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ABSTRACT

Understanding how neurons responding to visual stimulus inputs is an impor-
tant question in both deep learning and neuroscience. It has significant impli-
cations in enhancing the interpretability of black-box artificial neural networks
and understanding the visual representation in biological neural networks. We
proposed a structured visual representation landscape and design an activation
score based prior that allows effectively regularizing the landscape with either ac-
tivations from a brain region or units in neural networks. Our model Vis-Lens
integrates a variational auto-encoder and diffusion model as an image generative
model. It allows generation of natural realistic preferred images with directly
modifying the activation-regularized latents, which avoids the tedious optimiza-
tion procedure. We demonstrate the effectiveness of our framework in both arti-
ficial neural networks and biological neural networks with multi-modal response
data derived from human visual cortex, including functional Magnetic Resonance
Imaging (fMRI) and electroencephalography (EEG). Our framework outperform-
ing state-of-the-art method on generating visual representations of those networks.

1 INTRODUCTION

The exploration of visual representations in both biological and artificial neural networks has ad-
vanced our understanding in how complex visual stimuli are processed and represented in neural
networks (Marr, 2010; Hubel & Wiesel, 1962; Bashivan et al., 2019). Previous studies that demon-
strate the capacity of neurons in the medial temporal lobe (MTL) of the human brain to form invari-
ant representations of complex stimuli (Quiroga et al., 2005), such as faces, landmarks, and objects,
regardless of visual variations. These findings illustrate how single neurons can encode high-level,
abstract percepts with remarkable specificity, leading to the hypothesis of sparse and invariant cod-
ing mechanisms in the brain (Olshausen & Field, 2004).

While methods exploring visual representation in some brain regions work fine by learning di-
rectly from embeddings of popular image encoders like CLIP (Garcia Cerdas et al., 2025; Luo
et al., 2023b), understanding the feature representations for many brain regions that are not well-
studied remains challenging. For example, some higher-order brain regions can demonstrate mix-
selectivity (Rigotti et al., 2013) where they can respond to images with small overlap in shared fea-
tures. As presented in Figure 1, the top images that maximally activate the brain region distributed
across the embeddings space of CLIP encoder (Radford et al., 2021a).

Additionally, brain activity measured is often noisy, low-resolution, and partially observed, which
introduces the difficulties for analysis and modeling. Unlike previous works that aim to reconstruct
entire images from brain activities (Naselaris et al., 2011; Nishimoto et al., 2011; Shen et al., 2019;
Horikawa & Kamitani, 2017), our work focuses on understanding the feature representation of brain
regions by generating new preferred images that maxmizing or minizing the activity of those regions.
Those synthetic visual stimuli can be deployed in follow-up neuroscience experiments to test new
hypotheses, refine ROI functional maps, and accelerate discovery by guiding stimulus design.

To achieve this goal, we proposed Vis-Lens, an effective approach to interpret the feature represented
by brain regions. Given the noisy nature of brain recordings, instead of using brain activities directly
as input to the decoding model, our method refines the landscape of visual representation by em-
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Structured Latent Space

Max

Min

Brain Activations

Brain Activations

CLIP Embedding Dim 1 

Structured Latent Dim 1

Figure 1: Original CLIP Space (Top): Original CLIP embedding space without any activation
constraint: image embeddings that elicit high and low neural responses are dispersed and not clus-
tered throughout the space without shared visual structure. Structured Landscape (Bottom): By
encoding CLIP embeddings into the regularized latent space constrained with neuronal activations
as the prior, our method Vis-Lens could provide a more structured and representative landscape
to better identify the representations and preferences of brain regions than sorting top-k images in
dataset. The results are based on brain activations from the NSD dataset (Allen et al., 2021). In
the landscape plots, the color bar and z axis indicate the activation of brain region given different
images as inputs, x and y axis represent two latent dimensions, respectively.

ploying brain activation to regularize the prior, serving as a soft constraint. We further integrate the
structured landscape with powerful variational auto-encoder (VAE) and diffusion generative models
to generate realistic preferred images that can effectively modulate the brain activations.

Our method can facilitate the exploration of visual representations of brain regions while main-
taining interpretability. It is validated with multi-modal data, including fMRI data from the Natural
Scenes Dataset (NSD) (Allen et al., 2021) and EEG data from THINGS-EEG dataset (Grootswagers
et al., 2022; Gifford et al., 2022), analyzing responses in the human visual cortex to complex natural
stimuli. Meanwhile, due to the scarcity of image response data from human brains, our proposed
framework is also extended to artificial neural networks (ANNs), allowing controlled testing of vi-
sual feature representations and interpretability in artificial systems. By integrating insights from
both biological and artificial neural networks, we aim to bridge understanding of visual representa-
tion strategies across natural and engineered systems. Our contributions are outlined as follows:

• We introduce an activation-regularized prior for VAE (Kingma & Welling, 2022) that or-
ganizes its latent space into two distinct clusters, corresponding to codes that increase or
decrease a target brain region’s activation. This design enables easy plug-and-play integra-
tion with conventional generative models.

• Our method synthesizes visual representations from specified brain regions, outperforming
the state-of-the-art in both activation change and perceptual realism. Moreover, it provides
a generalized framework showing robustness on multi-modal and cross-subject biological
data, and can also transfer to visualizing features in artificial neural networks.

• By generating controllable, high-quality visual stimuli that can modulate specific regions,
our framework demonstrates new potentials in vision-based brain computer interface ap-
plications and can be used to generate new hypothesis for future neuroscience studies.
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2 RELATED WORKS

Image generative models. Advances in generative models have significantly transformed image
synthesis. Foundational approaches such as GANs (Goodfellow et al., 2014) led to extensions
like Wasserstein GANs (Arjovsky et al., 2017) and Conditional GANs (Mirza & Osindero, 2014),
with fidelity improvements using spectral normalization (Miyato et al., 2018), while VAEs (Kingma
& Welling, 2013) introduced probabilistic encoding, later combined with latent space regulariza-
tion (Ho et al., 2022; Van den Oord et al., 2016). Further, Cascaded generation (Ho et al., 2022)
and autoregressive modeling (Chen et al., 2018) enhanced synthesis quality. More superior gener-
ation models like Diffusion models (Ho et al., 2020; Rombach et al., 2022) advanced controllable,
high-fidelity synthesis, integrating structured perturbations via SDEdit (Meng et al., 2022) and text-
to-image alignment through CLIP (Radford et al., 2021b). IP-Adapter (Ye et al., 2023) refined latent
spaces for semantic consistency, while GLIDE (Nichol et al., 2022) and Stable Diffusion (Saharia
et al., 2022) further demonstrated photorealistic, text-guided image generation. Our work is devel-
oped based on these conventional generative model frameworks, which adopts VAEs to build up
our proposed structured landscape and a Stable Diffusion model generation pipeline to synthesize
preferred image conditioned on CLIP embeddings derived from the structured landscape.

Feature visualization. Visualization techniques provide deep insights into neural network inter-
pretability and functionality, spanning both biological and artificial systems. Early work by Erhan
et al. (Erhan et al., 2009) focused on minimal regularization approaches, while adversarial examples
exposed vulnerabilities in neural networks (Szegedy et al., 2013). Mahendran and Vedaldi (Mahen-
dran & Vedaldi, 2015) and Nguyen et al. (Nguyen et al., 2015) further expanded on interpretability
with total variation regularization, counterexamples, and image blurring. Meanwhile, techniques
such as DeepDream by Mordvintsev et al. (Mordvintsev et al., 2015; 2016), employing jitter, multi-
scale visualization, and gradient normalization (Ø ygard, 2015; Tyka, 2016), enhanced clarity in
feature visualization. For prior related work, Nguyen et al. (Nguyen et al., 2016) demonstrated gen-
erative adversarial synthesis of preferred inputs, emphasizing controlled image generation through
learned priors. Our work extends this line by generating images with preferred features based on
pre-defined priors in landscape shaped by activations.

Brain decoding and most exciting images. Generative models leveraging brain activity as di-
rect input have substantially advanced neural-to-visual synthesis. Direct neural-to-image synthesis
methods convert fMRI activity into high-fidelity pictures with diffusion or GAN backbones—for ex-
ample BrainDiffusion and NeuroDM (Luo et al., 2023a; Qian et al., 2024), Brain2GAN (Dado et al.,
2024), latent-diffusion variants (Ferrante et al., 2024; Ozcelik & VanRullen, 2023), and energy-
guided approaches (Pierzchlewicz et al., 2023), while activation-optimized methods like Inception
Loops (Walker et al., 2019) and NeuroGen (Gu et al., 2022) reveal neuronal tuning by iterating
stimuli based on neural responses. Recent multi-modal approaches (Huang et al., 2021b;a; Ding
et al., 2023; van Gerven, 2021; Qiu et al., 2025; Benara et al., 2024) integrate generative models for
improved synthesis precision, while Controllable Mind Visual Diffusion (Zeng et al., 2023), Seeing
Beyond the Brain (Chen et al., 2023), and Reconstructing the Mind’s Eye (Scotti et al., 2023) lever-
age structured diffusion priors for enhanced visual reconstructions. Though dominated by fMRI
data, (Song et al., 2024; Li et al., 2024) explored this task on EEG data, obtained promising results.

To further modulate activations, computational models (Papale et al., 2024; Murty et al., 2021)
and frameworks targeting single neuron contributions (Bau et al., 2017; Olah et al., 2017; Ritter
et al., 2017) provide interpretable mappings of cortical activations to specific visual features. Latent
space optimization strategies (Robinson et al., 2023; Xia et al., 2024) extend foundational decoding
frameworks (Naselaris et al., 2011; Nishimoto et al., 2011; Shen et al., 2019; Horikawa & Kamitani,
2017) to achieve targeted neural activation modulation. BrainDiVE and BrainSCUBA(Luo et al.,
2023b; 2024) uses a CLIP-based encoder and diffusion models to improve stimulus quality and se-
mantic specificity. BrainACTIV (Garcia Cerdas et al., 2025), as the recent state-of-the-art and the
first work on using diffusion models to generating images to regulate brain activations, extends these
paradigms by conditioning synthesis with linearly fitting CLIP embeddings with brain activation pat-
tern. Though modeling activations via CLIP embeddings does work in previous work, our method
tries to take the noisy and mix-selective nature of brain activity data into consideration, building
a novel structured landscape in VAE through CLIP embeddings, permitting more controllable and
effective activation manipulation, and avoiding falling into local minimum in the optimization pro-
cess.
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Figure 2: Overview of Vis-Lens. The illustration depicts a two-stage approach integrating a struc-
tured landscape and variational autoencoder (VAE) generation with CLIP encoder and diffusion
based generative model. Phase I: The input image, itrain, is encoded by a pretrained CLIP encoder E ,
CLIP embeddings x are encoded into a latent representation z by the VAE encoder. A regularization
step using a activation-based priorN (µprior,

1
|r| ) modifies the latent space for better alignment with

activations, producing a regularized latent z. The VAE is also trained to reconstruct the input CLIP
embeddings x with xrecon. Phase II: The test images itest, is encoded by same CLIP encoder E .
Then, with fully trained VAE and the structured visual latent representation space, we can directly
modify latents constrained by a specific feature represented by the selected regions, obtaining a new
latent z′. This transformed latent is decoded back into an intermediate generated CLIP embeddings
xgen, which is used to guild the image generation through a diffusion pipeline, yielding the final
output igen as preferred images to modulate the activation r.

3 METHODOLOGY

3.1 PROBLEM SETTING AND NOTATION

Let I be the space of natural images, X be the space of CLIP embeddings, and Z the latent space
of a variational auto-encoder (VAE). For an input image i ∈ I, the pretrained CLIP encoder E maps
i to a CLIP embedding x = E(i) ∈ X . Subsequently, the VAE encoder qϕ(z |x) produces a latent
z ∈ Z with mean µ and diagonal covariance Σ = diag(σ2); the VAE decoder pθ(x |z) reconstructs
an embedding xrec. Throughout, r denotes the (scalar) activation of a chosen region of interest (ROI)
in human brain or neural networks, and λ, ωrec, ωKLD are scalar hyper-parameters.

3.2 CONSTRUCT STRUCTURED VAE LANDSCAPE WITH NEURONAL ACTIVATION AS PRIOR

To achieve explainable and controllable visual representation generation of a specific region or unit
given the corresponding activations, we integrate the activation r into the VAE prior and then con-
struct a structured latent space in VAE. The details are described as follows:

The KL divergence (KLD) term in the VAE measures the divergence between the encoder’s approx-
imate posterior, qϕ(z|x), and the prior, pθ(z). We begin with its standard definition:

DKL(qϕ(z|x) || pθ(z)) =
∫

qϕ(z|x) log
qϕ(z|x)
pθ(z)

dz = Ez∼qϕ(z|x) [log qϕ(z|x)− log pθ(z)] (1)
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Both the posterior and the prior are defined as multivariate Gaussian distributions with diag-
onal covariance matrices, In our framework, we have the approximate posterior: qϕ(z|x) =
N (z;µ, diag(σ2)). For the prior, pθ(z), we designed a novel activation constrained prior:
pθ(z) = N (z;µprior, diag((σprior)2)), which depends on the activation value r:

σprior =

∣∣∣∣ λ

r + ϵ

∣∣∣∣ , µprior
i =

{
µpos, if r > 0,

µneg, otherwise,
(2)

where λ is a scaling hyperparameter, ϵ is a small constant to prevent division by zero, and µpos, µneg
are predefined means for positive and negative activations, respectively.

Given the definition of approximate posterior and activation constrained prior, the expectation in
Eq 1 can be computed analytically, yielding the closed-form expression for the KLD between two
distributions. Also, we assume that VAE latent space has dz dimensions, and the overall divergence
is calculated across the dimensions, so the final KLD affected by activations can be written as:

KLDactivation =

dz∑
i=1

[
log

σprior
i

σi
− 1

2
+

σ2
i + (µi − µprior

i )2

2(σprior
i )2

]
(3)

where µi and σi are the mean and standard deviation of the approximate posterior for the i-th latent
dimension, respectively; µprior

i and σprior
i are the mean and standard deviation of the prior distribution

for the i-th dimension.

With this activation constrained prior, we can build a structured VAE latent space. Intuitively, when r
approximates infinite, the constrain would be extremely tight around the center of prior distribution.

3.3 GENERATE PREFERRED VISUAL REPRESENTATIONS WITH MODIFIED VAE

To produce preferred images, our method is divided into two phases: a training phase on previous
VAE to construct the structured latent space and a generation phase to generate images. The VAE is
the only trainable part in the pipeline, while other modules including pre-trained CLIP encoder (E)
and image-to-image diffusion model—remain frozen.

Training. During the training, only the VAE encoder qϕ(z |x) and decoder pθ(x |z) that maps the
embedding to a latent representation z and reconstructs it back to xrecon are optimized by Eq 4.

LVAE = ωrecon · Lrecon + ωKLD · KLDactivation, (4)

where Lrecon = ∥x − xrecon∥22 is the reconstruction loss between the original and decoded CLIP
embeddings. The terms ωrecon and ωKLD are scalar weights that balance the reconstruction fidelity
against the activation-based regularization imposed by our modified KLD term in Eq 3.

Generation. To synthesize new images, the generation phase begins by taking an image i and
encoding it with frozen CLIP encoder to get CLIP embedding x = E(i), then, we feed x into the
trained VAE encoder to get the latent code z = qϕ(x) in the structured landscape we built. z is then
moved across the landscape towards the pre-defined positive or negative priors. The new, modified
latent code z′ is then given to the VAE decoder, which translates it into a new, modified CLIP
embedding x′ = pθ(x | z′). This new embedding, now imbued with the desired activation-guiding
properties, is finally passed to a frozen diffusion model to synthesize the final, preferred image i′.

4 EXPERIMENTS

4.1 DATASETS

Neuroimaging Datasets. To test our framework on multi-modal neuronal data, we utilize two large-
scale human neuroimaging datasets. The Natural Scenes Dataset (NSD) (Allen et al., 2021) provides
high-resolution fMRI recordings from eight subjects viewing thousands of MS COCO images (Lin
et al., 2015). The THINGS-EEG dataset offers comprehensive EEG recordings from ten subjects
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viewing thousands of images. (Grootswagers et al., 2022; Gifford et al., 2022). The response data
was extracted from ROI masks in NSD and event-related potentials (ERPs) across occipital channels
in THINGS-EEG, then averaged to reduce noise. They both serve as essential constraints in our
framework to align the VAE latent space with observed brain responses in 4.3.1.

Image Datasets. To evaluate our method on artificial neural networks, we used two common image
datasets. ImageNet-mini, a diverse subset of the full ImageNet dataset (Deng et al., 2009), serves
as input for large-scale SimCLR (Chen et al., 2020) and ViT (Dosovitskiy et al., 2021) models to
obtain unit activations in Section 4.3.2. Additionally, we use the CIFAR-10 dataset (Krizhevsky &
Hinton, 2009), comprising 60,000 low-resolution images across ten classes, to validate performance
of our method within a smaller three-layer CNN in Section 4.3.3.

4.2 MODELS

Implementation of our framework. Our VAE encoder employs a linear layer to map the CLIP
embeddings to a latent space constrained by activations. The decoder also uses a single linear
layer that reconstructs CLIP embeddings from the latent space, enabling controlled image synthesis
through targeted latent manipulations. For other models, we use a pre-trained CLIP-ViT-H-14 model
as our CLIP encoder(Radford et al., 2021a) that extracts 1024-dimensional embeddings for each
input image. We choose Stable Diffusion v1.5 as our image generation model incorporating an IP-
Adapter(Ye et al., 2023) that effectively modulates the generation process by injecting the edited
CLIP embeddings, ensuring the semantic and structural consistency of the synthesized outputs.

Baseline method. For every ROI we re-implement the method in BrainACTIV (Garcia Cerdas et al.,
2025), a ridge-regularised linear model on ℓ2-normalized CLIP embeddings, [ x

∥x∥ ·w + b ] =⇒ r,
yielding a single modulation vector w∈R1024. This vector is interpreted as the direction of maximal
and minimal activation in CLIP space: zmax = w/∥w∥ and zmin = −w/∥w∥. At inference time,
a test CLIP embedding is shifted only along zmax or zmin before being injected—via an unchanged
adapter—into a frozen image-to-image diffusion model.

In-silico brain simulator. In our experiments, brain activations are evaluated with a DINO-ViT
encoder (Oquab et al., 2024): DINO acts as a frozen feature extractor whose 12 layer outputs are
fed to a single-layer ViT ensemble trained with ridge loss to predict neuronal responses. In line
with the findings from Garcia Cerdas et al. (2025), this encoder explains a large proportion of NSD
voxel variance (typically R2>0.6 in high-level ROIs), validating its use as a reliable neural readout.
We also aaply this predictor to EEG data and it can still make reliable prediction with R2 ≈ 0.45.
Because the encoder is not CLIP-based, it provides an independent estimate of neural activity.

4.3 RESULTS

4.3.1 GENERATE PREFERRED REPRESENTATIONS IN HUMAN BRAIN

With structured landscape, we can get a better representation of certain brain region by sampling
around the prior in latent space, and generate images with those latent values, as shown in Figure 1.

In our latent space, we interpolate each latent code z toward a positive or negative prior z′ = α ·
µprior + (1 − α) · z—and pass it to a frozen SDEdit diffusion model with γ = 1.0; thus the output
image depends solely on the edited embedding, allowing a clean comparison with the baseline.

Figure 3 and Table 1 showed results on NSD dataset, our method could changes activations towards
correct direction in all regions, while baseline method makes mistakes. Also, our method produces
greater decrease in activation in all regions, demonstrating effectiveness of defining an independent
negative prior when constructing landscape rather than simply reverse the maximal direction in
baseline. For increasing activation, our method outperforms the baseline in not well-studied regions
like SPL, IPS, TE, IP, 31, and might be attributed to their mix-selectivity (Vialatte et al., 2020;
Taylor & Xu, 2024; Maranesi et al., 2024). In highly highly category-selective regions like FFA and
OPA (Downing et al., 2001; Kanwisher et al., 1999; McCarthy et al., 1997). Our method achieves
comparable performance with baseline. Our method also consistently produces more realistic visual
representations in all regions with lower FID scores (Heusel et al., 2017), that sampling from a
structured latent space in VAE may be more controllable than perturbing CLIP embeddings directly.
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Table 1: Comparison of activation change and realism between our method and the baseline. Better
values are in bold face. For activation changes, ↑ indicates that higher values are better, and ↓
indicates that lower values are better. (a) Results on the NSD dataset. (b) Results on the THINGS-
EEG dataset. Our method has a consistent direction for activation change as targeted direction.

(a) NSD Results
ROIs TE2p IP0 IP1 OFA FFA EBA OPA

Activation Increase (↑) Our Method 0.242 0.498 0.153 1.052 0.891 0.963 0.699
BrainACITV 0.207 0.463 0.044 1.155 0.976 1.160 0.699

Activation Decrease (↓) Our Method -0.136 -0.699 -0.073 -0.660 -0.580 -0.810 -0.824
BrainACTIV 0.149 0.186 0.092 0.213 -0.484 -0.669 -0.172

FID @ 2k (↓) Our Method 172.71 173.34 178.01 173.66 153.70 137.33 166.01
BrainACTIV 225.77 213.17 200.14 216.15 256.44 188.59 225.37

(b) THINGS-EEG Results
Channels O1 Oz O2 PO7 PO3 POz PO4 PO8

Activation Increase (↑) Our Method 0.079 0.146 0.085 0.171 0.116 0.111 0.060 0.072
BrainACTIV -0.003 0.138 0.005 0.153 -0.019 0.085 0.083 0.058

Activation Decrease (↓) Our Method -0.066 -0.134 -0.132 -0.137 -0.085 -0.212 -0.031 -0.079
BrainACTIV 0.001 -0.298 -0.202 -0.123 -0.072 -0.261 -0.050 -0.027

FID @ 2k (↓) Our Method 120.20 99.54 108.59 109.07 123.41 107.10 106.23 117.18
BrainACTIV 157.25 159.90 171.77 164.34 133.81 140.48 164.24 178.66

0.4

0.0

-0.4
31a

0.6

0.0

-0.8SPL1

IPS4

Ours

Baseline

0.6

0.0

-0.8

(A) (B)

𝜇!"# 𝜇$%&
𝑧

Interpolation (𝜶)

0.40.20.0 1.00.80.6-0.8-1.0 -0.2-0.4-0.6

Ours

Baseline

Ours

Baseline

Interpolation (𝛼)

Predicted 
Activations (r)

Figure 3: Activation change results of our method and baseline. (A) Generate preferred repre-
sentations of multiple ROIs with example images from COCO dataset by our method and baselines.
The alpha value in interpolation indicates the strength and direction of preferred semantic in gener-
ation. (B) Comparison between predicted activations of ROIs made by DINO-ViT encoder. Means
and ranges of activations are presented for different alpha settings. Our method outperforms the
baseline in terms of maximizing or minimizing the ROI activations.

For THINGS-EEG results in Table 1, our model also consistently produces results with correct signs
across the occipital channels in dataset, outperforms baseline. Our method generates representations
that better activate the majority of channels and always produces more realistic representations. The
results show that our method can be generalized to multi-modal neuronal data.

Besides, to demonstrate the robustness of our predictor, we include a comparison between activation
modulation results of original subjects and a held-out subject from NSD dataset. The results are
shown in Table 2. The comparable predictions prove the reliability of our results.
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Table 2: Cross-subject generalization result on NSD dataset. The table compares the predicted
activation change on original subject data versus a held-out subject across several visual ROIs.

ROIs OFA FFA EBA VWFA OPA PPA RSC

Activation increase (original subj) 0.869 0.851 0.860 0.867 0.731 0.966 0.942
Activation increase (held-out subj) 0.861 0.975 0.790 0.648 0.629 1.061 0.940

Activation decrease (original subj) -0.526 -0.382 -0.564 -0.279 -0.557 -0.610 -0.775
Activation decrease (held-out subj) -0.436 -0.302 -0.391 -0.089 -0.485 -0.813 -0.823

4.3.2 GENERATE PREFERRED REPRESENTATIONS IN ARTIFICIAL NEURAL NETWORKS

Besides biological brains , we also test our approach on purely artificial targets: a mid-level unit
inside a SimCLR encoder (Chen et al., 2020) a contrastive-learning framework with a ResNet-50
backbone, as well as a unit from a more complex Vision Transformer (ViT). Fig. 4 shows natural
images that have the largest responses from the chosen units in ANNs. With our model trained on
unit activations, editing latent to the positive prior could generate representations that can better
activate the given ANN units compared with the baseline as shown in the boxplot.

Original 
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Figure 4: Generate preferred images with increasing unit activations in ANNs. (A) The top
10 images demonstrate a notable pattern of “green plant & insect” represented by a unit in the
middle layer of SimCLR model. our method generates images that strongly match the pattern and
increase activation more than the baseline. (B) For a mid-layer unit in a more complex Vision
Transformer (ViT), our method synthesizes images that can better activate the unit compared with
baseline, though the concept seems to be ambiguous.

4.3.3 OPTIMIZE UNIT ACTIVATIONS WHILE PRESERVING UNRELATED FEATURES

To demonstrate the strength of our structured VAE latent space, we trained two lightweight
image-to-image VAEs on the CIFAR-10 dataset. a standard VAE with a Gaussian prior, and our
proposed VAE whose latent space is regularized by activations from a pre-trained ConvNet. We
constrain VAE latent with multiple units activations, and only edit the latent dimensions controlled
by a certain unit. Beside direct modification towards preset priors, we optimize latent with Adam
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Figure 5: Generating preferred images with different methods on CIFAR-10. Left 4 columns
show optimizing images to increase their activations. Column 1 are two example input images.
Column 2-3 are results of our method while column 4 represent optimizing the latent space with
standard VAE. Right 4 columns are results of optimization with same methods with target of de-
creasing activations.

Table 3: Summary of average cosine similarity and unit responses change (∆r) between new images
and input images over different optimization methods, corresponding to Figure 5. The best results
are marked with bold face.

Direction Model Optimization Method Average Similarity (Cosine) Average ∆r

positive structured landscape latent modification 0.745 0.046
gradient descent 0.666 0.079

original landscape gradient descent 0.520 0.067

negative structured landscape latent modification 0.696 -0.083
gradient descent 0.661 -0.110

original landscape gradient descent 0.538 -0.068

optimizer to maximize or minimize the activation of targeted units by combining the activation with
a KLD regularization term as target, ensuring the latent code remains aligned with the prior distri-
bution. The results of latent modification and optimization on both VAEs are shown in Figure 5. In
Table 3, we measure similarity between original and new images with a pre-trained ResNet18 (He
et al., 2016). Those results indicate that our structured landscape approach not only achieves more
robust activation changes but also maintains a higher similarity to the original images compared to
standard VAE, underscoring the efficacy of incorporating structured priors for latent optimization.

5 DISCUSSION AND LIMITATIONS

We developed Vis-Lens, a framework that imposes a novel activation-regularized priors on VAE to
yield structured landscape and then performs direct latent editing to steer activations in biological
and artificial networks. This structured landscape can also modulates the activation of target units
while preserving unrelated features. Vis-Lens generates visual representations that show stronger
activation modulation ability and better realism on brain regions compared with state-of-the-art
method, and also proved to be more effective on feature visualization in artificial neural networks.

There are also limitations for our work. Firstly, the image generator and the CLIP encoder are frozen,
any biases inherited from their pre-training data might propagate into our newly generated preferred
images. Also, the reliability of our results is limited due to the complete in-silico framework design.

In the future, our work may focus on scaling the framework to more data modalities like MEG or
larger scale brain datasets. Meanwhile, we aim to proceed beyond evaluations with in-silico human
brain simulators, and test the generated preferred images in human experiments; such closed-loop
validation would further confirm the effectiveness of our framework and open the door to a broader
range of brain computer interface applications.
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in-silico. The goal of our work is to advance the scientific understanding of neural information, and
we do not foresee any direct societal risks or negative ethical concerns arising from our methods.

REPRODUCIBILITY STATEMENT

All details for data preprocessing, model training, activation analysis, and figure generation is avail-
able in the main text and supplementary materials and will be released on GitHub upon publication.
All data used in this research can be accessed from public sources. The computational environment
and all model hyperparameters required to reproduce our main experimental results are detailed in
the appendix.
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APPENDIX

THE USE OF LARGE LANGUAGE MODELS

We did not use Large Language Models for this paper.

APPENDIX OVERVIEW

This appendix provides comprehensive details and additional results to support the findings pre-
sented in the main paper and ensure that all of the results can be reproduced. The appendix content
is organized into the following sections:

• Additional Results: Additional visualizations and analyses that further demonstrate the
effectiveness of our proposed methods. More examples of enhanced sampling, local change
results, and optimization outcomes are presented, as shown in section A.

• Experimental Settings: Comprehensive information about the datasets settings, like input
size and how are the datasets divided and processed, model architectures and implemen-
tation details, then training configurations and computational resources. All of them can
provide a clear understanding of our experimental setup, which are helpful to reproduce the
results, as shown in section B.

• Implementation Details: Detailed information about the algorithms we used to implement
our method, including pseudocode, and corresponding explanations. All of them can pro-
vide a clear understanding of how the training and optimizaztion are carried out, as shown
in section C.

• Predictive Power of In-silico brain simulator: Information about how much our trained
In-silico brain simulator can predict the brain activity data, as shown in section D.

A ADDITIONAL RESULTS

A.1 MORE RESULTS FOR THE NSD DATASET

Here is a summarized table of more experimental results on NSD dataset:

Table S1: Activation change and realism on additional ROIs. Better values are in bold.
ROIs V1 V2 V3 V4 V8 LO1 LO2 V4t

Activation
Increase (∆r)

Ours 0.257 0.080 0.247 0.486 0.696 0.583 0.498 0.757
Baseline 0.157 0.116 0.226 0.488 0.721 0.582 0.517 0.767

Activation
Decrease (∆r)

Ours -0.291 -0.272 -0.573 -0.690 -0.406 -0.485 -0.490 -0.601
Baseline 0.102 0.224 0.274 0.501 0.608 0.100 -0.057 -0.511

FID@2k Ours 164.87 157.84 167.44 173.24 160.07 136.05 186.67 178.62
Baseline 224.29 201.56 240.64 231.60 216.80 208.23 255.06 197.61

ROIs VWFA-1 PPA RSC OWFA IP2 TPOJ1 TPOJ2 TPOJ3

Activation
Increase (∆r)

Ours 1.108 0.952 0.923 0.718 0.091 0.456 0.661 1.014
Baseline 1.019 0.926 0.954 1.088 0.084 0.509 0.751 1.091

Activation
Decrease (∆r)

Ours -0.391 -0.809 -0.913 -0.780 -0.213 -0.136 -0.384 -0.591
Baseline 0.350 -0.579 -0.804 0.347 0.061 -0.134 -0.234 -0.484

FID@2k Ours 169.14 153.67 172.92 163.88 168.56 192.04 131.83 137.57
Baseline 229.65 234.79 216.65 207.15 171.94 244.44 197.94 197.24

The full test-set results for the additional ROIs are provided in Figs. S1–S16.

1



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.1.1 ROI: IPS4
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𝜶 = 𝟎. 𝟒

𝜶 = 𝟎. 𝟔

𝜶 = 𝟎. 𝟖

𝜶 = 𝟏. 𝟎

Vis-Lens Baseline

OriginalOriginal

Figure S1: Full result of activation change on region IPS4, postive direction.
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𝜶 = −𝟎. 𝟐

𝜶 = −𝟎. 𝟒

𝜶 = −𝟎. 𝟔

𝜶 = −𝟎. 𝟖

𝜶 = −𝟏. 𝟎
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OriginalOriginal

Figure S2: Full result of activation change on region IPS4, negative direction.
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A.1.2 ROI: SPL1

𝜶 = 𝟎. 𝟐

𝜶 = 𝟎. 𝟒

𝜶 = 𝟎. 𝟔

𝜶 = 𝟎. 𝟖

𝜶 = 𝟏. 𝟎

Vis-Lens Baseline

OriginalOriginal

Figure S3: Full result of activation change on region SPL1, positive direction.
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Figure S4: Full result of activation change on region SPL1, negative direction.
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A.1.3 ROI: 31A

𝜶 = 𝟎. 𝟐

𝜶 = 𝟎. 𝟒

𝜶 = 𝟎. 𝟔

𝜶 = 𝟎. 𝟖

𝜶 = 𝟏. 𝟎

Vis-Lens Baseline

OriginalOriginal

Figure S5: Full result of activation change on region 31a, positive direction.
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Figure S6: Full result of activation change on region 31a, negative direction.
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A.1.4 ROI: 31PD

𝜶 = 𝟎. 𝟐

𝜶 = 𝟎. 𝟒

𝜶 = 𝟎. 𝟔
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𝜶 = 𝟏. 𝟎
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OriginalOriginal

Figure S7: Full result of activation change on region 31pd, positive direction.
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Figure S8: Full result of activation change on region 31pd, negative direction.
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A.1.5 ROI: V1

𝜶 = 𝟎. 𝟐

𝜶 = 𝟎. 𝟒
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𝜶 = 𝟎. 𝟖

𝜶 = 𝟏. 𝟎
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OriginalOriginal

Figure S9: Full result of activation change on region V1, positive direction.

10



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

𝜶 = −𝟎. 𝟐

𝜶 = −𝟎. 𝟒

𝜶 = −𝟎. 𝟔

𝜶 = −𝟎. 𝟖

𝜶 = −𝟏. 𝟎

Vis-Lens Baseline

OriginalOriginal

Figure S10: Full result of activation change on region V1, negative direction.
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A.1.6 ROI: V2
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Figure S11: Full result of activation change on region V2, positive direction.
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Figure S12: Full result of activation change on region V2, negative direction.
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A.1.7 ROI: V3
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Figure S13: Full result of activation change on region V3, positive direction.
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Figure S14: Full result of activation change on region V3, negative direction.
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A.1.8 ROI: V4
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Figure S15: Full result of activation change on region V4, positive direction.
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Figure S16: Full result of activation change on region V4, negative direction.
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A.2 VISUAL REPRESENTATIONS OF EEG OCCIPITAL CHANNELS

Here we present the visual representations generated by our method. ’Original’ means input im-
ages, ’Reconstruction’ means image reconstructed with our model with given input, ’Maximize’
and ’Minimize’ represent images synthesized by out method to increase/decrease activations of a
given channel.

Original

Maximize Minimize

Reconstruction

Channel: O1
Original

Maximize Minimize

Reconstruction

Channel: Oz

Figure S17: Result of activation change on channel O1 & Oz with our method
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Channel: O2
Original
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Reconstruction

Channel: PO7

Figure S18: Result of activation change on channel O2 & PO7 with our method
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Channel: PO3
Original
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Reconstruction

Channel: POz

Figure S19: Result of activation change on channel PO3 & POz with our method
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Original

Maximize Minimize

Reconstruction

Channel: PO4
Original

Maximize Minimize

Reconstruction

Channel: PO8

Figure S20: Result of activation change on channel PO4 & PO8 with our method

A.3 MORE ANN RESULTS

We present more examples on manipulating activations in SimCLR(Chen et al., 2020), shown in
Figs. S17–S22, which further demonstrate the effectiveness of our method.
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Figure S21: One latent modification example to generate preferred images with increasing unit
activations on ImageNet-mini Dataset. Though the top 10 images can not demonstrate a notable
pattern represented by the unit in the early layer of SimCLR model, our method can generate a uni-
form representation and compared with original images from ImageNet-mini, generated preferred
images based on modifying the latent to the positive prior mean shows a more apparent change in
activation compared with original images and representations from BrainACTIV.
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Figure S22: One latent modification example to generate preferred images with increasing unit
activations on ImageNet-mini Dataset. Though the top 10 images can not demonstrate a notable
pattern represented by the unit in the early layer of SimCLR model, our method can generate a uni-
form representation and compared with original images from ImageNet-mini, generated preferred
images based on modifying the latent to the positive prior mean shows a more apparent change in
activation compared with original images and representations from BrainACTIV.
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Figure S23: One latent modification example to generate preferred images with increasing unit
activations on ImageNet-mini Dataset. Though the top 10 images can not demonstrate a notable
pattern represented by the unit in the early layer of SimCLR model, our method can generate a uni-
form representation and compared with original images from ImageNet-mini, generated preferred
images based on modifying the latent to the positive prior mean shows a more apparent change in
activation compared with original images and representations from BrainACTIV.
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Figure S24: One latent modification example to generate preferred images with increasing
unit activations on ImageNet-mini Dataset. The top 10 images demonstrate a notable pattern
represented by the unit in the deep layer of SimCLR model, that round objects appear in top images.
Our method can also generate a uniform representation and compared with original images from
ImageNet-mini, generated preferred images based on modifying the latent to the positive prior mean
shows a more apparent change in activation compared with original images and representations from
BrainACTIV.
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Figure S25: One latent modification example to generate preferred images with increasing
unit activations on ImageNet-mini Dataset. The top 10 images demonstrate a notable pattern
represented by the unit in the deep layer of SimCLR model, that grid objects appear in top images.
Our method can also generate a uniform representation and compared with original images from
ImageNet-mini, generated preferred images based on modifying the latent to the positive prior mean
shows a more apparent change in activation compared with original images and representations from
BrainACTIV.
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Figure S26: One latent modification example to generate preferred images with increasing unit
activations on ImageNet-mini Dataset. Though the top 10 images can not demonstrate a notable
pattern represented by the unit in the early layer of SimCLR model, our method can generate a uni-
form representation and compared with original images from ImageNet-mini, generated preferred
images based on modifying the latent to the positive prior mean shows a more apparent change in
activation compared with original images and representations from BrainACTIV.

A.4 MORE OPTIMIZATION RESULTS

Our Optimization method based on VAE latent can be performed not only on CIFAR-10 dataset.
Figure S27 and Table S2 provide additional optimization results on the ImageNet-mini dataset. Our
method shows similar advantages in manipulating unit responses and preserving the features of
original images.

It is worth noting that, the activation increase with our optimization method slight trails the opti-
mization with Standard VAE, and the similarity advantage shrinks compare to CIFAR-10.
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Figure S27: a) Generating preferred images with different methods on ImageNet-mini Dataset.
Left 4 columns show optimizing images to increase their activations. Column 1 are four example
input images. Column 2-3 are results of our method while column 4 represent optimizing the latent
space with a standard VAE. Right 4 columns are results of optimization in the same methods pre-
senting in the same order, with target of decreasing activations. b) shows the shift in the activation
value between and the cosine similarity between randomly chosen 100 original images and their op-
timized results over different methods. Compared with baseline VAE, our method can effectively
increase activation better as well as maintain a greater similarity with original images, meaning more
unrelated features are preserved.

Table S2: Summary of average cosine similarity and change in unit responses (∆r) between opti-
mization results and input images over different optimization methods on ImageNet-mini dataset,
corresponding to Figure S.7 B. The best results are marked with bold face.

Direction Model Method Average Similarity (Cosine) Average ∆r

positive structured landscape latent modification 0.513 1.710

latent optimization 0.503 2.140
original landscape 0.465 2.266

negative structured landscape latent modification 0.520 -3.595

latent optimization 0.514 -4.215
original landscape 0.467 -0.526
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B EXPERIMENTAL SETTINGS

B.1 DATASET DETAILS

We will show how the dataset was processed in this part.

Natural Scenes Dataset (NSD): (Allen et al., 2021): we selected 1000 images presented to Subject
1 from the dataset as our test set, while using CLIP embeddings of 9000 images shown to same sub-
ject for training. We used same test images selected by the BrainACTIV. And for the measurement
of activation change and FID score, we use all 1000 images presented to same subject as test set
in COCO dataset (Lin et al., 2015) and their CLIP embeddings. 2k images for FID(Heusel et al.,
2017) calculation are the combination of 1k preferred images to maximize/minimize the activations,
respectively. The CLIP embeddings are retrieved from the first output of CLIP encoder (Radford
et al., 2021a), the dimension is 1024 for every image.

THINGS-EEG: (Grootswagers et al., 2022; Gifford et al., 2022): we selected 200 images presented
to Subject 1 from the dataset as our test set, while using CLIP embeddings of 16540 images shown
to same subject for training. In this dataset, each image was presented four times, results in 16540
x 4 = 66160 trials. We averaged the EEG data of four trials. Then, we selected data from those time
windows:

• C1: [0.05, 0.09](50-90ms).

• P1: [0.08, 0.12], Early visual processing.

• N170: [0.13, 0.18], Object recognition stage.

• P2: [0.16, 0.24], Higher-order feature processing.

• P300: [0.25, 0.40], Attentional evaluation.

• LPP: [0.40, 0.70],Late Positive Potential / Memory.

Beyond averaing trials, we also averaged all data within those time windows, to get a singular value
as EEG activation data.

Imagenet-mini (Deng et al., 2009): The train and test split follow the default settings in the orginal
dataset, which divided the whole dataset into train/val sets, we use train as our train set and val as our
testset. Train set consists of 34,745 images, and test set consists of 3,923 images. For the training
process of SimCLR, we used following transform techniques in torchvision.transforms to edit the
orginal Imagenet-mini images:

t r a n s f o r m s . RandomResizedCrop ( 1 2 8 , s c a l e = ( 0 . 0 8 , 1 . 0 ) ,
i n t e r p o l a t i o n =Image . BICUBIC )
t r a n s f o r m s . R a n d o m H o r i z o n t a l F l i p ( )
t r a n s f o r m s . ToTensor ( )

CIFAR-10 (Krizhevsky & Hinton, 2009): Also follows original settings of CIFAR-10, which are
50000 training and 10000 testing images respectively. The CIFAR-10 images in original dataset
were processed with this:

t r a n s f o r m s . G r a y s c a l e ( n u m o u t p u t c h a n n e l s =3)
t r a n s f o r m s . R e s i z e ( ( 3 2 , 3 2 ) )
t r a n s f o r m s . ToTensor ( )
t r a n s f o r m s . Normal i ze ( ( 0 . 5 , ) , ( 0 . 5 , ) )

B.2 MODEL IMPLEMENTATION DETAILS

B.2.1 VAE IMPLEMENTATION AND TRAINING

VAE: For NSD and ImageNet dataset to learn CLIP embeddings, using VAE architec-
ture (Kingma & Welling, 2013) consists of an encoder and a decoder with the following layers:

• Encoder (CLIP→ latent)
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– FCenc: 1024 −→ 2048 (first 1024 dims are µ, last 1024 dims are log σ2)

• Latent layer
– µ ∈ R1024, log σ2 ∈ R1024

– Reparameterisation: z = µ+ ϵ⊙ exp(0.5 log σ2)

• Decoder (latent→ CLIP)
– FCdec: 1024 −→ 1024 (reconstructed CLIP embedding)

Light-weight Bottleneck CVAE: For CIFAR-10 dataset, we use an image-to-image Bottleneck
CVAE, the structure is:

• Encoder:

– Conv1: 3→16 channels, 3× 3 kernel, stride 1, padding 1, ReLU
– Conv2: 16→32 channels, 3× 3 kernel, stride 2, padding 1, ReLU
– Conv3: 32→64 channels, 3× 3 kernel, stride 2, padding 1, ReLU

• Bottleneck:

– FC mu: 64× 8× 8→ 192

– FC logvar: 64× 8× 8→ 192

– FC bn mu: 192→ 192
– FC bn logvar: 192→ 192

• Decoder:

– FC decode: 192→ 64× 8× 8, ReLU
– Deconv1: 64→32 channels, 3×3 kernel, stride 2, padding 1, output padding 1, ReLU
– Deconv2: 32→16 channels, 3×3 kernel, stride 2, padding 1, output padding 1, ReLU
– Deconv3: 16→3 channels, 3× 3 kernel, stride 1, padding 1, Sigmoid

The VAE training configurations are shown in the Table S3.

B.2.2 IMPLEMENTATION OF DIFFUSION PIPELINE

All images are first converted to a 1024-dimensional representation with the frozen CLIP-ViT-H/14
encoder released by LAION (Schuhmann et al., 2022). For every split of the Natural Scenes Dataset
we iterate once over the raw-pixel loader, compute the embeddings and cache the resulting CLIP
features. Subsequent experiments therefore operate purely in embedding space and never revisit the
expensive vision backbone.

Image synthesis uses the “img-to-img” variant of Stable Diffusion v1.5 from the DIFFUSERS li-
brary (Leocadio, 2025). We swap the original PNDM scheduler for DDIM (better speed/qual-
ity trade-off) and disable the safety checker to avoid unintended filtering. Every network in the
pipeline—U-Net, text encoder, VAE, and the IP-Adapter (Ye et al., 2023) that injects the CLIP em-
bedding into the cross-attention blocks—remains entirely frozen. We use the public 7 MB check-
point that is aligned with the very same ViT-H/14 encoder employed for feature extraction, ensuring
a loss-free conditioning path.

During inference each RGB frame (512 × 512 px) is supplied together with a target CLIP em-
bedding—either the baseline embedding obtained by ridge regression or the one produced by our
activation-aware VAE. Unless noted otherwise we set the SDEdit strength to γ = 1.0; We run 50
DDIM steps per image, draw a single sample, and fix the random seed to 42 for strict comparability
across all methods.

B.2.3 IMPLEMENTATION OF OTHER MODELS

SimCLR and ConvNet: For SimCLR, original ImageNet-mini was trained on 256 * 256, I re-
trained the model with same configurations of SimCLR, only edited the size of input files and edited
minor structures in the model to match the input size. For CIFAR-10: I designed a three layer
ConvNet to train as the CIFAR-10 classfier, the structure is:
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• Encoder:
– Conv1: n channels→32 channels, 3× 3 kernel, padding 1, BatchNorm, ReLU, Max-

Pool2d(2,2)
– Conv2:32→64 channels, 3×3 kernel, padding 1, BatchNorm, ReLU, MaxPool2d(2,2)
– Conv3:64→128 channels, 3 × 3 kernel, padding 1, BatchNorm, ReLU, Max-

Pool2d(2,2)
• Fully Connected Layers:

– FC1:128×4×4→256 units, Dropout(0.5), ReLU
– FC2:256→num classes

Table S3: VAE Hyperparameters and Training Settings for NSD, THINGS-EEG, ImageNet, and
CIFAR-10 datasets
Hyperparameter NSD & ImageNet THINGS-EEG CIFAR-10

Data Hyperparameters

input size 1024 dim embeddings 1024 dim embeddings 32 × 32 images
n channels 1 1 3

Model Hyperparameters

latent dim 2048 2048 192

Training Settings

seed 0 0 0
batch size 128 128 128
epochs 150 300 150
optimizer Adam Adam Adam
lr 1× 10−4 1× 10−3 1× 10−4

scheduler StepLR (step size=10,
γ = 0.9)

StepLR (step size=10,
γ = 0.9)

StepLR (step size=10,
γ = 0.9)

grad clip 1.0 1.0 1.0

B.3 METRIC DETAILS

Quantifying Similarity To further evaluate the structured landscape, we used similarity and re-
alism metrics. For similarity between original images and images with activation optimized but
unrelated features preserved, we use cosine similarity as follows. Given a set of images {Ii} with
feature embeddings {fi}, the similarity score is expressed as:

Cosine Similarity(fi, fj) =
fi · fj
∥fi∥∥fj∥

Implementation of Similarity Calculation: For the measurement of the feature preserve capacity
of different optimization methods, I used pretrained ResNet18 encoder output to represent the fea-
tures on CIFAR-10 images and Inception-V3 on ImageNet dataset, with consine similarity between
features of original images and their corresponding output images calculated after that.

Quantifying Realism: Frechét Inception Distance (FID): To quantify overall realism we report
the Frechét Inception Distance, computed on the 2 048-D pool-3 activations of a frozen Inception-v3
network. Let µr, Σr and µg , Σg be the empirical means and covariances of the real and generated
image features, respectively. The FID is

FID = ∥µr − µg∥ 22 +Tr
(
Σr +Σg − 2 (ΣrΣg)

1/2
)
.

Lower values indicate that the generated distribution is closer to the real one. In all experiments we
follow the protocol of evaluating on 2 000 samples (1 000 originals duplicated for the real set and 1
000 synthetics per method for the generated set) and report FID computed with the TORCHMETRICS
implementation under feature = 2048.
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B.4 COMPUTATIONAL RESOURCES

All experiments were carried out on a single workstation equipped with 8 × NVIDIA RTX A5000
GPUs (each with 24 GB on-board memory, CUDA 12.2, driver 535.183), an AMD EPYC 7543
CPU (32 cores, 2.8 GHz) and 512 GB of system RAM. One GPU was used for model training or
inference at a time. Training a CLIP-to-CLIP VAE on the NSD train split (≈ 9 k images) with a
batch-size of 256 took≈ 6.5 hours on a single A5000; Optimizing on CIFAR-10 completed in under
40 minutes. For diffusion-based generation (IP-Adapter + Stable-Diffusion v1.5, 50 DDIM steps)
,producing one full 2 k-image evaluation set (positives + negatives) took about 70 minutes.
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C IMPLEMENTATION DETAILS

C.1 TRAINING DETAILS

Below are the pseudo-code of training and inferrence pipeline.

Algorithm 1 VAE Training with Activation Regularization
Require:

1: vae: Variational Autoencoder model
2: optimizer: Optimizer (Adam)
3: scheduler: Learning rate scheduler (StepLR)
4: num epochs: Number of training epochs

Ensure:
5: VAE with structured latent space and high-quality reconstruction

6: procedure TRAINVAE(vae, optimizer, . . . )
7: for epoch = 1 to num epochs do
8: for each batch do
9: optimizer.zero grad()

10: Forward Pass:
11: z ← vae.encode(data)
12: x̂← vae.decode(z)
13: Compute Loss:
14: Reconstruction Loss← MSE(x̂,data)
15: Compute Prior Parameters:

16: σprior ←
∣∣∣∣ λ

activation values+ ϵ

∣∣∣∣
17: µprior

i ←
{
µpos, if activation valuesi > 0,

µneg, otherwise.
18: KLD Loss← KLDloss(µi, µ

prior
i )

19: Total Loss← ωrecon × Reconstruction Loss + ωKLD × KLD Loss
20: Backpropagation:
21: Total Loss.backward()
22: optimizer.step()
23: end for
24: scheduler.step()
25: end for
26: end procedure

Latent Modification and Image Generation To generate high-quality preferred images that en-
hance activations based on the latent modification, the algorithm is shown as following block 2:
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Algorithm 2 Vis-Lens: Preferred–Image Generation
Require:

iin . . . RGB input image
clip enc . . . frozen CLIP–ViT-H encoder
x . . . 1024-d CLIP embedding of iin
vae . . . activation–aware CLIP→CLIP VAE
z, µ . . . latent code / mean; µpos, µneg . . . activation priors
ip adapter . . . frozen IP-Adapter
sd15 . . . Stable-Diffusion v1.5 (DDIM)
α . . . slerp weight, γ . . . SDEdit strength
rdir∈{pos, neg} . . . desired ROI shift

Ensure: preferred image iout
1: procedure GENPREFERRED(iin, rdir)
2: x← clip enc(iin)
3: (µ, log σ2)← vae.encode(x); z←µ
4: if rdir = pos then z′ ← slerp(α, z, µpos)
5: else z′ ← slerp(α, z, µneg)
6: end if
7: xgen ← vae.decode(z′)
8: iout ← ip adapter.generate(clip = xgen, image = iin, γ, 50 steps)
9: return iout

10: end procedure

Here are more detailed explanations of our generation process:

• The input image iin is projected to a CLIP embedding x with the frozen encoder.

• The activation-aware VAE encodes x to latent mean µ; we take z = µ for a deterministic
edit.

• To shift the chosen ROI, we linearly interpolate the latent toward the positive prior µpos (to
raise activity) or the negative prior µneg (to suppress it), yielding z’.

• Decoding z’ gives an intermediate CLIP embedding xgen.

• xgen is injected—via a frozen IP-Adapter—into Stable-Diffusion v1.5. With SDEdit
strength γ = 1.0 the reverse DDIM process relies entirely on xgen; smaller γ blends in
low-level structure from the reference image.

• The sampler returns the final preferred image iout, which is used in all downstream analyses.

C.2 DETAILS ABOUT OPTIMIZING UNIT ACTIVATIONS WITH LATENT

The algorithm for optimizing neural network unit responses using latent variables from a VAE is
listed as following algorithm block 3:
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Algorithm 3 Optimize Activation with Latent Variables
Require:

1: net: Pre-trained neural network model
2: vae: Pre-trained Variational Autoencoder
3: layer name: Target layer in net
4: unit idx: Index of target unit
5: num iterations: Number of optimization steps
6: learning rate: Learning rate for optimizer
7: KLD weight: Weight for Kullback-Leibler Divergence loss
8: target: Direction “max” or “min”)
9: init data: Initial data sample

Ensure:
10: Optimized responses scores, Controlled KLD loss

11: procedure OPTIMIZEACTIVATION(net,vae, . . .)
12: Initialize Latent Variable:
13: (µ, logvar)← vae.encode(init data)
14: z ← µ
15: Set Up Optimizer:
16: optimizer← Adam(z, lr=learning rate)
17: Register Activation Hook on layer name
18: for iteration = 1 to num iterations do
19: Decode Latent to Image:
20: x← vae.decode(z)
21: Forward Pass:
22: net(x)
23: Compute Loss:
24: if target = “max” then
25: loss← −activation + ωKLD × KLD(z)
26: else
27: loss← activation + ωKLD × KLD(z)
28: end if
29: Backpropagation:
30: optimizer.zero grad()
31: loss.backward()
32: optimizer.step()
33: end for
34: Remove Activation Hook
35: Return x, activation scores
36: end procedure

More Explanation of the Algorithm In this algorithm, we aim to optimize the activation of spe-
cific units in a neural network model by adjusting the latent variables z of a pre-trained Variational
Autoencoder (VAE). The primary goal is to maximize or minimize the target unit’s activation while
preserving the overall image quality.

Initialization: We initialize the latent variable z by encoding the input image using the VAE en-
coder:

(µ, logvar)← vae.encode(init data)

z ← µ

Optimization Loop: For each iteration, we perform the following steps:

1. Decode Latent to Image: The current latent variable z is decoded to generate an image x:

x← vae.decode(z)
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2. Forward Pass and Activation Capture: The generated image x is passed through the neural
network net. We utilize a registered hook function on the target layer to capture the activation of
the target unit during this forward pass:

net(x)

The hook function retrieves the target activation activation, which will be used in the loss compu-
tation. This approach allows us to monitor and manipulate the activation of specific units without
altering the forward pass logic of the network.

3. Compute Loss: We compute the loss function, which consists of two components: the activation
term and the Kullback-Leibler Divergence (KLD) regularization term.

- Activation Term: Depending on the optimization direction (maximize or minimize), we use the
negative or positive of the target unit’s activation:

loss =
{
−activation, if target = “max”

activation, if target = “min”

- KLD Regularization Term: The KLD term ensures that the latent variable z remains within a
plausible region of the latent space.

We consider two method for the KLD calculation. One is our method, and the other one is using
the latent space of Standard VAE to compute KLD loss, which is our baseline.

• Our Method: We calculate the KLD using a modified prior that incorporates the desired
change in activation. Specifically, the prior mean µprior is adjusted based on the target
direction:

µprior =

{
+1, if target = “max”
−1, if target = “min”

The KLD is then computed as:

KLDour(z) =
1

2

dz∑
i=1

[
log

(
σprior
i

σi

)
− 1

+
σ2
i + (µi − µprior

i )2

(σprior
i )2

]
where σprior

i is set to a small constant (e.g., 0.1).

• Standard VAE: We calculate the KLD using the standard Gaussian prior with zero mean
and unit variance:

KLDstandard(z) =
1

2

dz∑
i=1

(
µ2
i + σ2

i − log(σ2
i )− 1

)
- Total Objective Function: The total loss combines the activation loss and the KLD regularization:

loss = activation loss + ωKLD × KLD(z)

where KLD(z) is either KLDour(z) or KLDstandard(z) depending on the mode.

4. Backpropagation: We perform backpropagation to compute the gradients of the loss with respect
to z and update z using the optimizer.

optimizer.zero grad()
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loss.backward()

optimizer.step()

Post-processing with DDPM: To enhance the quality and realism of the generated image, we further
refine x using a pre-trained Denoising Diffusion Probabilistic Model (DDPM).

Final Results: The final optimized images presented in our paper are the outputs from the DDPM
refinement process, not the direct outputs from the VAE optimization.

Configurations: During the implementation, learning rate was set to 0.1, num iterations to 10000
and ωKLD to 0.001.

D PREDICTIVE POWER OF IN-SILICO BRAIN SIMULATOR

Here are the graphs of the predictive power of our In-silico brain simulator. To improve the training
efficiency, the In-silico brain simulators are training with different ROI groups.

ROIs: OFA, FFA-1, EBA, VWFA-1, OPA, PPA, RSC, OWFA:

ROIs: IPS4, SPL1, TO1, PHC2, VO2, PGi, VVC, TE2a:
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ROIs: STSdp, 31a, 31pd, DVT, FST, Gp, PGs, PH:
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ROIs: TE2p, PHT, TPOJ1, TPOJ2, TPOJ3, IP0, IP1, IP2:

ROIs: V1, V2, V3, V4, V8, LO1, LO2, V4t :
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Occipital Channels: O1, Oz, O2, PO7, PO3, POz, PO4, PO8:
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