
TTPA: Token-level Tool-use Preference Alignment Training Framework
with Fine-grained Evaluation

Anonymous ACL submission

Abstract001

Existing tool-learning methods usually rely on002
supervised fine-tuning, they often overlook fine-003
grained optimization of internal tool call de-004
tails, leading to limitations in preference align-005
ment and error discrimination. To overcome006
these challenges, we propose Token-level Tool-007
use Preference Alignment Training Framework008
(TTPA), a training paradigm for constructing009
token-level tool-use preference datasets that010
align LLMs with fine-grained preferences us-011
ing a novel error-oriented scoring mechanism.012
TTPA first introduces reversed dataset construc-013
tion, a method for creating high-quality, multi-014
turn tool-use datasets by reversing the gener-015
ation flow. Additionally, we propose Token-016
level Preference Sampling (TPS) to capture017
fine-grained preferences by modeling token-018
level differences during generation. To ad-019
dress biases in scoring, we introduce the Error-020
oriented Scoring Mechanism (ESM), which021
quantifies tool-call errors and can be used as022
a training signal. Extensive experiments on023
three diverse benchmark datasets demonstrate024
that TTPA significantly improves tool-using025
performance while showing strong generaliza-026
tion ability across models and datasets. 1027

1 Introduction028

Enabling Large Language Models (LLMs) (Ope-029

nAI, 2023; Touvron et al., 2023) to interact with030

external environments is critical for enhancing031

their ability to solve complex real-world problems032

through access to real-time information, such as033

web searches (Patil et al., 2024) and travel plan-034

ning (Hao et al., 2024; Xie et al., 2024). As LLMs035

continue to evolve, integrating external tools is036

essential not only to address practical user needs037

but also to advance toward artificial general intel-038

ligence (Wang et al., 2023; Liu et al., 2023; Tian039

et al., 2024). Current approaches primarily employ040

1Code is available on Anonymous GitHub

Supervised Fine-Tuning (SFT) to improve the tool- 041

use capabilities of LLM (Qin et al., 2023b; Lin 042

et al., 2024; Zhang et al., 2024; Tang et al., 2023; 043

Schick et al., 2023). Recent studies also explore Re- 044

inforcement Learning (RL) for tool learning, such 045

as TL-Training (Ye et al., 2024), which employs 046

complex reward functions for proximal policy op- 047

timization (Schulman et al., 2017). Another ap- 048

proach leverages trajectory-level sampling to gen- 049

erate preference-based datasets for Direct Prefer- 050

ence Optimization (DPO) (Rafailov et al., 2023). 051

Although these RL-based methods offer a promis- 052

ing method for achieving preference alignment in 053

tool use (Qin et al., 2024), they encounter two main 054

challenges: (1) Existing methods often overlook 055

fine-grained preference discrepancies within indi- 056

vidual tool calls, where subtle token-level differ- 057

ences can determine the success or failure of the 058

call. In highly structured outputs like tool calls, 059

even a single token error can lead to complete fail- 060

ure, highlighting the necessity for more precise 061

preference alignment. (2) Furthermore, existing 062

preference data sampling methods typically rely on 063

LLM-based or human evaluations, which may in- 064

troduce biases due to coarse-grained assessments 065

and ambiguous criteria. This often results in prefer- 066

ence data with low discriminative quality and high 067

noise levels, limiting the effectiveness of alignment 068

strategies. 069

To overcome these two challenges, we pro- 070

pose Token-level Tool-use Preference Alignment 071

Training Framework (TTPA), a tool-use training 072

paradigm that first constructs token-level prefer- 073

ence datasets that align LLMs with fine-grained 074

preferences, and then employs an error-oriented re- 075

ward mechanism to train the model. Our proposed 076

TTPA contains two main steps: (1) Preference 077

Oriented Tool-use Dataset Construction and (2) 078

Error-oriented Scoring Mechanism. We first pro- 079

pose a reversed data construction approach, which 080

introduces a novel paradigm for creating multi-turn 081

1

https://anonymous.4open.science/r/TTPO-3651

tool-use datasets. Unlike conventional methods082

that start with queries, our approach reverses the083

process: we first leverage LLMs to generate a se-084

quence of tool calls and a final answer within a085

predefined tool-using scenario. The query is then086

constructed based on the generated answer. This087

reversed strategy ensures that every query is in-088

herently answerable and eliminates data leakage089

risks, as the query is derived from the scenario and090

answer rather than predefined inputs.091

To capture the fine-grained preference in the tool092

calls, we propose Token-level Preference Sampling093

(TPS). Unlike trajectory-level methods that incor-094

porate complete tool-calling sequences, our ap-095

proach explicitly models token-level preferences by096

sampling top-k candidate tokens from the probabil-097

ity distribution during tool-call generation by LLM.098

When training the tool-use LLM, existing models099

employ LLMs to grade the outputs as the train-100

ing signal which usually introduces biases caused101

by coarse-grained evaluation and ambiguous cri-102

teria (Nath et al., 2025). Thus, we propose the103

Error-oriented Scoring Mechanism, which defines104

a taxonomy of tool-call errors. And then we use105

it to construct a preference alignment dataset and106

fine-tune the LLM . Extensive experiments on three107

benchmark datasets show that TTPA notably im-108

proves tool selection, parameter filling, and return109

value parsing capabilities. Moreover, the model110

fine-tuned with TTPA demonstrates strong general-111

ization and transferability across datasets, enhanc-112

ing the reliability and applicability of LLMs in113

real-world applications.114

In summary, our contributions are as follows:115

• We propose Token-level Tool-use Preference116

Alignment Training Framework (TTPA), a novel117

tool-use training paradigm that aligns the LLM118

with fine-grained token-level preference to avoid119

the tool-call error.120

• We introduce the Preference Oriented Tool-121

use Dataset Construction, which employs a re-122

versed data construction method and construct fine-123

grained preference data.124

• We propose the Error-oriented Scoring125

Mechanism (ESM), which captures fine-grained126

differences between answers, enabling precise127

alignment of LLM.128

• Experimental results demonstrate that TTPA sig-129

nificantly improves tool-use capabilities on three130

diverse benchmark datasets, and shows strong gen-131

eralization across models and datasets.132

2 Related work 133

Tool Learning. Tool learning enhances LLMs 134

by integrating external tools, enabling them to se- 135

lect tools, generate parameters, and parse results 136

to respond to user queries (Qin et al., 2023a; Li 137

et al., 2023; Huang et al., 2023; Shi et al., 2023). 138

Approaches include tuning-free methods, which 139

use in-context learning or algorithmic design (Yao 140

et al., 2023; Shi et al., 2024b; Huang et al., 2024; 141

Zhu et al., 2025), and tuning-based methods, which 142

fine-tune on tool-use datasets (Wu et al., 2024; 143

Kong et al., 2024; Gao et al., 2024). Tuning- 144

free methods are often limited by the foundation 145

model’s capabilities, while tuning-based methods 146

face challenges with noisy data. Our framework 147

addresses this by employing Reversed Dataset Con- 148

struction and Token-level Preference Sampling to 149

produce high-quality, low-noise datasets, ensuring 150

better alignment with tool-use tasks and addressing 151

fine-grained discrepancies in tool calls. Addition- 152

ally, our approach introduces an error-oriented scor- 153

ing mechanism to refine the alignment process and 154

improve model robustness in complex scenarios. 155

Tool-Use Datasets. Tool learning has driven the 156

creation of datasets to improve LLMs’ tool-use ca- 157

pabilities (Patil et al., 2023; Wang et al., 2024a; 158

Gao et al., 2024). ToolBench (Qin et al., 2023b) 159

leverages LLMs to compile large datasets, while 160

APIGen (Liu et al., 2024b) uses an automated 161

pipeline to generate diverse datasets across mul- 162

tiple API categories. ToolACE (Liu et al., 2024a) 163

further advances this by integrating tool synthesis 164

and dialogue generation, enhancing dataset diver- 165

sity and complexity. However, these datasets often 166

suffer from noise, single-turn limitations, or high re- 167

source costs, and few address the growing need for 168

preference-based datasets. Our framework uses Re- 169

versed Dataset Construction and Token-level Pref- 170

erence Sampling to construct high-quality prefer- 171

ence datasets, aligning token-level tool-use pref- 172

erences and improving fine-grained alignment for 173

structured outputs, ensuring better generalization 174

across diverse tool-use scenarios. 175

3 Method 176

3.1 Overview 177

In this section, we present the details of Token- 178

level Tool-use Preference Alignment Training 179

Framework (TTPA). An overview of TTPA is illus- 180

trated in Figure 1, which contains three key compo- 181

2

nents: (1) First, we introduce the Reversed Dataset182

Construction, which generates a reliable and non-183

leaked raw conventional instruction dataset like184

any other public dataset, serving as the founda-185

tion for the preference dataset. (2) Next, we de-186

scribe our Token-level Preference Sampling strat-187

egy, which constructs Preferred & Dispreferred188

pairs by calculating scores through the fine-grained189

Error-oriented Scoring Mechanism. (3) Finally, we190

introduce the Error-oriented Scoring Mechanism191

which is designed to capture token-level prefer-192

ences.193

3.2 Reversed Dataset Construction194

In existing tool-use datasets, the generated queries195

may explicitly reveal information about the tools or196

parameters involved (Qin et al., 2023b). However,197

in real-world scenarios, user queries typically do198

not explicitly specify the tools to be called or the199

input parameters. This discrepancy creates a gap200

between the dataset and real-world applications, ul-201

timately affecting the model’s performance in prac-202

tical settings. Unlike traditional approaches (Qin203

et al., 2023b) that guide LLMs to first generate204

a query Q and then solve it, which may result205

in unsolvable or overly ambiguous queries, we206

propose a novel method that constructs tool-use207

training data by deriving queries from answers.208

To address these issues, we propose the Reversed209

Dataset Construction method to construct a tool-210

use dataset.211

First, we use a candidate tool set Tcan as input212

and then prompt the generator G to construct three213

items:214

{S, Tuse,Cons} = G (PS, Tcan), (1)215

where PS denotes the prompt and the outputs are:216

(1) A tool-use scenario description S which is a217

short sentence to describe this tool-use application218

scenario. (2) A toolset Tuse = {t1, t2, · · · , tN}219

with N tools is selected according to the task re-220

quirement in the scenario, which should be used221

in the scenario S. (3) Some constraint Cons of the222

scenario S to restrict the solution space.223

Next, our goal is to generate an answer A based224

on the tool-use application scenario S. We simulate225

the task-solving process by iteratively selecting and226

calling the tools in Tuse. Specifically, in each tool227

calling step, we predict the tool used in the i-th step228

ticall according to these inputs and obtain the output229

tires of the tool ticall. 230

ticall = G (PA, S, Tuse, Cons,M
i−1), (2) 231

where M i−1 =
i−1⋃
j

{tjcall, t
j
res}. 232

tires = Call(ticall), (3) 233

where M i−1 presents the historical tool calls and 234

results up to i− 1 step, and PA denotes the answer 235

generation prompt. After multiple rounds of tool 236

interactions, the generator G obtains a series of 237

results returned by the tools, and then we generate 238

the answer A according to these inputs: 239

A = G (PA, S, Tuse, Cons,M), (4) 240

whereM denotes the previous tool calls and results. 241

Finally, we instruct the generator G to generate a 242

query Q: 243

Q = G (PQ, S,Cons, A, Tcalls). (5) 244

Since the queries are derived from answers, each 245

query in this dataset is guaranteed to have a valid 246

solution. Furthermore, the queries, answers, and 247

associated tool results are highly correlated, ensur- 248

ing that solving the queries necessitates the use of 249

tools. This design significantly reduces noise in the 250

dataset, resulting in higher data quality. 251

3.3 Token-level Preference Sampling 252

Since the trajectory-level sampling method (CHEN 253

et al., 2024), which aligns preferences at a macro 254

level by capturing the overall learning path, usually 255

fails to account for fine-grained distinctions within 256

individual trajectories. To tackle this problem, 257

we propose the Token-level Preference Sampling 258

(TPS) strategy for Direct Preference Optimization 259

(DPO). For brevity, we denote by M i
pre the set of 260

tool calls and their corresponding return values 261

prior to the i-th tool call: 262

M i
pre = {t1call, t

1
res, . . . , t

i−1
call , t

i−1
res }. (6) 263

To construct a preference dataset more suitable for 264

training the tool learning model L , we build the 265

preference dataset by sampling from the outputs of 266

the tool learning model L : 267

Ppred = L (Q,Tuse,M
i
pre), (7) 268

where Ppred denotes the predicted probability distri- 269

bution over tool calls generated by the tool learning 270

model L for the i-th step. 271

3

=

=

=

?

In or not

Json.loads

Name*

Score’

Error-oriented ScoringPreference Oriented Tool-use Dataset Construction

(1) Reversed Dataset Construction

(2) Token-level Preference Sampling

Tool 1

Tool 2

…

Tool n

Tool List

Tool call

Scenario Simulate

Scenario

Constraints

Using Tools

History

Answer

Multi-turn Tool calls

Parse

Force Query Generation

IF

Answer_gen

Other tool Query_gen

Query

Reversed Data Construction

Query

Tool call1

Tool calln

Response1

Responsen

Answer

H
i
s
t
o
r
y n

History

SFT-DataSet

Add

Extract

Extract

Add

0 k l

0 k l

0 n

0 n

m

m’

°

’

°

Probs Distribution

Score°

Tool call1
°

Tool call1
’

Error-oriented

Scoring

Preferred:

Dispreferred:

Tool call1
°

Others

{Name*, {Para_1*, …, Para_N*}}

{Name, {Para_1, …, Para_N}}

Golden Tool Call:

Sampled Tool Call:

Scoring Process:
(1) Check Format:

(2) Check Tool Name:

(3) Check Parameters:

Tool call
Score =1, else.

Score =0, if error.

Name
Score =1, else.

Score =0, if not equal.

Final Score =

𝒊=𝟎

𝟔

𝜔𝑖 · 𝑺𝒄𝒐𝒓𝒆𝒊

{Para_1, …, Para_N}

Tool Doc: Parameter Information

Required Paras.

In or not

All Valid Paras.

Para_1 Type

Para_1* Type

≠

or

Para_1 Value

Para_1* Value

≠

or

Score =?

𝒊=𝟏

𝐧

𝑪𝒐𝒖𝒏𝒕()

𝑪𝒐𝒖𝒏𝒕()
{ }? ∈

Figure 1: The overall framework of our work, which mainly consists of Preference Oriented Tool-use Dataset
Construction and Error-oriented Scoring Mechanism.

During the token-by-token generation process of272

tool learning model L , the token probability distri-273

bution Ppred over the entire vocabulary is computed274

before each token is generated. During sampling,275

candidate tokens are selected from the top-ranked276

tokens in Ppred. However, the probability gap be-277

tween the top-ranked tokens is not always signifi-278

cant, and the probabilities of the top-ranked tokens279

are very close. This close probabilities’ distribu-280

tion creates ambiguity during decoding, as different281

decoding strategies may randomly select different282

high-probability tokens. Such randomness is partic-283

ularly problematic for structured and fixed outputs284

like tool calls, where even a single incorrect to-285

ken can lead to the failure of the entire tool call.286

Therefore, we use the uncertainty in token proba-287

bilities as a sampling criterion, perturbing only a288

small number of tokens at a time to simulate the289

uncertain sampling behavior of LLMs during the290

decoding phase:291

CK
sam ∼ PpredI(Dist < ϵ), (8)292

where Dist = pr1 − prj , (9)293

where CK
sam denotes K-times tool call sampling re-294

sults in the condition of the distance Dist between295

rank-j token’s probability prj and rank-1 token’s296

probability pr1 smaller than the predefined hyper-297

parameter ϵ, the value of K is dynamically deter-298

mined based on the specific probability. Unlike299

deterministic decoding methods (Shi et al., 2024a), 300

which often produce repetitive or suboptimal re- 301

sults, our approach introduces controlled random- 302

ness by perturbing a small number of tokens based 303

on their uncertainty. 304

Next, we compute the score ψi for each sampled 305

tool call cisam ∈ CK
sam: 306

ψi = F (cisam), (10) 307

where F is the scoring mechanism that can capture 308

fine-grained errors that may occur during tool calls, 309

enabling precise alignment of model preferences, 310

and the detail for this mechanism will be introduced 311

in § 3.4. Finally, the sample with the highest score 312

ψ is selected as the Preferred Answer, while the 313

remaining samples are designated as Dispreferred 314

Answers. 315

3.4 Error-oriented Scoring Mechanism 316

Existing tool learning methods usually employ 317

LLM-based evaluation or human evaluation to as- 318

sess the quality of generated tool calls, and then 319

use this signal to optimize the model parameters. 320

In this paper, we design an error-oriented scoring 321

mechanism F that can capture fine-grained errors 322

that may occur during tool calls. For tool learning 323

tasks, since tool calls are structured representations, 324

we propose a taxonomy for the tool-call errors. For 325

4

a tool call result tcall, the scoring function δ is de-326

signed to identify whether the call contains errors327

and to classify these errors into specific error types:328

δei(tcall) =

{
0, if ei detected.
1, if ei not detected.

(11)329

where ei denotes a specific error type (e.g., format330

errors and tool name errors).331

However, since different tools may have varying332

numbers of parameters, simply matching the pre-333

dicted parameters with the ground-truth parameters334

could result in coarse-grained outcomes. Therefore,335

we perform a detailed validation on each parame-336

ter output by the model, including type errors and337

value errors. In our evaluation method, each pa-338

rameter is assigned a score, and the final scores for339

parameter type errors and parameter value errors340

are obtained by taking the weighted average of all341

parameter scores:342

δei(tcall) =
1

X

X∑
j

γ(vj), (12)343

where γ(vj) denotes a similar function to score344

each parameter v of the X parameters generated by345

tool learning model L , which can be represented346

as:347

γ(vj) =

{
0, if vj not correct.
1, if vj correct.

. (13)348

After the scores for all error types are computed, we349

obtain the final score for the tool call by weighted350

sum the scores of all types of errors detecting:351

F (tcall) =
H∑
i

ωi · δei(tcall), (14)352

where ωi denotes the hyper-parameter weight of353

the type of error ei, δei(tcall) denotes the score of354

each type of error and H denotes the total number355

of error types. This scoring mechanism can be356

utilized to generate a preference-aligned dataset,357

which is subsequently employed for training tool358

learning models using the DPO method.359

4 Experimental Setup360

4.1 Implementation Details361

To evaluate the effectiveness of the proposed TTPA,362

we initially employ Reversed Data Construction363

and Token-level Preference Data Sampling tech-364

niques to generate 3895 instruction data instances365

and 8550 preference data pairs, utilizing 114 spe- 366

cialized apis for data generation and processing. 367

During the data generation phase, we leverage 368

state-of-the-art language models, specifically GPT- 369

4 Mini and GPT-4 (OpenAI, 2023), as our pri- 370

mary generators G to ensure both the quality and 371

validity of the synthesized data. Following the 372

data generation phase, we employ Qwen2.5-7B- 373

Instruct (Qwen et al., 2025) as the tool learning 374

model L and conduct fine-tuning procedures on 375

the generated dataset to optimize its performance. 376

4.2 Baseline 377

We conduct a comprehensive comparison between 378

our proposed TTPA and several state-of-the-art 379

baselines in tool use, including: (1) GPT-4o-mini, 380

developed by OpenAI, which exhibits exceptional 381

performance in tool-use. (2) Hammer2.0-7b (Lin 382

et al., 2024), a state-of-the-art tool learning model, 383

demonstrates exceptional function calling capa- 384

bilities, particularly excelling in robustness dur- 385

ing tool call. (3) ToolACE-8B (Liu et al., 2024a), 386

an advanced tool learning model, is specifi- 387

cally trained on coherent dialogue-based tool use 388

datasets, endowing it with robust capabilities for 389

tool utilization in multi-turn conversational. (4) 390

xLAM-7b-r (Liu et al., 2024b), an advanced large 391

language model designed to enhance decision- 392

making and translate user intentions into executable 393

actions that interact with the world, which training 394

on 60k single-turn tool-use dataset. 395

4.3 Dataset & Metric 396

We evaluate the tool learning model fine-tuned with 397

TTPA on two commonly-used benchmarks and our 398

proposed testset. The statistics of these datasets are 399

shown in Table 2. We first use the subset of widely- 400

used ToolBench (Qin et al., 2023b) benchmark, 401

including I1-instruction and I1-tool. For evalua- 402

tion, we employ the Pass Rate metric, which serves 403

as an intuitive measure of tool learning LLMs’ ca- 404

pability in accurately selecting appropriate tools 405

and generating corresponding parameters by the 406

model within a constrained number of inference 407

steps. Moreover, we employ the Berkeley Function- 408

Calling Benchmark (BFCL) (Patil et al., 2024), 409

which covers complex scenarios such as multiple 410

tool use. We utilize five subsets from the BFCL, 411

comprising a total of 1,929 instances for our test set. 412

In the evaluation framework, BFCL primarily as- 413

sesses LLMs based on Abstract Syntax Tree (AST) 414

Evaluation. This evaluation measures the syntac- 415

5

Models Vanilla QS QL TS TE TCE
I1-instruction

GPT-4o-mini 82.0% 80.0% 83.5% 84.0% 81.5% 81.0%
Hammer2.0-7b 60.0% 56.0% 54.5% 58.0% 51.5% 53.0%
xLAM-7b-r 77.5% 78.5% 73.5% 79.5% 75.5% 73.0%
ToolACE-8B 77.0% 75.5% 78.5% 74.0% 72.0% 72.0%
TTPA (Qwen) 86.0% 88.5% 84.5% 87.5% 86.0% 83.5%

I1-tool
GPT-4o-mini 85.5% 83.5% 80.0% 81.5% 83.0% 82.0%
Hammer2.0-7b 62.0% 66.0% 56.0% 68.5% 51.0% 51.0%
xLAM-7b-r 77.5% 77.0% 77.0% 73.5% 71.0% 69.5%
ToolACE-8B 76.0% 77.5% 86.0% 77.5% 76.0% 76.0%
TTPA (Qwen) 85.0% 84.0% 82.0% 81.5% 83.0% 83.5%

Table 1: The results of evaluation on various ToolBench subsets. The dataset abbreviations correspond to specific
modifications: (1) Vanilla represents the original ToolBench dataset; (2) Query Shorten denotes the version with
condensed queries for increased information density; (3) Query Lengthen indicates extended queries with additional
information, resulting in sparser key information distribution; (4) Tools Shuffle refers to the variant with randomized
tool candidate ordering; (5) Tools Expand (Intra-category) represents the expanded toolset within the same category;
and (6) Tools Expand (Cross-category) indicates the expanded toolset across different categories.Bold values
represent the highest performance for the models evaluated.

Attributes ToolBench BFCL Ours

Subsets 12 5 1
Amount 2400 1929 385
APIs 1543 1100 114
Avg. APIs 5.06 1 5.56

Table 2: Statistics of the experimental datasets. APIs
presents the total number of using APIs in the entire
dataset, and Avg. APIs presents the average number of
tool-calls per individual case.

tic correctness of generated tool calls by verifying416

their alignment with predefined tool documenta-417

tion in terms of structure and parameters. And418

we also employ our testset where we randomly419

split 10% of the generated data (with 385 samples)420

for testing. In the testing process, we employ the421

error-oriented scoring mechanism as the evaluation422

metric, enabling a fine-grained assessment of tool423

calls.424

5 Experimental Result425

5.1 Overall Performance426

To assess the effectiveness of our proposed TTPA,427

we conducted a comprehensive comparison of our428

model with several strong baseline models across429

three diverse datasets. The results are shown in430

Table 1, Table 3, and Table 4 for Toolbench, BFCL,431

and Our testset, respectively.432

ToolBench The findings in ToolBench validate 433

the effectiveness of training on tool-use datasets, re- 434

vealing that models with merely 7-8 billion param- 435

eters can achieve comparable or even superior per- 436

formance to state-of-the-art GPT-4o-mini in some 437

subsets. This highlights the critical role of domain- 438

specific fine-tuning in enhancing the tool-use capa- 439

bility of LLMs. Our TTPA outperforms the base- 440

lines in most scenarios, demonstrating the general- 441

izability of our approach. However, an exception 442

is observed in the QL sub-dataset under the I1-tool 443

dataset, where ToolACE-8B achieves better perfor- 444

mance. This discrepancy can likely be attributed 445

to the fact that ToolACE incorporates extensive 446

dialogue information during its training process, 447

enabling it to handle long queries more effectively. 448

Moreover, due to the long-context training data de- 449

rived from a long candidate tool list, models are 450

required to select the correct tool in more complex 451

scenarios. Consequently, our model exhibits higher 452

robustness across five out of six sub-datasets. In 453

contrast to other models, where performance fluc- 454

tuations exceed 5% even 10%, our model main- 455

tains a pass rate variation of less than 2%. The 456

exception observed in the TCE sub-dataset, where 457

performance declines, is likely due to the crossed 458

expansion of the candidate tool list, which indicates 459

that the model must first identify the appropriate 460

sub-toolsets category before selecting the correct 461

tool within that subset. Due to the lack of sufficient 462

training data for this specific challenge, most mod- 463

6

Models Multiple(live) Simple(live) Multiple Simple Relevance(live)
GPT-4o-mini 76.3% 77.1% 90.0% 90.5% 77.8%
Hammer2.0-7b 75.0% 67.4% 93.5% 95.2% 83.3%
xLAM-7b-r 75.4% 73.6% 95.0% 92.2% 100.0%
ToolACE-8B 75.2% 78.2% 95.5% 95.0% 94.4%
TTPA (Qwen) 71.7% 79.5% 93.0% 95.5% 94.5%

Table 3: Accuracy performance on the BFCL subsets. Multiple and Simple denote that the LLMs are provided
multiple tools and one tool, respectively. live distinguishes itself from other datasets in the same category. Bold
values represent the highest performance for the models evaluated.

Models Name Para. Content

GPT-4o-mini 43.0% 70.3% 64.6%
Hammer2.0-7b 33.9% 67.3% 59.7%
xLAM-7b-r 39.6% 71.1% 63.1%
ToolACE-8B 31.7% 62.7% 51.1%
TTPA (Qwen) 57.8% 81.3% 74.2%

Table 4: Results on our testset. Name, Para. and Con-
tent denote the tool calls’ accuracy of tool selection,
parameters choosing, and parameters content filling,
respectively. Bold values represent the highest perfor-
mance for the models evaluated.

els perform worse on this dataset compared to their464

performance on the vanilla dataset. Nevertheless,465

our model still surpasses the baselines, achieving466

the best performance.467

BFCL The results on BFCL demonstrate that468

the SOTA baseline models have achieved remark-469

able performance, particularly on the multiple and470

simple subsets, where they attain accuracy rates471

exceeding 90%. Notably, our fine-tuned model472

demonstrates comparable performance to these ex-473

isting approaches, reaching SOTA performance lev-474

els. However, we identify a potential limitation in475

the BFCL evaluation system: its design may intro-476

duce bias during assessment since the number of477

solutions included for a specific case is fewer than478

the actual possible solutions. This limitation could479

lead to two main issues: (1) correct tool calls being480

misclassified as false, thereby reducing accuracy481

metrics, and (2) potential favoritism toward models482

trained on specific datasets that the datas’ distri-483

bution is similar to the BFCL’ data. These factors484

may partially explain why our model shows slightly485

inferior performance compared to SOTA models486

on certain subsets. More detailed case studies can487

be found in the Appendix A.1.488

Our Testset Moreover, on our custom test set,489

our fine-tuned model outperforms existing ad-490

Error Types Example Reason

Format {······} Missing a "}".

Wrong tool

name
{“name”:“tool”,···} Wrong tool name “tool",

correct “function".

Missing

required para.

{···,"paras.":{“year":
2025,···}}

Missing required para.

“year".

Wrong para.

name

{···,"paras.":{“years":
2025,···}}

Wrong para. “years",

correct “year".

Wrong para.

type

{···,"paras.":{“year":
“2025”,···}}

Wrong para. type

"string", correct "int".

Wrong para.

value

{···,"paras.":{"year":
2036,···}}

The value of "year"

should be earlier than

current year.

Figure 2: Error types of tool calls. Example column
presents the examples of different error types. Reason
column presents the reason why the example failed.

vanced tool learning models across three critical 491

aspects that show the capability of tool-use: tool 492

name selection, parameters choosing, and parame- 493

ters’ value filling. Specifically, our model achieves 494

accuracies of 57.8%, 81.3%, and 74.2%, respec- 495

tively, representing at least an average improve- 496

ment of 11.8% compared to the baseline advanced 497

models. 498

All results on these test sets show the effective- 499

ness of our proposed TTPA, which can enhance the 500

LLMs’ capability of tool-use. 501

5.2 Error Type Analysis 502

In tool-use tasks, LLM errors can be classi- 503

fied into three main categories of six types (Fig- 504

ure 2) (Dathathri et al., 2020; Ye et al., 2024). Ana- 505

lyzing these errors provides insights for optimizing 506

LLMs’ tool-use capabilities. The first category is 507

format errors, where LLMs must generate machine- 508

parsable tool calls, requiring strict adherence to cor- 509

rect output formats. The second category involves 510

tool selection errors, as LLMs need to choose the 511

most appropriate tool based on task requirements 512

and a thorough understanding of each tool’s func- 513

tionality. The final category concerns parameter 514

7

errors, which include missing required parameters,515

invalid parameter types, or values that significantly516

deviate from the golden references, particularly for517

parameters involving natural language text.518

These errors reflect LLMs’ capabilities in three519

dimensions: (1) instruction following (structured520

outputs), (2) document comprehension (tool se-521

lection), and (3) text generation (parameter fill-522

ing). This analysis highlights LLMs’ limitations523

and guides targeted improvements in tool-use tasks.524

Dataset Base Model TTPA Model

ToolBench
-I1-inst.(avg.) 46.3% 86.0%
-I1-tool(avg.) 51.5% 83.2%

BFCL
-Multiple(avg.) 83.3% 82.4%
-Simple(avg.) 84.2% 87.5%
-Relevance 77.8% 94.5%

Ours
-Testset(avg.) 43.3% 71.1%

Table 5: Ablation study. We employ Qwen2.5-7B-
Instruct as base model, finetuning with TTPA. avg.
presents the average accuracy across all subsets of the
corresponding category or different evaluation aspects.

5.3 Ablation Study525

To evaluate the effectiveness of our proposed526

Token-level Tool-use Preference Alignment Train-527

ing Framework (TTPA) in enhancing the tool-use528

capabilities of LLMs, we conducted an ablation529

study comparing the tool-use performance of the530

base model across various scenarios before and531

after TTPA remarkably enhances the tool-use ca-532

pabilities of LLMs. Specifically, we observed533

substantial improvements across all three bench-534

mark datasets, with performance gains reaching up535

to 39.7%. These findings suggest that construct-536

ing token-level preference datasets for model fine-537

tuning enables more granular alignment with cor-538

rect tool calls while identifying suboptimal or er-539

roneous tool calls, thereby substantially improving540

tool-use performance.541

5.4 General Performance542

To comprehensively evaluate the impact of TTPA543

on the general capabilities of LLMs, we con-544

duct experiments across multiple benchmarks545

that assess diverse cognitive abilities: MMLU-546

pro (Wang et al., 2024b) fro knowledge mastery,547

HellaSwag (Zellers et al., 2019) for commonsense548

ToolBench

MMLU-pro

HellaSwag GSM8K

CSQA

0.2
0.4

0.6
0.8

GPT-4o-mini
Hammer2.0-7b
xLAM-7B-fc-r
ToolACE-8B
TTPA (Qwen)

Figure 3: The results of evaluation on the general
datasets.

reasoning, GSM8K (Cobbe et al., 2021) for mathe- 549

matical problem-solving, CommonSenseQA (Tal- 550

mor et al., 2019) for conceptual understanding, and 551

ToolBench for tool-usage. The results, presented in 552

Figure 3, demonstrate that the model fine-tuned 553

with TTPA achieved comparable tool-use capa- 554

bilities to the state-of-the-art GPT-4o-mini model 555

while maintaining competitive performance across 556

other general benchmarks. Furthermore, our analy- 557

sis reveals that the model exhibits robust general- 558

ization capabilities across different domains, sug- 559

gesting the effectiveness of the TTPA fine-tuning 560

approach in both enhancing specialized and main- 561

taining general-purpose performance. 562

6 Conclusion 563

In this paper, we present Token-level Tool- 564

use Preference Alignment Training Framework 565

(TTPA), an automated method for constructing 566

high-quality tool-use preference datasets to en- 567

hance the tool-use capability of large language 568

models. The proposed TTPA employs a novel 569

Preference Oriented Tool-use Dataset Construc- 570

tion, which incorporates two key components: 571

(1) Reversed Data Construction for generating di- 572

verse tool-use dataset, and (2) Token-level Prefer- 573

ence Sampling for capturing token-level preference. 574

Additionally, we develop an Error-oriented Scor- 575

ing Mechanism that enables precise alignment of 576

LLMs with fine-grained user preferences during 577

tool-usage. Experiment results demonstrate that 578

the tool learning model fine-tuned with TTPA can 579

achieve state-of-the-art performance, thereby ad- 580

vancing the field of tool usage in large language 581

models (LLMs). 582

8

Limitations583

The main limitation is that conducting fine-grained584

token-level preference sampling may lead to an585

increase in computational complexity, requiring586

higher computational resources and extending the587

overall training time. In future work, we plan to588

integrate efficient inference methods with our ap-589

proach to enhance sampling efficiency. Addition-590

ally, our training data is based on a predefined static591

set of tools, whereas in practical applications, the592

external environment is dynamically changing. The593

model’s adaptability in dynamic environments still594

requires further research and validation. We aim595

to construct a dynamic tool library and extend our596

method to this dynamic setting, further improving597

the model’s tool-use capabilities in dynamic envi-598

ronments.599

Ethical Considerations600

The research conducted in this paper centers on601

investigating the effectiveness of fine-grained align-602

ing LLMs for tool-usage. Our work systematically603

benchmarks LLMs under various real-world sce-604

narios and evaluates their performance.605

In the process of conducting this research, we606

have adhered to ethical standards to ensure the in-607

tegrity and validity of our work. All the tasks as608

well as tools used in our experiment were obtained609

from existing benchmarks and public open re-610

sources, thus ensuring a high level of transparency611

and reproducibility in our experimental procedure.612

To minimize potential bias and promote fair-613

ness, we use the prompts following existing works,614

which are publicly accessible and freely available.615

We have made every effort to ensure that our re-616

search does not harm individuals or groups, nor617

does it involve any form of deception or potential618

misuse of information.619

References620

SIJIA CHEN, Yibo Wang, Yi-Feng Wu, Qingguo Chen,621
Zhao Xu, Weihua Luo, Kaifu Zhang, and Lijun622
Zhang. 2024. Advancing tool-augmented large lan-623
guage models: Integrating insights from errors in624
inference trees. In Advances in Neural Information625
Processing Systems.626

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,627
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias628
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro629
Nakano, Christopher Hesse, and John Schulman.630
2021. Training verifiers to solve math word prob-631
lems. arXiv.632

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane 633
Hung, Eric Frank, Piero Molino, Jason Yosinski, and 634
Rosanne Liu. 2020. Plug and play language models: 635
A simple approach to controlled text generation. In 636
International Conference on Learning Representa- 637
tions: ICLR. 638

Shen Gao, Zhengliang Shi, Minghang Zhu, Bowen Fang, 639
Xin Xin, Pengjie Ren, Zhumin Chen, Jun Ma, and 640
Zhaochun Ren. 2024. Confucius: Iterative tool learn- 641
ing from introspection feedback by easy-to-difficult 642
curriculum. In Proceedings of the AAAI Conference 643
on Artificial Intelligence: AAAI. 644

Yilun Hao, Yongchao Chen, Yang Zhang, and Chuchu 645
Fan. 2024. Large language models can plan your trav- 646
els rigorously with formal verification tools. arXiv 647
preprint arXiv:2404.11891. 648

Chengrui Huang, Zhengliang Shi, Yuntao Wen, Xiuy- 649
ing Chen, Peng Han, Shen Gao, and Shuo Shang. 650
2024. What affects the stability of tool learning? an 651
empirical study on the robustness of tool learning 652
frameworks. arXiv. 653

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan 654
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan, 655
Neil Zhenqiang Gong, et al. 2023. Metatool bench- 656
mark for large language models: Deciding whether 657
to use tools and which to use. arXiv. 658

Yilun Kong, Jingqing Ruan, YiHong Chen, Bin Zhang, 659
Tianpeng Bao, Shi Shiwei, du Guo Qing, Xiaoru Hu, 660
Hangyu Mao, Ziyue Li, Xingyu Zeng, Rui Zhao, and 661
Xueqian Wang. 2024. TPTU-v2: Boosting task plan- 662
ning and tool usage of large language model-based 663
agents in real-world industry systems. In Proceed- 664
ings of the 2024 Conference on Empirical Methods 665
in Natural Language Processing: Industry Track. 666

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, 667
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang, 668
and Yongbin Li. 2023. API-bank: A comprehensive 669
benchmark for tool-augmented LLMs. In Associa- 670
tion for Computational Linguistics: EMNLP. 671

Qiqiang Lin, Muning Wen, Qiuying Peng, Guanyu Nie, 672
Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu Zhou, 673
Cheng Cheng, Yin Zhao, Jun Wang, and Weinan 674
Zhang. 2024. Hammer: Robust function-calling for 675
on-device language models via function masking. 676
arXiv. 677

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, 678
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan, 679
Zhengying Liu, Yuanqing Yu, Zezhong Wang, Yux- 680
ian Wang, Wu Ning, Yutai Hou, Bin Wang, Chuhan 681
Wu, Xinzhi Wang, Yong Liu, Yasheng Wang, Duyu 682
Tang, Dandan Tu, Lifeng Shang, Xin Jiang, Ruim- 683
ing Tang, Defu Lian, Qun Liu, and Enhong Chen. 684
2024a. Toolace: Winning the points of llm function 685
calling. In International Conference on Learning 686
Representations: ICLR. 687

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu 688
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen 689

9

Men, Kejuan Yang, et al. 2023. Agentbench: Evaluat-690
ing llms as agents. arXiv preprint arXiv:2308.03688.691

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian692
Lan, Shirley kokane, Juntao Tan, Weiran Yao, Zhi-693
wei Liu, Yihao Feng, Rithesh R N, Liangwei Yang,694
Silvio Savarese, Juan Carlos Niebles, Huan Wang,695
Shelby Heinecke, and Caiming Xiong. 2024b. Api-696
gen: Automated pipeline for generating verifiable697
and diverse function-calling datasets. In Advances in698
Neural Information Processing Systems.699

Vaskar Nath, Pranav Raja, Claire Yoon, and Sean700
Hendryx. 2025. Toolcomp: A multi-tool reasoning701
& process supervision benchmark. arXiv.702

OpenAI OpenAI. 2023. Gpt-4 technical report.703

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E704
Gonzalez. 2023. Gorilla: Large language model705
connected with massive apis. arXiv.706

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E707
Gonzalez. 2024. Gorilla: Large language model708
connected with massive apis. In Advances in Neural709
Information Processing Systems.710

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,711
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,712
Chaojun Xiao, Chi Han, et al. 2023a. Tool713
learning with foundation models. arXiv preprint714
arXiv:2304.08354.715

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,716
Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe Zhou,717
Yufei Huang, Chaojun Xiao, Chi Han, Yi Ren Fung,718
Yusheng Su, Huadong Wang, Cheng Qian, Runchu719
Tian, Kunlun Zhu, Shihao Liang, Xingyu Shen,720
Bokai Xu, Zhen Zhang, Yining Ye, Bowen Li, Ziwei721
Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan,722
Xin Cong, Yaxi Lu, Weilin Zhao, Yuxiang Huang,723
Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang,724
Cheng Yang, Tongshuang Wu, Heng Ji, Guoliang Li,725
Zhiyuan Liu, and Maosong Sun. 2024. Tool learning726
with foundation models. In ACM Comput. Surv.727

Yujia Qin, Shi Liang, Yining Ye, Kunlun Zhu, Lan728
Yan, Ya-Ting Lu, Yankai Lin, Xin Cong, Xiangru729
Tang, Bill Qian, Sihan Zhao, Runchu Tian, Ruobing730
Xie, Jie Zhou, Marc H. Gerstein, Dahai Li, Zhiyuan731
Liu, and Maosong Sun. 2023b. ToolLLM: Facilitat-732
ing Large Language Models to Master 16000+ Real-733
world APIs. International Conference on Learning734
Representations: ICLR.735

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,736
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,737
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,738
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,739
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,740
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,741
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji742
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang743
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang744
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru745
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical746
report. arXiv.747

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo- 748
pher D Manning, Stefano Ermon, and Chelsea Finn. 749
2023. Direct preference optimization: Your language 750
model is secretly a reward model. Advances in Neu- 751
ral Information Processing Systems. 752

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta 753
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola 754
Cancedda, and Thomas Scialom. 2023. Toolformer: 755
Language Models Can Teach Themselves to Use 756
Tools. Neural Information Processing Systems: 757
NeurIPS. 758

John Schulman, Filip Wolski, Prafulla Dhariwal, 759
Alec Radford, and Oleg Klimov. 2017. Proxi- 760
mal policy optimization algorithms. arXiv preprint 761
arXiv:1707.06347. 762

Chufan Shi, Haoran Yang, Deng Cai, Zhisong Zhang, 763
Yifan Wang, Yujiu Yang, and Wai Lam. 2024a. A 764
thorough examination of decoding methods in the era 765
of llms. arXiv. 766

Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng, 767
Lingyong Yan, Haibo Shi, Dawei Yin, Zhumin Chen, 768
Suzan Verberne, and Zhaochun Ren. 2024b. Chain 769
of tools: Large language model is an automatic multi- 770
tool learner. ArXiv. 771

Zhengliang Shi, Shen Gao, Zhen Zhang, Xiuying Chen, 772
Zhumin Chen, Pengjie Ren, and Zhaochun Ren. 2023. 773
Towards a unified framework for reference retrieval 774
and related work generation. In Association for Com- 775
putational Linguistics: EMNLP. 776

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and 777
Jonathan Berant. 2019. CommonsenseQA: A ques- 778
tion answering challenge targeting commonsense 779
knowledge. In Proceedings of the 2019 Conference 780
of the North American Chapter of the Association 781
for Computational Linguistics: Human Language 782
Technologies, Volume 1 (Long and Short Papers). 783

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, 784
Qiao Liang, and Le Sun. 2023. Toolalpaca: Gener- 785
alized tool learning for language models with 3000 786
simulated cases. arXiv preprint arXiv:2306.05301. 787

Shubo Tian, Qiao Jin, Lana Yeganova, Po-Ting Lai, 788
Qingqing Zhu, Xiuying Chen, Yifan Yang, Qingyu 789
Chen, Won Kim, Donald C Comeau, et al. 2024. Op- 790
portunities and challenges for chatgpt and large lan- 791
guage models in biomedicine and health. In Briefings 792
in Bioinformatics. 793

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 794
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 795
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 796
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 797
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 798
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 799
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 800
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 801
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 802
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 803

10

Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-804
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-805
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-806
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-807
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,808
Ruan Silva, Eric Michael Smith, Ranjan Subrama-809
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-810
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,811
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,812
Melanie Kambadur, Sharan Narang, Aurelien Ro-813
driguez, Robert Stojnic, Sergey Edunov, and Thomas814
Scialom. 2023. Llama 2: Open foundation and fine-815
tuned chat models. arXiv.816

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang,817
Yunzhu Li, Hao Peng, and Heng Ji. 2024a. Exe-818
cutable code actions elicit better llm agents. arXiv819
preprint arXiv:2402.01030.820

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen,821
Lifan Yuan, Hao Peng, and Heng Ji. 2023. Mint:822
Evaluating llms in multi-turn interaction with tools823
and language feedback. International Conference on824
Learning Representations: ICLR.825

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni,826
Abhranil Chandra, Shiguang Guo, Weiming Ren,827
Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max828
Ku, Kai Wang, Alex Zhuang, Rongqi Fan, Xiang Yue,829
and Wenhu Chen. 2024b. Mmlu-pro: A more robust830
and challenging multi-task language understanding831
benchmark. arXiv.832

Qinzhuo Wu, Wei Liu, Jian Luan, and Bin Wang. 2024.833
ToolPlanner: A tool augmented LLM for multi gran-834
ularity instructions with path planning and feedback.835
In Proceedings of the 2024 Conference on Empirical836
Methods in Natural Language Processing.837

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu,838
Renze Lou, Yuandong Tian, Yanghua Xiao, and839
Yu Su. 2024. Travelplanner: A benchmark for real-840
world planning with language agents. arXiv preprint841
arXiv:2402.01622.842

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak843
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.844
React: Synergizing reasoning and acting in language845
models. In International Conference on Learning846
Representations: ICLR.847

Junjie Ye, Yilong Wu, Sixian Li, Yuming Yang, Tao Gui,848
Qi Zhang, Xuanjing Huang, Peng Wang, Zhongchao849
Shi, Jianping Fan, and Zhengyin Du. 2024. Tl-850
training: A task-feature-based framework for training851
large language models in tool use. arXiv.852

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali853
Farhadi, and Yejin Choi. 2019. HellaSwag: Can854
a machine really finish your sentence? In Proceed-855
ings of the 57th Annual Meeting of the Association856
for Computational Linguistics.857

Wei Zhang, Yi Zhang, Li Zhu, Qianghuai Jia, Feijun858
Jiang, Hongcheng Guo, Zhoujun Li, and Mengping859
Zhou. 2024. Adc: Enhancing function calling via860
adversarial datasets and code line-level feedback.861

Dongsheng Zhu, Weixian Shi, Zhengliang Shi, 862
Zhaochun Ren, Shuaiqiang Wang, Lingyong Yan, 863
and Dawei Yin. 2025. Divide-then-aggregate: An 864
efficient tool learning method via parallel tool invo- 865
cation. arXiv. 866

11

A Appendix867

A.1 Case Study868

A.1.1 BFCL869

Figure 4 shows one case in the evaluation pro-870

cess of Multiple (live) subset of BFCL datasets,871

which TTPA (Qwen) failed while xLAM-7b-r suc-872

cess due to the limitation of the evaluate system of873

BFCL. As shown in Figure 4, the correct function874

get_tesco_locations has three acceptable param-875

eters, where the parameters radius and limit are876

optional and not specified. But the golden answer877

just contains limited valid answers, such that TTPA878

(Qwen)’s output is evaluated as failure although it879

generates the correct API name and required param-880

eters (including the parameter’s name, type, and881

value).882

A.2 Training Details883

The hyper-parameters of the training process are884

illustrated in Table 6885

A.3 Prompt Templates886

The prompts we designed are listed below:887

A.3.1 Reversed Dataset Construction888

Prompt of Scenario Simulation:889

Given the following tools, simulate a scenario where these
tools are used in a real-world scenario.
You DO NOT need to actually use the tools, just simulate
the scenario based on the information provided by the tools.
Your goal is to simulate a realistic scenario that involves
multiple turns and multiple tools to help another answerer
to answer the implicit question asked by a asker.

When simulating the scenario, consider the following:
1. The scenario should be as realistic as possible and should
involve multiple turns (at least two tools).
2. The scenario should be related to the tools provided.

IMPORTANT: The scenario you simulate CAN NOT
contain any explicit questions.
You SHOULD only state the scenario.
The scenario you simulate CAN NOT contain any tool
name in the tools above.
You SHOULD keep the scenario as realistic as possible.

YOUR OUTPUT CONTAINS:
scenario: str, the scenario you simulated, it should be a few
short words. Also, it should not be a question or instruction.
It is just a statement about the scenario.

additional_information: list[str], any information you want
to provide about the scenario that may help the answerer to
understand the scenario better, at least 4, at most 7. Such as
the time, the location, the people involved, etc.

tools: list[str], the tools’ name you think are related to the
scenario, you should choose the tools from the tools above.
And the number of tools should be at least 7, at most 10.890

There are the tools you can choose:
{tools}

891

Prompt of Answer Generation: 892

You are a data scientist tasked with generating questions to
extract specific information from a given dataset.
Imagine that there is a asker, you should answer the asker’s
questions based on the tool calls.
But there is no explicit question, you need to answer the
implicit question that the asker may have.

There are some Steps you can follow:
Steps:
1. Choose an appropriate tool that you believe can help
generate the questions.
2. call the selected tool to obtain the tool calls.
3. If the tool calls are insufficient to generate the questions,
select another tool and repeat the process.
4. Once you have gathered enough information, call the
Answer_gen tool to generate an answer based on the tool
calls.
5. If there are errors, such as the tool returns invalid
information or the tool call failed, call the Restart tool to
restart.

Rules:
1. You can choose only one tool at a time.
2. The task must involve multiple turns (at least two tools).
3. Simulate a realistic scenario in the Additional Informa-
tion section.

Additional Information:
{add_info}

Note:
1. Adapt it to your role and make the task as complex and
realistic as possible.
2. You should chose the tools related to the scenarios {scene}
and the information provided.

893

Prompt of Query Generation: 894

Imagine that there is a answerer. The answerer answer a
question by calling some tools.

But there is no explicit question, you need to guess the
implicit question that the answerer may answer from the
scenario and answer, tool calls given by the answerer.

Remember that the implicit question should be closely
related to the tool calls and the final answer.

But if the answer does not give a clear answer because the
tool calls failed, you should guess the implicit question as if
the tool calls were successful.
Remember that the question should contains the key
information that solve the task should be used, such as the
date, the location, the people involved, the data to calculate,
etc.

RULES:
1. The question should be designed such that the provided
answer is the solution, and the sequence of tool calls repre-
sents the steps to derive this answer.
2. Ensure the question is intricate and closely related to the
tool calls and the final answer.
3. Write the question from a first-person perspective, mak-
ing it sound natural and human-like.

895

12

4. The question should include the necessary information
about the simulation scenario and parameters in a implicit
way.

896

The prompts using in the data construction to897

simulate the user’s instructions:898

USER_PROMPT_STEP_1:
Please call one tool related to the scenarios: {choos-
ing_scenes}.

USER_PROMPT_STEP_2:
You can call another tool if you think the tool calls are not
enough.
Or you can call the Answer_gen tool to generate the answer
based on the tool calls.

USER_PROMPT_STEP_3:
It’s enough. You are allowed to choose at most one another
tool expect Answer_gen tool, then you must call the
Answer_gen tool to generate an answer based on the tool
calls.

USER_PROMPT_STEP_4:
Please generate an answer based on the tool calls.

899

A.3.2 Token-level Preference Sampling900

The prompt using in the inference process of the901

Token-level Preference Sampling:902

You are a tool-use professor, you can use many tools to do
the following task that the user ask.

At each step, you need to analyze the status now and
what to do next, with a tool call to actually execute your step.

One step just give one tool call, and you will give ONE step
each time I call you.

After the call, you will get the call result, and you are now
in a new state.
Then you will analyze your status now, then decide what to
do next...
After many steps, you finally perform the task, then you can
give your final answer.

Remember:
1. the state change is irreversible, you can’t go back to one
of the former state, if you want to restart the task or you
want to give the final answer call the Finish tool.
2. You can do more then one trys, so if your plan is to
continuously try some conditions, you can do one of the
conditions per try.

Let’s Begin!
903

13

Learning
Rate

Warm-up
Ratio

LR
Scheduler Batch Size Epochs LoRA rank LoRA alpha

10−4 0.1 cosine 32 5 16 32

Table 6: Hyper-parameters in experiments for training.

Query: Can you find me the closest Tesco stores near Letterkenny,Ireland please?

{
"function": [
{
"name": "get_tesco_locations",
"description": "Retrieve a list of the nearest Tesco stores based on the specified location,

typically used for finding convenient shopping options.",
"parameters": {

"type": "dict",
"required": ["location"],
"properties": {
"location": {
"type": "string",
"description": "The city and state of the user's location, in the format of 'City, State’,

such as 'San Francisco, CA' or 'City, Country'. Use short form only for state"
},
"radius": {
"type": "integer",
"description": "The search radius in miles around the specified location

within which to find Tesco stores.",
"default": 10

},
"limit": {
"type": "integer",
"description": "The maximum number of Tesco store locations to return.",
"default": 5

}
}

}
},
{
"name": "get_news_report",
"description": "Retrieves the latest news for a specified location formatted as 'City, State'.",
"parameters": {
"type": "dict",
"required": ["location"],
"properties": {
"location": {
"type": "string",
"description": "The location for which to retrieve the news, in the format of 'City, State’,

such as 'San Francisco, CA' or 'New York, NY'."
}

}
}

}
]

}

Golden Answer: [{"get_tesco_locations": {"location": ["Letterkenny, Ireland"],
"radius": ["", 10], "limit": ["", 5]}}]

Apis:

TTPA (Qwen) Answer: [{"get_tesco_locations": {"location": "Letterkenny, Ireland",
"radius": 5, "limit": 3}}]

Error: ["Invalid value for parameter 'radius': 5. Expected one of ['', 10]."],
"error_type": "value_error:others"

xLAM-7b-r Answer: [{"get_tesco_locations": "{"location": "Letterkenny, Ireland"}"}]

Pass！

Figure 4: The case study of BFCL. TTPA (Qwen) passes the question but is evaluated as false.

14

