
 

Exploration of Adaptive Random Test Replication 

Technology for Numerical Programs 
 

Zeran Bao , Undergraduate Student Member, Xi 'an Jiaotong University 
 

 

Abstract—As a highly effective method for generating test cases, 

adaptive random testing is widely utilized across various fields, 

including fuzzing and AI testing. Among the numerous functional 

testing approaches, random testing serves as the fundamental 

method. It involves the random selection of test cases from the 

input domain until a specific condition is met, such as identifying 

errors within a software system. However, due to its limited 

utilization of additional information, the effectiveness of random 

testing is constrained. Consequently, adaptive random testing has 

been proposed to ensure the randomness of test cases and their 

even distribution throughout the entire input domain. This project 

focuses on numerical programs with an aim to replicate existing 

classical adaptive random testing algorithms and compare their 

efficacy. After studying the source code of the framework and 

conducting a thorough review of relevant academic literature, our 

team incorporated their own insights into the process of 

reconstructing the work of predecessors. Subsequently, we 

independently developed a comprehensive framework that 

facilitated customized data transmission, test case generation and 

execution, as well as evaluation procedures. Additionally, we 

utilized echarts to generate visually intuitive charts on the front-

end. 

Index Terms—Adaptive random test, replication technology, 

numerical programs , frontend and backend development 

 

I. INTRODUCTION 

oftware testing is a crucial component of the software 

development life cycle, ensuring that the system adheres to 

specifications and minimizes errors. As software complexity 

and version iterations increase, maintaining quality and reliability 

in a time-efficient and cost-effective manner becomes paramount, 

particularly in large, fast-paced companies that adopt Continuous 

Integration (CI) strategies. CI facilitates early detection of system 

defects, provides developers with rapid feedback on code quality, 

shortens the software development cycle, and enhances product 

quality. Regression testing is essential for managing software 

changes and has become impractical to re-run entirely for large-

scale industrial systems due to the prevalence of continuous 

integration. To reduce regression testing costs and improve 

efficiency, various test case optimization techniques have been 

proposed. 

Regression testing, as one of the tools for managing software 

changes, becomes the most important part of practical software 

testing. And with the prevalence of continuous integration, it 

becomes impractical to re-run the entire test suite for large-scale 

industrial systems. In order to reduce the cost of regression testing 

and improve the efficiency of regression testing, a variety of test 

case optimization techniques have been proposed, such as test case 

identification and repair, test suite reduction, test suite expansion, 

test case selection and test case prioritization. 

Numerical program orientation in Adaptive Random Testing 

(ART) ensures that test cases are primarily focused on numerical 

programs, allowing for efficient and adaptive generation of evenly 

scattered test cases throughout the input domain. Nevertheless, 

ART applied to various fields has different points. Numerical 

program orientation means that the test cases we are primarily 

interested in should be related to numerical programs. 

Random testing is highly efficient in generating test cases; 

however, it has a fatal shortcoming: limited utilization of additional 

information beyond the given data, which can act as a constraint 

when testing diverse types of software. In contrast, Adaptive 

Random Testing (ART) ensures the randomness and even 

distribution of test cases throughout the entire input domain, 

making it "adaptive". ART has gained industry recognition for 

combining the strengths of random testing while mitigating its 

weaknesses. This indicates that adaptive random testing for 

numerical programs is a well-established yet dynamic field, 

offering valuable insights for further exploration. 

By delving into the source code of the framework and 

leveraging insights from literature reviews, this paper enriches the 

existing knowledge base by infusing its own perspectives into the 

recreation process. It constructs a comprehensive framework 

encompassing custom data transmission, test case generation, 

operation, and evaluation. Additionally, it employs echarts to 

create visually appealing charts in the frontend, enhancing the 

overall presentation of the research findings. 

From the aforementioned information, it is evident that 

adaptive random testing for numerical programs represents a well-

established yet dynamic field, from which we can continue to 

derive substantial insights. Our team leveraged the source code of 

the framework and integrated findings from relevant literature to 

enhance our understanding. Through this process, we incorporated 

original perspectives while reconstructing predecessor content, 

ultimately developing a customized framework encompassing data 

transmission, test case generation and execution, as well as 

evaluation capabilities. Additionally, we utilized echarts to 

generate visually intuitive charts on the front-end. 

. 

II. PROJECT STRUCTURE 

A. Overall Architecture 

The overall aechitecture of project is shown as figure 1.The 

frontend only interacts with the Controller and sends GET and 

POST requests wrapped in single and multiple request objects. 

Controller core functions consists of task distribution, receiving 

and sending requests.The primary functions of the two ART 

modules are as follows: The ART_Empirical module executes 

S 



 

aspecific ART algorithm and validates the results produced by 

said algorithm; while the ART_Algorithm module conducts 

mutation testing and calculates compilation kill rate. 

  
Fig. 1. Overall architecture of project 

 

B. Frontend Architecture 

The frontend adopts vue3 architecture, with utility class 

components folder components, modules network and router 

responsible for data transmission, and two independent pages 

views. Figure 2 reveals the brief structure of the front-end source 

code. The main function is page display, including ART form 

input information collection, ART results visualization, single or 

multiple ART algorithm switching. 

 
Fig. 2. Structure of the front-end source code 
 

C. Backend Architecture  

The back end is mainly composed of three modules: 

Controller, ART_Algorithm and ART_Empirical.   

1) Controller  

Con troller receives the front-end data, parses the 

request, sends the request to ART_Empirical to generate 

test cases and runs the simulation test. After the test 

cases are generated, ART_Algorithm is wakened to test the 

mutation kill rate.  

The structure of Controller is shown in figure 3. Spring 

Boot interacts with the frontend, encapsulating request 

objects and return objects, and stateless services. The 

Socket communicates with the backend and customizes the 

protocol interaction. For multi-TCP evaluation, the 

evaluation method is customized. 

 
Fig. 3. Structure of Controller 

 

2) ART_Algorithm  

ART_Empirical takes the Controller command, extracts 

and parses the test request body, and returns a partial 

evaluation result. It implements a custom evaluation 

framework, custom data extraction methods with common, 

unified data encapsulation, 15+1 ART algorithms, custom 

data storageThe structure of ART_Algorithm is shown in 

figure 4. 

 
Fig. 4. Structure of ART_Algorithm 

 

3) ART_Empirical 

ART_Algorithm receives Controller commands, runs ART 

to generate test cases, stores them, and returns partial 

evaluation results. It implements a custom test run and 

evaluation framework and custom data extraction. 



 

 
Fig. 4. Structure of ART_ Empirical 

 

 

III. ALGORITHM 

We successfully archieved 18 ART algorithms.Their categories, 

names and source paper information are as follows: 

 

 

 
TABLE I 

CATEGORIES, NAMES AND SOURCE PAPER INFORMATION OF 

18 ART ALGORITHMS 

 

Next we choose some important algorithms and explain their 

principle and code implementation. 

A. FSCS-ART-DNC 

The flow chart of the algorithm is as follows, where the red 

box part is the addition of the algorithm based on FSCS. 

 

B. RRT-DNC 

The algorithm adopts the same idea as FSCS-ART-DNC, but it is 

implemented on RRT instead of FSCS-ART. 



 

 
 

D. Inverted FSCS-ART 

This algorithm is an improvement of FSCS-ART, which 

mainly solves the problem that FSCS-ART selects more test 

cases from the edge region than from the center region in the 

high-dimensional input domain. The method provided is to 

reverse the edge/center distribution of FSCS-ART test cases, 

so as to improve the fault detection efficiency. 

Function (5) maps the FSCS-ART test cases from the edge to 

the center region, or from the center to the edge region. 

 

 
 

E. Proportional Random Testing 

 
 

IV. EXPERIMENT 

The code provides a Main function that the user can interact 

with, allowing the user to select one or more ART algorithms to 

test. 

 
Fig. 4. Running screenshots 

 

A. Test Mode and Parameters 

We use simulation tests, and for each ART method, there will 

be 2 input domain dimensions, 4 failure rates, and 3 failure domain 

types. So for each method, we get 24 trials. We run each 1000 times 

and compute the average F-measure, F-art/F-rt, as well as the 

running time. 

 



 

 

B. Test Results 

The results are stored in 'ARTEmpirical-main/result', which 

contains a txt file with details for each method on 2D and 3D 

input fields, 0.001 failure rate, three failure field types, and an 

'ART_Result_Summary.csv' file with all the results. In the 

'ART_Result_Summary.csv' file, there are 24 pieces of data 

about each ART algorithm, for example for the DMART 

algorithm: 

 
Fig. 5. DMART_Result_Summary.csv 

 

C. Comparison of Different Algorithms  

Figure 6 and 7 reveals the F-measure and running time of 

different algorithms. 

 
Fig. 6. F-measure of different algorithms 

 

 
Fig. 7. Running time of different algorithms 

 

D.  Web-based running 

We choose the single ART analysis as example. the 

algorithm is FSCS, the numerical program is Bessj, and 

the running time is about 15 minutes with the case of 

block-level failure domains. 

Figure 7 and Figure 8 reveal the front-end page and 
back-end in the example experiment. 

 
Fig. 7. Front-end page  
 

 

 

 



 

 
Fig. 8.  backend  page 

 

V. CONCLUSION 

Adaptive random testing emerges as a highly effective 

approach for test case generation, widely adopted in diverse 

fields such as fuzzing and AI testing. While random testing 

serves as a fundamental method in functional testing, its 

effectiveness is limited by the lack of utilization of additional 

information beyond the input domain. To address this 

constraint, adaptive random testing has been introduced to 

ensure the randomness and uniform distribution of test cases 

throughout the input domain. 

In this article, we specifically focused on numerical 

programs, aiming to replicate classical adaptive random 

testing algorithms and assess their effectiveness. By 

examining the source code of the framework and conducting a 

comprehensive review of relevant academic literature, our 

team integrated their unique perspectives into the process of 

reconstructing the work of previous researchers. Subsequently, 

we developed a comprehensive framework that enabled 

customized data transmission, test case generation, execution, 

and evaluation processes. Furthermore, we leveraged echarts 

to create visually intuitive charts on the front-end, enhancing 

the presentation of our research findings. 

REFERENCES 

[1]  M. Abdelkarim and R. ElAdawi, TCP-Net: Test ase Prioritization using 

 End-to-End  Deep  Neural  Networks//2022  IEEE  International 
[2]  Conference on Software Testing, Verification and Validation Workshops 

 (ICSTW). Valencia, Spain, 2022: pp. 122-129.Antonia Bertolino,  Antonio  

Guerriero, BrenoMranda, Roberto Pietrantuono, and Stefano Russo. 
Learning-to-rank vs ranking-to-learn:trategies for regression testing in 

continuous integration//Proceedings of theACM/IEEE 42nd  International  

ew York, NY, USA. 2020. 1–12. 
[3]  Benjamin Busjaeger and Tao Xie. Learning for test prioritization: an 

industrial case study//Proceedings of the 2016 24th ACM SIGSOFT  

International  Symposium  on  Foundations  of  Software Engineering (FSE 
2016). Association for Computing Machinery.ew York, NY, USA, 2016: 

975–980. 

[4]  J.  Chen,  Y.  Bai,  D.  Hao,  Y.  Xiong,  H.  Zhang nd  B.  Xie,  Learning  
to Prioritize  Test  Programs  for  Compiler  Testing//2017  IEEE/ACM  39th  

International  Conference  on  Software Engineering  (ICSE).  Buenos Aires, 

Argentina, 2017: pp. 700-711. 
[5] E.  A.  Da  Roza,  J.  A.  P.  Lima,  R.  C.  Silva  and  S.Vergilio,  Machine 

Learning Regression Techniques for Test Case Prioritization in Continuous 

Integration Environment//2022 IEEE International Conference on  
Software  Analysis,  Evolution  and  Reengineering (SANER). Honolulu, 

HI, USA, 2022: pp. 196-206. 

[6]  D. Di Nardo, N. Alshahwan, L. Briand and Y.Labiche, Coverage-Based 
Test  Case  Prioritisation:n  Industrial  Case  Study//2013  IEEE  Sixth 

 International  Conference  on  Software  Testing,Verification  and 

 Validation. Luxembourg, 2013: pp.02-311. 
[7]  D. Di Nardo, N. Alshahwan, L. Briand and Y.Labiche, Coverage-Based 

Test  Case  Prioritisation:n  Industrial  Case  Study//2013  IEEE  Sixth 

 International  Conference  on  Software  Testing,Verification  and 
 Validation. Luxembourg, 2013: pp.02-311. 

[8]    J. A. P. Lima and S. R. Vergilio, A Multi-Armed Bandit Approach for 

Test Case Prioritization in Continuous Integration Environments. IEEE 
 Transactions on Software Engineering, 2022. vol. 48,no. 2: pp. 453-465, 

 1. 

[9]    V. H. S. Durelli et al., Machine Learning Appliedto Software Testing: A 
 Systematic Mapping Study.EEE Transactions on Reliability, 2019. vol. 

 68, no., pp. 1189-1212. 

[10]  Sebastian  Elbaum,  Alexey  Malishevsky,  and  GreggRothermel. 
Incorporating  varying  test  costs  and  faultseverities  into  test  case 

prioritization//Proceeding of he  23rd  International  Conference  on 

SoftwareEngineering(ICSE). Toronto, ON, Canada. 2001: pages 329–
338. 

[11]  Yang  Feng,  Qingkai  Shi,  Xinyu  Gao,  Jun  Wan,Chunrong  Fang,  and 

 Zhenyu  Chen.DeepGini:prioritizing  massive  tests  to  enhance  the 
 robustnessof  deep  neural  networks//Proceedings  of  the29th  ACM 

 SIGSOFT  International  Symposiumon  Software  Testing  and  Analysis 

 (ISSTA  2020).Association  for  Computing  Machinery.  New  York,NY, 

 USA, 2020: 177–188. 

[12]  Y.  Huang,  T.  Shu  and  Z.  Ding,  A  Learn-to-Rank  Method  for 

Model-Based Regression Test CasePrioritization. IEEE Access, 2021,vol. 
9, pp. 16365-16382. 

[13] Jahan, Hosney et al. Version Specific Test CasePrioritization Approach 

Based  on  Artificial  Neural Network, Intelligent  Fuzzy  Systems, 
2019,vol. 36, no. 6, pp. 6181-6194. 

[14]  Kandil,  P.,  Moussa,  S.,  and  Badr,  N.  Cluster-based  test  cases 
prioritization  and  selection  techniquefor  agile  regression  testing. 

ournal Of Software-evolution And Process, 2017, 29: e1794. 

[15]  Z.  Khalid  and  U.  Qamar,  Weight  and  Cluster  BasedTest  case 
Prioritization  Technique//2019  IEEE10th  Annual  Information 

Technology,  Electronicsand  Mobile  Communication  Conference 

(IEMCON).Vancouver, BC, Canada, 2019: pp. 1013-1022. 
[16]  R.  Lachmann,  S.  Schulze,  M.  Nieke,  C.  Seidl  and  I.Schaefer, 

System-Level Test Case PrioritizationUsing Machine Learning// 2016 

15th  IEEEInternational  Conference  on  Machine  Learningand 

Applications (ICMLA). Anaheim, CA, USA,2016: pp. 361-368. 

[17] Jackson A. Prado Lima, Willian D. F. Mendonça,Silvia R. Vergilio, and 

Wesley  K.  G.  Assunção.Learning-based  prioritization  of  test  cases 
incontinuous  integration  of  highly-configurablesoftware//Proceedings 

of the 24th ACM Conferenceon Systems and Software Product Line: 

Volume  A- Volume  A  (SPLC  ’20).  Association  for 
ComputingMachinery. New York, NY, USA, 2020: Article 31,1–11. 

[18]  C. -T.  Lin,  S. -H.  Yuan  and  J.  Intasara,  A  Learning-to-Rank  Based 

 Approach  for  Improving  RegressionTest  Case  Prioritization//2021 
 28th  Asia-PacificSoftware  Engineering  Conference  (APSEC). 

 Taipei,China. 2021: pp. 576-577. 

[19] A.  Da  Roza,  J.  A.  P.  Lima,  R.  C.  Silva  and  S.Vergilio,  Machine 
Learning  Regression  Techniques  for  Test  Case  Prioritization  in 

 Continuous  Integration  Environment//2022  IEEE  International 

 Conference  on  Software  Analysis,  Evolution  and  Reengineering 
 (SANER). Honolulu, HI, USA, 2022: pp. 196-206. 

[20] Mahdieh M, Mirian-Hosseinabadi S H, EtemadiK, et al. Incorporating 

fault-proneness estimationsinto coverage-based test case prioritization 
 methods.Information and Software Technology, 2020, 121:106269. 

[21] N. Medhat, S. M. Moussa, N. L. Badr and M. F.Tolba, A Framework 

 for  Continuous  Regression  andIntegration  Testing  in  IoT  Systems 
 Based  on  DeepLearning  and  Search-Based  Techniques.  IEEE 

 Access,2020, vol. 8, pp. 215716-215726. 

[22]  Francis  Palma,  Tamer  Abdou,  Ayse  Bener,  JohnMaidens,  and  Stella 
 Liu. An Improvement to TestCase Failure Prediction in the Context of 

 Test  CasePrioritization//Proceedings  of  the  14th 

 InternationalConference  on  Predictive  Models  and  Data  Analyticsin 
 Software  Engineering  (PROMISE’18).  Associationfor  Computing 

 Machinery. New York, NY, USA,2018: 80–89. 

[23] Pan, R., Bagherzadeh, M., Ghaleb, T.A. et al. Test case selection and 
 prioritization  using machine learning: a  systematic literature  review. 

EmpiricalSoftware Engineering. 2022. 27, 29. 

 


