm pos})$ 2445 5: else $z' \leftarrow \text{slerp}(\alpha, z, \mu_{\text{neg}})$ 2446 end if 6: 2447 7: $x_{\text{gen}} \leftarrow \text{vae.decode}(z')$ 2448 8: $i_{\text{out}} \leftarrow \text{ip_adapter.generate}(\text{clip} = x_{\text{gen}}, \text{image} = i_{\text{in}}, \gamma, 50 \text{ steps})$ 9: return i_{out} 10: end procedure 2450

Here are more detailed explanations of our generation process:

2451245224532454

245524562457

245824592460

2461

2462 2463

2465

246624672468

246924702471

2472

2473

247424752476

2477247824792480

2481 2482

2483

- The input image i_{in} is projected to a CLIP embedding x with the frozen encoder.
- The activation-aware VAE encodes x to latent mean μ ; we take $z = \mu$ for a deterministic edit.
- To shift the chosen ROI, we linearly interpolate the latent toward the positive prior μ_{pos} (to raise activity) or the negative prior μ_{neg} (to suppress it), yielding z'.
- Decoding z' gives an intermediate CLIP embedding x_{gen} .
- $x_{\rm gen}$ is injected—via a frozen IP-Adapter—into Stable-Diffusion v1.5. With SDEdit strength $\gamma=1.0$ the reverse DDIM process relies entirely on $x_{\rm gen}$; smaller γ blends in low-level structure from the reference image.
- The sampler returns the final preferred image i_{out} , which is used in all downstream analyses.

C.2 Details about Optimizing Unit Activations with Latent

The algorithm for optimizing neural network unit responses using latent variables from a VAE is listed as following algorithm block 3:

```
2484
        Algorithm 3 Optimize Activation with Latent Variables
2485
        Require:
2486
         1: net: Pre-trained neural network model
2487
         2: vae: Pre-trained Variational Autoencoder
2488
         3: layer_name: Target layer in net
2489
         4: unit_idx: Index of target unit
2490
         5: num_iterations: Number of optimization steps
         6: learning_rate: Learning rate for optimizer
2491
2492
         7: KLD_weight: Weight for Kullback-Leibler Divergence loss
         8: target: Direction "max" or "min")
2493
         9: init_data: Initial data sample
2494
        Ensure:
2495
        10: Optimized responses scores, Controlled KLD loss
2496
2497
        11: procedure OPTIMIZEACTIVATION(net, vae,...)
2498
        12:
                Initialize Latent Variable:
2499
        13:
                 (\mu, \log \text{var}) \leftarrow \text{vae.encode}(\text{init\_data})
2500
        14:
                z \leftarrow \mu
2501
        15:
                Set Up Optimizer:
2502
        16:
                optimizer \leftarrow Adam(z, lr=learning_rate)
        17:
                Register Activation Hook on layer_name
2503
        18:
                for iteration = 1 to num_iterations do
2504
        19:
                    Decode Latent to Image:
2505
        20:
                    x \leftarrow \text{vae.decode}(z)
2506
                    Forward Pass:
        21:
2507
        22:
                    net(x)
        23:
                    Compute Loss:
2509
        24:
                    if target = "max" then
2510
        25:
                        loss \leftarrow -activation + \omega_{KLD} \times KLD(z)
2511
        26:
                    else
2512
        27:
                        loss \leftarrow activation + \omega_{\text{KLD}} \times \text{KLD}(z)
2513
        28:
                    end if
        29:
                    Backpropagation:
2514
        30:
                    optimizer.zero_grad()
2515
        31:
                    loss.backward()
2516
        32:
                    optimizer.step()
2517
        33:
                end for
2518
                Remove Activation Hook
        34:
2519
        35:
                Return x, activation scores
2520
        36: end procedure
2521
```

More Explanation of the Algorithm In this algorithm, we aim to optimize the activation of specific units in a neural network model by adjusting the latent variables z of a pre-trained Variational Autoencoder (VAE). The primary goal is to maximize or minimize the target unit's activation while preserving the overall image quality.

Initialization: We initialize the latent variable z by encoding the input image using the VAE encoder:

```
(\mu, \text{logvar}) \leftarrow \texttt{vae.encode}(\texttt{init\_data}) z \leftarrow \mu
```

Optimization Loop: For each iteration, we perform the following steps:

25222523

2524

2525

2526

2527

2528

2529 2530

2531 2532

2533

2534 2535

25362537

1. **Decode Latent to Image:** The current latent variable z is decoded to generate an image x:

$$x \leftarrow \text{vae.decode}(z)$$

2. Forward Pass and Activation Capture: The generated image x is passed through the neural network net. We utilize a registered **hook function** on the target layer to capture the activation of the target unit during this forward pass:

The hook function retrieves the target activation activation, which will be used in the loss computation. This approach allows us to monitor and manipulate the activation of specific units without altering the forward pass logic of the network.

- 3. **Compute Loss:** We compute the loss function, which consists of two components: the activation term and the Kullback-Leibler Divergence (KLD) regularization term.
- **Activation Term:** Depending on the optimization direction (maximize or minimize), we use the negative or positive of the target unit's activation:

$$loss = \begin{cases} -activation, & if target = "max" \\ activation, & if target = "min" \end{cases}$$

- **KLD Regularization Term:** The KLD term ensures that the latent variable z remains within a plausible region of the latent space.

We consider two method for the KLD calculation. One is **our method**, and the other one is using the latent space of **Standard VAE** to compute KLD loss, which is our **baseline**.

• Our Method: We calculate the KLD using a modified prior that incorporates the desired change in activation. Specifically, the prior mean μ^{prior} is adjusted based on the target direction:

$$\mu^{\mathrm{prior}} = \begin{cases} +1, & \mathrm{if} \; \mathrm{target} = \mathrm{``max''} \\ -1, & \mathrm{if} \; \mathrm{target} = \mathrm{``min''} \end{cases}$$

The KLD is then computed as:

$$\begin{aligned} \text{KLD}_{\text{our}}(z) &= \frac{1}{2} \sum_{i=1}^{d_z} \left[\log \left(\frac{\sigma_i^{\text{prior}}}{\sigma_i} \right) - 1 \right. \\ &+ \left. \frac{\sigma_i^2 + (\mu_i - \mu_i^{\text{prior}})^2}{(\sigma_i^{\text{prior}})^2} \right] \end{aligned}$$

where σ_i^{prior} is set to a small constant (e.g., 0.1).

 Standard VAE: We calculate the KLD using the standard Gaussian prior with zero mean and unit variance:

$$\mathrm{KLD}_{\mathrm{standard}}(z) = \frac{1}{2} \sum_{i=1}^{d_z} \left(\mu_i^2 + \sigma_i^2 - \log(\sigma_i^2) - 1 \right)$$

- Total Objective Function: The total loss combines the activation loss and the KLD regularization:

$$loss = activation loss + \omega_{KLD} \times KLD(z)$$

where $\mathrm{KLD}(z)$ is either $\mathrm{KLD}_{\mathrm{our}}(z)$ or $\mathrm{KLD}_{\mathrm{standard}}(z)$ depending on the mode.

4. **Backpropagation:** We perform backpropagation to compute the gradients of the loss with respect to z and update z using the optimizer.

optimizer.zero_grad()

loss.backward()

optimizer.step()

Post-processing with DDPM: To enhance the quality and realism of the generated image, we further refine x using a pre-trained Denoising Diffusion Probabilistic Model (DDPM).

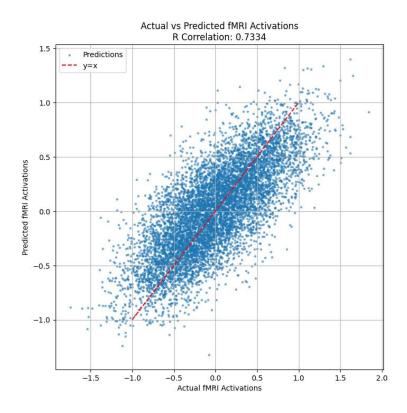
Final Results: The final optimized images presented in our paper are the outputs from the DDPM refinement process, not the direct outputs from the VAE optimization.

Configurations: During the implementation, learning rate was set to 0.1, num_iterations to 10000 and ω_{KLD} to 0.001.

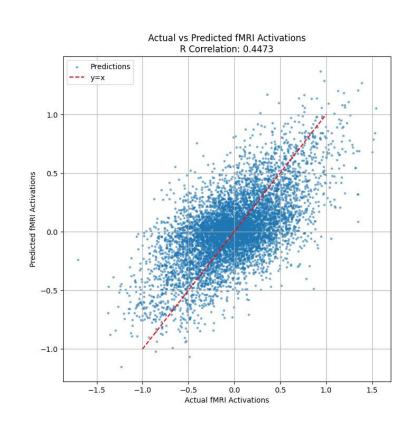
D PREDICTIVE POWER OF IN-SILICO BRAIN SIMULATOR

Here are the graphs of the predictive power of our In-silico brain simulator. To improve the training efficiency, the In-silico brain simulators are training with different ROI groups.

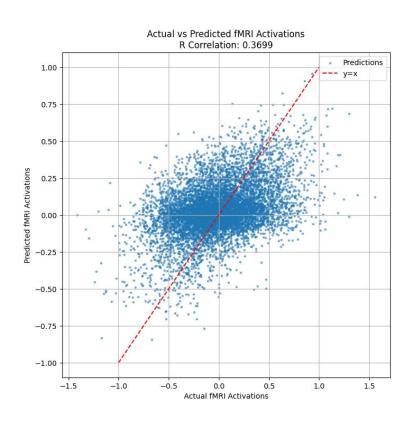
ROIs: OFA, FFA-1, EBA, VWFA-1, OPA, PPA, RSC, OWFA:



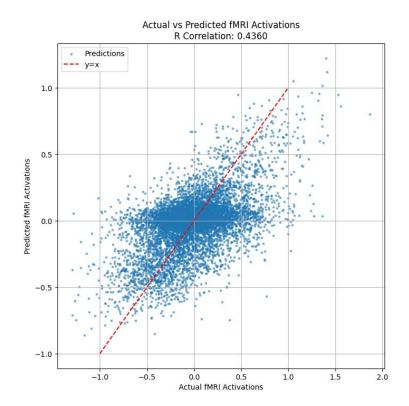
ROIs: IPS4, SPL1, TO1, PHC2, VO2, PGi, VVC, TE2a:



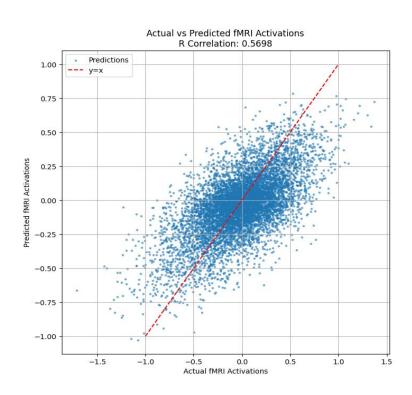
ROIs: STSdp, 31a, 31pd, DVT, FST, Gp, PGs, PH:



ROIs: TE2p, PHT, TPOJ1, TPOJ2, TPOJ3, IP0, IP1, IP2:



ROIs: V1, V2, V3, V4, V8, LO1, LO2, V4t:



Occipital Channels: O1, Oz, O2, PO7, PO3, POz, PO4, PO8:

