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Abstract

The Conditional Sequence Modeling (CSM) paradigm, benefiting from the trans-
former’s powerful distribution modeling capabilities, has demonstrated consider-
able promise in Reinforcement Learning (RL) tasks. However, much of the work
has focused on applying CSM to single online or offline settings, with the general
architecture rarely explored. Additionally, existing methods primarily focus on
deterministic trajectory modeling, overlooking the randomness of state transitions
and the diversity of future trajectory distributions. Fortunately, value-based meth-
ods offer a viable solution for CSM, further bridging the potential gap between
offline and online RL. In this paper, we propose Value-Guided Decision Trans-
former (VDT), which leverages value functions to perform advantage-weighting
and behavior regularization on the Decision Transformer (DT), guiding the policy
toward upper-bound optimal decisions during the offline training phase. In the
online tuning phase, VDT further integrates value-based policy improvement with
behavior cloning under the CSM architecture through limited interaction and data
collection, achieving performance improvement within minimal timesteps. The
predictive capability of value functions for future returns is also incorporated into
the sampling process. Our method achieves competitive performance on vari-
ous standard RL benchmarks, providing a feasible solution for developing CSM
architectures in general scenarios. Code is available at here.

1 Introduction

Offline reinforcement learning (Offline RL) [1] aims to develop a reward-maximizing RL strategy
using offline data. This approach is highly valuable in real-world scenarios where online data
collection is expensive, time-consuming, or impractical. Transformer [2] is widely regarded for
its capacity to capture complex data distributions and long-term temporal dependencies, becoming
a foundational architecture in fields such as Natural Language Processing [3, 4] and Computer
Vision [5, 6]. Inspired by this success, Decision Transformer (DT) [7] and its variants [8, 9] introduce
the transformer to the field of offline RL, demonstrating its powerful capabilities in Conditional
Sequence Modeling (CSM) [10]. Specifically, DT integrates cumulative rewards, states, and actions
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into a tuple and trains on offline datasets autoregressively to output appropriate actions. This approach
relaxes the MDP assumption by considering multiple historical steps, allowing the model to handle
long sequences and avoid stability issues associated with bootstrapping [11].

The CSM method is essentially goal-conditioned behavior cloning, which optimistically treats the
highly incidental performance gains resulting from the randomness in offline data as a general
expectation. As a result, while it performs well in deterministic environments, it struggles to
achieve good performance in stochastic environments or when faced with suboptimal data. Some
works [12, 13] have combined value functions trained on offline data with CSM to generate suboptimal
trajectory stitching, guiding the agent’s robust learning. However, these approaches typically introduce
the value function by simply re-labeling the return-to-go (RTG) or directly using it as penalty terms,
with little consideration given to how to explore further the optimization upper bound of the value
function in the CSM setting and effectively integrate it with the DT to curb its overly optimistic
behavior cloning.

Bridging the gap between offline and online reinforcement learning remains a central challenge. One
promising direction that has emerged in recent years is offline-to-online RL [14, 15]. Within the CSM
framework, a commonly used method is the Online Decision Transformer (ODT) [16], which extends
DT training into the online phase while maintaining the same supervised learning paradigm used in
offline RL. However, ODT faces challenges in achieving expert-level performance in online scenarios
with limited or suboptimal data, primarily due to its inability to compose or integrate suboptimal
trajectories effectively. Furthermore, ODT demonstrates significant advantages only after online
fine-tuning, while its performance in offline scenarios remains suboptimal. There is still limited
research on how the CSM architecture can generalize across offline and online settings.

To remedy these drawbacks, we propose the Value-Guided Decision Transformer (VDT), a unified
RL framework for online and offline settings. (1) Offline Training Phase: Based on the DT training
framework, we combine a multi-step Bellman-optimized Q-function and state-value function to
explore the upper bound of value estimation. Value guidance is integrated with the behavior cloning
of Decision Transformer (DT) through advantage-weighted learning, while the maximum estimated
value is concurrently used as a penalty term to regularize the expected value of the current action
distribution. The coupling and regularization effectively mitigate the overly optimistic estimates of
CSM in stochastic environments and enable trajectory stitching from suboptimal data. (2) Online
Tuning Phase: VDT refines the value function and the policy through limited interactions. Integrating
the trajectory-level replay buffer and RTG alignment achieves significant performance improvements
within minimal timesteps. (3) Sampling Process: The Q-function evaluates the expected future
return of each action the policy generates under different RTGs within a predefined evaluation horizon
and selects the optimal decision. The introduction of the value function significantly improves the
DT’s performance in both pure offline and offline-to-online settings, regardless of data quality or
reward sparsity, and further bridges the potential gap between offline and online RL.

The main contributions of this work are as follows:

• We incorporate the value function into the CSM architecture and enhance behavior cloning
with advantage-weighted learning and regularization constraints. These components enable
VDT to stitch together suboptimal trajectories under value-based guidance and achieve robust
performance across varying-quality datasets. We further provide a theoretical guarantee of
its superior performance.

• We leverage the inherent strengths of the value function to fine-tune the policy with a limited
number of interactions in the online phase. By introducing the trajectory-level replay buffer
and return-to-go alignment, we bridge the gap between offline training and online tuning,
offering insights into the design of generalizable architectures.

• We demonstrate the effectiveness of VDT across a broad spectrum of benchmarks, exhibiting
superior performance in pure offline and offline-to-online settings.

2 Related works

CSM for Offline RL. In contrast to online RL, offline RL [17] focuses on training models and
performing trial-and-error using offline data without environmental interaction to arrive at appropriate
strategies. Recently, CSM for RL [18, 19], represented by the transformer architecture, has further
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demonstrated the advantages of data-driven policy learning. DT [7] is trained on an offline dataset of
triplets encapsulating return-to-go r̂t, state st, and action at, and outputs the optimal action. The r̂t
token quantifies the cumulative reward from the current time step to the end of the episode. During
training, DT processes a trajectory sequence τt in an auto-regressive manner, which encompasses the
most recent K-step historical context:

τt = (r̂t−K+1, st−K+1, at−K+1, . . . , r̂t, st, at) (1)

The prediction head associated with a state token st is trained to predict the corresponding action
at. Regarding continuous action spaces, the training objective is to minimize the mean-squared loss
LDT .

LDT = Eτt∼D

[
1

K

K∑
t=t−K+1

(at − πθ (τt)i)
2

]
(2)

Subsequent work has made various improvements to DT, including prompt tuning [20], trajectory
concatenation [21], and value regularization [22]. These approaches often involve more complex
modifications of DT to adapt it to specific tasks.

Offline-to-Online RL. Offline-to-online RL focuses on fine-tuning a policy pre-trained on offline data
using a limited number of online interactions to improve performance and narrow the gap between
offline and online learning. Key challenges in this setting include effectively leveraging offline data
for initializing the policy and mitigating distributional shifts during the online adaptation process.
Early approaches focus on pre-training policies with offline data [23, 24] and use techniques such
as balanced sampling [25], adaptive conservatism [15], and actor-critic alignment [26] to stabilize
the transition to the online phase. For efficient online fine-tuning, optimistic exploration strategies
are employed, utilizing Q-ensembles [27], uncertainty-guided exploration [28], or model-based
uncertainty estimation [29, 30]. While most existing methods follow Q-learning paradigms, the
use of CSM architectures such as DT for offline-to-online reinforcement learning remains largely
underexplored.

Value-based Offline RL. The value-based method is one of the most prominent categories for
addressing the distribution shift problem in offline RL. Primarily previous works generally address
this problem in one of three ways: (1) constraining the learned policy to the behavior policy [23, 31];
(2) constraining the learned policy by making conservative estimates of future rewards [24, 22]; (3)
introducing model-based methods, which learn a model of the environment dynamics to generate
more data for policy training and perform pessimistic planning in the learned MDP [32, 33].

The most relevant work to ours is ODT [16], the first to establish a pipeline for transitioning from
offline to online RL within the DT framework. However, since ODT adopts a strategy that mirrors
its offline training phase, it struggles to effectively handle suboptimal data and adapt to dynamic
or stochastic environments. Moreover, as a few-shot method primarily focused on online fine-
tuning, ODT performs significantly worse than most baselines in offline settings. TD3+ODT [34],
which is primarily based on the ODT algorithm pipeline, further incorporates the RL gradient from
the critic as an additional penalty term in the loss function. Our method is distinguished by the
effective optimization of the value function and its integration with the DT, enabling the policy to
achieve robust performance across varying data quality in offline and online settings. In addition,
the evaluation mechanism we design during the sampling process further encourages exploration,
facilitating efficient trajectory stitching.

3 Preliminary

Markov Decision Process. Reinforcement Learning is typically formulated as a Markov Decision
Process (MDP), defined by a tuple (S,A, P, r, γ), where S represents the state space, A is the action
space, P is the transition function, r is the reward function, and γ ∈ [0, 1] is the discount factor.

In offline RL, the objective is to optimize the RL policy using a previously collected dataset D =
{(sit, ait, rit, sit+1)}N−1

i=0 , consisting of N trajectories. The key distinction in offline RL is that the
agent does not interact directly with the environment during the learning phase but instead learns
from the historical data. This offline dataset represents the state-action-reward-state transitions the
agent experienced during earlier episodes. The agent’s task is to extract useful information from these
trajectories to improve its decision-making policy without further environmental exploration.
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Figure 1: The architecture of Value-Guided Decision Transformer. Left: Offline Training & Online
Tuning. VDT is trained offline under value guidance and interacts with the environment online to
generate trajectories for updating the replay buffer. These trajectories are then used to tune VDT
further. Right: Sampling Process. At a specific timestep t, the policy generates candidate actions
within the evaluation horizon E under predefined RTGs, and evaluates them using the Q-function to
obtain the optimal action at.

Online Decision Transformer. Online Decision Transformer (ODT) operates in two stages: offline
pretraining and online finetuning. In the offline phase, the model learns from static trajectories
using supervised learning, following the standard DT paradigm. In the online phase, it collects new
trajectories and refines the policy with supervised updates. During rollouts, the action at at timestep
t is either computed deterministically as at = µDT(τt), or sampled stochastically from the policy
at ∼ πDT(at | τt). The policy is initialized using the offline dataset and is updated during finetuning
as newly collected online trajectories gradually replace the old data buffer.

4 Method

This section provides a comprehensive description of the proposed VDT. We break down VDT into
three parts: offline training, online tuning, and the sampling process. The offline training details how
the value function is integrated into the conventional CSM architecture using advantage-weighted
learning and regularization terms. The online tuning focuses on the collection and processing of
online data. Although the model has already incorporated the value guidance during training, due to
the inherent randomness of the environment, we perform value evaluation on the predicted actions
during the sampling process to maximize decision-making performance.

4.1 Offline Training

We incorporate value guidance into the DT architecture to enable the CSM architecture to perform
robustly in highly stochastic environments and with suboptimal trajectories, and to achieve effective
trajectory stitching. As a first step, we learn the Q-function. Specifically, we aim to estimate an upper
bound of the Q-function within the support of the dataset’s action distribution. We implement the
Q-networks Qθ1(s, a) and Qθ2(s, a), along with their corresponding target networks Qθ̂1(s, a) and
Qθ̂2(s, a), as multi-layer perceptrons (MLPs) with two hidden layers. This architecture provides
sufficient representational capacity to approximate complex value functions while maintaining
stability during offline training. Inspired by Implicit Q-Learning (IQL) [24], we adopt an expectancy
regression technique, which leverages an asymmetric L2 loss to provide an unbiased estimation of
the conditional expectile. For a given threshold ϵ > 0.5, this loss function adaptively emphasizes
high-return actions by down-weighting the influence of actions with returns below the threshold,
thereby approximating the conditional upper bound of the Q-function. To support this, we use an
independent state-value function Vϕ(s), implemented as a simple two-layer MLP, and optimize it
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using the following objective:

LV (ψ) = E(st,at)∼D
[
Lϵ2
(
Qθ̂(st, at)− Vψ(st)

)]
, (3)

where Lϵ2(u) = |ϵ− I(u < 0)|u2. After obtaining the Vψ with average properties, given that the input
to the DT consists of historical trajectories, we choose the n-step Bellman equation to estimate the
double Q-networks, which has been shown to provide better stability in practical training compared
to single-step optimization [35]. To update Qθi , i ∈ [1, 2], we use the following formula:

E(st,at,rt,...,st+n)∼D

(n−1∑
k=0

γkrt+k + γnVψ(st+n)−Qθi(st, at)

)2
 (4)

where γ is the discount factor. We modify the TD learning procedure to learn an approximation
to the optimal Q-function on an offline dataset. In designing the learning objective, we weigh the
DT’s trajectory modeling loss by computing the advantage function mini=1,2Qθ̂i(st, at)− Vψ(st),
which helps the model identify high-return action trajectories in the dataset and assign them higher
importance. As proposed by [36], this advantage-weighted method performs policy optimization
within the action distribution supported by the dataset, stabilizing the learning process. Additionally,
to further guide the policy towards high-value directions, we compute the policy’s action output at
the current state and evaluate its value using the target Q-networks, which is then incorporated into
the loss function as a regularization term.

E τt∼D
(st,at)∼τt

[exp(η(min
i=1,2

Qθ̂i(st, at)− Vψ(st)))∥πDT (τt)− at∥
2 − λ · min

i=1,2
Qθ̂i(st, πDT (τt))] (5)

where η is an inverse temperature, which we set to 3. The parameter λ is a hyperparameter that
balances the weight between the two loss terms. Through this loss design, the combination of
advantage weighting and the regularization term optimizes the stability of trajectory modeling while
guiding the value function to break through the local optima within the data distribution.

Theorem 4.1. Let π∗
DT be the optimal policy of Equation 5. For any s ∈ S, we have that V π

∗
DT (s) ≥

V β(s) and π∗(a | s) = 0 given β(a | s) = 0.

Theorem 4.2. For any initial state distribution µ, we have that V π
∗
(µ) − V π∗

DT (µ) ≤ 2γ
(1−γ)2 ·

Es∼dπ∗
[
maxa/∈AD(s)Q

π∗
(s, a)−maxa∈supp(β(·|s))Q

π∗
(s, a)

]
.

Building on the theoretical foundations established by Theorem 4.1 and the new upper bound provided
by Theorem 4.2, we further confirm the effectiveness of Equation 5. These theoretical insights suggest
that a policy guided by the value function is likely to outperform the behavior policy. In particular,
advantage-weighting and regularization play a crucial role by prioritizing high-value actions, thus
steering the learning process towards optimal returns and ensuring consistent improvement over the
baseline behavior policy β. Complete proofs are provided in Appendix A and Appendix B.

4.2 Online Tuning

During the online tuning stage, while following almost the same pipeline as the offline training phase,
we also introduce several distinct components to achieve the most significant performance gains with
the fewest interaction steps.

Trajectory-Level Replay Buffer. In the online tuning phase, we employ a replay buffer similar to
that used in ODT [16], where the buffer consists of entire trajectories rather than individual transitions.
The replay buffer is initially populated with the trajectories that yield the highest returns in the offline
dataset. Each time the policy interacts with the environment, we fully roll out an episode using the
current policy, then refresh the replay buffer by adding the collected trajectory in a first-in-first-out
manner. Afterwards, we update the policy and proceed with another rollout. We use the two-step
sampling procedure to ensure that the sub-trajectories of length K in the replay buffer Treplay are
sampled uniformly. We first sample a single trajectory with probability proportional to its length, then
uniformly sample a sub-trajectory of length K. Our sampling strategy is akin to importance sampling
for environments with non-negative, dense rewards. In those cases, the length of a trajectory is highly
correlated with its return.

Return-to-go Alignment. During the offline training phase, the RTG at the current step is accumu-
lated from subsequent rewards, and the policy learns conditioned on this RTG. However, in the online
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tuning phase, the policy interacts with the environment in real-time based on a predefined RTG, and
the induced RTG may differ from the predefined RTG. This discrepancy leads to a mismatch between
the expected and actual returns, further affecting the effectiveness of the value function in guiding
the policy. To address this, we modify the RTG token at each step of the rolled-out trajectory using
the achieved returns, such that the RTG token at time step t is set as RTGt =

∑|τ |
j=t rj , where |τ |

denotes the trajectory length and rj denotes the reward at each step. Specifically, for the last timestep
of a trajectory, the RTG token equals the immediate reward obtained by the agent upon trajectory
termination, which more accurately reflects the return at that step and helps to align the expected and
actual returns. Note that, depending on the properties of the environment, the immediate reward at
the final step is not necessarily zero.

4.3 Sampling Process

Traditional DT uses multiple RTGs for completely independent evaluations and typically selects
the trajectory with the highest cumulative return under a specific RTG as the evaluation result,
neglecting the potential guidance from alternative RTGs at each timestep. We incorporate mul-
tiple RTGs at each trajectory step to overcome this limitation. The value function evaluates the
candidate actions, and the optimal action is chosen as the unified decision across all RTG-guided
trajectories at that step. This strategy guarantees a unique evaluation outcome, eliminates manual
trajectory selection, and effectively integrates the strengths of all RTGs. Specifically, we prede-
fine m candidate RTGs (r̂00, r̂

1
0, . . . , r̂

m
0 ) and maintain m parallel trajectories. At each timestep t,

the policy simultaneously generates m candidate actions (a0t , a
1
t , . . . , a

m
t ), where akt is generated

under the guidance of RTG r̂k0 . To evaluate these candidates, we introduce an evaluation horizon
E. For specific candidate action akt , the model autoregressively predicts the subsequent E-step
trajectory τkt = (st, a

k
t , s

k
t+1, a

k
t+1, . . . , s

k
t+E) under the corresponding RTG r̂k0 , and then computes

the cumulative action-value sum over the horizon:

Qkt =

E∑
i=0

γi ·Q(skt+i, a
k
t+i), (6)

where Q denotes the action-value function and γ is the discount factor. The optimal action at is
selected as at = argmaxakt Q

k
t . This optimal action is then appended to all m trajectories and

used to interact with the environment to obtain the next state and reward shared across the m
parallel trajectories. Crucially, the parallel nature of trajectory prediction across candidates ensures
computational efficiency—despite evaluating m trajectories, the batched computation on modern
GPUs results in latency comparable to single-trajectory inference. By employing a value function
to evaluate and select the optimal action, we effectively integrate guidance from different RTGs,
achieving optimal decision-making at each step while maintaining constant inference time. We
concisely outline the VDT pipeline in Appendix D.

Our sampling procedure shares similarities with both CEM [37] and SfBC [38]. Like CEM, we
generate multiple candidate actions at each step, evaluate them with a value function over a short
planning horizon, and select the best one—essentially a single-step population-based search. Unlike
SfBC, which samples from a behavior policy and selects by Q-value, VDT uses RTGs to guide
candidate actions and evaluates them in parallel. This integration of RTG guidance and batch
evaluation allows VDT to combine the strengths of population search and candidate selection while
maintaining efficient inference.

5 Experiment

In this section, we extensively evaluate our proposed Value-Guided Decision Transformer (VDT)
using the widely recognized D4RL benchmark [39]. As an integrated framework, VDT focuses on
performance in offline and offline-to-online (hereafter referred to as "online" for simplicity, without
causing ambiguity) settings in the main experiments to ensure the model’s generality. Since the
offline and online pipelines are nearly identical, we conduct ablation studies under the offline setting
to evaluate the shared components.

Datasets. We consider five different domains of tasks in the widely used D4RL benchmark: Gym,
Adroit, Kitchen, AntMaze and Maze2D. A detailed introduction to these five environments is
presented in Appendix E.
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Baselines. In the offline traing phase, we compare VDT with representative offline RL algorithms
from value-based and CSM methods. For value-based methods, including BEAR [40], BCQ [41],
CQL [23], MoRel [42], O-RL [43] and COMBO [32]. For CSM methods, including DT, DD [44],
EDAC [45], D-QL [46], MPPI [47], StAR [48], GDT [49] and CGDT [12]. In the online tuning
phase, we compare VDT with ODT, IQL [24], AWAC [50], CQL [23] and PDT [9], SAC [51] and
TD3+BC [52]. The performance scores for these baseline methods are sourced from the best results
published in respective papers or from our runs, ensuring a fair comparison.

Implementation details. All experiments are carried out on a server with 8 NVIDIA 3090 GPUs,
each with 24GB of memory. The experimental hyperparameter configurations of VDT are shown in
Appendix C.

5.1 Main Experiment

Table 1: Offline training performance of VDT and state-of-the-art baselines on D4RL tasks. For VDT,
results are reported as the mean and standard error of normalized rewards over 30 random rollouts (3
independently trained models with 10 trajectories each), generally showing low variance.

Dataset Value-Based Methods Conditional Sequence Modeling Methods

Gym Tasks BEAR BCQ CQL IQL MoRel BC DT StAR GDT CGDT DC VDT

halfcheetah-medium-replay-v2 38.6 34.8 37.5 44.1 40.2 36.6 36.6 36.8 40.5 40.4 41.3 39.4 ±2.0

hopper-medium-replay-v2 33.7 31.1 95.0 92.1 93.6 18.1 82.7 29.2 85.3 93.4 94.2 96.0±1.9

walker2d-medium-replay-v2 19.2 13.7 77.2 73.7 49.8 32.3 79.4 39.8 77.5 78.1 76.6 82.3 ±2.1

halfcheetah-medium-v2 41.7 41.5 44.0 47.4 42.1 42.6 42.6 42.9 42.9 43.0 43.0 43.9±0.7

hopper-medium-v2 52.1 65.1 58.5 63.8 95.4 52.9 67.6 59.5 77.1 96.9 92.5 98.3±0.1

walker2d-medium-v2 59.1 52.0 72.5 79.9 77.8 75.3 74.0 73.8 76.5 79.1 79.2 81.6±1.7

halfcheetah-medium-expert-v2 53.4 69.6 91.6 86.7 53.3 55.2 86.8 93.7 93.2 93.6 93.0 93.9±0.1

hopper-medium-expert-v2 96.3 109.1 105.4 91.5 108.7 52.5 107.6 111.1 111.1 107.6 110.4 111.5±3.8

walker2d-medium-expert-v2 40.1 67.3 108.8 109.6 95.6 107.5 108.1 109.0 107.7 109.3 109.6 110.4±0.9

Average 48.2 53.8 77.6 76.5 72.9 52.6 76.2 66.2 79.1 82.4 82.2 84.1

Adroit Tasks BEAR BCQ CQL IQL MoRel EDAC BC DT D-QL StAR GDT VDT

pen-human-v1 -1.0 66.9 37.5 71.5 -3.2 52.1 63.9 79.5 72.8 77.9 92.5 126.7±4.3

hammer-human-v1 2.7 0.9 4.4 1.4 2.3 0.8 1.2 3.7 0.2 3.7 5.5 3.2 ±0.3

door-human-v1 2.2 -0.05 9.9 4.3 2.3 10.7 2.0 14.8 0.0 1.5 18.6 19.7±0.5

pen-cloned-v1 -0.2 50.9 39.2 37.3 -0.2 68.2 37.0 75.8 57.3 33.1 86.2 145.6±4.0

hammer-cloned-v1 2.3 0.4 2.1 2.1 2.3 0.3 0.6 3.0 3.1 0.3 8.9 19.6±1.6

door-cloned-v1 2.3 0.01 0.4 1.6 2.3 9.6 0.0 16.3 0.0 0.0 19.8 30.6±0.7

Average 1.0 19.8 15.6 19.7 1.0 23.6 17.5 32.2 22.2 19.4 38.9 57.6

Kitchen Tasks BEAR BCQ CQL IQL O-RL BC DT DD StAR GDT DC VDT

kitchen-complete-v0 0.0 8.1 43.8 62.5 2.0 65.0 50.8 65.0 40.8 43.8 40.9 65.9±0.2

kitchen-partial-v0 13.1 18.9 49.8 46.3 35.5 33.8 57.9 57.0 12.3 73.3 66.8 76.1±10.8

Average 6.6 13.5 46.8 54.4 18.8 51.5 54.4 61.0 26.6 58.6 58.7 71.0

Maze2D Tasks BEAR BCQ CQL IQL COMBO BC MPPI DT QDT GDT DC VDT

maze2d-umaze-v1 65.7 49.1 86.7 42.1 76.4 85.7 33.2 31.0 57.3 50.4 20.1 88.0±4.6

maze2d-medium-v1 25.0 17.1 41.8 34.9 38.5 38.3 10.2 8.2 13.3 7.8 38.2 60.3±0.5

Average 45.35 33.1 64.3 38.5 72.5 63.6 21.7 19.6 35.3 29.1 57.6 74.2

AntMaze Tasks BEAR BCQ CQL IQL O-RL BC DT RvS StAR GDT DC VDT

antmaze-umaze-v0 73.0 78.9 74.0 87.1 64.3 54.6 59.2 65.4 51.3 76.0 85.0 100.0±5.5

antmaze-umaze-diverse-v0 61.0 55.0 84.0 64.4 60.7 45.6 66.2 60.9 45.6 69.0 78.5 100.0±4.7

antmaze-medium-diverse-v0 8.0 0.0 53.7 70.0 0.0 0.0 7.5 67.3 0.0 0.0 0.0 30.0±2.8

Average 47.3 44.6 70.6 73.8 41.7 33.4 44.3 75.0 32.3 48.3 54.5 76.7

Offline Training Performance. VDT consistently achieves or approaches state-of-the-art perfor-
mance across all datasets in the pure offline setting, demonstrating the effectiveness of our architecture.
The Gym and Adroit environments are characterized by a limited scope of human demonstrations,
which leads to extrapolation errors that particularly challenge offline RL. This is precisely why VDT’s
excellent performance across all tasks can be attributed to its high expressiveness and more effective
value guidance. The results of Kitchen tasks requiring generalization to unseen states and long-term
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Table 2: Offline-to-online performance of each method, with average rewards reported before (left of
arrow) and after (right of arrow) online tuning.

Dataset TD3+BC AWAC CQL IQL PDT ODT VDT

halfcheetah-medium-replay-v2 44.6 → 48.1 24.3 → 39.0 45.5 → 44.3 44.1 → 44.0 31.4 → 42.8 39.9 → 40.4 39.4 → 49.2
hopper-medium-replay-v2 60.9 → 90.7 77.3 → 79.6 95.0 → 95.3 92.1 → 93.5 84.5 → 94.8 86.6 → 88.9 96.0 → 119.2

walker2d-medium-replay-v2 81.8 → 82.0 63.8 → 44.0 77.2 → 78.0 73.7 → 60.9 54.5 → 79.0 68.9 → 76.9 82.3 → 95.5
halfcheetah-medium-v2 48.3 → 50.9 37.4 → 41.1 44.0 → 29.1 47.4 → 48.0 39.4 → 69.5 42.7→ 42.2 43.9 → 53.5

hopper-medium-v2 59.3 → 64.6 72.0 → 91.0 58.5 → 95.7 63.8 → 44.3 74.4 → 100.2 66.9 → 97.5 98.3 → 108.1
walker2d-medium-v2 83.7 → 85.2 30.1 → 79.1 72.5 → 89.4 79.9 → 68.9 63.4 → 88.1 72.2 → 76.8 81.6 → 89.8

halfcheetah-medium-expert-v2 90.7 → 92.1 36.8 → 41.0 91.6 → 99.9 86.7 → 95.3 82.6 → 93.3 36.8 → 100.9 93.9 → 101.7
hopper-medium-expert-v2 98.0 → 110.2 80.9 → 111.9 105.4 → 106.3 91.5 → 92.9 77.0 → 80.0 74.3 → 99.1 111.5 → 117.8

walker2d-medium-expert-v2 110.1 → 110.1 42.7 → 78.3 108.8 → 110.1 109.6 → 109.6 99.1 → 108.9 62.0 → 78.7 110.4 → 112.7
antmaze-umaze-v0 78.6 → 79.1 56.7 → 59.0 70.1 → 99.4 86.7 → 96.0 48.6 → 66.8 53.1 → 88.5 100.0 → 110.0

antmaze-umaze-diverse-v0 71.4 → 78.1 49.3 → 49.0 31.1 → 99.4 75.0 → 84.0 72.7 → 79.3 50.2 → 56.0 100.0 → 100.0
antmaze-medium-diverse-v0 0.0 → 56.7 0.7 → 0.3 23.0 → 32.3 68.3 → 72.0 8.0 → 63.4 0.8 → 55.6 20.0 → 75.0

Average 79.0 59.4 81.6 75.78 80.51 75.13 94.38

Table 3: Ablation study on model components during offline training. We have abbreviated some task
names for simplicity, which does not affect understanding. All experiments are repeated three times,
and the average value is taken.

Advantage Weighting Regularization Sampling hopper-m walker-m-e pen-cloned maze2d-m antmaze-u
✓ 90.3 99.9 86.1 12.1 75.1

✓ 88.9 78.1 99.3 30.5 60.9
✓ 78.6 80.3 82.0 19.3 0.0

✓ ✓ 95.6 103.6 131.8 40.5 95.9
✓ ✓ ✓ 98.3 110.4 145.6 60.3 100.0

value optimization demonstrate that VDT can learn useful data features from offline trajectories,
enhancing generalization and stability. For the Maze2d environment, which serves as a benchmark
to evaluate the capacity of algorithms to stitch segments of disparate trajectories effectively, the
performance of VDT significantly outperforms other methods, demonstrating the advantage of the
value functions in stitching high-quality trajectories. The AntMaze environment is characterized by
sparse rewards and many suboptimal trajectories, which present an even more significant challenge.
The performance results of VDT demonstrate the effectiveness and generalizability of the architecture
we designed, particularly in antmaze-umaze-diverse tasks.

Online Tuning Performance. We conduct online tuning of VDT and observe from the results that
VDT achieves optimal or competitive performance across nearly all tasks (as shown in Table 2).
These results demonstrate that value-guided methods retain their advantage even in online settings.
We attribute the strong performance of value-guided methods in the online setting to their ability to
rapidly extract and leverage the Markovian structure of the environment through interaction. This
inductive bias allows value-based approaches to adapt efficiently with limited data. In contrast, CSM
lacks explicit mechanisms for modeling state transitions and thus may struggle in settings that require
fast generalization from sparse interactions.

Compared to methods like ODT, which are restricted to a single setting, VDT achieves optimal
performance in offline and offline-to-online scenarios. This powerfully demonstrates the inherent
potential of value-guided strategies.

5.2 Ablation Study

Role of Different Components. As shown in Table 3, we conduct an ablation study on the three
key components involving the value guidance in VDT. The results show that using either advantage
weighting or individual regularization can improve baseline performance. However, the effectiveness
varies significantly across tasks. When both components are applied together (as shown in the fourth
row), performance improves substantially, suggesting that advantage weighting and regularization
complement policy learning. Specifically, advantage weighting is an important form of sampling
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Figure 2: Ablation on the hyperparameter ϵ.

that encourages the policy to favor high-return behaviors. At the same time, the regularization
term penalizes low-value actions, effectively constraining the policy within high-value regions.
Furthermore, incorporating Q-value-guided sampling enhances the stability and robustness of policy
execution. When all three components are combined (as in the last row), the model achieves the best
overall performance and consistency across tasks.

Table 4: Ablation on the computational complexity.

Offline Training Online Tuning
Complexity

IQL ODT VDT IQL ODT VDT
Memory ↓ 960 M 3968 M 4024 M 960 M 3968 M 4024 M
Params ↑ 0.60 M 5.01 M 5.24 M 0.60 M 5.01 M 5.24 M

Clock Time ↓ ≈ 1.0 h ≈ 9.0 h ≈ 5.0 h ≈ 1.0 h ≈ 4.5 h ≈ 4.0 h

Computational complex-
ity. Table 4 compares IQL,
ODT, and VDT regarding
memory usage, parameter
count, and training time
during offline training and
online tuning. Although
IQL has the lowest compu-
tational cost, it inevitably suffers from performance limitations. VDT has a slightly higher parameter
count than ODT due to the introduction of the value function. However, the value-guided training
process leads to faster convergence and better performance in both offline and online stages. There-
fore, the slight increase in parameters is considered acceptable. VDT balances model capacity and
computational efficiency well, maintaining strong representational power while significantly reducing
time costs.
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Figure 3: Ablation: Effect of Evalu-
ation Horizon E Length on Offline
Training Performance of VDT.

Impact of evaluation horizon E. We investigated the impact
of the evaluation horizon during the sampling process (shown in
Figure 3). Specifically, we analyzed how varying the evaluation
horizon under the guidance of the value function affects model
performance. It is well known that a short evaluation horizon
may lead to myopic policies, while an overly long horizon
can significantly slow down evaluation. Ablation studies show
that a horizon length of 5 yields the best performance. Further
increasing the horizon results in varying performance trends
depending on the task, which is related to the dataset’s quality
and the rewards’ sparsity. For simplicity, we set the evaluation
horizon to 5 for all tasks.

Table 5: Offline training performance of VDT with different context
lengths (K) on Gym tasks.

Datasets VDT (8) VDT (20) VDT (60) VDT(120)
halfcheetah-medium 28.6 43.9 44.6 43.0

hopper-medium 77.0 98.3 99.1 65.4
walker2d-medium 52.6 81.6 79.9 80.5

halfcheetah-medium-expert 89.5 93.9 93.9 77.0
hopper-medium-expert 109.3 111.5 112.7 111.2

walker2d-medium-expert 100.6 110.4 110.4 103.8
Average 76.3 89.9 90.1 80.2

Impact of context lengths
K. As shown in Table 5,
we observed that VDT per-
formance improved to vary-
ing degrees with increasing
context length, indicating that
VDT exhibits excellent ex-
tendability. When K = 60,
VDT achieved highest aver-
age performance. However,
increasing context length un-
questioningly would signifi-
cantly increase model com-
plexity and computational cost. Considering the trade-off between performance, complexity, and
ensuring fair comparison, we set K = 20.
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Impact of hyperparameter ϵ. In expectile regression, the parameter ϵ controls the value function’s
preference over different TD targets. Such preference plays a crucial role in sparse reward settings or
high-variance environments, as it helps prevent the policy from being misled by "lucky" samples. As
shown in Figure 2, setting ϵ = 0.7 is generally effective across most tasks in both offline and online
scenarios. When ϵ approaches larger values, performance improvements are observed only on the
AntMaze tasks, which we attribute to their reliance on trajectory stitching.

Comparison with stitching baselines. We conducted a further comparison between VDT and
EDT [53], which specializes in trajectory stitching. The core idea behind EDT’s ability to stitch
trajectories lies in adaptive history truncation. During inference, EDT dynamically selects the optimal
history length to maximize the maximum achievable return from the current state. EDT does not
use a Q-function to guide action selection. Instead, it forgets unsuccessful histories, which allows
the model to escape from low-return trajectories and connect to more optimal trajectory branches.

Table 6: Performance comparison of EDT, QDT,
and VDT on Gym tasks.

Datasets EDT QCS VDT
halfcheetah-medium 42.5 42.3 43.9

hopper-medium 63.5 66.5 98.3
walker2d-medium 72.8 67.1 81.6

halfcheetah-medium-replay 37.8 35.6 39.4
hopper-medium-replay 89.0 52.1 96.0

walker2d-medium-replay 74.8 58.2 82.3
Average 63.4 53.6 73.6

In addition, we have included a comparison with
QDT [54], which combines the dynamic pro-
gramming capabilities of Q-learning with the
sequence modeling strengths of DT, enabling re-
labeling of return targets and thus improving
DT’s ability to stitch suboptimal trajectories.
VDT differs in that it explicitly introduces a
Q-function to provide value-guided weighting
for action selection. At the same time, it em-
ploys multi-step Bellman equations and double
Q-networks to stabilize value function training,
thereby extending VDT to be applicable in both
offline and online settings, and enabling paral-
lel decision-making during sampling to leverage
the evaluation capability of the Q-function fully. As shown in Table 6, VDT demonstrates a clear
advantage over EDT and QDT across a wide range of tasks.

Table 7: Performance Comparison in Atari
Environments.

Game CQL DT DC VDT
Breakout 211.1 242.4 352.7 420.8

Qbert 104.2 28.8 67.0 69.4
Pong 111.9 105.6 106.5 113.9

Seaquest 1.7 2.7 2.6 3.9
Frostbite 9.4 25.6 27.8 28.9
Average 87.7 81.0 111.3 127.4

Performance comparison in Atari environments. We
evaluate the proposed VDT on the image-based Atari
dataset, with results averaged over three random seeds
(Table 7). VDT achieves the highest average score across
all considered games, substantially outperforming the
prior methods CQL, DT, and DC. Specifically, VDT sets
new benchmarks in the majority of tasks, evidencing
its enhanced ability to handle high-dimensional visual
observations. These results demonstrate that VDT pos-
sesses superior generalization capability and robustness,
validating its effectiveness not only on text-based envi-
ronments but also in challenging visual domains. The
consistent improvements highlight the benefit of our model design in leveraging sequential and
high-level representations, thereby providing a unified solution for diverse decision-making scenarios.

6 Conclusion

In this work, we propose the Value-Guided Decision Transformer (VDT), which organically integrates
policy improvement with behavior cloning, enabling efficient trajectory stitching and decision-making
through components such as advantage-weighted learning and value regularization. Experiments
on diverse RL benchmarks demonstrate that VDT achieves competitive performance in offline and
online settings, particularly excelling in stochastic scenarios and suboptimal data regimes. This work
establishes a unified CSM architecture for generalizable RL, paving the way for scalable and robust
transformer-based policies in real-world applications.

Limitation. VDT relies on parallel trajectory evaluation during sampling, which introduces some
additional computational cost, though this is generally manageable with GPU batching.
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technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We include the full set of assumptions and complete proofs in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a detailed experimental description in the main text and the
appendix. All the datasets, code, and model checkpoints are publicly available.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: All the datasets, code, and model checkpoints are publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, both in the main paper and in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide standard deviations in numerical form in Table 1. Additionally,
the visualization results in the ablation study section include standard deviations represented
as shaded areas.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the information in ablation study section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper fully conforms to the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly credited the creators and original owners of all assets used
in the paper through citations and other appropriate means, ensuring that the licenses and
terms of use are respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

19

paperswithcode.com/datasets


• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof of Theroem 4.1

Let π∗
DT be the optimal policy obtained by solving Equation 5. For any s ∈ S, we have:

1. Support Constraint: π∗
DT (s) ∈ supp(β(·|s)),

2. Value Improvement: V π
∗
DT (s) ≥ V β(s),

where supp(β(·|s)) = {a ∈ A | ∃(s, a) ∈ D}, and π∗(a | s) = 0 whenever β(a | s) = 0.
Lemma A.1 (Implicit Support Constraint). The policy gradient update satisfies:

∇L(π(d)
DT ) = ED

[
2eηAt(π

(d)
DT (τt)− at)− λ∇aQθ̂(st, a)

∣∣
a=π

(d)
DT (τt)

]
, (7)

where all gradient components vanish outside supp(β(·|s)).
Lemma A.2 (Policy Improvement). The advantage-weighted value function [36] satisfies:

Ṽ π
(d+1)
DT (s) ≥ Ṽ π

(d)
DT (s) +

λ

1− γ
ED

[
min
i
Qθ̂i(s, π

(d+1)
DT (s))

]
. (8)

Proof. Define the policy optimization sequence {π(d)
DT }∞d=0 where d denotes training iterations, with

π
(0)
DT = β. We prove each statement in turn.

(1) Support Constraint: From the gradient expression in Lemma A.1, the policy update rule is given
by:

∇L(π(d)
DT ) = ED

[
2eηAt(π

(d)
DT (τt)− at)− λ∇aQθ̂(st, a)

∣∣
a=π

(d)
DT (τt)

]
, (9)

where all terms are evaluated only on trajectories (st, at) from the dataset D. The gradient thus
vanishes outside supp(β(·|s)).

Moreover, the behavior cloning component implicitly restricts π(d)
DT (s) to lie within the convex hull

of actions observed in the dataset:

π∗
DT (s) = lim

d→∞
ProjAD(s)

(
π
(d)
DT (s)

)
, (10)

where AD(s) := {a | (s, a) ∈ D}. In addition, the Q-regularization term enforces vanishing
gradients near the boundary of this set, preventing the policy from drifting outside. Hence, the
optimal policy satisfies the support constraint.
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(2) Value Improvement: Define the value gap at iteration d as:

ϵ(d) := V ∗(s)− Ṽ π
(d)
DT (s), (11)

where Ṽ π denotes the advantage-weighted surrogate value used in the optimization.

From Lemma A.2, the policy update guarantees monotonic improvement:

Ṽ π
(d+1)
DT (s) ≥ Ṽ π

(d)
DT (s) +

λ

1− γ
ED

[
min
i
Qθ̂i(s, π

(d+1)
DT (s))

]
. (12)

Applying the n-step Bellman operator T n yields:

ϵ(d+1) ≤ γnϵ(d) − λED

[
min
i
Qθ̂i(s, π

(d+1)
DT (s))

]
≤ γnϵ(d) − λ

(
V π

(d+1)
DT (s)− V β(s)

)
, (13)

where we used that miniQθ̂i lower bounds the true V π
(d+1)
DT and that V β is the value under the

behavior policy.

Telescoping this recurrence and assuming convergence as d→∞, we obtain:

V π
∗
DT (s) ≥ V β(s). (14)

The inequality is strict unless the Q-functions are constant over AD(s), in which case the behavior
policy β is already optimal within the dataset support.

B Proof of Theroem 4.2

Let π∗ denote the globally optimal policy and π∗
DT denote the optimal policy constrained to dataset

support. Define AD(s) := {a | (s, a) ∈ D} to be the set of actions observed in the dataset at state s.
For any s, we have:

V π
∗
(µ)− V π

∗
DT (µ) ≤ 2γ

(1− γ)2
Es∼dπ∗

[
max

a/∈AD(s)
Qπ

∗
(s, a)− max

a∈supp(β(·|s))
Qπ

∗
(s, a)

]
(15)

Proof. Step 1: Performance Difference Lemma

Recall for any two policies π, π′, the performance difference lemma states:

V π(µ)− V π
′
(µ) =

1

1− γ
Es∼dπ

[
Ea∼π(·|s)

[
Qπ

′
(s, a)− V π

′
(s)
]]

(16)

where dπ(s) is the normalized discounted state distribution under π.

Step 2: Comparing π∗ and π∗
DT

Applying the lemma yields:

V π
∗
(µ)− V π

∗
DT (µ) =

1

1− γ
Es∼dπ∗

[
Ea∼π∗(·|s)

[
Qπ

∗
DT (s, a)− V π

∗
DT (s)

]]
(17)

≤ 1

1− γ
Es∼dπ∗

[
max
a

Qπ
∗
DT (s, a)− max

a∈AD(s)
Qπ

∗
DT (s, a)

]
(18)

since π∗ may select actions a∗ /∈ AD(s) that π∗
DT cannot, incurring a value gap.

Step 3: Relating Qπ
∗
DT to Qπ

∗

Since Qπ
∗
DT (s, a) ≤ Qπ∗

(s, a) for all a, we may further bound:

V π
∗
DT (s) = max

a∈AD(s)
Qπ

∗
DT (s, a) ≤ max

a∈AD(s)
Qπ

∗
(s, a) (19)

and
V π

∗
(s) = max

a
Qπ

∗
(s, a) (20)
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At each state s, the maximal loss incurred is thus

δ(s) := V π
∗
(s)− max

a∈AD(s)
Qπ

∗
(s, a) = max

a
Qπ

∗
(s, a)− max

a∈AD(s)
Qπ

∗
(s, a) (21)

Step 4: Cumulative suboptimality by recursion

Because π∗
DT can only select actions within the dataset support at each step, the loss δ(st) compounds

over all timesteps. By recursive expansion and geometric series, we obtain:

V π
∗
(µ)− V π

∗
DT (µ) ≤ 1

1− γ
Es∼dπ∗ [δ(s)] +

γ

1− γ
Es∼dπ∗ [δ(s)] + · · · (22)

Summing the geometric series yields:

V π
∗
(µ)− V π

∗
DT (µ) ≤ 1

(1− γ)2
Es∼dπ∗ [δ(s)] (23)

By a refinement [41], accounting for effect propagation across steps, a factor 2γ appears:

V π
∗
(µ)− V π

∗
DT (µ) ≤ 2γ

(1− γ)2
Es∼dπ∗ [δ(s)] (24)

Thus, we have proven

V π
∗
(µ)− V π

∗
DT (µ) ≤ 2γ

(1− γ)2
Es∼dπ∗

[
max

a/∈AD(s)
Qπ

∗
(s, a)− max

a∈supp(β(·|s))
Qπ

∗
(s, a)

]
(25)

which bounds the loss in optimal value due to dataset support constraints.

C Hyperparameters Configuration

Table 8: Hyperparameter configurations for offline training and online tuning.

Hyperparameter Offline Training Online Tuning

Context Length K 20 20
Batch Size 512 512
Training Steps 10000 25000
Learning Rate 3e-4 1e-4
Weight Decay 1e-4 —
Number of Layers 6 6
Attention Heads 4 4
Embedding Dimension 256 256
Activation GeLU GeLU
Dropout 0.1 0.1
Discount γ 0.99 0.99
Threshold ϵ 0.7 0.7
Inverse Temperature η 3 3
Balance Coefficient λ 0.5 0.5
pct_traj 1 1
Updates between Rollouts — 300
Gradient Norm Clip 0.25 0.25
Replay Buffer Size — 1000
Q-network Layers 2 2
Q-network Width 256 256

D Algorithm Pseudocode
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Algorithm 1 Offline Training with VDT

Input: Offline dataset Doffline, Context length K, Expectile ϵ, Discount γ, λ, η
Initialize: πDT , Vψ, Qθ1 , Qθ2 , Qθ̂1 , Qθ̂2
for iteration = 1 to T do

Sample batch B ∼ Doffline
{Value network update}
Update Vψ using: E(s,a)∼B[L

ϵ
2(Qθ̂(s, a)− Vψ(s))]

{Q-network update}
Compute n-step targets: y =

∑n−1
k=0 γ

krk + γnVψ(st+n)
Update Qθi using: EB[(y −Qθi(st, at))2] for i = 1, 2
{Advantage-weighted policy update}
Compute advantages: At = miniQθ̂i(st, at)− Vψ(st)
Update πDT using:
EB[exp(ηAt)∥πDT (τt)− at∥2 − λminiQθ̂i(st, πDT (τt))]

{Target network update}
θ̂i ← ρθ̂i + (1− ρ)θi for i = 1, 2

end for

Algorithm 2 Online Tuning with Trajectory Replay

Input: Pretrained πDT , Qθ̂i , Online RTG gonline, Buffer size N , Context length K
Initialize replay buffer Treplay ← Top-N(Doffline)
for round = 1 to R do

Generate trajectory τ with πDT using gonline

Relabel RTG: gt =
∑|τ |
j=t rj for t ∈ τ

Update Treplay (FIFO)
for gradient step = 1 to I do

Sample trajectories {τj} ∼ Treplay with p(τ) ∝ |τ |
for each τj do

Sample sub-trajectory (ŝt:t+K , ât:t+K , ĝt:t+K)
Compute At = miniQθ̂i(ŝt, ât)− Vψ(ŝt)

end for
Update πDT using:

1
B

∑[
exp(ηAt)∥πDT (ŝt, ĝt)− ât∥2 − λminiQθ̂i(ŝt, πDT (ŝt, ĝt))

]
Update Qθi using online transitions
θ̂i ← ρθ̂i + (1− ρ)θi

end for
end for

E Environment Details

Gym tasks: The Gym-MuJoCo tasks (hopper, halfcheetah, walker2d) are popular benchmarks used
in offline deep RL. They are relatively straightforward and characterized by datasets with a significant
proportion of near-optimal trajectories and smooth reward functions. The "medium" dataset is
generated by first training a policy online using Soft Actor-Critic, early-stopping the training, and
collecting 1M samples from this partially-trained policy. The "random" datasets are generated by
unrolling a randomly initialized policy on these three domains. The "medium-replay" dataset consists
of recording all samples in the replay buffer observed during training until the policy reaches the
"medium" level of performance. Datasets similar to these three have been used in prior work, but in
order to evaluate algorithms on mixtures of policies, we further introduce a "medium-expert" dataset
by mixing equal amounts of expert demonstrations and suboptimal data, generated via a partially
trained policy or by unrolling a uniform-at-random policy.

Adroit tasks: The Adroit domain involves controlling a 24-DoF simulated Shadow Hand robot to
perform tasks such as hammering a nail, opening a door, twirling a pen, or picking up and moving
a ball. This domain is chosen to study the impact of narrow expert data distributions and human
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Algorithm 3 Sampling Process

Input: Initial state s0, candidate RTGs {r̂10, ..., r̂m0 }, Evaluation horizon E, Discount γ, Policy
πDT , Q-networks Qθ̂1 , Qθ̂2
Initialize: Current state st ← s0, Active trajectories {τk}mk=1 ← {(s0, r̂k0 )}mk=1, Target Q-
networks Qθ̂i
while not termination condition do

// Parallel candidate action generation
for k = 1 to m in parallel do

Sample action akt ∼ πDT (τk)
end for
// Batched trajectory prediction
for k = 1 to m in parallel do

Initialize predicted trajectory τkpred ← (st, a
k
t )

Initialize cumulative Q-value Qktotal ← 0
for i = 0 to E − 1 do

Predict next state: skt+i+1 ← EnvModel(τkpred)

Sample next action: akt+i+1 ∼ πDT (τkpred)

Compute Q-value: qki = minj=1,2Qθ̂j (s
k
t+i, a

k
t+i)

Accumulate: Qktotal ← Qktotal + γiqki
Append (akt+i+1, s

k
t+i+1) to τkpred

end for
end for
// Optimal action selection
Select optimal index: k∗ ← argmax1≤k≤mQ

k
total

Execute action: at ← ak
∗

t
// Environment interaction & trajectory update
Observe reward rt, next state st+1 from environment
for k = 1 to m do

Update RTG: r̂kt+1 ← r̂kt − rt
Append transition: τk ← τk ⊕ (at, rt, st+1, r̂

k
t+1)

end for
t← t+ 1

end while

Figure 4: Illustration of Gym environments [39].

Figure 5: Illustration of Adroit environments [39].

26



demonstrations on sparse-reward, high-dimensional robotic manipulation tasks. Since these tasks are
primarily derived from human behavior, they exhibit a limited state-action space, requiring robust
policy regularization to ensure consistent agent performance. The Adroit domain has several unique
properties that make it qualitatively different from the Gym tasks. First, the data is collected from
human demonstrators. Second, each task is difficult to solve with online RL due to sparse rewards
and exploration challenges, which make cloning and online RL alone insufficient. Lastly, the tasks
are high-dimensional, presenting a representation learning challenge.

Figure 6: Illustration of Kitchen en-
vironments [39].

Kitchen tasks: The Kitchen domain involves controlling a
9-DoF Franka robot in a kitchen environment with everyday
household items such as a microwave, kettle, overhead light,
cabinets, and an oven. The goal is to interact with these items
to achieve a desired state configuration. This domain bench-
marks the impact of multitasking behaviour in a realistic, non-
navigation environment, where the "stitching" challenge arises
from complex paths through the state space. Consequently, al-
gorithms must generalize to unseen states rather than rely solely
on training trajectories. The environment requires the agent to
complete multiple sequential sub-tasks, further emphasizing the
need for robust generalization. The "complete" dataset consists
of the robot performing all the desired tasks in order. This
provides data that is easy for an imitation learning method to solve. The "partial" dataset consists
of undirected data, where the robot performs subtasks that are not necessarily related to the goal
configuration. In the "partial" dataset, a subset is guaranteed to solve the task, meaning an imitation
learning agent may learn by selectively choosing the proper subsets of the data.

Maze2D tasks: The Maze2D domain is a navigation task in which a 2D agent must reach a fixed
goal location. It tests offline RL algorithms’ ability to stitch together previously collected sub-
trajectories to find the shortest path to the goal. Three maze layouts are provided: the "maze",
"medium", and "large" mazes. These tasks evaluate the algorithm’s capability to effectively combine
sub-trajectories and identify the shortest path to the set goal. The data is generated by selecting goal
locations randomly and then using a planner that generates sequences of waypoints, followed by a
PD controller. The trajectories in the dataset are visualized in Appendix G. Because the controllers
memorize the reached waypoints, the data collection policy is non-Markovian.

Figure 7: Illustration of Maze2D and AntMaze environments [39].

AntMaze tasks: The AntMaze domain extends the Maze2D task by replacing the 2D ball with a
more complex 8-DoF "Ant" quadruped robot, presenting a more demanding navigation challenge.
This domain is introduced to test the stitching challenge with a morphologically complex robot, better
representing real-world robotic navigation tasks. The task uses a sparse 0-1 reward, activated upon
reaching the goal. The data is generated by training a goal-reaching policy and using it with the same
high-level waypoint generator from maze2d to provide subgoals that guide the agent to the goal. As
in Maze2D, the controllers for this task are non-Markovian as they rely on tracking visited waypoints.

F More Experiments

Impact of model size. We investigate the impact of model size on various behavior cloning and
decision transformer variants, including BC, DT, ODT, and VDT, under both offline and online
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Table 9: The size and the average and standard deviation of the normalized reward in our experiments.

Dataset Size Normalized Reward

halfcheetah-medium-replay-v2 202000 27.17± 15.79

hopper-medium-replay-v2 402000 14.98± 16.32

walker2d-medium-replay-v2 302000 14.84± 19.48

halfcheetah-medium-v2 1000000 40.68± 5.12

hopper-medium-v2 999906 44.32± 12.27

walker2d-medium-v2 999995 62.09± 23.83

halfcheetah-expert-v2 1000000 80.30± 35.82

hopper-medium-expert-v2 999906 100.59± 31.66

walker2d-medium-expert-v2 999995 112.09± 23.83

pen-human-v1 4800 202.69± 154.48

hammer-human-v1 10948 23.80± 33.36

door-human-v1 6504 28.35± 13.88

pen-cloned-v1 499886 108.63± 122.43

hammer-cloned-v1 999872 8.11± 23.35

door-cloned-v1 999939 12.29± 18.35

kitchen-complete-v0 999800 62.25± 19.83

kitchen-partial-v0 999800 89.49± 14.15

maze2d-umaze-v1 999869 −12.55± 9.82

maze2d-medium-v1 1999733 −3.46± 3.95

antmaze-umaze-v0 998573 86.14± 34.55

antmaze-medium-diverse-v0 999930 6.36± 10.07

antmaze-umaze-diverse-v0 999000 3.48± 18.32

settings. As shown in Table 10, performance generally improves with increased model capacity. For
example, across all three datasets—halfcheetah, hopper, and walker2d—VDT (online) consistently
achieves the best performance for each model size, with scores improving as we move from the
smallest configuration (3,1,256) to the largest (12,12,768). The performance saturates or drops
slightly on walker2d in the largest model, suggesting that model complexity must be matched
with task difficulty and data availability. Similarly, other variants like ODT and DT also benefit
from larger models, though the gain is more moderate than VDT. Interestingly, the offline methods
also demonstrate strong performance with moderate-size models, especially VDT (offline), which
performs competitively or better than its online variant in smaller models. For instance, in the
(6,4,256) configuration, VDT (offline) achieves 98.3 on hopper, matching the best result at this size.
These results suggest that while increasing model size generally boosts performance, particularly
for VDT, the returns diminish and may even reverse if the model becomes too large relative to the
dataset, likely due to overfitting or optimisation difficulty in reinforcement learning scenarios.

Impact of inverse temperature η. Table 11 shows the impact of the inverse temperature η on policy
performance. As η increases from 1 to 3, performance consistently improves, indicating that more
substantial advantage weighting helps the model focus on high-value trajectories. In this context, η
amplifies the difference between actions, guiding the policy toward more optimal behavior. However,
setting η too high (e.g., η = 10) leads to performance degradation, likely due to overfitting to a
small subset of high-advantage samples and reduced generalization. η = 3 achieves the best average
performance offline and online. This trend highlights the role of η in controlling the selectivity of the
learning process, where a moderate value strikes a good balance between stability and performance.
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Table 10: Ablation on the model size. Model size is denoted as (x, y, z) for number of layers,
attention heads, and embedding dimension. Bold indicates the best result overall, and underline
highlights the best among offline methods.

Model Size Method halfcheetah-medium-v2 hopper-medium-v2 walker2d-medium-v2

(3,1,256)

BC (offline) 34.0 44.8 72.3

DT (offline) 42.7 60.3 70.6

ODT (offline) 18.3 62.9 57.2

VDT (offline) 43.6 98.3 79.0

ODT (online) 23.6 70.1 52.8

VDT (online) 49.0 105.9 89.8

(6,4,256)

BC (offline) 42.6 52.9 75.3

DT (offline) 42.6 67.6 74.0

ODT (offline) 42.7 66.9 72.2

VDT (offline) 43.9 98.3 81.6

ODT (online) 42.2 97.5 76.8

VDT (online) 53.5 108.1 89.8

(12,12,768)

BC (offline) 42.9 67.3 69.1

DT (offline) 39.3 74.9 75.2

ODT (offline) 42.7 79.1 66.0

VDT (offline) 44.0 96.0 74.1

ODT (online) 43.9 99.8 82.1

VDT (online) 54.9 108.9 84.2

Table 11: Ablation on the hyperparameter η.

Offline Training Online Tuning
Dataset

η =1 η =3 η =5 η =10 η =1 η =3 η =5 η =10

halfcheetah-medium-expert-v2 34.2 93.9 88.65 59.1 77.3 101.7 10.9 103.9

hopper-medium-v2 18.3 98.3 97.6 70.0 29.6 108.1 93.1 100.3

walker2d-medium-replay-v2 65.9 82.3 82.1 46.9 58.3 95.5 96.9 22.1

antmaze-umaze-v0 50.7 100.0 90.0 88.3 39.1 110.0 110.0 75.8

Average 42.3 93.6 89.1 66.1 51.1 103.8 77.7 75.5

Impact of RTG alignment. Table 12 presents the ablation study on RTG alignment during online
tuning. Without RTG alignment, VDT performs worse than offline training on certain tasks, indicating
that RTG alignment effectively leverages trajectory signals from online interaction by correcting
reward guidance. Incorporating RTG alignment consistently improves performance across all tasks.
The average score increases from 75.6 to 94.2, indicating a substantial performance gain. In particular,
tasks such as halfcheetah-medium-v2 and walker2d-medium-v2 benefit significantly, demonstrating
that RTG alignment is especially effective when dealing with suboptimal trajectories.
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Table 13: Ablation study on model components during online tuning. All experiments are repeated
three times, and the average value is taken.

Advantage Weighting Regularization hopper-medium-v2 walker2d-medium-expert-v2 antmaze-umaze-v0

✓ 104.1 110.2 90.5

✓ 107.0 94.3 100.0

✓ ✓ 108.1 112.7 110.0

Table 12: Ablation study on RTG alignment. Online Tuning-w/o refers to VDT during online tuning
without RTG alignment.

Datasets Offline Training Online Tuning-w/o Online Tuning

halfcheetah-medium-replay-v2 39.4 36.0 49.2

hopper-medium-replay-v2 96.0 99.4 119.2

walker2d-medium-replay-v2 82.3 85.6 95.5

halfcheetah-medium-v2 43.9 11.7 53.5

hopper-medium-v2 98.3 99.6 108.1

walker2d-medium-v2 81.6 44.0 89.8

halfcheetah-medium-expert-v2 93.9 80.6 101.7

hopper-medium-expert-v2 111.5 111.0 117.8

walker2d-medium-expert-v2 110.4 112.3 112.7

Average 84.1 75.6 94.2

Role of different components. As shown in Table 13, we also conduct an ablation study on advantage
weighting and regularization in online fine-tuning for VDT. Since the sampling stage is independent
of the training phase, and we have already demonstrated the advantage of value guidance during
sampling in Table 3, we do not perform an additional ablation for the sampling process. We observe
that the components of VDT exhibit similar effectiveness in the online setting as in the offline one.
Using either component individually leads to performance improvement while combining both yields
the best results. This demonstrates that value-guided methods are effective in both online and offline
scenarios.

G Broader Impact

The Value-Guided Decision Transformer advances decision-making automation by improving adapt-
ability across offline and online settings, offering potential benefits in areas like robotics, logistics,
and personalized AI assistance. While designed to enhance efficiency and scalability, its adoption
invites considerations around balancing human-AI collaboration—such as ensuring human oversight
in critical decisions and avoiding over-reliance on automated systems. By prioritizing transparency in
value-guided objectives and fostering partnerships between developers and domain experts, VDT’s
deployment can support human-centric innovation while addressing practical challenges responsibly.
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