
Under review as submission to TMLR

Symbolic Learning Enables Self-Evolving Agents

Anonymous authors
Paper under double-blind review

Abstract

The AI community has been exploring a pathway to artificial general intelligence (AGI) by
developing “language agents”, which are complex large language models (LLMs) workflows
involving both prompting techniques and tool usage methods. While language agents have
demonstrated impressive capabilities for many real-world tasks, a fundamental limitation of
current language agents research is that they are model-centric, or engineering-centric. That’s
to say, the progress on prompts, tools, and workflows of language agents requires substantial
manual engineering efforts from human experts rather than automatically learning from data.
We believe the transition from model-centric, or engineering-centric, to data-centric, i.e., the
ability of language agents to autonomously learn and evolve in environments, is the key for
them to possibly achieve AGI.
In this work, we introduce agent symbolic learning, a systematic framework that enables
language agents to optimize themselves on their own in a data-centric way using symbolic
optimizers. Specifically, we consider agents as symbolic networks where learnable weights are
defined by prompts, tools, and the way they are stacked together. Agent symbolic learning
is designed to optimize the symbolic network within language agents in a data-centric way
by mimicking two fundamental algorithms in connectionist learning: back-propagation and
gradient descent. Instead of dealing with numeric weights, agent symbolic learning works
with text-based weights, loss, and gradients. We conduct proof-of-concept experiments on
both standard benchmarks and complex real-world tasks and show substantial improvements
over static agent frameworks and simple prompt/tool optimization methods. In addition,
agent symbolic learning enables language agents to update themselves after being created
and deployed in the wild, resulting in “self-evolving agents”. We will open-source the agent
symbolic learning framework to facilitate future research on data-centric agent learning.

1 Introduction

Recent advances in large language models (Radford et al., 2018; 2019; Brown et al., 2020; Ouyang et al.,
2022; OpenAI, 2023; Touvron et al., 2023a;b) open the possibility of building language agents that can
autonomously solve complex tasks. The common practice for developing AI agents is to decompose complex
tasks into LLM workflows where prompts and tools are stacked together (Park et al., 2023; Hong et al.,
2023; Zhou et al., 2023b; Chen et al., 2023b; Xie et al., 2023). In a sense, language agents can be viewed as
AI systems that connect connectionism AI (i.e., the LLM backbone of agents) and symbolism AI (i.e., the
workflow of prompts and tools), which partially explains their effectiveness in real-world problem-solving
scenarios.

However, the current state of language agent development is limited by the extensive engineering effort
required to build and customize language agent systems for a specific task. Specifically, researchers and
developers have to manually decompose complex tasks into subtasks, which we refer to as nodes, that are more
tractable for LLMs and then carefully design prompts and tools, including API functions, knowledge bases,
memories, etc., for specific nodes. The complexity of this process makes the current landscape of language
agent research model-centric, or engineering-centric. This means it is almost impossible for researchers to
manually tune or optimize language agents on datasets on which we can train neural nets in a data-centric
way. This limits the robustness and versatility of manually coded language agents and requires substantial

1

Under review as submission to TMLR

Computation
Graph

Neural Netwok
Layer

Learnable
Weights Numeric Optimizer Gradient & Loss

Agent Workflow Node Prompts & Tools Symbolic Optimizer Language
Gradient & LossAgent Symbolic Learning

<Result>...</Result>
<Truth>...</Truth>
<Score>...</Score>

<Instruciton>:
Your task is to
optimize the ...

Neural Nets Connectionist Learning

Figure 1: Analogy between agent symbolic learning and neural nets connectionist learning.

engineering effort to adapt language agents to new tasks or data distributions. We believe the transition from
engineering-centric language agent development to data-centric learning is an important step in language
agent research.

To this end, a number of recent efforts have been made on automatic optimization of language agents.
For example, DSpy (Khattab et al., 2023) introduces a framework for algorithmically optimizing LLM
prompts via bootstrapping or random searching in a combinatory space of different prompt components and
GPTSwarm (Zhuge et al., 2024) further proposes to tackle the combinatorial optimization challenge raised in
DSPy via an iterative optimization process. Agent-pro (Zhang et al., 2024b) proposes a framework to optimize
the components of the prompts corresponding to the agents’ internal policy in competitive environments.
AgentOptimizer (Zhang et al., 2024a) proposes a framework to optimize functions with carefully engineered
prompts. While effective in some scenarios, these approaches only optimize separate modules in an agent
system such as a prompt for a specific node. As a result, these optimization methods are prone to local
optimum of isolated prompts, tools, and nodes that lead to compromised performance for the entire agent
system. This resembles the early practice in training neural nets (Hinton and Salakhutdinov, 2006) where
layers are separately optimized and it now seems trivial that optimizing neural nets as a whole leads to better
performance. We believe that this is also the case in agent optimization and joint optimization of all symbolic
components within an agent is the key for optimizing agents.

In this work, we introduce a agent symbolic learning framework for training language agents. The agent
symbolic learning framework is inspired by the connectionist learning procedure (Hinton, 1990) used for
training neural nets. To be specific, we make an analogy between language agents and neural nets: the agent
workflow of an agent corresponds to the computational graph of a neural net, a node in the agent workflow
corresponds to a layer in the neural net, and the prompts and tools for a node correspond to the weights of a
layer. In this way, we are able to implement the main components of connectionist learning, i.e., backward
propagation and gradient-based weight update, in the context of agent training using language-based loss,
gradients, and weights. We implement the loss function, back-propagation, and weight optimizers in the
context of agent training with carefully designed LLM workflows. Specifically, for a training example, our
framework first conducts the “forward pass” (agent execution) and stores the input, output, prompts, and
tool usage in each node in a “trajectory”. We then use an LLM-based loss function to evaluate the outcome
following recent LLM-as-a-judge framework (Zheng et al., 2023), resulting in a text-based loss. Then we

2

Under review as submission to TMLR

back-propagate the text-based loss from the last to the first node along the trajectory, resulting in natural
language analysis and reflection for the symbolic components within each node including the prompts and
tool descriptions. We refer to these reflections and analyses as “language gradients” since they carry the same
role as conventional gradients in the training of neural nets: guide the direction to which optimizers should
change the weights so that the overall loss is minimized. Finally, we update all symbolic components in each
node, as well as the computational graph consisting of the nodes and their connections, according to the
language gradients using LLMs with carefully designed prompts and workflows. Our approach also naturally
supports optimizing multi-agent systems by considering nodes as different agents or allowing multiple agents
to take actions in one node.

The agent symbolic learning framework is an agent learning framework that mimics the standard connectionist
learning procedure. In contrast to existing methods that either optimize single prompt or tool in a separate
manner, the agent symbolic learning framework jointly optimizes all symbolic components within an agent
system, including prompts, tools, and the workflow that stacks them into an agent system. This top-down
optimization scheme also enables the agent symbolic learning framework to optimize the agent system
“holistically”, avoiding local optimum for each separated component. This makes it possible for language
agents targeting complex real-world problems to effectively learn from data, opening up the possibility to
transform the current state of language agent research from engineering-centric to data-centric.

In sum, by learning from LLM-generated critics (language-based loss) and reflections (language-based
gradients), the agent symbolic learning framework has the following advantages compared to conventional
frameworks for language agents in which the prompts, tools, and workflows are static and require human
expert efforts for optimization: first, agent symbolic learning enables the agent system to learn from failure
or unstable cases and update the prompts by adding few-shot examples or principles; second, it enables the
system to include new nodes (subtasks) and adjust the workflow to improve the overall performance or handle
some common failure patterns; third, our approach enables the agent system to update the tool descriptions
and implementation or implement new tools for improved performance.

Moreover, since the language-based loss function does not require ground-truth when generating the language
loss and the optimization framework only requires calling of LLM APIs instead of tons of GPUs, our framework
enables language agents to learn from experience and actively update all their symbolic components after
being created and deployed in the wild, enabling “self-evolving agents”1. We believe this could be very helpful
in the pursuit of artificial general intelligence.

As a proof-of-concept, we conduct a series of experiments on both standard LLM benchmarks and complex
agentic tasks. Our results demonstrate the effectiveness of the proposed agent symbolic learning framework on
optimizing and designing prompts and tools, as well as updating the overall agent workflow, by data-centric
learning. We will open-source all codes and prompts in the agent symbolic learning framework to facilitate
future research on data-centric agent learning.

2 Related Work

2.1 Language Models, Prompts, and Language Agents

Language model is a family of machine learning model that is trained to evaluate the probability of sequences of
words or tokens. Large language models (LLMs) (Radford et al., 2018; 2019; Brown et al., 2020; Ouyang et al.,
2022; OpenAI, 2023; Touvron et al., 2023a;b) often refer to language models that adopt the autoregressive
probability factorization scheme, parametrized by the Transformer architecture (Vaswani et al., 2017), consists
of a large amount of parameters, and trained on large-scale corpus. With scaling of model size, training
data, and computation, LLMs have demonstrated remarkable capabilities in generating human-like texts and
understanding context.

Prompts, on the other hand, is the key for unleashing the capabilites of LLMs. Prompts are critical components
in controlling the behavior and output of LLMs and serve as the interface between human and LLMs. The

1Agents can also collect training data in the wild and update the LLM backbone via fine-tuning. In this way, all components
in the agent can be updated. We leave this for future work.

3

Under review as submission to TMLR

design of prompts significantly impacts the performance of language models and a number of progress have
been made on prompt engineering, including in-context learning (Brown et al., 2020), chain-of-thought
prompting (Nye et al., 2022; Wei et al., 2022), ReAct (Yao et al., 2022), self-refine (Madaan et al., 2023),
self-consistency (Wang et al., 2023), recurrent prompting (Zhou et al., 2023a), etc.

Language agents further extend the functionality of language models beyond simple prompting by allowing
LLMs to use tools (Schick et al., 2023) and integrating LLMs into broader systems capable of executing
multi-step tasks (Park et al., 2023; Hong et al., 2023; Zhou et al., 2023b; Chen et al., 2023b; Xie et al., 2023).
By stacking prompts and tools into carefully designed workflows, agents are versatile in various applications,
from customer service automation to advanced data analysis.

2.2 From Automated Prompt Engineering to Agent Optimization

With the increasing popularity of prompt engineering in both academic and industry, a number of recent
work investigated methods to automate the prompt engineering process. For example, Pryzant et al. (2020)
and Yang et al. (2024) uses carefully designed prompts to unleash LLMs’ ability to do prompt engineering for
themselves. On the other hand, Prasad et al. (2023) and Guo et al. (2024) employs different search algorithms
such as genetic algorithms for prompt optimization.

Since prompts are critical components of agents, the success of automated prompt engineering opens up the
possibility of automated agent optimization. Similar to the case in automated prompt engineering, methods for
agent optimization can also be categorized into two categories: prompt-based and search-based. For example,
Agent-pro (Zhang et al., 2024b) and AgentOptimizer (Zhang et al., 2024a) leverage carefully designed prompts
to optimize either the prompts or the tools in a node of the agent workflow. These methods work on isolated
components within an agent. Another line of research explored search-based agent optimization algorithms.
Sordoni et al. (2023) uses variational inference to optimize stacked LLMs. DSpy (Khattab et al., 2023) uses
search algorithms to find the best prompts or nodes in a combinatory space. GPTSwarm (Zhuge et al., 2024)
further improved the search algorithm for the combinatory optimization problem. These approaches have a
few major limitations. First, the search algorithm mainly works when the metric can be defined numerically
with equations that can be coded. However, most agentic tasks are real-world complex problems of which
the success can not be defined by some equations, such as software development or creative writing. Second,
these approaches update each component separately and therefore suffer from the local optimum of each node
or component. These approaches also lack the functionality of adding nodes in the workflow or implementing
new tools. Our proposed agent symbolic learning framework, on the other hand, is the first agent learning
method that optimize the agent system “holistically” and is able to optimize prompts, tools, nodes, as well as
the way they are stacked into agents.

Furthermore, a number of recent efforts have been done on synthesizing data to fine-tune the LLM backbone
of an agent (Chen et al., 2023a; Qiao et al., 2024; Song et al., 2024). This line of research is orthogonal to
our work and we believe they can be complementary to each other. ICE (Qian et al., 2024) is also a related
work investigating inter-task transfer learning for language agents, which can be complementary with our
method for building self-evolving agents.

3 Agent Symbolic Learning

3.1 Problem Formulation

We first formulate the agent symbolic learning framework by drawing analogies to the components and
procedures used in neural network training. We define the key components of the framework and explain the
notations used throughout this section.

The agent symbolic learning framework, as illustrated in Figure 2 and described in Algo 1, is inspired by
the connectionist learning procedures used for training neural nets (Hinton, 1990). We first introduce the
notations for key concepts by making analogies to that in the connectionist learning framework:

4

Under review as submission to TMLR

Algorithm 1 Agent Symbolic Learning Framework
Require: I ▷ Input to the agent system
Require: A ▷ Agent workflow with nodes
Require: G ▷ Prompt-based gradient propagation function
Require: L ▷ Prompt-based loss function
Ensure: Updated symbolic components in the agent system

1: τ ← [] ▷ Initialize trajectory
2: Forward Pass
3: for each N ∈ A do
4: In ← Get input for N ▷ Input to the node
5: On ← N (In,Pn, Tn) ▷ Output from the node
6: Append (In,On,Pn, Tn) to τ
7: end for
8: Loss Computation
9: Llang ← L(τ) ▷ Compute language loss

10: Back-propagation
11: for each N ∈ reverse(A) do
12: ∇n

lang ← G(∇n+1
lang , In,On,Pn, Tn,Llang) ▷ ∇n+1

lang = ∅ for the last node
13: Append ∇n

lang to τ
14: end for
15: Weight Update
16: for each N ∈ A do
17: Update Pn, Tn using ∇n

lang ▷ Update prompts and tools
18: end for
19: Update A using {∇n

lang} ▷ Update the agent workflow
20: return (A, P, T) ▷ Updated agent system

• Agent Workflow A: Similar to the computational graph in neural nets that represents the structure
of layers and their connections, agent workflow represents the sequence of nodes (or steps) through
which the agent processes input data. A sequence of nodes {N1,N2, . . . ,Nn} that process the
input data through various stages. Note that in some agent frameworks, the agent workflow is
input-dependent since the nodes are dynamically assigned during execution, which is similar to the
case of dynamic neural nets.

• Node N : An individual step within an agent workflow. The role of a node in an agent is similar to
a layer in a neural network. A node Nn receives Node Input In, which are also in natural language
form. In general, the input for a node consists of the output of the previous node and (optionally)
inputs from the environment (e.g., human input). The node Nn processes the input In with an LLM
using both prompts Pn and tools Tn

2. The output On is in natural language and passed to the
next node.

• Trajectory τ : Similar to the role of computational graph of neural nets, the trajectory stores all
information during the forward pass, including the inputs, outputs, prompts, and tools usage for
each node, and is responsible for gradient back-propagation.

• Language Loss Llang: Language loss in the agent symbolic learning framework is similar to the
loss in neural networks since they both measure the discrepancy between the expected and actual
outcomes. The main difference is that the language loss is in textual form and is produced by a
natural language loss function implemented by a carefully designed prompt while conventional losses
are float numbers computed with loss functions that are numerical equations.

2Tn consists of the input and output for tool usage, and the implementation of the tool itself.

5

Under review as submission to TMLR

Forward PassInitialized

State1 State2 Statet-1 Statet

Trajectory Nodet ⊕ Agentt ⊕ Actiont ⊕ EnvironmenttTask LLM

AgentWorkflow

Prompt

Tools

Node

Frozen

Updated

Back Propagation of Language Gradients

Language
Gradients

Prompt Optimizer

Workflow Optimizer

Tool Optimizer

Optimized

Tr
aj

ec
to

ry

Freeze

1 1 1

2 2 2

Language
Loss

1

2 Next node is selected by transition controller of node

Next agent is selected by routing controller of node

Figure 2: Illustration of the agent symbolic learning framework.

• Language Gradient ∇lang: Similar to the role of gradients in connectionist learning, language
gradients are textual analyses and reflections used for updating each component in the agent with
respect to the language loss.

3.2 Agent Symbolic Learning Procedure

After defining the key components, we can summarize the workflow of the agent symbolic learning framework
in Algorithm 1. In this section, we describe each step in the agent symbolic learning framework in detail.

Forward Pass The forward pass is almost identical to standard agent execution. The main difference is
that we store the input, prompts, tool usage, and the output to the trajectory, which is used for language
gradient back-propagation. This is similar to deep learning frameworks such as PyTorch (Paszke et al., 2019)
and TensorFlow (Abadi et al., 2016) that store the intermediate outputs and activation in the computation
graph of the neural network.

Language Loss Computation After the forward pass, we compute the language loss for a training
example by feeding the trajectory into an LLM using a carefully designed prompt template Ploss:

Llang = LLM(Ploss(τ)) (1)

The key is the design for the prompt template, which is expected to holistically evaluate how the agent
performs with respect to the input, environment, and task requirements. To this end, we carefully design a
prompt template for language loss computation consisting of the following components: task description, input,
trajectory, few-shot demonstrations, principles, and output format control. Among them, task description,
input, and trajectory are data-dependent while the few-shot demonstrations, principles, and output format
control are fixed for all tasks and training examples. The language loss consists of both natural language

6

Under review as submission to TMLR

comments and a numerical score (also generated via prompting). We can optionally feed the ground-truth
label for the input when generating the language loss. We call this scenario supervised agent learning. It can
also generate language loss without ground-truth by evaluating the output and trajectory according to the
task description. In this case, we can say that the agent is doing unsupervised agent learning, which enables
language agents to self-evolving. We present the detailed implementation of this prompt template in the
Appendix.

Back-propagation of Language Gradients In standard connectionist learning, the goal of gradient back-
propagation is to calculate the impact of the weights with respect to the overall loss so that the optimizers can
update the weights accordingly. Similarly, in our framework, we also design a “back-propagation” algorithm
for language gradients. Specifically, we iterate from the last node to the first node and compute the gradient
for each node with LLMs using a carefully designed prompt:

∇n
lang = LLM(Pgradient(∇n+1

lang , In,On,Pn, Tn,Llang)) (2)

The prompt template Pgradient is designed to instruct the LLM to generate language gradients that are analyses
and reflections for the symbolic components within the node. Inspired by the idea of back-propagation, we
give the language gradients of the node executed after the current node, as well as the information on the
execution of the current node, which is stored in the trajectory. That’s to say, when doing analysis and
reflection, the LLM not only needs to consider how the prompts and tools suit the subgoal of the current node
but also has to consider how they affect the accomplishment of the subgoal of the next node. By chaining
from top to bottom, the language gradients for all nodes are relevant and responsible for the overall success of
the agent. This method effectively reduces the risk of optimizing toward the local optimum for each isolated
prompt and tool, leading to the overall performance of agent systems.

Language Gradient-based Update The final step in the framework is to update the prompts and tools in
each node and optimize the overall agent workflow with the help of language gradients. This is accomplished
via “symbolic optimizers”. Symbolic optimizers are carefully designed prompt workflows that can optimize the
symbolic weights of an agent. We create three types of symbolic optimizers: PromptOptimizer, ToolOptimizer,
and WorkflowOptimizer. We present detailed implementation of these prompts in the Appendix.

PromptOptimizer: To facilitate prompt optimization, we split prompts into different components, in-
cluding task description, few-shot examples, principles, and output format control. We then design separate
prompts tailored for the optimization of each prompt component. All prompts share a detailed explanation
and demonstration of how the LLM should focus on the language gradients when reasoning about how to
edit the original prompt components.

ToolOptimizer: The ToolOptimizer is a workflow of prompts that first instructs the LLM to decide the
kind of operation it should use: whether the tools should be improved (by editing the tool description used for
function calling), deleted, or new tools need to implement. Then the ToolOptimizer calls different prompts
specifically designed for tool editing, deletion, and creation.

WorkflowOptimizer: The goal of the WorkflowOptimizer is to optimizer the agent workflow consisting of
nodes and their connections. The prompt is designed to first introduce the agent programming language used
to define the agent workflow (we use the agent programming language introduced in Zhou et al. (2023b)).
Then the prompt describes the definition of a few atomic operations that the LLM can use to update the
workflow, including adding, deleting, and moving the nodes. It then instructs the LLM to first analyze
how the workflow could be improved and then implement the update using the atomic operations. Detailed
descriptions of the agent programming language and the atomic operations used to update the agent workflow
are available in the Appendix.

Since all aforementioned optimizers operate in natural language space and some optimization operations
need to be done in code space, we use a simple strategy that retries any illegal update up to three times and
discards the update if the error persists. We also use a rollback strategy that re-runs the current example after
optimization and rolls back to the original agent if the performance evaluated using the language-based loss

7

Under review as submission to TMLR

function drops. Furthermore, we also include a “learning rate” component for each prompts in the optimizers
which controls how aggressive the LLM should be when optimizing prompts, tools, and agent workflows.

Batched Training The aforementioned optimization scheme works with one training example at a time,
which resembles stochastic gradient descent. Inspired by the fact that mini-batch stochastic gradient descent
works better, or more stably, in practice, we also devise a batched training variant for symbolic optimizers.
Specifically, we conduct forward pass, loss computation, and back-propagation for each example separately.
Then we feed a batch of language gradients for the same node, and prompt the LLM to holistically consider
all these language gradients when updating the agent.

Cost and Efficiency Compared to conventional static agent frameworks, agent symbolic learning does
not involve additional compute or API costs during inference time. As for training time, for each training
example, the agent symbolic learning framework requires roughly 3 to 5 times the API costs (in terms of the
number of input and output tokens) compared to that required for inference time.

4 Experiments

4.1 Settings

4.1.1 Tasks

We conduct experiments on both standard LLM benchmarks and more complex agentic tasks. We describe
the tasks, datasets, and evaluation metrics as follows:

Table 1: Results on standard LLM benchmarks.

Methods HotPotQA MATH HumanEval
GPT-3.5 GPT-4 GPT-3.5 GPT-4 GPT-3.5 GPT-4

GPTs 24 / 38.8 33 / 44.3 23.2 53.1 59.2 71.7
Agents 27 / 37.5 39 / 49.8 23.8 56.0 59.5 85.0
Agents w/ AutoPE 29 / 39.8 38 / 50.3 22.5 57.2 63.5 82.3
DSPy 35 / 43.9 40 / 50.5 17.3 48.4 66.7 77.3
Ours 35 / 44.8 41 / 54.0 38.8 60.7 64.5 85.8

Standard Benchmarks We conduct experiments on standard benchmarks for LLMs including Hot-
potQA (Yang et al., 2018), MATH (Hendrycks et al., 2021), and HumanEval (Chen et al., 2021). HotPotQA
is a multi-hop QA task challenging for rich background knowledge. We use the “hard” split in the dataset
since we find it to be more challenging for language agents. MATH is a collection of challenging competition
mathematics problems. HumanEval is an evaluation set that requires LLMs or agents to synthesize programs
from docstrings. As for evaluation metrics, we use F1 and exact match for HotPotQA, accuracy for MATH,
and Pass@1 for HumanEval. Tools are disabled in these datasets to ensure the comparison of the results is
meaningful with existing literature on these tasks.

Complex Agent Tasks We consider creative writing and software development as two complex
agentic tasks. For the creative writing task, we follow Yao et al. (2023) and give 4 random sentences to
the agents and ask them to write a coherent passage with 4 paragraphs that end in the 4 input sentences
respectively. Such a task is open-ended and exploratory and challenges creative thinking as well as high-level
planning. We use GPT-4 score to evaluate the passages following (Yao et al., 2023). The software development
task, on the other hand, requires the agent system to develop an executable software given a simple product
requirement document (PRD). We evaluate the compared agents according to the executability of the generated
software, which is quantified by numerical scores ranging from 1 to 4, corresponding to increasing levels of

8

Under review as submission to TMLR

execution capability. Specifically, a score of 1 signifies execution failure, 2 denotes successful code execution,
3 represents conformance to the anticipated workflow, and 4 indicates flawless alignment with expectations.

4.1.2 Baselines

We compare our proposed method against the following baselines:

• GPTs: a simple baseline that uses GPT and a carefully designed prompt following the way OpenAI
implements GPTs agents;

• Agents: a language agent method implemented using the Agents (Zhou et al., 2023b) framework3

with carefully designed prompts, tools, and workflows;

• DSpy: an LLM workflow optimization framework that can search the best combination of prompt
components. It is not directly applicable for complex agent tasks where the evaluation metric can
not be defined in equation and code;

• Agents + AutoPE: a variant where the prompt in each node of the agent workflow is optimized
by an LLM following the method described in Yang et al. (2024). Compared with our approach,
this baseline does not involve language gradient back-propagation and language gradient-based
optimization.

We conduct the experiments with both GPT-3.5 and GPT-4. We use the gpt-3.5-turbo-0125 endpoint for
GPT-3.5 and the gpt-4-turbo-0409 endpoint for GPT-4. As for our approach, we start with the Agents
baseline and then conduct agent symbolic learning on top of it. All agent systems included in the experiments
are implemented and optimized with the best efforts from the same group of engineers with good proficiency
on agent development.

4.2 Results

Table 2: Results on software development.

Task GPTs Agents Ours
Flappy bird 2 2 3
Tank battle game 1 2 4
2048 game 1 2 4
Snake game 2 3 4
Brick breaker game 2 3 4
Average score 1.6 2.4 3.8

Table 3: Results on creative writing.

Methods GPT-3.5 GPT-4
GPTs 4.0 6.0
Agents 4.2 6.0
Agents w/ AutoPE 4.4 6.5
ToT 3.8 6.8
Ours 6.9 7.4

Results on LLM Benchmarks The results on standard LLM benchmarks are shown in Table 1. We can
see that the proposed agent symbolic learning framework consistently improves over all compared methods.
The performance improvement on MATH, a competition-level benchmark, is especially large. In contrast, the
conventional LLM-based prompt optimization method (Agents w/ AutoPE) and the search-based prompt
optimization approach (DSPy) are not as stable: they results in good performance improvements in some
cases but lead to significant performance degradation in some other cases. This suggests that the agent
symbolic learning framework is more robust and can optimize the overall performance of language agents
more effectively.

Results on Complex Tasks We present the results on software development and creative writing in
Table 2 & 3, respectively. We can see that our approach significantly outperforms all compared baselines
on both tasks with an even larger performance gap compared to that on conventional LLM benchmarks.
Interestingly, our approach even outperforms tree-of-thought, a carefully designed prompt engineering and

3We have tested with other agent frameworks such as OpenAgents and AgentVerse and got similar results.

9

Under review as submission to TMLR

Node
Write

Agent1: writer
Description: Write a fluent passage
based on the questions given, in which
the closing part of each paragraph
ends with the sentence given

Optimize

Node
Write

Node
Check

Agent1: writer
Description: Write a fluent passage based on the questions given.
Ensure that each paragraph concludes with the specified sentence
to reinforce key ideas and provide a smooth narrative flow.

+Agent2: editor
+Description: Review the passage written by 'writer', correcting
grammatical errors, improving logical flow, and enhancing
readability. The final result should be free of major errors and
optimized for fluency.

Figure 3: A case study conducted on creative writing task.

inference algorithm, on the creative writing task. We find that our approach successfully finds a “plan, write,
and revision“ workflow for professional creative writing, and the prompts are very well optimized in each step.
We also find that the agent symbolic learning framework recovers a similar standard operation procedure
developed in MetaGPT (Hong et al., 2023), an agent framework specifically designed for software development.
This confirms the effectiveness of the proposed agent symbolic learning framework on real-world tasks where
there is no ground truth and the overall performance cannot be calculated by equations or codes, as contrary
to search-based algorithms such as DSPy.

4.3 Case Study & Analysis

We then show a case study for the optimization dynamics of the agent symbolic learning framework in Figure
3. We can see that our approach can effectively do prompt engineering and designing of the agent workflow
in the way a human expert develops language agents. Specifically, agent symbolic learning successfully adds
an “edit” or “revision” node in the workflow of a creative writing agent and substantially improves the design
of the prompts.

Moreover, we find that the initialization of the agent system has non-negligible impacts on the final performance,
just as the initialization of neural nets is important for training. In general, we find that it is generally helpful
to initialize the agent in the simplest way and let the symbolic optimizers to do the optimization. In contrast,
the performance tends to become unstable if the initial agent system is over-engineered. A natural extension
of this observation is that maybe we can do some kind of pre-training on large-scale and diverse tasks as a
versatile initialization for general-purpose agents and then adapt it to specialized tasks with agent symbolic
learning. We also find that the success of our approach is more significant and stable on complex real-world
tasks compared to that on standard benchmarks where the performance is evaluated by traditional metrics
such as accuracy or F1. This suggests that future research on agent learning should focus more on real-world
tasks, and the agent research community should work on building a benchmark focusing on agent learning
evaluation that consists of diverse complex agentic tasks and investigating robust approaches to measure
progress.

5 Conclusion

This paper introduces agent symbolic learning, a framework for agent learning that jointly optimizes all
symbolic components within an agent system. The agent symbolic learning framework draws inspiration from
standard connectionist learning procedure to do symbolic learning. It uses language-based loss, gradients, and
optimizers to optimize prompts, tools, and the agent workflow with respect to the overall performance of the
agent system. The proposed framework is among the first attempts to optimize agents that can solve complex
real-world tasks using sophisticated workflows. Our frameworks enables language agents to “learn from data”

10

Under review as submission to TMLR

and perform “self-evolve” after being created and deployed in the wild. We conduct several proof-of-concept
experiments and show that the agent symbolic learning framework can effectively optimize agents across
different task complexity. We believe this transition from model-centric to data-centric agent research is a
meaningful step towards approaching artificial general intelligence and open-source the codes and prompts
for the agent symbolic learning framework to accelerate this transition.

6 Limitations & Boarder Impact

The scope of experiments in this paper is not super large enough to cover most agentic tasks in the real
world. They are rather proof-of-concept experiments showcasing the effectiveness of the proposed method.
We believe the community on agent research should work on a standard evaluation procedure to facilitate
future research. Another limitation is that the experiments are done with text-only models and tasks, while
experiments with multi-modal agents and tasks would be very interesting.

As for the boarder impact, we would like to point out that enabling language agents to self-evolve in the wild
poses certain safety risks. We believe it is important to reveal these potential risks to the agent research &
development community and we need to discuss methods for effective regulation.

References
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,

Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. {TensorFlow}: a system for {Large-Scale} machine
learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16), pages
265–283, 2016.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc., 2020. URL https:
//proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu Yao. Fireact:
Toward language agent fine-tuning, 2023a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet,
Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin,
Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati,
Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374, 2021. URL
https://arxiv.org/abs/2107.03374.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia Qin,
Yaxi Lu, Ruobing Xie, et al. Agentverse: Facilitating multi-agent collaboration and exploring emergent
behaviors in agents. arXiv preprint arXiv:2308.10848, 2023b.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian, and
Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful prompt
optimizers. In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=ZG3RaNIsO8.

11

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=ZG3RaNIsO8
https://openreview.net/forum?id=ZG3RaNIsO8

Under review as submission to TMLR

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS, 2021.

Geoffrey E Hinton. Connectionist learning procedures. In Machine learning, pages 555–610. Elsevier, 1990.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural networks.
science, 313(5786):504–507, 2006.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang, Zili
Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu, and
Jürgen Schmidhuber. Metagpt: Meta programming for a multi-agent collaborative framework, 2023.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vardhamanan,
Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller, Matei Zaharia, and
Christopher Potts. Dspy: Compiling declarative language model calls into self-improving pipelines. arXiv
preprint arXiv:2310.03714, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha
Dziri, Shrimai Prabhumoye, Yiming Yang, Sean Welleck, Bodhisattwa Prasad Majumder, Shashank Gupta,
Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement with self-feedback, 2023.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Augustus Odena.
Show your work: Scratchpads for intermediate computation with language models, 2022. URL https:
//openreview.net/forum?id=iedYJm92o0a.

OpenAI. GPT-4 technical report, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Gray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training
language models to follow instructions with human feedback. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=TG8KACxEON.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and Michael S.
Bernstein. Generative agents: Interactive simulacra of human behavior, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. GrIPS: Gradient-free, edit-based instruction search
for prompting large language models. In Andreas Vlachos and Isabelle Augenstein, editors, Proceedings
of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages
3845–3864, Dubrovnik, Croatia, May 2023. Association for Computational Linguistics. doi: 10.18653/v1/
2023.eacl-main.277. URL https://aclanthology.org/2023.eacl-main.277.

Reid Pryzant, Richard Diehl Martinez, Nathan Dass, Sadao Kurohashi, Dan Jurafsky, and Diyi Yang.
Automatically neutralizing subjective bias in text. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pages 480–489. AAAI Press, 2020. doi: 10.1609/AAAI.V34I01.
5385. URL https://doi.org/10.1609/aaai.v34i01.5385.

Cheng Qian, Shihao Liang, Yujia Qin, Yining Ye, Xin Cong, Yankai Lin, Yesai Wu, Zhiyuan Liu, and
Maosong Sun. Investigate-consolidate-exploit: A general strategy for inter-task agent self-evolution, 2024.

12

https://openreview.net/forum?id=iedYJm92o0a
https://openreview.net/forum?id=iedYJm92o0a
https://openreview.net/forum?id=TG8KACxEON
https://aclanthology.org/2023.eacl-main.277
https://doi.org/10.1609/aaai.v34i01.5385

Under review as submission to TMLR

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo, Wangchunshu Zhou, Yuchen Eleanor Jiang, Chengfei
Lv, and Huajun Chen. AUTOACT: automatic agent learning from scratch via self-planning. CoRR,
abs/2401.05268, 2024. doi: 10.48550/ARXIV.2401.05268. URL https://doi.org/10.48550/arXiv.2401.
05268.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding
by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves
to use tools. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=Yacmpz84TH.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error: Exploration-based
trajectory optimization for LLM agents. CoRR, abs/2403.02502, 2024. doi: 10.48550/ARXIV.2403.02502.
URL https://doi.org/10.48550/arXiv.2403.02502.

Alessandro Sordoni, Xingdi Yuan, Marc-Alexandre Côté, Matheus Pereira, Adam Trischler, Ziang Xiao, Arian
Hosseini, Friederike Niedtner, and Nicolas Le Roux. Joint prompt optimization of stacked LLMs using
variational inference. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=iImnbUVhok.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. Llama: Open and efficient foundation language models, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh
Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier
Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein,
Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian,
Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan,
Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert
Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
1PL1NIMMrw.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824–24837, 2022.

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing Hua, Junning Zhao,
Qian Liu, Che Liu, Leo Z. Liu, Yiheng Xu, Hongjin Su, Dongchan Shin, Caiming Xiong, and Tao Yu.
Openagents: An open platform for language agents in the wild, 2023.

13

https://doi.org/10.48550/arXiv.2401.05268
https://doi.org/10.48550/arXiv.2401.05268
https://openreview.net/forum?id=Yacmpz84TH
https://doi.org/10.48550/arXiv.2403.02502
https://openreview.net/forum?id=iImnbUVhok
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw

Under review as submission to TMLR

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen. Large
language models as optimizers. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=Bb4VGOWELI.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question answering. In
Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors, Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pages 2369–2380, Brussels, Belgium,
October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1259. URL
https://aclanthology.org/D18-1259.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React:
Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models, 2023.

Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song, Chi Wang, Ranjay Krishna, and Qingyun Wu. Offline
training of language model agents with functions as learnable weights, 2024a.

Wenqi Zhang, Ke Tang, Hai Wu, Mengna Wang, Yongliang Shen, Guiyang Hou, Zeqi Tan, Peng Li, Yueting
Zhuang, and Weiming Lu. Agent-pro: Learning to evolve via policy-level reflection and optimization,
2024b.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Judging
llm-as-a-judge with mt-bench and chatbot arena, 2023.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Peng Cui, Tiannan Wang, Zhenxin Xiao, Yifan Hou, Ryan
Cotterell, and Mrinmaya Sachan. Recurrentgpt: Interactive generation of (arbitrarily) long text, 2023a.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li, Jialong Wu, Tiannan Wang, Shi Qiu, Jintian Zhang,
Jing Chen, Ruipu Wu, Shuai Wang, Shiding Zhu, Jiyu Chen, Wentao Zhang, Ningyu Zhang, Huajun Chen,
Peng Cui, and Mrinmaya Sachan. Agents: An open-source framework for autonomous language agents,
2023b.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jurgen Schmidhuber.
Language agents as optimizable graphs. arXiv preprint arXiv:2402.16823, 2024.

14

https://openreview.net/forum?id=Bb4VGOWELI
https://aclanthology.org/D18-1259

Under review as submission to TMLR

A Implementation Details

We adopt the agent programming language and framework introduced in Agents (Zhou et al., 2023b), a
language agent framework that enables developers to build language agents that stacks prompts and tools
together into complex pipelines. The main advantage of the Agents framework is that it enables developers
to use a config file to define the agent system, which makes it easier for the symbolic optimizers in the agent
symbolic learning framework to perform update operations on the agent system.

B Prompt Templates

15

Under review as submission to TMLR

Prompt Template for Language Loss Function
light-gray Loss with ground truth:
You are a fine-tuner of a large model. I will provide you with some output results from the model
and the expected correct results. You need to evaluate these data and provide a score out of 10,
please wrap the score using <score></score>. Additionally, please provide some suggestions for
modifying the model’s output, using <suggestion></suggestion> to wrap your suggestions.

Here is the model’s output:
<result>result</result>;

The expected result is:
<ground_truth>ground_truth</ground_truth>

Please note:

1. Ensure that the output is wrapped with <score></score> and <suggestion></suggestion>
respectively.
2. The output should be as consistent as possible with the expected result while being correct.
For example, if the expected result is “BUST”, and the model’s output is “The women’s lifestyle
magazine is ’BUST’ magazine.”, even though the answer is correct, you should advise the model to
be more concise.
3. The standard for a score of 10 is that the model’s output is exactly the same as the expected
result in a case-insensitive manner, and without any unnecessary content. Even if the model’s
output is semantically correct, if it includes superfluous content, points should be deducted.
light-gray Loss with ground truth and score:
You are a large language model fine-tuner. I will provide you with a model’s output and the
expected correct result. You need to evaluate it and suggest modifications to the model’s output.
Please use ‘<suggestion></suggestion>‘ to enclose your feedback.

Below is the model’s output:
<result>result</result>

The expected result is:
<ground_truth>ground_truth</ground_truth>

Here is the evaluation score for the model. Your goal is to optimize this score:
<score>score</score>

The relevant information about this score is as follows:
<evaluation_info>score_info</evaluation_info>

Note:
1. Ensure that ‘<suggestion></suggestion>‘ exists and appears once.
2. If the model’s output is satisfactory, you can output <suggestion>The output is satisfactory, no
additional requirements</suggestion>.
3. The output should be as close to the expected result as possible while ensuring correctness.
For example, if the expected result is "BUST" and the model’s output is "The women’s lifestyle
magazine is ’BUST’ magazine.", even though this answer is correct, you should remind the model
to be concise.

Table 4: Prompt Template for Language Loss Function

16

Under review as submission to TMLR

Prompt Template for Gradient Back-propagation
light-gray Prompt-Level
You are now a prompt fine-tuner for a large language model. You are tasked with providing
suggestions for optimizing the prompt template.
Please enclose your suggestions using <suggestion></suggestion>, for example, <suggestion>it
could be made shorter</suggestion>.
The task is divided into multiple steps; I will provide you with the output from the previous step,
the requirement proposed by the next step for the current output, the current output itself, and
the prompt template. You need to suggest improvements for the current step’s prompt template.

- The prompt template that needs optimization is: <prompt_template>prompt_template</prompt_template>
- The output from the previous step is: <previous_output>previous_output</previous_output>
- The current output is: <output>response</output>
- The requirement proposed by the next step for the current output is: <require-
ment>suggestion</requirement>

In addition to suggesting modifications for the current prompt template, you also need to propose re-
quirements for the output of the previous step. Please wrap these using <suggestion></suggestion>,
for example: <suggestion>the analysis should include a comparison of original data</suggestion>.

Note:
1. Ensure that the results are wrapped with <suggestion></suggestion> and <sugges-
tion></suggestion>, and each tag appears only once.
2. If you are the first node, you can state within <suggestion></suggestion> “This is the first
node.”
3. Please note that during your analysis, remember that this prompt template will be applied to
multiple different datasets, so your suggestions should be general and not solely focused on the
examples provided here.
4. Please analyze step by step.
light-gray Node-Level
You are a large model fine-tuner. Now you need to try to optimize the information of a node. For
a complex task, it has been divided into multiple nodes, each of which contains multiple roles that
work together to complete the task of this node. Each role is backed by an LLM Agent, and you
need to optimize the configuration information of one of the nodes.

Here are the relevant explanations for the Node configuration:
- The fields in the "controller" indicate the scheduling method of the model. If there is only one
role, this item does not need to be optimized:
- "route_type" indicates the scheduling method, which has three values: "random" means random
scheduling, "order" means sequential scheduling, and "llm" means scheduling determined by the
LLM model.
- "route_system_prompt" and "route_last_prompt" are used when "route_type" is "llm" and are
respectively the system prompt and last prompt given to the LLM model responsible for scheduling.
- "begin_role" is a string indicating the name of the starting role of this node.
- "roles" is a dictionary where the key is the role name, and the value is the prompt used by this
role.

You need to decide how to optimize the configuration of this node. Specifically, you need to try to
provide suggestions in the following aspects:
1. Update the node description field. This field describes the function of the node and is also an
important indicator to measure the performance of a node.
2. Update the scheduling method of the role. Note that if there is only one role, no optimization is
needed.
3. Add a new role, and you need to clearly describe the function of this role.
4. Delete a role, and you need to clearly describe the reason for deleting this role.
5. Update a role, and you need to indicate how to update the description of this role.

Next, I will give you a Node configuration, and you need to provide optimization suggestions based
on the current Node configuration. Please use <suggestion>[put your suggestion here]</suggestion>
to enclose your suggestions.

Current Node Config
{node_config}

You need to first provide your analysis process, then give your optimized result. Please use
<analyse></analyse> to enclose the analysis process. Please use <suggestion></suggestion> to
enclose the optimization suggestions for the current node. Please use <suggestion></suggestion>
to enclose the requirements for the previous node.
Note: The suggestions provided need to be in one or more of the five aspects mentioned above.

Table 5: Prompt Template for Gradient Back-propagation

17

Under review as submission to TMLR

Prompt Template for Optimizers
light-gray Prompt Optimizer:
You are now a prompt fine-tuner for a large language model. I will provide you with a prompt
template along with its corresponding input and output information.

Please modify the prompt based on the provided data:
- The current prompt template is: prompt_template.

Here is some information about the model when using this template:

Example index
- Output result: <output>response</output>
- Suggestion: <suggestion>suggestion</suggestion>

You need to analyze the content above and input the optimized prompt result. Please wrap your
analysis in <analyse></analyse> and the new prompt in <new_prompt></new_prompt>.

Please note:
1. When actually using the prompt template, the Python format() method is employed to fill
variables into the prompt. Therefore, please ensure that the content enclosed in in both the new
and old prompts remains the same, with no variables added or removed.
2. Ensure that your new prompt template can be directly converted to a dictionary using the
json.loads() method. Therefore, you need to be careful to use double quotes and escape characters
properly.
3. Ensure that <analyse></analyse> and <new_prompt></new_prompt> each appear only
once.
4. If you believe that the current prompt template performs sufficiently well, leave
<new_prompt></new_prompt> empty.
light-gray Node Optimizer:
You are a large model fine-tuner. Now you need to try to optimize the information of a node. For
a complex task, it has been divided into multiple nodes, each containing multiple roles that work
together to complete the task of this node. Each role is backed by an LLM Agent, and you need to
optimize the configuration information of one of the nodes.

Here are the relevant explanations for the Node configuration:
- The fields in the "controller" indicate the scheduling method of the model. If there is only one
role, this item does not need to be optimized:
- "route_type" indicates the scheduling method, which has three values: "random" means random
scheduling, "order" means sequential scheduling, and "llm" means scheduling determined by the
LLM model.
- "route_system_prompt" and "route_last_prompt" are used when "route_type" is "llm" and are
respectively the system prompt and last prompt given to the LLM model responsible for scheduling.
- "begin_role" is a string indicating the name of the starting role of this node.
- "roles" is a dictionary where the key is the role name, and the value is the prompt used by this
role.

Next, I will give you a Node configuration and several modification suggestions. You need to modify
the Node configuration based on the suggestions:

Current Node Config
{node_config}

Suggestions
{suggestions}

When providing the modification plan, you need to give the optimized result in the following format.
It is a list, each element is a dict, and the dict contains an action field indicating the operation on
the Node.

Your optimized result should be enclosed in <result></result>, that is, the content inside <re-
sult></result> should be a JSON-formatted list, which should be able to be directly loaded by
json.loads().

Note:
1. If you think the current configuration is already excellent and does not need modification, you
can directly output an empty list.
2. The format of <result>[optimization method]</result> needs to strictly follow the given format,
otherwise, it will be judged as incorrect.

Table 6: Prompt Template for Optimizers

18

	Introduction
	Related Work
	Language Models, Prompts, and Language Agents
	From Automated Prompt Engineering to Agent Optimization

	Agent Symbolic Learning
	Problem Formulation
	Agent Symbolic Learning Procedure

	Experiments
	Settings
	Tasks
	Baselines

	Results
	Case Study & Analysis

	Conclusion
	Limitations & Boarder Impact
	Implementation Details
	Prompt Templates

