
Large Language Models are Effective Text Rankers with Pairwise
Ranking Prompting

Anonymous ACL submission

Abstract

Ranking documents using Large Language001
Models (LLMs) by directly feeding the query002
and candidate documents into the prompt is003
an interesting and practical problem. How-004
ever, researchers have found it difficult to out-005
perform fine-tuned baseline rankers on bench-006
mark datasets. We analyze pointwise and list-007
wise ranking prompts used by existing meth-008
ods and argue that off-the-shelf LLMs do not009
fully understand these challenging ranking for-010
mulations. In this paper, we propose to sig-011
nificantly reduce the burden on LLMs by us-012
ing a new technique called Pairwise Ranking013
Prompting (PRP). Our results are the first in014
the literature to achieve state-of-the-art rank-015
ing performance on standard benchmarks us-016
ing moderate-sized open-sourced LLMs. On017
TREC-DL 2019&2020, PRP based on the018
Flan-UL2 model with 20B parameters per-019
forms favorably with the previous best ap-020
proach in the literature, which is based on the021
blackbox commercial GPT-4 that has 50x (esti-022
mated) model size, while outperforming other023
LLM-based solutions, such as InstructGPT024
which has 175B parameters, by over 10% for025
all ranking metrics. By using the same prompt026
template on seven BEIR tasks, PRP outper-027
forms supervised baselines and outperforms028
the blackbox commercial ChatGPT solution029
by 4.2% and pointwise LLM-based solutions030
by more than 10% on average NDCG@10.031
Furthermore, we propose several variants of032
PRP to improve efficiency and show that it033
is possible to achieve competitive results even034
with linear complexity.035

1 Introduction036

Large Language Model (LLMs) such as GPT-037

3 (Brown et al., 2020) and PaLM (Chowdhery et al.,038

2022) have demonstrated impressive performance039

on a wide range of natural language tasks, achiev-040

ing comparable or better performance when com-041

pared with their supervised counterparts that are042

potentially trained with millions of labeled exam- 043

ples, even in the zero-shot setting (Kojima et al., 044

2022; Agrawal et al., 2022; Huang et al., 2022; Hou 045

et al., 2023). 046

However, there is limited success for the im- 047

portant text ranking problem using off-the-shelf 048

LLMs (Ma et al., 2023). Existing results usually 049

significantly underperform well-trained baseline 050

rankers (e.g., Nogueira et al. (2020); Zhuang et al. 051

(2023)). The only exception is a recent approach 052

proposed by Sun et al. (2023), which depends on 053

the blackbox commercial GPT-4 system. Besides 054

the technical concerns such as sensitivity to input 055

order (ranking metrics can drop by more than 50% 056

when the input document order changes), we ar- 057

gue that relying on such blackbox systems is not 058

ideal for academic researchers due to significant 059

cost constraints and access limitations to these sys- 060

tems, though we do acknowledge the value of such 061

explorations in showing the capabilities of LLMs 062

for ranking tasks. 063

In this work, we first discuss why it is difficult 064

for LLMs to perform ranking tasks with existing 065

methods, specifically, the pointwise and listwise 066

formulations. For pointwise approaches, ranking 067

requires LLMs to output calibrated prediction prob- 068

abilities before sorting, which is known to be very 069

difficult and is not supported by the generation- 070

only LLM APIs (such as GPT-4). For listwise 071

approaches, even with instructions that look very 072

clear to humans, LLMs can frequently generate 073

conflicting or useless outputs, which happens es- 074

pecially often for moderate-sized LLMs that are 075

used in our experiments. Such observations show 076

that existing popular LLMs do not fully understand 077

ranking tasks, potentially due to the lack of ranking 078

awareness during their pre-training and (instruc- 079

tion) fine-tuning procedures. 080

We propose the Pairwise Ranking Prompting 081

(PRP) paradigm, which uses the query and a pair of 082

documents in the prompt for LLMs to perform rank- 083

1



ing tasks, with the motivation to significantly re-084

duce the task complexity for LLMs and resolve the085

calibration issue. PRP is based on simple prompt086

design and naturally supports both generation and087

scoring LLMs APIs. We describe several variants088

of PRP to address efficiency concerns. PRP results089

are the first in the literature that can achieve state-090

of-the-art ranking performance by using moderate-091

sized, open-sourced LLMs on standard benchmark092

datasets. On TREC-DL2020, PRP based on the093

FLAN-UL2 model with 20B parameters outper-094

forms the previous best approach in the literature,095

based on the blackbox commercial GPT-4 that has096

(an estimated) 50X model size, by over 5% at097

NDCG@1. On TREC-DL2019, PRP is only in-098

ferior to the GPT-4 solution on the NDCG@5 and099

NDCG@10 metrics, but can outperform existing100

solutions, such as InstructGPT which has 175B101

parameters, by over 10% for nearly all ranking met-102

rics. We also show competitive results using FLAN-103

T5 models with 3B and 13B parameters, demon-104

strating the power and generality of PRP. The ob-105

servations are further validated on seven BEIR106

datasets covering various domains, where PRP per-107

forms competitively with supervised rankers and108

outperforms other LLM based approaches by a109

large margin. We further discuss other benefits of110

PRP, such as being insensitive to input ordering.111

We note that "pairwise" paradigm is in itself112

a very general and classic idea that impacted a113

wide range of areas. The novelty of our work lies114

in the important scenario where the technique is115

introduced, the adaptations to make it practical,116

the effectiveness it enables, as well as potential117

changes and insights it inspires. In summary, the118

contributions of this paper are three-fold:119

• We for the first time in published literature120

show pairwise ranking prompting effective-121

ness for ranking with LLMs. It is able to pro-122

duce state-of-the-art ranking performance on123

a wide range of datasets with simple prompt-124

ing and scoring mechanism.125

• Our results are based on moderate-sized, open-126

sourced LLMs, comparing with existing so-127

lutions that use blackbox, commercial, and128

larger models. The finding will facilitate fu-129

ture research in this direction.130

• We study several efficiency improvements and131

show promising empirical performance.132

(a)

Passage: {passage}
Query: {query}
Does the passage
answer the query?

LLM

Yes / No

(b)

The following are
passages related to
query {query}
[1] {passage_1}
[2] {passage_2}
...

Rank these passages
based on their rele-
vance to the query.

LLM

[5]>[1]>[2]>. . .

Figure 1: Two existing prompting methods for ranking:
(a) the pointwise relevance generation approach and (b)
the listwise permutation approach.

2 Difficulties of ranking tasks for LLMs 133

As discussed in Section 1, to date there is limited 134

evidence showing off-the-shelf LLM-based rankers 135

can outperform fine-tuned smaller rankers. We dis- 136

cuss why this is the case by overviewing and ana- 137

lyzing existing methods, which can be categorized 138

into pointwise or listwise approaches. 139

2.1 Pointwise approaches 140

Pointwise approaches are the major methods prior 141

to very recent listwise approaches discussed in Sec- 142

tion 2.2. There are two popular methods, relevance 143

generation (Liang et al., 2022) and query genera- 144

tion (Sachan et al., 2022). Figure 1 (a) shows the 145

prompt used for relevance generation. The rele- 146

vance score si is defined as: 147

si =

{
1 + p(Yes), if output Yes
1− p(No), if output No

(1) 148

where p(Yes) and p(No) denote the probabilities 149

of LLMs generating ‘Yes’ and ‘No’ respectively. 150

Meanwhile query generation approach asks LLMs 151

to generate a query based on the document ("Please 152

write a question based on this passage. Passage: 153

{{passage}} Question:"), and measures the proba- 154

bility of generating the actual query. Readers can 155

refer to Sachan et al. (2022) for more details. 156

There are two major issues with pointwise ap- 157

proaches. First, pointwise relevance prediction re- 158

quires the model to output calibrated pointwise pre- 159

dictions so that they can be used for comparisons 160

in sorting. This is not only very difficult to achieve 161

across prompts (Desai and Durrett, 2020), but also 162

unnecessary for ranking, which only requires rela- 163

tive ordering, a major focus of the learning to rank 164

2



field (Liu, 2009). Also, pointwise methods will not165

work for generation API, which is common, such166

as GPT-4, since it requires the log probability of167

the desired predictions to perform sorting.168

2.2 Listwise approaches169

Very recently, two parallel works (Sun et al., 2023;170

Ma et al., 2023) explore listwise approaches, by171

directly inserting the query and a list of documents172

into a prompt. Both methods feed a partial list173

of 10 or 20 documents every time and perform a174

sliding window approach due to the prompt length175

constraints. Figure 1 (b) shows a simplified version176

of the listwise ranking prompt. Both works ex-177

plored text-davinci-003, i.e., InstructGPT (Ouyang178

et al., 2022) with 175B parameters, showing signif-179

icantly worse performance than fine-tuned baseline180

rankers. Sun et al. (2023) were able to further181

explore gpt-3.5-turbo (the model behind ChatGPT)182

and GPT-4. Only the GPT-4 based approach could183

achieve competitive results, which is based on the184

blackbox, commercial, and giant (1T estimated pa-185

rameters (VanBuskirk, 2023; Baktash and Dawodi,186

2023)) system, without academic publication dis-187

cussing technical details (OpenAI (2023) mainly188

focused on evaluations).189

The issues are again due to the difficulty of the190

listwise ranking task for LLMs. Sun et al. (2023)191

show that there are frequent prediction failures with192

the following patterns:193

• Missing: When LLMs only outputs a partial194

list of the input documents.195

• Rejection: LLMs refuse to perform the rank-196

ing task and produce irrelevant outputs.197

• Repetition: LLMs output the same document198

more than once.199

• Inconsistency: The same list of documents200

have different output rankings when they are201

fed in with different order or context.202

In fact, we tried the same prompt from (Sun et al.,203

2023) on the FLAN-UL2 model with 20B parame-204

ters, and found very few of the outputs to be usable.205

The model will either just output few documents206

(e.g., "[1]"), an ordered list based on id (e.g. "[3] >207

[2] > [1] ..."), or text which is not parseable.208

Different from pointwise approaches, listwise209

approaches can only use the generation API – get-210

ting the log probability of all listwise permutations211

is prohibitively expensive. In other words, there212

is no good solution if the generation API does not213

output desired results, which is common. These214

methods will fall back to the initial ranking, and215

Given a query {query}, which of
the following two passages is more
relevant to the query?

Passage A: {passage_a}

Passage B: {passage_b}

Output Passage A or Passage B:

LLM

Generated text:

"Passage A"

"Passage A": −0.0012

"Passage B": −6.9116

generation modescoring mode

Figure 2: An illustration of pairwise ranking prompting.
The scores in scoring mode represent the log-likelihood
of the model generating the target text given the prompt.
See the exact prompt template in Appendix F

due to the high failure rate, the results are highly 216

sensitive to input ordering. 217

These observations are not entirely surprising. 218

Existing popular LLMs are generally not specifi- 219

cally pre-trained or fine-tuned against ranking tasks. 220

However, we show that LLMs do have a sense of 221

pairwise relative comparisons, which is much sim- 222

pler than requiring a calibrated pointwise relevance 223

estimation or outputting a permutation for a list of 224

documents. 225

3 Pairwise ranking prompting 226

We propose Pairwise Ranking Prompting (PRP) for 227

ranking with LLMs. We describe the basic pairwise 228

prompting unit, how it supports both generation 229

and scoring APIs, and propose several variants of 230

PRP with different ranking strategies and efficiency 231

properties. 232

3.1 Prompting design 233

Our pairwise ranking prompt is simple and intu- 234

itive, as shown in Figure 2. The exact prompt 235

template is shown in Appendix F. This pairwise 236

prompting will serve the basic computation unit in 237

all PRP variants, which we denote as u(q, d1, d2) 238

for a query q and two documents d1 and d2. 239

PRP naturally supports both generation API and 240

scoring API. The latter is made possible since we 241

only have two expected outputs ("Passage A" and 242

"Passage B") for LLM inquiries. Since using scor- 243

ing mode can mitigate potential issues when the 244

generation API generates irrelevant outputs, our 245

main results are based on the scoring mode, though 246

3



we show there are very few prediction failures and247

provide comparisons between these two modes in248

Appendix B.249

Since it is known that LLMs can be sensitive250

to text orders in the prompt (Lu et al., 2022; Liu251

et al., 2023a), for each pair of documents, we will252

inquire the LLM twice by swapping their order:253

u(q, d1, d2) and u(q, d2, d1).254

The output of the pairwise ranking prompting255

is a local ordering of d1 > d2 or d2 > d1 if both256

promptings make consistent decisions, and d1 = d2257

otherwise. Next we discuss three variants of PRP258

using the output of pairwise ranking prompting259

as the computation unit. We note that pairwise260

comparison can serve as the basic computation unit261

of many algorithms (e.g., selection algorithm) and262

leave other alternatives for future work.263

3.2 All pair comparisons264

We enumerate all pairs and perform a global ag-265

gregation to generate a score si for each document266

di. We call this approach PRP-Allpair. Specifically,267

we have:268

si = 1 ·
∑
j 6=i

Idi>dj + 0.5 ·
∑
j 6=i

Idi=dj . (2)269

Intuitively, if the LLM consistently prefers di over270

another document dj , di gets one point. When271

LLM is not sure by producing conflicting or irrel-272

evant results (for the generation API), each docu-273

ment gets half a point. There might be ties for the274

aggregated scores, in which case we fall back to ini-275

tial ranking. In this work, we use equation 2 which276

works for both scoring and generation APIs, and277

note there could be other ways to weight the scoring278

function, such as leveraging prediction probabili-279

ties in scoring mode.280

PRP-Allpair favors simple implementation (all281

LLM API calls can be executed in parallel), and282

is highly insensitive to input ordering. The clear283

drawback is its costly O(N2) calls to LLM APIs,284

where N is the number of documents to be ranked285

for each query.286

3.3 Sorting-based287

We note that efficient sorting algorithms, such as288

Quicksort and Heapsort, depend on pairwise com-289

parisons. We can use the pairwise preferences from290

LLMs as the comparator for sorting algorithms.291

We use Heapsort in this paper due to its guaranteed292

O(N logN) computation complexity. We call this293

approach PRP-Sorting.294

B C · · · D E AInitial ranking:

B C · · · D E A

B C · · · D A E

B C · · · A D E

B A · · · C D E

A B · · · C D EFinal ranking:

Figure 3: An illustration of one pass of our sliding win-
dow approach. Starting from right to left, we compare
each document pair and swap it if the LLM output dis-
agrees with the initial ranking. K such passes will en-
sure a high-performing top-K ranking.

PRP-Sorting favors lower computation complex- 295

ity than PRP-Allpair while also being large insensi- 296

tive to input orders. Even though pairwise compar- 297

isons are not guaranteed to be transitive, we show 298

robust empirical performance in the experiments, 299

and leave applying methods with theoretical guar- 300

antees (Ailon et al., 2008; Bai and Coester, 2023) 301

for future work. 302

3.4 Sliding window 303

We introduce a sliding window approach that is 304

able to further bring down the computation com- 305

plexity. One sliding window pass is similar to one 306

pass in the Bubble Sort algorithm: Given an initial 307

ranking, we start from the bottom of the list, com- 308

pare and swap document pairs with a stride of 1 309

on-the-fly based on LLM outputs. One pass only 310

requires O(N) time complexity. See Figure 3 for 311

an illustration. 312

By noticing that ranking usually only cares about 313

Top-K ranking metrics, we can perform K passes, 314

where K is small, even if thousands of documents 315

are ranked (Zhuang et al., 2023). We call this ap- 316

proach PRP-Sliding-K. 317

PRP-Sliding-K has favorable time complexity 318

but may have high dependency on input order. In 319

experiments we show surprisingly good results 320

with PRP-Sliding-10, without being very sensitive 321

to input ordering empirically (Appendix A). 322

3.5 Remarks 323

In this work, we focus on open-sourced LLMs that 324

are easily accessible to academic researchers, and 325

do not require inquiry of commercial LLM APIs, 326

alleviating some monetary constraints. Also, the 327

4



Table 1: Comparison of pointwise, listwise, and pairwise approaches. N is the number of documents to be ranked
for each query. O(N) for listwise approach is based on sliding window since other options are not practical. See
discussion on "Require Calibration" in Section 2.1.

Method # of LLM API Calls Generation API Scoring API Require Calibration

Pointwise O(N) No Yes Yes
Listwise O(N) Yes No No
Pairwise O(N2), O(N logN), O(N) Yes Yes No

LLMs do not need to be finetuned in the prompting-328

based setting.329

We briefly summarize the properties of point-330

wise, pairwise, and listwise ranking promptings in331

Table 1, showing pairwise ranking prompting has332

several favorable properties.333

4 Experiments on TREC DL datasets334

4.1 Datasets and Metrics335

TREC is a widely used benchmark dataset in infor-336

mation retrieval research. We use the test sets of337

the 2019 and 2020 competitions: TREC-DL2019338

and TREC-DL2020, which provide dense human339

relevance annotations for each of their 43 and 54340

queries. Both use the MS MARCO v1 passage341

corpus, which contains 8.8 million passages. All342

comparisons are based on the reranking of top 100343

passages retrieved by BM25 (Lin et al., 2021) for344

each query. This is the same setting as existing345

work (Sun et al., 2023; Ma et al., 2023).346

4.2 Methods347

We evaluate PRP variants based on open-348

sourced LLMs, including FLAN-T5-XL, FLAN-349

T5-XXL (Chung et al., 2022), and FLAN-UL2 (Tay350

et al., 2022a), which have significantly smaller351

model sizes (3B, 11B, 20B) than alternatives, and352

are easily accessible to academic researchers. We353

report PRP variants including PRP-Allpair, PRP-354

Sorting, and PRP-Sliding-K.355

We consider the following supervised baselines,356

all trained on the in-domain MS MARCO dataset:357

• monoBERT (Nogueira and Cho, 2019): A358

cross-encoder re-ranker based on BERT-large.359

• monoT5 (Nogueira et al., 2020): A sequence-360

to-sequence re-ranker that uses T5 to calculate361

the relevance score with pointwise ranking362

loss.363

• RankT5 (Zhuang et al., 2023): A re-ranker364

that uses T5 and listwise ranking loss.365

We also consider the following unsupervised366

LLM-based baselines:367

• Unsupervied Passage Re-ranker 368

(UPR) (Sachan et al., 2022): The pointwise 369

approach based on query generation, see 370

Section 2.1. 371

• Relevance Generation (RG) (Liang et al., 372

2022): The pointwise approach based on rele- 373

vance generation, see Section 2.1. 374

• RankGPT (Sun et al., 2023): The listwise 375

prompting based approach using various GPT 376

based LLMs. As discussed in Section 2.2, we 377

tried the listwise prompt on FLAN-T5 and 378

FLAN-UL2 models and the outputs are not 379

usable, so we only report results with large 380

blackbox LLMs. 381

• Listwise Reranker with a Large language 382

model (LRL) (Ma et al., 2023): A similar 383

approach to RankGPT with slightly different 384

prompt design. 385

4.3 Main Results 386

Our main results are shown in Table 2. Overall we 387

are able to achieve very encouraging results using 388

PRP. We have the following observations: 389

• PRP variants based on FLAN-UL2 with 20B 390

parameters can achieve best results on all 391

metrics on TREC-DL2020, and are only sec- 392

ond to the blackbox, commercial gpt-4 based 393

solution on NDCG@5 and NDCG@10 on 394

TREC-DL2019, which has an estimated 50X 395

larger model size. Our best methods out- 396

perform RankGPT based on text-davinci-003 397

with 175B parameters by over 10% on all rank- 398

ing metrics, and are competitive to supervised 399

methods on all ranking metrics. 400

• Results on FLAN-T5-XL and FLAN-T5-XXL 401

are also competitive, showing that PRP gen- 402

eralizes to smaller LLMs due to the signifi- 403

cant simplicity of the pairwise ranking com- 404

parisons. They generally work even better 405

than the gpt-3.5.turbo based solution (10X - 406

50X in size) on the more stable NDCG@5 407

and NDCG@10 metrics, and outperforms text- 408

davinci-003 based solution on all ranking met- 409

rics. 410

5



Table 2: Results on TREC-DL2019 and TREC-DL2020 datasets by reranking top 100 documents retrieved by
BM25. Best overall model is in boldface, best and second best unsupervised LLM method are underlined and
italicized respectively, for each metric. All unsupervised LLM methods use BM25 to resolve prediction conflicts
or failures. *OpenAI has not publicly released the model parameters and the numbers are based on public esti-
mates (VanBuskirk, 2023; Baktash and Dawodi, 2023)

Method LLM Size TREC-DL2019 TREC-DL2020
NDCG@1 NDCG@5 NDCG@10 NDCG@1 NDCG@5 NDCG@10

BM25 NA NA 54.26 52.78 50.58 57.72 50.67 47.96
Supervised Methods

monoBERT BERT 340M 79.07 73.25 70.50 78.70 70.74 67.28
monoT5 T5 220M 79.84 73.77 71.48 77.47 69.40 66.99
monoT5 T5 3B 79.07 73.74 71.83 80.25 72.32 68.89
RankT5 T5 3B 79.07 75.66 72.95 80.86 73.05 69.63

Unsupervised LLM Methods
LRL text-davinci-003 175B - - 65.80 - - 62.24
RankGPT gpt-3 175B 50.78 50.77 49.76 50.00 48.36 48.73
RankGPT text-davinci-003 175B 69.77 64.73 61.50 69.75 58.76 57.05
RankGPT gpt-3.5-turbo 154B* 82.17 71.15 65.80 79.32 66.76 62.91
RankGPT gpt-4 1T* 82.56 79.16 75.59 78.40 74.11 70.56
UPR FLAN-T5-XXL 11B 62.79 62.07 62.00 64.20 62.05 60.34
RG FLAN-T5-XXL 11B 67.05 65.41 64.48 65.74 66.40 62.58
UPR FLAN-UL2 20B 53.10 57.68 58.95 64.81 61.50 60.02
RG FLAN-UL2 20B 70.93 66.81 64.61 75.62 66.85 65.39
PRP-Allpair FLAN-T5-XL 3B 74.03 71.73 69.75 79.01 72.22 68.12
PRP-Sorting FLAN-T5-XL 3B 77.52 71.88 69.28 74.38 69.44 65.87
PRP-Sliding-10 FLAN-T5-XL 3B 75.58 71.23 68.66 75.62 69.00 66.59
PRP-Allpair FLAN-T5-XXL 11B 72.09 71.28 69.87 82.41 74.16 69.85
PRP-Sorting FLAN-T5-XXL 11B 74.42 69.62 67.81 72.53 71.28 67.77
PRP-Sliding-10 FLAN-T5-XXL 11B 64.73 69.49 67.00 75.00 70.76 67.35
PRP-Allpair FLAN-UL2 20B 73.64 74.77 72.42 85.19 74.73 70.68
PRP-Sorting FLAN-UL2 20B 74.42 73.60 71.88 84.57 72.52 69.43
PRP-Sliding-10 FLAN-UL2 20B 78.29 75.49 72.65 85.80 75.35 70.46

• It is encouraging to see good results from ef-411

ficient PRP variants. For example, the slid-412

ing window variants generally get very robust413

ranking performance and we get some of the414

best metrics from this variant. This obser-415

vation alleviates some efficiency concerns of416

pairwise ranking approaches.417

5 Experiments on BEIR datasets418

5.1 Datasets and metrics419

BEIR (Thakur et al., 2021) consists of diverse re-420

trieval tasks and domains. Following (Sun et al.,421

2023) we choose the test sets of Covid, Touche,422

DBPedia, SciFact, Signal, News, and Robust04.423

Following the convention of related research, we424

report NDCG@10 for each dataset and the average425

NDCG@10.426

5.2 Methods427

We use the same prompt template from TREC428

datasets for all BEIR datasets, which is consistent429

for all compared unsupervised LLM-based base-430

lines. This is in contrast to methods such as (Dai431

et al., 2022) that require prior knowledge to de-432

sign different prompts for different datasets, which 433

may be difficult in practice and will lead to unfair 434

comparisons. 435

For supervised methods, in addition to the base- 436

lines in Section 4.2, we add TART (Asai et al., 437

2023), a supervised instruction-tuned passage re- 438

ranker trained on 37 datasets, including over 5 439

million instances. The model is initialized from 440

FLAN-T5-XL. 441

For unsupervised LLM methods, we also re- 442

port RG and UPR as in Section 4.2. We include 443

RankGPT with gpt-3.5-turbo. We do not include 444

the GPT-4 numbers reported in (Sun et al., 2023), 445

which used GPT-4 to rerank top results from gpt- 446

3.5-turbo due to the significant cost. It essentially 447

performed an ensemble of two re-ranking models, 448

which is unfair and impractical. We also do not in- 449

clude LRL since it was not evaluated on the BEIR 450

collection. See more discussions of baselines in 451

Appendix E. 452

5.3 Main Results 453

The main results are shown in Table 3. Overall we 454

are able to achieve encouraging results using PRP, 455

validating its robustness across different domains. 456

6



Table 3: Results (NDCG@10) on BEIR datasets. All models re-rank the same BM25 top-100 passages. Best over-
all model is in boldface, best and second best unsupervised LLM method are underlined and italicized respectively,
for each metric. All unsupervised LLM methods use BM25 to resolve prediction conflicts or failures.

Method LLM Size Covid Touche DBPedia SciFact Signal News Robust04 Avg
BM25 NA NA 59.47 44.22 31.80 67.89 33.05 39.52 40.70 45.23

Supervised Methods
monoBERT BERT 340M 70.01 31.75 41.87 71.36 31.44 44.62 49.35 48.63
monoT5 T5 220M 78.34 30.82 42.42 73.40 31.67 46.83 51.72 50.74
monoT5 T5 3B 80.71 32.41 44.45 76.57 32.55 48.49 56.71 53.13
RankT5 T5 3B 82.00 37.62 44.19 76.86 31.80 48.15 52.76 53.34
TART-Rerank T5 3B 75.10 27.46 42.53 74.84 25.84 40.01 50.75 48.08

Unsupervised LLM Methods
UPR FLAN-T5-XXL 11B 72.64 21.56 35.14 73.54 30.81 42.99 47.85 46.36
RG FLAN-T5-XXL 11B 70.31 22.10 31.32 63.43 26.89 37.34 51.56 43.28
UPR FLAN-UL2 20B 70.69 23.68 34.64 71.09 30.33 41.78 47.52 45.68
RG FLAN-UL2 20B 70.22 24.67 30.56 64.74 29.68 43.78 53.00 45.24
RankGPT gpt-3.5-turbo 154B 76.67 36.18 44.47 70.43 32.12 48.85 50.62 51.33
PRP-Allpair FLAN-T5-XL 3B 81.86 26.93 44.63 73.25 32.08 46.52 54.02 51.33
PRP-Sorting FLAN-T5-XL 3B 80.41 28.23 42.84 67.94 30.95 42.95 50.07 49.06
PRP-Sliding-10 FLAN-T5-XL 3B 77.58 40.48 44.77 73.43 35.62 46.45 50.74 52.72
PRP-Allpair FLAN-T5-XXL 11B 79.62 29.81 41.41 74.23 32.22 47.68 56.76 51.67
PRP-Sorting FLAN-T5-XXL 11B 78.75 29.61 39.23 70.10 31.28 44.68 53.01 49.52
PRP-Sliding-10 FLAN-T5-XXL 11B 74.39 41.60 42.19 72.46 35.12 47.26 52.38 52.20
PRP-Allpair FLAN-UL2 20B 82.30 29.71 45.94 75.70 32.26 48.04 55.49 52.78
PRP-Sorting FLAN-UL2 20B 82.29 25.80 44.53 67.07 32.04 45.37 51.45 49.79
PRP-Sliding-10 FLAN-UL2 20B 79.45 37.89 46.47 73.33 35.20 49.11 53.43 53.55

We have the following observations:457

• PRP variants based on FLAN-UL2 with 20B458

parameters can achieve best overall results on459

the collection.460

• PRP variants generate the best ranking met-461

rics on all datasets among unsupervised LLM462

methods. PRP outperforms the blackbox463

commercial RankGPT solution by 4.2%, and464

pointwise LLM-based solutions by over 10%465

in general. Noticably, PRP-Sliding-10 with466

FLAN-UL2 outperforms RankGPT on all 7467

datasets, showing its strong generalization.468

• PRP performs favorably with supervised469

methods. PRP-Sliding-10 with FLAN-UL2470

can slightly outperform the state-of-the-art471

RankT5 ranker on average, and outperform472

RankT5 on 5 out of 7 datasets.473

• Results on FLAN-T5-XL and FLAN-T5-XXL474

are again competitive, some variants can out-475

perform RankGPT.476

5.4 Ablation studies477

We perform several ablative studies to gain a deeper478

understanding of the PRP framework. We show the479

robustness of PRP to input ordering in Appendix A,480

the applicability and robustness of PRP for both481

generation and scoring API in Appendix B, and pro-482

vide more study on the sliding window approach in483

Appendix C, including different number of passes 484

and the performance of forward (instead of back- 485

ward) pass. 486

6 Discussion 487

Extendability. The design of PRP in this paper 488

biases towards simplicity and generality. For exam- 489

ple, we decribe the algorithm and report results 490

based on generation API, so PRP is applicable 491

to both commercial black-box LLMs and open- 492

sourced white-box LLMs. The performance may 493

further improve via more sophisticated prompt de- 494

sign, and leveraging extra information such as the 495

score values from the scoring API, which is usually 496

available for white-box LLMs. 497

Reproducibility. We used the same prompt tem- 498

plate for all 9 datasets evaluated in the paper, show- 499

ing the generality and power of pairwise ranking 500

prompting in text ranking. As we focus on open- 501

sourced LLMs, and only use standard aggregation 502

methods (win counting, sorting, and sliding win- 503

dow), our experimental results are easy to repro- 504

duce. Still, we plan to release the code, including 505

the prompt, the rank aggregation functions, and 506

evaluation scripts. Further we plan to release pair- 507

wise inference results on all 9 datasets and the 3 508

open-source LLMs to facilitate future research. In 509

specific, we will release the data in json format, 510

7



which includes query/document information for511

each pair (including ids, text, label, retrieval rank512

and scores), together with the actual prompt, the513

generated text, and its score. The specific prompt514

template and a data sample can be found at Ap-515

pendix F516

Cost and Efficiency. We discussed different effi-517

cient variants of PRP. Also, our results are based on518

LLMs that are easily approachable for academic re-519

searchers (Taori et al., 2023), alleviating the need to520

call commercial APIs. However, further reducing521

the number of calls to LLMs is still an interest-522

ing research direction, such as leveraging active523

learning techniques.524

Data Leakage. We note there is minimal label525

leakage issues as we leverage open-sourced LLMs526

with clear documentations, while it is not clear for527

blackbox commercial LLMs. Please see a more528

comprehensive examination on data leakage in Ap-529

pendix D.530

7 Related Work531

We did a detailed review and analysis of the most532

relevant existing efforts for ranking with LLMs,533

including pointwise and listwise approaches in Sec-534

tion 2. These works and ours focus on the challeng-535

ing unsupervised text ranking setting with LLMs536

without providing any demonstrations, conduct-537

ing any fine-tuning, or training of an additional538

model. Prior to the recent efforts on ranking with539

LLMs, most work focus on the supervised learning540

to rank problem (Liu, 2009; Qin et al., 2021) by541

fine-tuning Pre-trained Language Models (PLMs)542

such as T5 (Nogueira et al., 2020; Zhuang et al.,543

2023) or BERT (Nogueira and Cho, 2019; Zhuang544

et al., 2021), which serve as very strong baselines.545

Very recently some work fine-tunes LLMs or dis-546

tills from black-box LLMs (Pradeep et al., 2023),547

which is different from our setting.548

There has been a strong recent interest in ex-549

ploring information retrieval in general with LLMs550

based approaches (Zhu et al., 2023), due to the im-551

portance of the applications and the power of LLMs552

to understand textual queries and documents (Dai553

et al., 2022; Tay et al., 2022b; Wang et al., 2023;554

Jagerman et al., 2023; Bonifacio et al., 2022). Sev-555

eral works leverage the generation power of LLMs556

to generate training data to train an additional down-557

stream retrieval or ranking model, typically in the558

few-shot setting (Dai et al., 2022), which is a very559

different setting from ours. Recent methods in this 560

family of methods such as Inpars (Bonifacio et al., 561

2022) still significantly underperforms fine-tuned 562

baselines. ExaRanker (Ferraretto et al., 2023) uses 563

LLMs to generate explanations for ranking deci- 564

sions, and uses such explanations in ranking model 565

fine-tuning, showing limited ranking performance 566

benefits (the major benefit was on data efficiency). 567

HyDE (Gao et al., 2022) uses LLMs to augment 568

queries by generating hypothetical documents for 569

unsupervised retrieval. These works do not directly 570

explore the retrieval or ranking capability of LLMs, 571

but mainly use LLMs as auxiliary tools to comple- 572

ment traditional paradigms, possibly limiting the 573

benefits that LLMs can provide. New paradigms 574

such as Differentiable Search Index (DSI) (Tay 575

et al., 2022b; Wang et al., 2022) directly use Trans- 576

former memory to index documents for retrieval. 577

Using pairwise comparisons with LLMs is a gen- 578

eral paradigm, such as reward modeling using pair- 579

wise preferences (Christiano et al., 2017). LLMs 580

are used as evaluators to compare generative out- 581

puts (such as text summary) (Liu et al., 2023b). 582

1SL (MacAvaney and Soldaini, 2023) estimates rel- 583

evance with reference to an anchor positive query- 584

document pair per query, even for the test set, so 585

the setting may not be practical and is very different 586

from our standard text ranking setting. The novelty 587

of our work lies in leveraging the general and sim- 588

ple pairwise prompting paradigm to the important 589

text ranking task, granting LLMs capabilities that 590

no prior work can, by performing competitively 591

with state-of-the-art fine-tuned models and meth- 592

ods that only work with giant blackbox LLMs. 593

8 Conclusion 594

In this paper, we propose to use pairwise prompting 595

with LLMs for text ranking tasks. To the best of 596

our knowledge, these are the first published results 597

demonstrating very competitive ranking perfor- 598

mance using moderate-sized, open-sourced LLMs. 599

The key insights are the observation of the difficul- 600

ties of LLMs handling ranking tasks in the existing 601

pointwise and listwise formulations. Our proposed 602

Pairwise Ranking Prompting (PRP) is effective in 603

reducing the burden of LLMs and shows robust per- 604

formance on 9 datasets. We also discuss efficiency 605

concerns and ways to mitigate them, and several 606

benefits of PRP, such as insensitivity to input or- 607

dering and support for both generation and scoring 608

LLM APIs. 609

8



9 Limitations610

We do not use GPT models (though we compare611

with them using results from other papers) in this612

work due to various constraints and the focus on613

open-sourced LLMs. Testing the performance of614

our methods on such models is meaningful bench-615

marking effort. Also, this work mainly focused on616

empirical ranking results, while more theoretically617

grounded methods exist, such as those for sorting618

from noisy comparisons (Bai and Coester, 2023),619

which may be explored in the future. Last but not620

least, we discuss the potential data leakage issue621

(for all LLM-based methods) in Appendix D.622

References623

Monica Agrawal, Stefan Hegselmann, Hunter Lang,624
Yoon Kim, and David Sontag. 2022. Large language625
models are zero-shot clinical information extractors.626
arXiv preprint arXiv:2205.12689.627

Nir Ailon, Moses Charikar, and Alantha Newman.628
2008. Aggregating inconsistent information: rank-629
ing and clustering. Journal of the ACM (JACM),630
55(5):1–27.631

Akari Asai, Timo Schick, Patrick Lewis, Xilun Chen,632
Gautier Izacard, Sebastian Riedel, Hannaneh Ha-633
jishirzi, and Wen-tau Yih. 2023. Task-aware re-634
trieval with instructions. In Findings of the Asso-635
ciation for Computational Linguistics: ACL 2023,636
pages 3650–3675.637

Xingjian Bai and Christian Coester. 2023. Sorting with638
predictions. arXiv preprint arXiv:2311.00749.639

Jawid Ahmad Baktash and Mursal Dawodi. 2023. GPT-640
4: A review on advancements and opportunities641
in natural language processing. arXiv preprint642
arXiv:2305.03195.643

Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, and644
Rodrigo Nogueira. 2022. InPars: Unsupervised645
dataset generation for information retrieval. In Pro-646
ceedings of the 45th International ACM SIGIR Con-647
ference on Research and Development in Informa-648
tion Retrieval, pages 2387–2392.649

Tom Brown, Benjamin Mann, Nick Ryder, Melanie650
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind651
Neelakantan, Pranav Shyam, Girish Sastry, Amanda652
Askell, et al. 2020. Language models are few-shot653
learners. Advances in neural information processing654
systems, 33:1877–1901.655

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,656
Maarten Bosma, Gaurav Mishra, Adam Roberts,657
Paul Barham, Hyung Won Chung, Charles Sutton,658
Sebastian Gehrmann, et al. 2022. PaLM: Scaling659
language modeling with pathways. arXiv preprint660
arXiv:2204.02311.661

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar- 662
tic, Shane Legg, and Dario Amodei. 2017. Deep re- 663
inforcement learning from human preferences. Ad- 664
vances in neural information processing systems, 30. 665

Hyung Won Chung, Le Hou, Shayne Longpre, Bar- 666
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi 667
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 668
2022. Scaling instruction-finetuned language mod- 669
els. arXiv preprint arXiv:2210.11416. 670

Zhuyun Dai, Vincent Y Zhao, Ji Ma, Yi Luan, Jianmo 671
Ni, Jing Lu, Anton Bakalov, Kelvin Guu, Keith B 672
Hall, and Ming-Wei Chang. 2022. Promptagator: 673
Few-shot dense retrieval from 8 examples. arXiv 674
preprint arXiv:2209.11755. 675

Shrey Desai and Greg Durrett. 2020. Calibration of 676
pre-trained transformers. In Proceedings of the 2020 677
Conference on Empirical Methods in Natural Lan- 678
guage Processing (EMNLP), pages 295–302. 679

Fernando Ferraretto, Thiago Laitz, Roberto Lotufo, 680
and Rodrigo Nogueira. 2023. ExaRanker: Synthetic 681
explanations improve neural rankers. In Proceed- 682
ings of the 46th International ACM SIGIR Confer- 683
ence on Research and Development in Information 684
Retrieval. 685

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie 686
Callan. 2022. Precise zero-shot dense re- 687
trieval without relevance labels. arXiv preprint 688
arXiv:2212.10496. 689

Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, 690
Ruobing Xie, Julian McAuley, and Wayne Xin 691
Zhao. 2023. Large language models are zero-shot 692
rankers for recommender systems. arXiv preprint 693
arXiv:2305.08845. 694

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and 695
Igor Mordatch. 2022. Language models as zero-shot 696
planners: Extracting actionable knowledge for em- 697
bodied agents. In International Conference on Ma- 698
chine Learning, pages 9118–9147. PMLR. 699

Rolf Jagerman, Honglei Zhuang, Zhen Qin, Xuanhui 700
Wang, and Michael Bendersky. 2023. Query expan- 701
sion by prompting large language models. arXiv 702
preprint arXiv:2305.03653. 703

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu- 704
taka Matsuo, and Yusuke Iwasawa. 2022. Large 705
language models are zero-shot reasoners. arXiv 706
preprint arXiv:2205.11916. 707

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris 708
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian 709
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku- 710
mar, et al. 2022. Holistic evaluation of language 711
models. arXiv preprint arXiv:2211.09110. 712

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng- 713
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira. 714
2021. Pyserini: A Python toolkit for reproducible 715
information retrieval research with sparse and dense 716

9



representations. In Proceedings of the 44th Annual717
International ACM SIGIR Conference on Research718
and Development in Information Retrieval (SIGIR719
2021), pages 2356–2362.720

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-721
jape, Michele Bevilacqua, Fabio Petroni, and Percy722
Liang. 2023a. Lost in the middle: How lan-723
guage models use long contexts. arXiv preprint724
arXiv:2307.03172.725

Tie-Yan Liu. 2009. Learning to rank for information726
retrieval. Foundation and Trends R© in Information727
Retrieval, 3(3):225–331.728

Yuxuan Liu, Tianchi Yang, Shaohan Huang, Zihan729
Zhang, Haizhen Huang, Furu Wei, Weiwei Deng,730
Feng Sun, and Qi Zhang. 2023b. Calibrating llm-731
based evaluator. arXiv preprint arXiv:2309.13308.732

Yao Lu, Max Bartolo, Alastair Moore, Sebastian733
Riedel, and Pontus Stenetorp. 2022. Fantastically734
ordered prompts and where to find them: Overcom-735
ing few-shot prompt order sensitivity. In Proceed-736
ings of the 60th Annual Meeting of the Association737
for Computational Linguistics (Volume 1: Long Pa-738
pers), pages 8086–8098.739

Xueguang Ma, Xinyu Zhang, Ronak Pradeep, and740
Jimmy Lin. 2023. Zero-shot listwise document741
reranking with a large language model. arXiv742
preprint arXiv:2305.02156.743

Sean MacAvaney and Luca Soldaini. 2023. One-shot744
labeling for automatic relevance estimation. In Pro-745
ceedings of the 46th International ACM SIGIR Con-746
ference on Research and Development in Informa-747
tion Retrieval.748

Rodrigo Nogueira and Kyunghyun Cho. 2019. Pas-749
sage re-ranking with BERT. arXiv preprint750
arXiv:1901.04085.751

Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and752
Jimmy Lin. 2020. Document ranking with a pre-753
trained sequence-to-sequence model. In Findings754
of the Association for Computational Linguistics:755
EMNLP 2020, pages 708–718.756

OpenAI. 2023. Gpt-4 technical report.757

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,758
Carroll Wainwright, Pamela Mishkin, Chong Zhang,759
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.760
2022. Training language models to follow instruc-761
tions with human feedback. Advances in Neural In-762
formation Processing Systems, 35:27730–27744.763

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy764
Lin. 2023. Rankvicuna: Zero-shot listwise doc-765
ument reranking with open-source large language766
models. arXiv preprint arXiv:2309.15088.767

Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Ku-768
mar Pasumarthi, Xuanhui Wang, Michael Bender-769
sky, and Marc Najork. 2021. Are neural rankers still770

outperformed by gradient boosted decision trees? In 771
International Conference on Learning Representa- 772
tions. 773

Devendra Singh Sachan, Mike Lewis, Mandar Joshi, 774
Armen Aghajanyan, Wen-tau Yih, Joelle Pineau, and 775
Luke Zettlemoyer. 2022. Improving passage re- 776
trieval with zero-shot question generation. arXiv 777
preprint arXiv:2204.07496. 778

Weiwei Sun, Lingyong Yan, Xinyu Ma, Pengjie Ren, 779
Dawei Yin, and Zhaochun Ren. 2023. Is Chat- 780
GPT good at search? investigating large lan- 781
guage models as re-ranking agent. arXiv preprint 782
arXiv:2304.09542. 783

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 784
Dubois, Xuechen Li, Carlos Guestrin, Percy 785
Liang, and Tatsunori B. Hashimoto. 2023. Stan- 786
ford Alpaca: An instruction-following LLaMA 787
model. https://github.com/tatsu-lab/ 788
stanford_alpaca. 789

Yi Tay, Mostafa Dehghani, Vinh Q Tran, Xavier Gar- 790
cia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, 791
Neil Houlsby, and Donald Metzler. 2022a. Unify- 792
ing language learning paradigms. arXiv preprint 793
arXiv:2205.05131. 794

Yi Tay, Vinh Tran, Mostafa Dehghani, Jianmo Ni, Dara 795
Bahri, Harsh Mehta, Zhen Qin, Kai Hui, Zhe Zhao, 796
Jai Gupta, et al. 2022b. Transformer memory as a 797
differentiable search index. Advances in Neural In- 798
formation Processing Systems, 35:21831–21843. 799

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab- 800
hishek Srivastava, and Iryna Gurevych. 2021. BEIR: 801
A heterogeneous benchmark for zero-shot evalua- 802
tion of information retrieval models. In Thirty-fifth 803
Conference on Neural Information Processing Sys- 804
tems Datasets and Benchmarks Track (Round 2). 805

Adam VanBuskirk. 2023. GPT-3.5 806
Turbo vs GPT-4: What’s the differ- 807
ence? https://blog.wordbot.io/ 808
ai-artificial-intelligence/ 809
gpt-3-5-turbo-vs-gpt-4-whats-the-difference.810
Accessed: 2023-06-06. 811

Henning Wachsmuth, Shahbaz Syed, and Benno Stein. 812
2018. Retrieval of the best counterargument with- 813
out prior topic knowledge. In Proceedings of the 814
56th Annual Meeting of the Association for Compu- 815
tational Linguistics (Volume 1: Long Papers), pages 816
241–251. Association for Computational Linguis- 817
tics. 818

Liang Wang, Nan Yang, and Furu Wei. 2023. 819
Query2doc: Query expansion with large language 820
models. arXiv preprint arXiv:2303.07678. 821

Yujing Wang, Yingyan Hou, Haonan Wang, Ziming 822
Miao, Shibin Wu, Qi Chen, Yuqing Xia, Chengmin 823
Chi, Guoshuai Zhao, Zheng Liu, et al. 2022. A 824
neural corpus indexer for document retrieval. Ad- 825
vances in Neural Information Processing Systems, 826
35:25600–25614. 827

10

http://arxiv.org/abs/2303.08774
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://blog.wordbot.io/ai-artificial-intelligence/gpt-3-5-turbo-vs-gpt-4-whats-the-difference
https://blog.wordbot.io/ai-artificial-intelligence/gpt-3-5-turbo-vs-gpt-4-whats-the-difference
https://blog.wordbot.io/ai-artificial-intelligence/gpt-3-5-turbo-vs-gpt-4-whats-the-difference
https://blog.wordbot.io/ai-artificial-intelligence/gpt-3-5-turbo-vs-gpt-4-whats-the-difference
https://blog.wordbot.io/ai-artificial-intelligence/gpt-3-5-turbo-vs-gpt-4-whats-the-difference


Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin828
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-829
drew M Dai, and Quoc V Le. 2021. Finetuned lan-830
guage models are zero-shot learners. arXiv preprint831
arXiv:2109.01652.832

Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan833
Liu, Wenhan Liu, Chenlong Deng, Zhicheng Dou,834
and Ji-Rong Wen. 2023. Large language models835
for information retrieval: A survey. arXiv preprint836
arXiv:2308.07107.837

Honglei Zhuang, Zhen Qin, Shuguang Han, Xuanhui838
Wang, Michael Bendersky, and Marc Najork. 2021.839
Ensemble distillation for BERT-based ranking mod-840
els. In Proceedings of the 2021 ACM SIGIR Inter-841
national Conference on Theory of Information Re-842
trieval, pages 131–136.843

Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai Hui,844
Ji Ma, Jing Lu, Jianmo Ni, Xuanhui Wang, and845
Michael Bendersky. 2023. RankT5: Fine-tuning T5846
for text ranking with ranking losses. In Proceedings847
of the 46th International ACM SIGIR Conference on848
Research and Development in Information Retrieval.849

11



A Robustness to input ordering850

One issue of listwise ranking prompting approaches is their sensitivity to input ordering. This is because851

the ranking will fall back to the initial order when LLM prediction fails, which is very common for the852

difficult listwise formulation. In Table 4 we show results of different methods by inverting the initial order853

from BM25.854

Table 4: Input order sensitivity results on the TREC-DL2019 dataset.

Method LLM Init Order NDCG@1 NDCG@5 NDCG@10

RankGPT gpt-3.5-turbo BM25 82.17 71.15 65.80
RankGPT gpt-3.5-turbo Inverse BM25 36.43 31.79 32.77

PRP-Allpair FLAN-UL2-20B BM25 73.64 74.77 72.42
PRP-Allpair FLAN-UL2-20B Inverse BM25 74.42 74.48 72.40

PRP-Sliding-1 FLAN-UL2-20B BM25 78.29 62.15 57.58
PRP-Sliding-1 FLAN-UL2-20B Inverse BM25 71.32 32.72 26.04

PRP-Sliding-10 FLAN-UL2-20B BM25 78.29 75.49 72.65
PRP-Sliding-10 FLAN-UL2-20B Inverse BM25 71.32 67.91 64.84

As expected, PRP-Allpair is quite robust to initial ordering, and PRP-Sliding-1 will suffer for metrics855

other than NDCG@1. PRP-Sliding-10 is quite robust since it focuses on Top-K ranking metrics.856

B Comparison of scoring mode and generation mode857

Our results above are all based on the scoring mode, since PRP only need to get scores for two candidate858

outputs ("Passage A" and "Passage B") and it is easy to get probabilities from open-sourced LLMs. Here859

we compare against PRP performance using scoring vs generation mode in Table 5, which will shed light860

on how PRP works on generation-only LLM APIs.861

Table 5: Results on TREC-DL2019 and TREC-DL2020 datasets using scoring vs generation mode for PRP.

Method LLM Mode TREC-DL2019 TREC-DL2020
NDCG@1 NDCG@5 NDCG@10 NDCG@1 NDCG@5 NDCG@10

PRP-Allpair FLAN-T5-XL Scoring 74.03 71.73 69.75 79.01 72.22 68.12
PRP-Allpair FLAN-T5-XL Generation 74.03 71.68 69.59 79.01 71.54 67.75
PRP-Allpair FLAN-T5-XXL Scoring 72.09 71.28 69.87 82.41 74.16 69.85
PRP-Allpair FLAN-T5-XXL Generation 72.09 71.61 69.94 80.56 73.69 69.53
PRP-Allpair FLAN-UL2 Scoring 73.64 74.77 72.42 85.19 74.73 70.68
PRP-Allpair FLAN-UL2 Generation 73.64 74.84 72.37 85.19 74.74 70.69

We can see that PRP is extremely robust to scoring vs generation API, even for smaller LLMs, showing862

its applicability to different LLMs systems. The results are intuitive - LLMs make few generation mistakes863

due to the simplicity of PRP. We found that there are only about 0.02% predictions that do not follow the864

desired format, which is neglectable and in stark contrast to the the listwise approaches.865

C More results on PRP-Sliding-K866

We show more results on PRP-Sliding-K variants to better understand the behaviors, including multiple867

backward passes and a forward pass variant1. The results are shown in Table 6 and Table 7 on TREC-868

DL2019 and TREC-DL2020 with consistent behaviors.869

The results are easy to interpret:870

• The behavior is similar to BubbleSort: Strong NDCG@1 can already be achieved with one backward871

pass. As we conduct more passes, other Top-K ranking metrics get better.872

• Forward pass does not work well, which is intuitive, since it mainly performs demotion and is much873

less efficient in bringing good results to the top.874

1Backward pass indicates starting from the bottom result with the lowest BM25 score, and vice versa.

12



Table 6: Sliding window results on the TREC-DL2019 dataset.

Method LLM Strategy NDCG@1 NDCG@5 NDCG@10

PRP-Sliding FLAN-UL2-20B 1 Forward 63.95 57.31 54.10
PRP-Sliding FLAN-UL2-20B 1 Backward 78.29 62.15 57.58
PRP-Sliding FLAN-UL2-20B 2 Backward 78.29 67.01 61.52
PRP-Sliding FLAN-UL2-20B 3 Backward 78.29 70.72 64.60
PRP-Sliding FLAN-UL2-20B 10 Backward 78.29 75.49 72.65

Table 7: Sliding window results on the TREC-DL2020 dataset.

Method LLM Strategy NDCG@1 NDCG@5 NDCG@10

PRP-Sliding FLAN-UL2-20B 1 Forward 65.74 54.72 51.21
PRP-Sliding FLAN-UL2-20B 1 Backward 85.80 61.60 57.06
PRP-Sliding FLAN-UL2-20B 2 Backward 85.80 66.51 61.11
PRP-Sliding FLAN-UL2-20B 3 Backward 85.80 71.06 63.45
PRP-Sliding FLAN-UL2-20B 10 Backward 85.80 75.35 70.46

D More discussion on limitations and future work 875

Domain adaptation. The datasets used in this paper are for the standard and important relevance-based 876

text ranking. How LLMs can be adapted to non-standard ranking datasets, such as counter arguments in 877

the ArguAna dataset (Wachsmuth et al., 2018), need more investigation. Our work can facilitate such 878

explorations by providing approachable baselines. 879

Ranking-aware LLMs. We, as other existing work, focus on unsupervised ranking with off-the-shelf 880

LLMs, and show that pairwise ranking is the ideal prompting unit. How to make LLMs more ranking- 881

aware, in a data efficient manner, while maintaining their generality for other tasks, is a challenging 882

research direction. 883

Data leakage. We mainly use open-sourced FLAN models (Wei et al., 2021) with clear documentations, 884

which neither observed ranking supervision from any of the datasets we evaluated upon, nor was instruction 885

fine-tuned on any ranking tasks. Also, the labels in the datasets are dense human annotations for each 886

query against many documents, which are not used in the open-sourced LLMs and are very different 887

from the potential usage of document corpus during pre-training. These are in contrast to methods based 888

blackbox LLMs such as ChatGPT or GPT-4 (Sun et al., 2023) where the tuning details are unclear. We 889

do note that FLAN models have a question answering task based on MSMARCO, which is not ranking 890

specific, and is different from TREC-DL datasets in terms of queries and annotations, and is different 891

from BEIR collection in all aspects. On the other hand, whether blackbox LLMs directly use TREC-DL 892

datasets or BEIR datasets is unclear. Furthermore, the comparisons between different methods using 893

the same LLM are fair - PRP always outperforms pointwise baselines by a large margin, and listwise 894

prompting almost always fails on moderate LLMs. Avoiding data leakage in the era of LLM is generally 895

challenging and more rigorous protocols may be needed. In this work, we avoided to use phrases such as 896

“zero-shot” to try to avoid over-claims. 897

E More discussion on baseline and dataset selection 898

For the BEIR evaluation, we choose not to include the Promptagator++ ranker (Dai et al., 2022) since 1) 899

It uses different prompts and fine-tuned models for each task, different from all other LLM methods. 2) 900

The method was evaluated on a different set of BEIR tasks. Even for the shared tasks, it reranks top 200 901

results from a stronger retriever than BM25 so the numbers are not comparable. Nevertheless, zero-shot 902

Promptagator++ performed significantly worse than the monoT5 baseline in the paper (to be fair, the 903

paper’s focus was mainly on few-shot scenarios), while PRP compares favorably with monoT5. 904

The only dataset we did not include, but (Sun et al., 2023) included, from the BEIR collection, is the 905

NFCorpus dataset. This is because the metrics using BM25 reported in (Sun et al., 2023) on NFCorpus 906

does not match ours and the public consensus numbers (while the numbers match for all selected datasets), 907

so we exclude NFCorpus to avoid unfair comparisons possibly due to errors during their evaluation. 908

13



F Reproducibility909

F.1 Pairwise Ranking Prompting Template910

We note that we used the same prompt template for all 9 datasets evaluated in the paper, showing the911

generality and power of pairwise ranking prompting in text ranking. Below is the prompt template:912

Given a query {query}, which of the following two passages is more relevant to the query?

Passage A: {document1}

Passage B: {document2}

Output Passage A or Passage B:
913

F.2 Code and Data Release914

As we focus on open-sourced LLMs, and only use standard aggregation methods (win counting, sorting,915

and sliding window), our experimental results are easy to reproduce. We plan to release the code (including916

the prompt and the rank aggregation functions). Further we plan to release pairwise inference results on917

all 9 datasets and the 3 open-source LLMs to facilitate future research. In specific, we will release the918

data in the following json format, which includes query/document information for each pair (including919

ids, text, label, retrieval rank and scores), together with the actual prompt, the generated text, and its score.920

Below is an example on the Trec-DL2020 dataset with Flan-UL2:921

14



"document_pair": [{"document_id": "8512412", "retriever_rank": "50", "retriever_score":
"8.984600", "document": "When in Doubt, Take a Cab. Taxis might be expensive in Puerto Rico,
but they are safe and available. At night, it’s definitely the best way to get around. Look for the
white taxis with the distinctive garita, or sentry box, icon painted on them.They are usually found
at designated taxi stands.hen in Doubt, Take a Cab. Taxis might be expensive in Puerto Rico,
but they are safe and available. At night, it’s definitely the best way to get around. Look for the
white taxis with the distinctive garita, or sentry box, icon painted on them.", "relevance": -1},
{"document_id": "6623205", "retriever_rank": "66", "retriever_score": "8.812100", "document":
"Thankfully, there are a couple of ways to prevent your whites from turning yellow: 1 Never bleach
white clothing that is polyester or a polyester/cotton blend. 2 The chemical reaction between the
bleach and the polyester almost always yields a yellowed result. 3 Consider a water softener if you
have well-water.hankfully, there are a couple of ways to prevent your whites from turning yellow:
1 Never bleach white clothing that is polyester or a polyester/cotton blend. 2 Consider a water
softener if you have well-water. 3 Minimize your use of bleach altogether.", "relevance": 1.0}],

"query_id": "1108651",

"query": "what the best way to get clothes white",

"prompt": "Given a query “what the best way to get clothes white”, which of the following two
passages is more relevant to the query?

Passage A: When in Doubt, Take a Cab. Taxis might be expensive in Puerto Rico, but they are safe
and available. At night, it’s definitely the best way to get around. Look for the white taxis with the
distinctive garita, or sentry box, icon painted on them.They are usually found at designated taxi
stands.hen in Doubt, Take a Cab. Taxis might be expensive in Puerto Rico, but they are safe and
available. At night, it’s definitely the best way to get around. Look for the white taxis with the
distinctive garita, or sentry box, icon painted on them.

Passage B: Thankfully, there are a couple of ways to prevent your whites from turning yellow:
1 Never bleach white clothing that is polyester or a polyester/cotton blend. 2 The chemical
reaction between the bleach and the polyester almost always yields a yellowed result. 3 Consider
a water softener if you have well-water.hankfully, there are a couple of ways to prevent your
whites from turning yellow: 1 Never bleach white clothing that is polyester or a polyester/cotton
blend. 2 Consider a water softener if you have well-water. 3 Minimize your use of bleach altogether.

Output Passage A or Passage B:",

"generated_text": "Passage B",

"prediction_score": -0.0025123630184680223

922

15


	Introduction
	Difficulties of ranking tasks for LLMs
	Pointwise approaches
	Listwise approaches

	Pairwise ranking prompting
	Prompting design
	All pair comparisons
	Sorting-based
	Sliding window
	Remarks

	Experiments on TREC DL datasets
	Datasets and Metrics
	Methods
	Main Results

	Experiments on BEIR datasets
	Datasets and metrics
	Methods
	Main Results
	Ablation studies

	Discussion
	Related Work
	Conclusion
	Limitations
	Robustness to input ordering
	Comparison of scoring mode and generation mode
	More results on PRP-Sliding-K
	More discussion on limitations and future work
	More discussion on baseline and dataset selection
	Reproducibility
	Pairwise Ranking Prompting Template
	Code and Data Release


