
Zero-Shot Transfer of Neural ODEs

Tyler Ingebrand, Adam J. Thorpe, Ufuk Topcu
University of Texas at Austin

Austin, TX 78712

Abstract

Autonomous systems often encounter environments and scenarios beyond the scope
of their training data, which underscores a critical challenge: the need to generalize
and adapt to unseen scenarios in real time. This challenge necessitates new mathe-
matical and algorithmic tools that enable adaptation and zero-shot transfer. To this
end, we leverage the theory of function encoders, which enables zero-shot transfer
by combining the flexibility of neural networks with the mathematical principles
of Hilbert spaces. Using this theory, we first present a method for learning a space
of dynamics spanned by a set of neural ODE basis functions. After training, the
proposed approach can rapidly identify dynamics in the learned space using an
efficient inner product calculation. Critically, this calculation requires no gradient
calculations or retraining during the online phase. This method enables zero-shot
transfer for autonomous systems at runtime and opens the door for a new class of
adaptable control algorithms. We demonstrate state-of-the-art system modeling
accuracy for two MuJoCo robot environments and show that the learned models
can be used for more efficient MPC control of a quadrotor.

1 Introduction

Models that are adaptable, generalizable, and capable of learning online from minimal data are
essential for autonomy. These models must adapt to unseen tasks and environments at runtime
without relying upon a priori parameterizations. For example, consider an autonomous UAV delivery
robot navigating in a dense, urban environment through varying wind patterns and carrying uncertain
payloads. This scenario requires rapid adaptation to ensure safe and correct operation because
conditions can change unpredictably and online model updates are impractical. While prior works
can control autonomous systems in a single setting, they fail to adapt to the continuum of real-life
scenarios. The key challenge is enabling zero-shot transfer of learned models, where models quickly
adapt to new data provided at runtime without retraining.

We present a method for modeling differential equations by learning a set of basis functions pa-
rameterized by neural ODEs. Our key insight is to learn a space of functions that captures feasible
behaviors of the system. By focusing on learning the structure of the space of differential equations,
our approach implicitly learns how the dynamics change due to changes in the environment. Our
approach is based on the theory of function encoders [14], a framework for zero-shot transfer that has
been applied to task transfer in reinforcement learning contexts.

We formulate the space of learned functions as a linear space equipped with an inner product (e.g.
a Hilbert space), and learn a set of basis functions over this space, where each basis function is
represented by a neural ODE. This structure offers an efficient way to approximate online dynamics
via a linear combination of the basis functions.

By representing functions in a Hilbert space and pre-training on a suite of functions, we can quickly
identify the basis functions’ coefficients for a new dynamical system at runtime using minimal data.
This is useful, for instance, in scenarios where we can pre-train offline in simulation, but need to

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Offline Training of {g1, . . . , gk}

D1

...

D2

ci = ⟨f, gi⟩H

Monte Carlo Estimate

gi

Neural ODEs

∇θL

∑
i ci

∫
gi

f̂

L

Loss

Datasets D

F

g1

g2

g3

Zero-Shot Prediction

D

Online Data

ci = ⟨f, gi⟩H

Monte Carlo Estimate

gi

Fixed Basis

∑
i ci

∫
gi

g1

g2

g3

f̂

c3
c2

c1

span{g1, . . . , gk}

Figure 1: An illustration of our approach. The training phase uses a set of datasets D to train basis
functions {g1, ..., gk} to span F . The zero-shot phase uses online data to identify the coefficients for
a new function, which can be estimated as a linear combination of the basis functions.

quickly identify dynamics online from a single trajectory in a zero-shot manner. This strategy greatly
reduces the computational overhead associated with adapting or re-training a neural ODE to new tasks
at runtime. The ability to efficiently encode the behavior of a system at runtime without retraining is
a key component of our approach. Our approach is outlined in Figure 1.

Our approach yields models which generalize to a large set of possible system behaviors and achieves
better long-term prediction accuracy than neural ODEs alone. We showcase our approach on a
problem of predicting the behavior of a first-order ODE system with Van der Pol dynamics. We
demonstrate the scalability of our approach on two MuJoCo robotics environments [28]. Finally,
we test the feasibility of using the learned model for downstream tasks such as model-predictive
control (MPC). Our results show that our model achieves significantly better long-horizon prediction
accuracy compared to the nearest baseline. Additionally, the MPC controller using our model has a
lower slew rate, indicating that the improved model accuracy leads to more efficient control decisions.

1.1 Contributions

Representing Spaces of Dynamical Systems: We propose a novel framework for representing
spaces of dynamical systems, i.e. induced by hidden system parameters, variations in the underlying
physics, or changing environmental features. Using a large-scale set of data collected offline, we learn
a collection of neural networks that act as a functional basis. This approach is based in the theory of
function encoders [14]. Yet the extension to using neural ODEs as basis functions is non-trivial and
poses several challenges, mainly from the need to integrate the learned model.

A Method for Online Adaptation: We construct a method for adapting neural ODE estimations
based on online data without gradient updates, i.e. zero-shot transfer of system models. Our approach
overcomes a significant challenge in learning behaviors of differential equations and dynamical
systems. By offloading the computational effort to the training phase, we enable rapid online
identification, adaptation, and prediction without retraining.

Empirical Results: We demonstrate accurate long-horizon predictions in challenging robotics tasks
and show these models can be used for online control of quadrotor systems. We assess the quality of
the approach in three areas and answer the following questions: 1) How well does our approach adapt
to new dynamics online? 2) How does our approach compare to existing approaches for long-horizon
prediction tasks? and 3) Does our approach work for downstream tasks such as control? We show that
function encoders using neural ODEs as basis functions consistently outperform existing approaches.

2 Background

2.1 Neural ODEs

Consider an ordinary differential equation ẋ(t) = f(x(t), t), where f is Lipschitz continuous and
x(t) ∈ Rn is the state at time t. Given an initial condition x(t0), the ODE solution can be written as

x(tf) = x(t0) +

∫ tf

t0

f
(
x(τ), τ

)
dτ. (1)

2

Note that in general, the explicit dependence of f
(
x(t), t

)
on t can be removed by augmenting the

state x to include t. As such, we omit t throughout.

Neural ODEs [5] parameterize the function f as a neural network. In particular, neural ODEs solve
the ODE using an off-the-shelf integrator and optimize the neural network with respect to a prediction
loss. The training procedure requires a dataset D = {(ti, x(ti))}di=1 which is used to train the model
via a supervised objective, such as mean squared error, back-propagated through the integrator.

Neural ODEs have demonstrated impressive accuracy for long-horizon predictions of continuous-time
systems. Furthermore, they can be trained on trajectories with irregular time intervals between samples
[18], and generalize better than multi-layer perceptron models. However, they lack adaptability and
need to be retrained for every scenario.

2.2 Function Encoders

To achieve zero-shot transfer, we employ the theory of function encoders [14]. While typical machine
learning approaches learn a single function, function encoders learn basis functions to span a space
of functions. This allows the function encoder to achieve zero-shot transfer within this space by
identifying the coefficients of the basis functions for any function in the space at runtime. Once the
coefficients have been identified, the function can be reproduced as a linear combination of basis
functions. Despite the broad applicability of function encoders, the extension to capture solutions to
differential equations via neural ODEs is non-trivial.

Formally, consider a function space F = {f | f : X → Rm} where X ⊂ Rn. Instead of learning a
single function, function encoders learn k basis functions g1, g2, . . . , gk that are parameterized by
neural networks in order to span F [14]. Define the inner product of F as ⟨f, g⟩F =

∫
⟨f(x), g(x)⟩dx.

Then, the functions f ∈ F can be represented as a linear combination of basis functions,

f(x) =

k∑
i=1

cigi(x | θi), (2)

where c ∈ Rk are real coefficients and θi are the network parameters for gi. Let V be the volume of
X . For any function f ∈ F , an empirical estimate of the coefficients c can be calculated using data
{(xj , f(xj))}mj=1 via a Monte-Carlo estimate of the inner product,

ci = ⟨f, gi⟩ ≈
V

m

m∑
j=1

〈
f(xj), gi(xj | θi)

〉
. (3)

The basis functions are trained using a set of datasets, D = {D1, D2, ...}, where each dataset
Di = {(xj , fi(xj)}mj=1 consists of input-output pairs corresponding to a single function fi ∈ F . For
each function fi and corresponding dataset Di, first compute the coefficients {c1, c2, ..., ck} via (3)
and then obtain an empirical estimate of fi via (2). Then compute the error of the estimate of fi
though the norm induced by the inner product of F . The loss function is simply the sum of the losses
for all fi, which is minimized via gradient descent. For more details, see [14].

After training, the basis functions are fixed, and the coefficients c of a new function f ∈
span{g1, . . . , gk} are computed via (3) or via least-squares, using data collected online. This
is key for efficient, online calculations, since the approximation in (3) is effectively a sample mean
and requires no gradient calculations.

Orthogonality of the Basis Functions: Note that function encoders do not enforce orthogonality of
the basis functions explicitly [14]. Using Gram-Schmidt to orthonormalize the basis functions during
training can significantly increase the training time and is computationally intensive. Instead, during
training the coefficients are computed using (3) presuming that the basis functions are orthogonal.
This is key. This causes the basis vectors to naturally become more orthogonal as training progresses
since the loss implicitly penalizes the basis functions if they are not orthonormal. See Appendix I.

3 Function Encoders With Neural ODEs as Basis Functions

Consider a space F of Lipschitz continuous dynamical systems f : X → X . The space of dynamical
systems can arise, for instance, due to uncertain parameters, minor variations in a first-order physics

3

model, or changing environmental features. Given an initial condition x(t0), our goal is to estimate
the state x(tf) at a future time tf > t0. The integral form of the initial value problem is given by (1).

Our approach can be separated into two distinct phases: offline training and zero-shot prediction.
During offline training, we presume that we have access to an offline dataset D = {D1, D2, . . .},
where Di is a realization of a trajectory from a function fi ∈ F . During zero-shot prediction, we
seek to predict a previously unseen function f and have access to a minimal trajectory D taken from
f . We seek to learn a set of basis functions g1, . . . , gk that span F , where k is a user-specified hyper-
parameter. By learning a set of basis functions that span the space F , we obtain a means to represent
the behavior of any dynamical system in the space. However, we do not observe measurements of
f directly since we cannot typically measure the instantaneous derivative ẋ of a dynamical system.
Instead, we will equivalently learn a set of neural ODE basis functions such that the underlying
neural networks which are being integrated correspond to g1, ..., gk. We then seek to compute a
representation of a new function using data collected online.

3.1 Computing a Set of Neural ODE Basis Functions

For every f ∈ F , we define the integral term in (1) as a function H : X × T → X , given by,

H
(
x(t0), tf

)
:=

∫ tf

t0

f
(
x(τ)

)
dτ. (4)

We model the dynamical system f using a function encoder as in (2). Using (2) in (4), and by the
linearity of the definite integral, we have that,

H
(
x(t0), tf

)
=

∫ tf

t0

[
k∑

i=1

cigi
(
x(τ) | θi

)]
dτ =

k∑
i=1

ci

∫ tf

t0

gi
(
x(τ) | θi

)
dτ =

k∑
i=1

ciGi

(
x(t0), tf

)
,

(5)

where gi is neural network parameterized by θi and Gi(x(t0), tf) :=
∫ tf
t0

gi(x(τ) | θi)dτ. One
interpretation of the above equation is that we can represent H as a weighted combination of basis
functions Gi, and the problem of learning a set of basis functions g1, . . . , gk can equivalently be
viewed as learning a set of neural ODEs G1, . . . , Gk. Thus, we define the Hilbert space H of
functions H as in (4) and equip it with the following inner product,

⟨H,G⟩H :=

∫ 〈
H(z, t), G(z, t)

〉
Xd(z, t). (6)

We then learn basis functions G1, . . . , Gk spanning H where each basis function is a neural ODE.

From (6), the coefficients of a function H ∈ H are given by ci = ⟨H,Gi⟩H. However, from [14],
computing the inner product exactly is generally intractable in high-dimensional spaces. We can
empirically estimate the coefficients ci using a trajectory of (potentially irregularly) sampled states
{x(t) | t = t0, . . . , tm} from a dynamics function f ∈ F . Using the trajectory, we form the dataset
D = {(x(tj), x(tj+1)}m−1

j=0 . We can compute c using D via a Monte-Carlo estimate of the inner
product in (6),

ci = ⟨H,Gi⟩H ≈ V

m

m−1∑
j=0

〈
x(tj+1)− x(tj), Gi

(
x(tj), tj+1

)〉
X
, (7)

where V is the volume of the region of integration, and following from (1),

x(tj+1)− x(tj) =

∫ tj+1

tj

f(τ)dτ = H
(
x(tj), tj+1

)
. (8)

In other words, we substitute the difference between states x(tj+1)− x(tj) for H(x(tj), tj+1) in (7).

Let D = {D1, D2, ...} be a set of datasets, where each Dℓ = {(x(tj), x(tj+1))}m−1
j=0 is collected

from a trajectory from a function fℓ ∈ F . For each dataset Dℓ, we compute the coefficients c1, . . . , ck
according to (7). The coefficients can be used to approximate the corresponding Hℓ via (5). We then
evaluate the error of Hℓ using the dataset Dℓ and minimize its loss via gradient descent. This is done

4

Algorithm 1 Training Function Encoders with Neural ODE Basis Functions

1: Input: Set of datasets D, number of basis functions k, learning rate α
2: Output: Neural ODE basis functions G1, G2, ..., Gk

3: Initialize g1, g2, ..., gk as neural networks with parameters θ = {θ1, θ2, ..., θk}
4: while not converged do
5: loss L = 0
6: for all Dℓ ∈ D do
7: for i ∈ 1, ..., k do
8: ci ≈ V

m

∑m−1
j=0 ⟨x(tj+1)− x(tj), Gi(x(tj), tj+1 − tj)⟩X

9: end for
10: L = L+

∑m−1
j=0 ∥(x(tj+1)− x(tj))−

∑k
i=1 ciGi(x(tj), tj+1 − tj)∥2

11: end for
12: θ = θ − α∇θL
13: end while

for multiple functions f ∈ F at each gradient update to ensure the basis learns the space rather than a
single function. We present this as Algorithm 1.

Applying Algorithm 1 yields basis functions which span the space of dynamical systems, where
each basis function is a neural ODE. This space describes possible behaviors of the system, where
variations in environmental parameters, physics, etc. correspond to a particular dynamics function
within this space. Therefore, this algorithm represents complicated system behaviors simply as a
vector within a Hilbert space. Section 3.2 shows how to use these basis functions for zero-shot
dynamics prediction from small amounts of online data.

3.2 Efficient Online Transfer Without Retraining

After training, we fix the parameters of the basis functions g1, ..., gk, and can compute the coefficient
representation c ∈ Rk for any function f ∈ span{g1, . . . , gk} via (7). If D is rich enough to capture
the various behaviors of the systems in F , then we can estimate the behavior of any dynamics f ∈ F .

Given data collected online from a single trajectory, we can compute the coefficients using the
Monte-Carlo estimate of the inner product as in (7). This approximation is a crucial component of
the approach. It allows the inner product to be computed from data through an operation that is
effectively a sample mean. Therefore, this approach can be computed online quickly even for large
amounts of data. Then, given the coefficients, the future states of the system can be predicted using
(5). These properties allow the neural ODE to achieve zero-shot transfer. Identifying the coefficients
only requires inner product calculations, vector addition, and scalar multiplication, and so it can be
computed online without any gradient updates.

The Residuals Method: The zero vector of the coefficients space corresponds to the zero function.
Since the feasible dynamics are differentiated by their coefficients, it is numerically convenient if the
coefficients corresponding to all feasible systems are centered around zero.

Thus, we can re-center the space of coefficients around the center of the cluster of feasible dynamics.
This is done by first modeling the average dynamics Favg in the set of datasets D, and then learning
the residuals between each function and Favg . In other words, the basis functions are trained to span
the function space corresponding to R(x(t0), tf) = x(tf)− x(t0)− Favg(x(t0), tf). This method
can achieve better accuracy, but requires learning one additional neural ODE, Favg. Alternatively,
an approximate dynamics model based on prior knowledge can be used as Favg. We describe the
training procedure for this approach in Algorithm 2.

3.3 Incorporating Zero-Order Hold Control Inputs

We can account for a zero-order hold (ZOH) control input u ∈ U ⊂ Rp with minimal modifications.
A ZOH control input is given by a piecewise constant function, meaning it is held constant over the
period of integration. Given controlled dynamics, f : X × U → X , we modify the corresponding
functions H to incorporate a constant input, H

(
x(t0), u, tf

)
=

∑k
i=1 ci

∫ tf
t0

gi
(
x(t0), u | θi

)
dτ .

Then, using trajectory data that also includes the controls applied at each time interval, we can estimate

5

4

2

0

2

4

6
=0.10 =0.51 =0.93 =1.34

2 1 0 1 2

4

2

0

2

4

6
=1.76

2 1 0 1 2

=2.17

2 1 0 1 2

=2.59

2 1 0 1 2

=3.00

Ground Truth NODE FE + NODE + Res.

Figure 2: The approximated dynamics for different Van der Pol systems, where the parameter µ is
varied. This plot shows that a NODE can only fit a single Van der Pol system, whereas FE + NODE +
Res can fit a space of Van der Pol systems from 5000 example data points.

the coefficients using datasets D = {(x(tj), uj , x(tj+1))}m−1
j=0 , substituting gi

(
x(τ), u, | θi

)
in (5)

and (7). The remainder of the training procedure is unchanged.

4 Numerical Experiments

We demonstrate the effectiveness of our approach for predicting and controlling dynamical systems
through several numerical experiments. We first demonstrate that the approach can adapt to different
dynamics using a Van Der Pol oscillator system. We then show long-horizon prediction accuracy on
challenging MuJoCo robotics experiments and compare to neural ODEs (NODE) [5] and function en-
coders as in [14] using the residuals method (FE + Res). Lastly, we show the learned models are suf-
ficiently accurate for downstream tasks on a difficult control task using a quadrotor system. The source
code is available at https://github.com/tyler-ingebrand/NeuralODEFunctionEncoder.

Current off-the-shelf integrators with adaptive step sizes do not support efficient batch calculations.
Because this algorithm involves training numerous neural ODEs on a large amount of data, the
ability to train on data in batches is required. Therefore, we implement an RK4 integrator since it
can be efficiently computed for multiple data points in parallel. The Van der Pol visualization uses
11 basis functions while the MuJoCo and Drone experiments use 100. For ablations on how the
hyper-parameters affect results, see Appendix G.

4.1 Visualization on a Van der Pol Oscillator

We first demonstrate that our approach can adapt to a space of dynamics that vary according to a
nonlinear parameter. The Van der Pol dynamics are defined as, ẋ = y, ẏ = µ(1− x2)y − x, where
[x, y]⊤ ∈ R2 is the state, and µ is a hidden parameter. We collect multiple datasets Dℓ where µ is
fixed for the duration of the trajectory, but varies between trajectories. We train basis functions using
Algorithm 1. We then compute the coefficients via (7) and approximate the dynamics via (5).

We plot the results in Figure 2. As expected, we observe that our proposed approach can predict the
dynamics of a space of Van der Pol systems without retraining. We can also see that a single neural
ODE trained on the same data can only fit a single function. Therefore, its prediction corresponds
most closely with the behavior of a single Van der Pol system that has the mean µ value. This
illustrates that our approach is capable of adapting to different dynamics at runtime.

6

https://github.com/tyler-ingebrand/NeuralODEFunctionEncoder

Half Cheetah 0 200 400 600 800 1000
0.00

0.05

0.10

0.15

0.20

0.25

1-
St

ep
 M

SE

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

K
-S

te
p

M
SE

Ant 0 200 400 600 800 1000
Gradient Updates

0.00

0.05

0.10

0.15

0.20

0.25

1-
St

ep
 M

SE

0 20 40 60 80
Lookahead Steps

0.0

0.2

0.4

0.6

0.8

1.0

K
-S

te
p

M
SE

NODE FE + Res. FE + NODE FE + NODE + Res. Oracle

Figure 3: Model performance on predicting the dynamics of MuJoCo robotics environments with
hidden parameters. 200 example data points are given to identify dynamics. The results show that FE
+ NODE + Res. makes accurate, long-horizon predictions even in the presence of hidden parameters.
Evaluation is over 5 seeds, shaded regions show the first and third quartiles around the median.

4.2 Long-Horizon Prediction on MuJoCo Environments

We evaluate the performance of our proposed approach on the Half-Cheetah and Ant environments
[28], shown in Figure 3. The hidden environmental parameters are the length of the limbs, the friction
coefficient, and the control authority. Of the two environments, Ant is more difficult due to its higher
degrees of freedom. For training, we collect a dataset of trajectories where the hidden parameters are
unobserved, but held constant throughout the duration of a given trajectory. After training, we use
200 datapoints, equivalent to about seven seconds of data for a system running at 30 Hertz, and use
only this data to identify the dynamics. Note this online phase is computationally simple, and can be
done in only milliseconds on a GPU.

Neural ODEs (NODE) perform poorly because they have no mechanism to condition the prediction on
the hidden-parameters. Effectively, NODE learns the mean dynamics over all dynamics functions in
the training set. Function encoders using the residuals method (FE + Res) can implicitly condition
their predictions on the hidden parameters through the coefficient calculation, though they are unable
to achieve accurate long horizon predictions on the more challenging Ant problem. This is because it
lacks the inductive bias of neural ODEs. Our approach (FE + NODE) can both implicitly condition the
predictions on the hidden parameters through data, but also benefits from the inductive bias of neural
ODEs. We see that the residuals method performs best out of all approaches in both environments.
This is because the average model significantly reduces the epistemic uncertainty and provides a
meaningful baseline from which to center the training. The average model acts as a good inductive
bias and makes it easier to distinguish between the learned functions during training. We additionally
compare against an oracle prediction approach (Oracle), which has access to the hidden parameters
as an additional input with a neural ODE as the underlying architecture. While its 1-step prediction
accuracy demonstrates good empirical performance, the long-horizon predictions are unstable. This
is because Oracle is required to generalize to an entire space of dynamics with one NODE, which is
a complex and difficult function to learn.

4.3 Realistic Robotics Experiments and Control of a Quadrotor System

Lastly, we seek to test the accuracy of our approach for use on downstream tasks such as control on a
realistic example using a robotic system. We seek to determine if the learned models are sufficiently
accurate for model-based control in the presence of hidden parameters. We use a simulated quadrotor
system using PyBullet [31], which is a highly nonlinear control system. We use the quadrotor’s mass
as a hidden parameter. The goal is to predict the future state of the quadrotor system under any hidden

7

0 5 10 15 20 25 30
Lookahead Steps

0.0

0.2

0.4

0.6

0.8

1.0

K
-S

te
p

M
SE

0.022 0.024 0.026 0.028 0.030
Mass

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

10
-s

te
p

M
SE

0.022 0.024 0.026 0.028 0.030
Mass

0.00

0.05

0.10

0.15

0.20

0.25

Av
er

ag
e

Sl
ew

 R
at

e

NODE FE + NODE FE + NODE + Res.

Figure 4: Model performance on the PyBullet quadrotor environment with varying mass. Function
encoders improve model performance across varying masses. Shaded region is 1st and 3rd quartiles
over 200 trajectories (left) and over 5 trajectories (middle, right).

0 1 2 3 4 5
Time (Seconds)

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Z
(M

et
er

s)

Low Mass Trajectory

0 1 2 3 4 5
Time (Seconds)

0.80

0.85

0.90

0.95

1.00

Z
(M

et
er

s)

High Mass Trajectory

NODE FE + NODE FE + NODE + Res. Goal

Figure 5: Qualitative analysis of the difference in control between NODEs and our approach. Two
trajectories with the same initial position but different masses are shown. NODE is unaware of the
mass, and so its z position requires constant correction. In contrast, FE + NODE (+Res) accounts
for the mass through the coefficients, meaning it is more accurate and requires fewer corrections.

parameters, using 2000 data points collected online to identify the dynamics. Then, given the learned
model of system behavior, we seek to control the quadrotor using gradient-based model predictive
control (MPC) to reach a pre-specified hover point. The results are plotted in Figure 4.

The results show that FE + NODE + Res outperforms competing approaches at long-horizon pre-
dictions. Furthermore, we plot the 10-step MSE as a function of mass in Figure 4, and we observe
that FE + NODE + Res accurately predicts the system behavior across varying masses. We observe
a slight decay in performance for low masses which are more sensitive to control inputs during
simulation, which causes the simulated trajectories to diverge more from the rest of the observed data.
The neural ODE (NODE) performs poorly for different masses, and its performance decays quickly as
the dynamics deviate from the mean behavior.

Lastly, we see that this prediction accuracy translates to the downstream performance of an MPC
controller. While all approaches are sufficiently accurate for control due to the fact that MPC is
partially robust to model inaccuracies, the prediction accuracy has a corresponding impact on the task
performance. Neural ODEs (NODE) demonstrate a high slew rate, which reflects the need for repeated
positional corrections necessitated by taking bad actions. In contrast, FE + NODE and FE + NODE +
Res have lower slew rates as they make more accurate decisions. We plot two example trajectories
that demonstrate this behavior in Figure 5.

5 Scope & Limitations

Overhead: Our approach incurs a cost of either increased inference time or memory, depending on if
the basis functions are integrated sequentially or in parallel. We integrate them sequentially during

8

training to reduce memory overhead and allow for larger batch sizes, while integrating in parallel at
execution to prioritize inference speed. See Appendix D.

Data dependency: In order to make efficient, online approximations of a new function f ∈ F
without gradient calculations, the basis functions must be trained to span the space of possible
dynamics. To do so, there must be sufficient example datasets of possible dynamics under fixed
hidden parameters in D. This implies a larger amount of data must be collected to learn a space of
dynamics then would be needed to learn a single dynamics function.

Integration: The training procedure trains the basis functions on short time intervals tf − t0, in
which x(t) ∈ X . The basis functions have only been trained for inputs in the space of X , where
their behavior outside of X is unpredictable. As a result, it is necessary to either integrate each basis
function for a short time interval before calculating the state according to (5), or to integrate the basis
functions as described in B. Integrating the basis functions over long horizons without calculating the
state of the system during intermediate steps may lead the predicted state to leave X , at which point
the behavior of that basis function becomes unpredictable.

6 Related Work

Basis Functions: Function approximation techniques often employ a linear model over a predefined
set of basis functions. Techniques such as Taylor series, Fourier series, and orthogonal polynomial
systems utilize an infinite set of basis functions, theoretically allowing perfect function representation
[6, 23, 7]. However, in high-dimensional spaces, these techniques become impractical due to the
exponential growth in the number of basis functions. Additionally, many approaches depend on the
choice of a feature map or kernel to define the function space [29, 25], which imposes structure by
selecting the class of functions to learn from (e.g. using radial basis functions [3]). These design
choices necessarily introduce approximation errors through the choice of function class, or may
depend on prior domain knowledge, which may not always be available. Methods for identifying
system dynamics that use a large library of pre-defined basis functions, such as Koopman operators [2]
or nonlinear system identification through sparse regression such as SINDy [4, 26, 15], have received
considerable attention. Yet these approaches typically employ a finely-crafted finite dictionary of
basis functions, which requires careful choice to achieve good data-driven performance [20]. Neural
network approaches such as functional-link and orthogonal networks [30, 7] omit hidden layers
and use gradient descent to learn a linear combination of features, encoding the function class into
the network architecture, but fail to generalize well, and are not amenable to zero-shot transfer. In
contrast, we compute the coefficients of the model through a well-defined inner product, which scales
well with data and can be computed quickly. Furthermore, our basis functions are entirely learned
from data during the training phase, similar to representation learning [1], and thus require no prior
assumptions or domain knowledge.

Neural ODEs: In existing work, neural ODEs have proven to be a powerful tool for modeling
dynamical systems [10, 24, 22, 11, 17] and stochastic differential equations [21, 13], but generally
require an extensive data collection and training phase. While the model training can be enhanced [8]
and the models can incorporate prior knowledge [9, 10] to reduce the training time, they inherently
focus on a single system at a time. This inherently limits their ability to generalize across different
systems without retraining. Notably, parameterized neural ODEs [19] pass the model parameters as
an additional input to the neural ODE. This approach has been shown to achieve a form of transfer
within the set of allowable parameters, but requires extensive knowledge of the system parameters
and the structure of the dynamics, both at training and test time. In principle, our approach can
be combined with these existing approaches to incorporate their distinct advantages, making our
approach highly generalizable to different systems and modeling frameworks.

Deep Learning Techniques: Few-shot meta learning aims to solve a similar problem, where a
learned model is adapted given an online dataset [12]. However, meta learning requires gradient
updates to the learned models, which may be too slow for real-time control. Transformers are another
technique that can adapt given an online dataset by feeding that dataset as input to the encoder side of
the transformer. However, transformers have long forward pass times and scale quadratically with the
amount of data [16], and so they are not amenable for model-based control. Domain randomization
in reinforcement learning is another technique to generate a policy which is robust to a large set

9

of dynamics [27]. In contrast, our dynamics model adapts to the current dynamics, and thus our
controller is adaptive, rather than robust.

7 Conclusion & Future Work

We introduced zero-shot neural ODEs, which accomplish both long-horizon predictions and zero-shot
transfer. We demonstrated the performance of this approach on two challenging MuJoCo tasks
and on the control of a quadrotor system. Our approach makes a significant step towards online
adaptability of model-based control and has implications for the safe control of autonomous systems
in the presence of uncertainty. In future work, we plan to address safety during training, perhaps
using the properties of the Hilbert space to characterize the epistemic uncertainty. We also plan to
explore theoretical extensions to stochastic differential equations and Hilbert spaces of probability
measures.

8 Broader Impact

This approach demonstrates several clear benefits for enabling same-day adaptation, which is a critical
need for autonomous systems that will be deployed in new, unstructured environments. Nevertheless,
this approach will require a more thorough theoretical analysis before it can be deployed on actual
robotics systems, e.g. to determine confidence or sample bounds to guarantee safety. Notably, this
work is a step toward bridging the sim-to-real gap, though it remains unclear how well real-world
systems will be represented by a set of basis functions learned in simulation.

9 Acknowledgements

Thank you to Dr. Cyrus Neary for helpful discussions. This material is based upon work supported
by the National Science Foundation under NSF Grant Number 2214939. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation. This material is based upon work
supported by the Air Force Office of Scientific Research under award number AFOSR FA9550-19-1-
0005. Any opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the U.S. Department of Defense.

References
[1] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–1828, 2013.

[2] P. Bevanda, S. Sosnowski, and S. Hirche. Koopman operator dynamical models: Learning,
analysis and control. Annual Reviews in Control, 52:197–212, 2021.

[3] D. Broomhead and D. Lowe. Radial basis functions, multi-variable functional interpolation
and adaptive networks. Royal Signals and Radar Establishment Malvern (United Kingdom),
RSRE-MEMO-4148, 03 1988.

[4] S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from data by
sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of
Sciences, 113(15):3932–3937, 2016.

[5] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential
equations. In Advances in Neural Information Processing Systems, volume 31, 2018.

[6] C. Cheng, Z. Peng, W. Zhang, and G. Meng. Volterra-series-based nonlinear system modeling
and its engineering applications: A state-of-the-art review. Mechanical Systems and Signal
Processing,, 87A:340–364, 2017.

[7] S. Dehuri and S.-B. Cho. A comprehensive survey on functional link neural networks and an
adaptive PSO–BP learning for CFLNN. Neural Computing and Applications, 19(2):187–205,
2010.

10

[8] F. Djeumou, C. Neary, E. Goubault, S. Putot, and U. Topcu. Taylor-lagrange neural ordinary
differential equations: Toward fast training and evaluation of neural odes. In IJCAI, 2022.

[9] F. Djeumou, C. Neary, E. Goubault, S. Putot, and U. Topcu. Neural networks with physics-
informed architectures and constraints for dynamical systems modeling. In L4DC, 2022.

[10] F. Djeumou, C. Neary, and U. Topcu. How to learn and generalize from three minutes of data:
Physics-constrained and uncertainty-aware neural stochastic differential equations. In CoRL,
2023.

[11] E. Dupont, A. Doucet, and Y. W. Teh. Augmented neural odes. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019.

[12] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In Proceedings of the 34th International Conference on Machine Learning, ICML,
volume 70, pages 1126–1135. PMLR, 2017.

[13] L. Hodgkinson, C. van der Heide, F. Roosta, and M. W. Mahoney. Stochastic continuous
normalizing flows: training SDEs as ODEs. In Proceedings of the Thirty-Seventh Conference
on Uncertainty in Artificial Intelligence, volume 161 of Proceedings of Machine Learning
Research, pages 1130–1140. PMLR, 27–30 Jul 2021.

[14] T. Ingebrand, A. Zhang, and U. Topcu. Zero-shot reinforcement learning via function encoders.
In ICML. ICML, 2024.

[15] K. Kaheman, J. N. Kutz, and S. L. Brunton. SINDy-PI: A robust algorithm for parallel implicit
sparse identification of nonlinear dynamics. CoRR, 2020.

[16] F. D. Keles, P. M. Wijewardena, and C. Hegde. On the computational complexity of self-
attention. In International Conference on Algorithmic Learning Theory, volume 201 of Pro-
ceedings of Machine Learning Research, pages 597–619, 2023.

[17] J. Kelly, J. Bettencourt, M. J. Johnson, and D. K. Duvenaud. Learning differential equations
that are easy to solve. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 4370–4380. Curran
Associates, Inc., 2020.

[18] P. Kidger, J. Morrill, J. Foster, and T. Lyons. Neural controlled differential equations for
irregular time series. In Advances in Neural Information Processing Systems, volume 33, pages
6696–6707, 2020.

[19] K. Lee and E. J. Parish. Parameterized neural ordinary differential equations: Applications to
computational physics problems. Proceedings of the Royal Society A, 477(2253), 2021.

[20] Q. Li, F. Dietrich, E. M. Bollt, and I. G. Kevrekidis. Extended dynamic mode decomposition
with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman
operator. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(10):103111, 2017.

[21] X. Liu, T. Xiao, S. Si, Q. Cao, S. Kumar, and C. Hsieh. Neural SDE: stabilizing neural ODE
networks with stochastic noise. CoRR, 2019.

[22] Y. Lu, A. Zhong, Q. Li, and B. Dong. Beyond finite layer neural networks: Bridging deep
architectures and numerical differential equations. In ICML, 2018.

[23] J. Patra and A. Kot. Nonlinear dynamic system identification using Chebyshev functional
link artificial neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 32(4):505–511, 2002.

[24] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Multistep neural networks for data-driven
discovery of nonlinear dynamical systems, 2018.

[25] B. Schölkopf and A. J. Smola. Learning with Kernels: support vector machines, regularization,
optimization, and beyond. Adaptive computation and machine learning series. MIT Press, 2002.

11

[26] J. N. K. Steven L. Brunton, Joshua L. Proctor. Sparse identification of nonlinear dynamics with
control (SINDYc). IFAC-PapersOnLine, Volume 49, Issue 18:710–715, 2016.

[27] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization
for transferring deep neural networks from simulation to the real world. In IROS, pages 23–30.
IEEE, 2017.

[28] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033, 2012.

[29] C. K. Williams and C. E. Rasmussen. Gaussian processes for machine learning. MIT press
Cambridge, MA, 2006.

[30] S.-S. Yang and C.-S. Tseng. An orthogonal neural network for function approximation. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(5):779–785, 1996.

[31] Z. Yuan, A. W. Hall, S. Zhou, L. Brunke, M. Greeff, J. Panerati, and A. P. Schoellig. Safe-
control-gym: A unified benchmark suite for safe learning-based control and reinforcement
learning in robotics. IEEE Robotics and Automation Letters, 7(4):11142–11149, 2022.

12

A Hardware

All experiments use an Intel 9th Generation i9 CPU and a Nvidia 2060 GPU with 6GB of memory.

B Faster Integration

When computing the approximate inner product between the true system and each basis function, it is
necessary to compute Gi(x(t0), tf) for every tuple in the dataset D. However, once the coefficients c
have been computed, it is, in theory, no longer necessary to integrate the basis functions separately.
From (5), we can approximate H as

H(x(t0), tf) =

∫ tf

t0

[
k∑

i=1

cigi(x(τ) | ϕi)

]
dτ, (9)

by the linearity of the integral. In effect, we are summing the gradients of each basis function rather
than the basis functions themselves. As a result, inference for a specific set of coefficients can be
decreased from requiring k integrations to only a single integration. However, we find this method to
make less accurate predictions in practice, which may be due to our choice of integrator. This trick
may be better suited to variable step-size integrators, which benefit more from reduced calls to the
integrator than RK4 does.

C Method of Integration

We leverage RK4 as the default integrator for this work, as it can run a forward pass in milliseconds.
There are more accurate integrators available, such as odeint. However, there is inherently a trade off
with respect to both training time and execution time. Integrators such as adaptive step size solvers
can potentially make 20 or more calls to the neural ODE during a forward pass, while RK4 makes
only 4. The increased number of neural ODE forward passes greatly increases memory usage and
compute time. We experimented with more accurate integrators, but ultimately found this tradeoff to
be unfavorable. Future work should investigate integrators that are fast, but achieve better accuracy
than RK4.

D Overhead

While the function encoder algorithm alone has minimal overhead relative to a MLP, this is not the
case for neural ODEs due to the need for integration. The k neural ODEs may either be integrated
sequentially or in parallel. If they are integrated sequentially, the memory overhead is lower, especially
with respect to back-propagation. Thus, we find this useful for offline training, where the sequential
method allows us to compute gradients for a larger batch of data at the cost of training time. In
contrast, online execution generally favors inference speed over memory overhead. Thus, we use the
parallel method for online inference in the drone example, which requires much more memory but
only a small overhead of inference time relative to neural ODEs alone.

E Residuals Method Algorithm

Training a function encoder with the residuals method requires two separate loss functions. The
first loss function trains Favg on data from all datasets Dℓ, which means it effectively learns the
expectation of F given the training set. This loss function can be skipped if Favg is a fixed function
based on prior knowledge.

The second loss function trains the basis functions. Unlike in Algorithm 1, the function being learned
is x(tj+1)− x(tj)− Favg(x(tj), tj+1 − tj). In other words, the residual between the data and the
average function. This loss is only used to train the basis functions, it is not used to train the average
function. See Algorithm 2.

13

Algorithm 2 The Residuals Method

1: Input: Set of datasets D, number of basis functions k
2: Output: Average function Favg and Neural ODE basis functions G1, G2, ..., Gk

3: Initialize favg and g1, g2, ..., gk as neural networks with parameters θ̄ and θ = {θ1, θ2, ..., θk}
4: while not converged do
5: // Train Average Function
6: loss L1 = 0
7: for all Dℓ ∈ D do
8: L1 = L1 +

∑m−1
j=1 ∥(x(tj+1)− x(tj))− Favg(x(tj), tj+1 − tj)∥2

9: end for
10: θ̄ = θ̄ − α∇θ̄L1

11: // Train Basis Functions
12: loss L2 = 0
13: for all Dℓ ∈ D do
14: for i ∈ 1, ..., k do
15: ci ≈ V

m−1

∑m−1
j=1 ⟨x(tj+1)−x(tj)−Favg(x(tj), tj+1− tj), Gi(x(tj), tj+1− tj)⟩X

16: end for
17: L2 = L2 +

∑m−1
j=1 ∥ (x(tj+1) − x(tj) − Favg(x(tj), tj+1 − tj)) −∑k

i=1 ciGi(x(tj), tj+1 − tj)∥2

18: end for
19: θ = θ − α∇θL2

20: end while

F Implementation Details

All baselines use the same training scheme. We use an ADAM optimizer with a learning rate of
1e − 3, and gradient clipping with a max norm of 1. NODE baselines uses 4 hidden layers of size
512, while FE + NODE baselines uses 4 hidden layers of size 51 for each basis function. Note this
leads to approximately the same number of parameters for both approaches because the number of
hidden parameters scales quadratically with the size of the hidden layers. All baselines train on 50
functions per gradient update via gradient accumulation. States are normalized to have 0 mean and
unit variance.

A random policy is used to collect data for the MuJoCo environments. A PID-based exploratory
policy, which moves to random nearby points, is used to collect data for the quadrotor since a random
policy collides with the floor. Evaluations are done on a holdout set collected through the same
means.

All quadrotor baselines use the same MPC controller. The controller optimizes the actions through a
combined sampling, gradient descent over 100 iterations. The episode is 100 steps, while the planning
horizon is 10 steps. The controller optimizes 100 sample trajectories in parallel, and ultimately
chooses the best one. Warm starting is used for following MPC calls to improve performance. The
cost function penalizes distance to the objective point, deviance from a stable horizontal position,
velocity, and the difference between torques on each rotor.

14

G Hyper-Parameter Ablations

G.1 Number of Basis Functions

Half Cheetah 0 20 40 60 80 100
Number of Basis Functions

0.00

0.05

0.10

0.15

0.20

0.25

1-
St

ep
 L

os
s

FE + NODE + Res.

0 20 40 60 80
Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

M
SE

N. Basis
100
80
60
40
20
10
5

Figure 6: We ablate the effect of the number of basis functions (k) on the performance of the
learned model. Results are shown for the FE + NODE + Res. algorithm applied to the Half Cheetah
environment. The results indicate the the proposed approach is insensitive to the number of basis
functions around k = 100, while performance eventually decays as k approaches 0.

G.2 Number of Example Data Points

Half Cheetah 200 400 600 800 1000
Number of Example Datapoints

0.00

0.05

0.10

0.15

0.20

0.25

1-
St

ep
 L

os
s

FE + NODE + Res.

0 20 40 60 80
Time Steps

0.0

0.2

0.4

0.6

0.8

1.0
M

SE
N. Examples

1000
800
600
400
200

Figure 7: We ablate the effect of the number of example data points on the performance of the
learned model. Results are shown for the FE + NODE + Res. algorithm applied to the Half Cheetah
environment. The results indicate the the proposed approach is insensitive to increasing example
dataset sizes, which suggests that 200 data points is sufficient for the coefficients to converge.

H Generalization

2 1 0 1 2
6

4

2

0

2

4

6

2 1 0 1 2
6

4

2

0

2

4

6

2 1 0 1 2
6

4

2

0

2

4

6

2 1 0 1 2
6

4

2

0

2

4

6

2 1 0 1 2
6

4

2

0

2

4

6

Inside Data Regime

µ = 0.1 µ = 1.0

µ = 2.0 µ = 3.0

µ = 4.0

Figure 3: This figure shows the generalization
capabilities of the proposed method. The black
line indicates the ground truth Van Der Pol dy-
namics, and the red line shows an approxima-
tion. The model was trained on µ ∈ [0.1, 3.0].
The left side of the figure shows Van Der Pol
dynamics for values of µ that are within the dis-
tribution of training environments, though each
environment is unseen. The right shows the ap-
proximation for µ = 4.0, which lies outside of
the training distribution. The figure shows that
the function encoder is able to reasonably gener-
alize outside of its training set in this example.

15

I Orthonormality

Consider a set of basis functions g1, . . . , gk. Suppose that g1, . . . , gk is not orthonormal. Now
consider a function f , and suppose f happens to be in the span of g1, . . . , gk. Then f can be
expressed as f = b⊤g, where b is a set of coefficients and g is the concatenation of g1, . . . , gk. The
coefficients are calculated via the inner product,

c⊤ =

⟨f, g1⟩...
⟨f, gk⟩

 =

⟨b
⊤g, g1⟩

...
⟨b⊤g, gk⟩

 = b⊤

⟨g1, g1⟩ . . . ⟨g1, gk⟩
...

. . .
...

⟨gk, g1⟩ . . . ⟨gk, gk⟩

The loss function L = |f − f̂ |2 = |f − c⊤g|2. If c = b, then the loss will be 0. Observe that c = b if
and only if the Gram matrix is identity, and the Gram matrix is identity only for an orthonormal basis.
In other words, the minimizer of the loss function is an orthonormal basis. Thus, in order for gradient
descent to decrease loss, the basis functions converge towards orthonormality [14]. This intuition is
empirically validated in [14], Appendix A.5.

As a final note, the coefficients can be computed via least squares after training. Least squares does
not require an orthonormal basis as it uses the Gram matrix to account for the inner products between
basis functions.

16

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim to learn a space of dynamics spanned by a set of neural ODEs. These
claims are justified in the methods §3, where we show theoretical results, and empirically
validated in §4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the key limitations of our approach in §5, including: computational
overhead, dependence on training data, and the constraints on integration.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

17

Answer: [NA]
Justification: Our method does not rely upon any new theorems or proofs. We reference
existing results and theorems where appropriate in the text.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a comprehensive description of the experimental results in §4,
including: the architecture, integration scheme, the number of basis functions used, and
descriptions of the data used for training. Further implementation details are provided in the
appendix in §F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

18

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide code as a zip file in the initial submission. A link to a github
repository will be provided in the final version.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Implementation details are provided in the experimental results section §4 and
comprehensive details are provided in the appendix §F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide confidence intervals for the first and third quartile in all figures.
The significance of the error bars with respect to parameter variation and random seeds is
thoroughly described in the text.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We describe the computing resources used to compute all results in the
appendix in §A. Computational overhead is discussed in §5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work conforms with the NeurIPS guidelines and Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our work has positive implications for the design and modeling of autonomous
systems. We briefly discuss the broader impacts of our work in §8
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

20

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not provide a model or dataset with a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: Our experiments do not rely upon any restricted licenses or code, and we
provide citations to key libraries used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

21

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourced data or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourced data or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

22

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

23

	Introduction
	Contributions

	Background
	Neural ODEs
	Function Encoders

	Function Encoders With Neural ODEs as Basis Functions
	Computing a Set of Neural ODE Basis Functions
	Efficient Online Transfer Without Retraining
	Incorporating Zero-Order Hold Control Inputs

	Numerical Experiments
	Visualization on a Van der Pol Oscillator
	Long-Horizon Prediction on MuJoCo Environments
	Realistic Robotics Experiments and Control of a Quadrotor System

	Scope & Limitations
	Related Work
	Conclusion & Future Work
	Broader Impact
	Acknowledgements
	Hardware
	Faster Integration
	Method of Integration
	Overhead
	Residuals Method Algorithm
	Implementation Details
	Hyper-Parameter Ablations
	Number of Basis Functions
	Number of Example Data Points

	Generalization
	Orthonormality

