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Abstract

Reinforcement-learning agents seek to maximize
a reward signal through environmental interac-
tions. As humans, our job in the learning pro-
cess is to express which behaviors are preferable
through designing reward functions. In this work,
we consider the reward-design problem in tasks
formulated as reaching desirable states and avoid-
ing undesirable states. To start, we propose a
strict partial ordering of the policy space. We pre-
fer policies that reach the good states faster and
with higher probability while avoiding the bad
states longer. Then, we propose an environment-
independent tiered reward structure and show it
is guaranteed to induce policies that are Pareto-
optimal according to our preference relation.

1. Introduction

Reinforcement learning (Sutton & Barto, 1998) is concerned
with the problem of learning to behave to maximize a reward
signal. In biological systems, this reward signal is consid-
ered to be the organism’s motivational system, using pain
and pleasure to modulate behavior. In engineered systems,
however, rewards must be selected by the system designer.
We view rewards as a kind of programming language—a
specification of the agent’s target behavior (Littman et al.,
2017). As arbiters of correctness in the learning process,
humans bear the responsibility of authoring this program.

There are two essential steps in designing reward functions.
First, one must decide what kind of behavior is preferable
and should be conveyed. Then, there’s the choice of reward
function that induces such behavior.

In this paper, we look at a specification language that allows
for the expression of desirable states (goals and subgoals)
and undesirable states (obstacles). Even in this simple set-
ting, providing precise trade-offs is difficult. Is it better for
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an agent to increase the chance of getting to the goal by 5%
if it also incurs 8% higher probability of hitting an obstacle?
Is it better to increase by 50% the probability of getting to
a goal if the expected time of getting there also increases
by 20%? There is no universal preference over behavior
and having to explicitly write down all possible trade-offs
is challenging. Even if the reward designer has a way of
expressing preferences for all possible exchanges, it can be
difficult, impossible even, to design a reward function that
captures them without prior knowledge of the environment.

Our contribution is twofold: First, we define a preference
over the entire policy space via a strict partial ordering
on outcomes. Then, we introduce a class of environment-
independent tiered reward functions that provably induce
Pareto-optimal policies with respect to this preference or-
dering.

1.1. Favorable Policies

In the goal—obstacle class of tasks we consider, preferences
over policies are simplest in the deterministic setting. We
imagine all states are either goal states, obstacle states, or
neither (background states). All goal states and obstacle
states are absorbing. A policy from a fixed known (back-
ground) start state will either first reach a goal in g steps,
first reach an obstacle in o steps, or run forever remaining
in background states without reaching either. We prefer a
policy that reaches a goal in g; steps to one that reaches a
goal in go steps if g1 < g2. (Reaching a goal faster is better.)
We prefer a policy that reaches a goal to one that does not.
We prefer a policy that reaches neither a goal nor obstacle
to one that reaches an obstacle. And we prefer a policy
that reaches an obstacle in 0y steps to one that reaches an
obstacle in oy steps if 01 > 02. (Taking longer to encounter
an obstacle is better.) Two different policies that both reach
a goal or both reach an obstacle and take the same number
of steps to do so are considered equally good. (Steps are
indistinguishable.) Thus, in deterministic domains, these
preferences form a total order.

As pointed out before, preferences are less clear in a stochas-
tic setting because there can be trade-offs between different
outcomes and their probabilities. However, some compar-
isons are arguably clear cut. Informally, if one policy in-
duces uniformly better outcomes than another—being more
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likely to reach a goal and doing so faster, being less likely to
reach an obstacle and getting there more slowly—we prefer
such a policy. If the policies can’t be directly compared, we
propose to be indifferent between them. Thus, we replace
the standard reinforcement-learning notion of optimality
with Pareto-optimality (Mornati, 2013)—seeking a policy
that is either preferred or incomparable to every other pol-
icy. Pareto-optimal policies are commonly adopted in the
subfield of multiobjective RL (Vamplew et al., 2011).

1.2. Reward Design

Policies in general are hard to express through reward func-
tions (Amodei & Clark, 2016), and some are even im-
possible to convey with a Markov (state—action-based) re-
ward (Abel et al., 2021). Even when policies are expressible,
designing bad reward functions can lead to undesirable or
dangerous actions (Amodei & Clark, 2016), easy reward
hacking (Amodei et al., 2016), and more. We seek to design
good reward functions, which can be characterized by many
properties, such as interpretability and learning speed (Dev-
idze et al., 2021). But the most important property a reward
function must have is to guarantee the adoption of a de-
sired policy. As we will show later in Section 5, even some
intuitively correct reward designs can lead to suboptimal
policies. To hedge against this concern, we introduce a
tiered reward structure that is guaranteed to induce Pareto-
optimal policies. Intuitively, we partition the state space
into several tiers, or goodness levels. States in the same
tier are associated with the same reward, while states in
a more desirable tier are associated with a proportionally
higher reward. We prove that these tiered reward structures,
with the proper constraints between reward values, induce
Pareto-optimal behavior.

2. Related Work

There are many papers that deal with specifying behavior
through rewards. Reward machines (Icarte et al., 2018;
2022) are finite state machines that compose reward func-
tions and allow different rewards to be delivered dependent
on the agent’s trajectory. They reveal the structure of the
reward function to the RL agent to support decomposition
of complex tasks. Our focus on how to provide incentives
for specific outcomes is complementary and the two ap-
proaches can be used in concert. Temporal logic based
languages (Littman et al., 2017; Camacho et al., 2017; Li
et al., 2017; Camacho et al., 2019) have been used to specify
behavior. Though these methods can be more expressive,
they often lead to intractable planning and learning prob-
lems due to state-space explosion issues (Wongpiromsarn
et al., 2010). We offer a different expressibility—tractability
tradeoff. Preference-based RL methods (Wirth et al., 2017;
Brown et al., 2019) learn a reward function based on a

dataset of preferences over trajectories. But, as we have
shown, preferences can be very difficult to express. Our re-
ward scheme relieves the need for environment-specific pref-
erence datasets created by human experts. Multi-objective
RL (Vamplew et al., 2011; Toro Icarte et al., 2018) allows
for different tasks to be specified through a set of reward
functions. Our work proceeds in the orthogonal direction
by designing a single reward function to trade off among
multiple behaviors.

3. Background

First, we will establish the problem setting. We view a
reinforcement-learning environment as a Markov Decision
Process (MDP), with state space S, action space A, tran-
sition model T, reward function R, and discount factor ~.
A policy 7 : S x A — [0,1] is a mapping from the cur-
rent state to a probability distribution of the action to be
taken. The optimal policy starting from some initial state
so in the MDP is defined as any reward-maximizing pol-
icy 7 € argmax, E[>_, v'7¢|so, 7]. To make the reward-
design problem as simple as possible for designers, we limit
the reward function R : S — R to be defined solely on
states. In goal—obstacle tasks, the goal states and obstacle
states are absorbing.

We imagine the state space S as exhibiting a tiered struc-
ture, where higher tiers are more desirable than lower tiers,
and states within the same tier are equally desirable. We
formally define a Tier MDP as:

Definition 3.1. k-Tier Markov Decision Process: A Tier
MDP is an MDP with state space .S, action space A, tran-
sition model T : S x A x S — R, reward function
R : S — R, and discount factor . The state space is
partitioned into k tiers, where S = S WU .Sy U ... U .S and
S;NS; =0,Vi#jel,2,.., k. The reward function has
the form R(s) = r;,Vs € S;,1 = 1,2,..., k. In addition,
rE<<re<...<rg.

As an example, the grid world from Russell & Norvig
(2010), as illustrated in Figure 1, could be formulated as a
3-Tier MDP—the goal state is one tier (S3), the lava state
one tier (S7), and all other states reside in the background
tier (S). It is important to note that we put no constraints on
how many states could be in each tier, nor how many tiers
there can be. Therefore, the framework has a high degree
of generality; any finite MDP with reward defined on states
could be formulated as a Tier MDP by placing states with
the same reward in the same tier. However, the Tier MDP
is most useful when there are clear good and bad states in
the state space, such as when there are goal and obstacle
states, or even states of intermediate desirability such as
subgoal states. In the following sections, we will show how
to perform reward design in Tier MDPs.
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Figure 1. Left: Russell/Norvig grid world. Objective is to reach the
goal (green) without first visiting lava (red) (v = 0.9). Right: A
puddle world. Objective is to reach the goal (red) without crossing
any puddles (blue) (v = 0.99). For both environments, the agent
has probability 0.8 of moving to the specified direction at each
step, and probability 0.1 of slipping to either orthogonal side.

4. Policy Ordering

A policy can be thought of as inducing a probability dis-
tribution over an infinite set of outcomes (specifically the
probability of reaching each of the states after ¢ steps, for all
t). In goal-obstacle tasks, policies can be characterized by
statistics such as probability of reaching the goal and prob-
ability of avoiding the obstacle for each possible horizon
length.

For the moment, we will limit the problem space to 3-Tier
MDPs for simplicity, generalizing to k-Tier MDPs in Sec-
tion 6. In a 3-Tier MDP, we will call the 3 tiers obstacles
(S1), background (.S5), and goals (.S3), in order of increasing
desirability. States in S7 and S5 are absorbing. We define
o0 to be the probability of being in obstacle S; at timestep ¢,
and g; that of being in a goal S; at ¢.

Given two policies 7 and 77, we say 74 dominates 78

when both of these inequalities hold (and not both being
strictly equal at all times):

t t
Zog4 SZOQB7 Vt=0,1,2,...,00,

=0 =0

t t
ZngZ gF, vVt=0,1,2,...,00.
i=0 i=0

In words, one policy dominates another if it gets to the goal
faster, while delaying encountering obstacles longer. The
set of policies that are not dominated by any other policy is
the set of Pareto-optimal policies. Because there is a finite
number of policies and domination is transitive, the set of
Pareto-optimal policies is non-empty.

Going back to the example of the Russell/Norvig grid, we
can visualize how the probability of reaching the goal (g;)
and reaching lava (o;) changes over time for different poli-
cies. Consider two simple policies on the Russell/Norvig
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Figure 2. Visualization of the policies of always going left and
always going right in the (stochastic) Russell/Norvig grid. The
policy R is the same as R in Figure 4. To avoid color overlapping,
we separated each policy into disjoint regions visualized by distinct
colors. Each colored region in the figure represent the probability-
region of one or more policies, joined by N. For example, the
policy “always right” covers the areas in brown and orange.

“1+20

grid—(1) going left from all states (“left”) and (2) going
right from all states (“right”). We visualize each policy’s
outcomes as a shaded area upper bounded by » , g; and
lower bounded by —1 + ), o, in Figure 2. This visualiza-
tion can be understood as separating the probability space
into two, with the goal-reaching probability on the top half
of the y-axis in [0, 1] and obstacle-hitting probability in the
bottom half of the y-axis in [—1,0]. With this visualiza-
tion, a Pareto-dominated policy will cover an area that is
entirely enclosed by that of a dominating policy because of
lower goal-reaching probabilities on the top half and higher
obstacle-hitting probabilities on the bottom half. As Fig-
ure 2 shows, “right” and “left” do not cover each other, so
they are incomparable. Specifically, “right” has a slightly
higher probability of reaching the goal (brown), but “left’
has a lower probability of reaching the lava (purple and
teal).

For comparison, we plot another policy, which we call R,
that is state-dependent and moves in the direction of the goal.
For policy R, the probability of reaching the target increases
with time because each step has a 20% slip probability;
agents could slip early on and take longer to reach the goal.
Note that area covered by R (red, brown, orange, and purple)
completely subsumes that of “right” (brown and orange),
demonstrating that “right” is dominated by R. Policy “left”,
on the other hand, is not dominated by R because it has a
lower probability of reaching lava (teal). However, “left” is
not Pareto-optimal, because it is dominated by policy G in
Figure 4 (not shown in this plot).

Pareto-optimal policies are interesting to consider for two
main reasons. First, Pareto-optimal behavior always exists,
even when policies that achieve other reasonable things do
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not. Take the puddle world environment for example. In this
10 x 10 grid world, the objective is to reach the goal state
without crossing any puddles (Figure 1 right). We use this
environment, which is not formulated as a tiered MDP, only
to demonstrate that Pareto-optimal policies exist, and so we
make the goal state absorbing while puddles and background
states are not. Each step has probability p of succeeding,
and probability 1%1’ of slipping to either sides. However,
when p < 0.87, there is no state—based reward function that
can encourage the agent to circle around on dry land to get
to the goal (Littman, 2015). Instead, the agent will either
cower in the left corner (e.g., with —1 each step, —70 for
puddle, and 40 at goal), cross over the first puddle strip
and pass through the dry land on top (e.g., with —1 each
step, —35 for puddle, and +0 at goal), or completely ignore
the existence of puddles and get to the goal as directly as
possible (e.g., with —1 each step, —0 for puddle, and +0 at
goal). Even though there are no rewards to express the target
objective, Pareto-optimal policies that encourage reaching
the goal quickly and obstacles slowly still exist and can be
expressed.

Secondly, Pareto-optimality resolves the preference problem
by defining a strict partial ordering over the entire policy
space. Although the policies on the Pareto frontier are
incomparable among themselves, they are all better than the
set of Pareto-dominated policies. We simply deem the set
of Pareto-optimal policies the desirable behavior, and all
others undesirable. Next, we show how to design rewards
that guarantee reward—optimal policies are selected from
this set.

label
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pareto optimal
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Figure 3. Random policies sampled from the Russell/Norvig grid.
Each point in the scatter plot represents one random policy’s prob-
ability of success (reaching the goal) and failure (reaching the
lava), showing that the majority of policies in the policy space is
Pareto-dominated.

Even though Pareto-optimal policies are desirable, they are
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Figure 4. Visualization of three different policies (R, G, B) on
Russell/Norvig grid. Visualization scheme is the same as described
in Figure 2.

hard to find. As Figure 3 shows, most random policies
in the Russell/Norvig grid are not Pareto-optimal. There-
fore, we need a reliable way of deriving these policies. In
the next section we describe reward functions that induce
such policies, allowing reinforcement learning to solve this
problem.

5. Tiered Reward

In this section, we seek a sufficient condition on the reward
function so that optimizing expected discounted reward will
always result in a Pareto-optimal policy with respect to our
preference relation.

Definition 5.1. Pareto-optimal rewards: A reward function
R(s) is called Pareto-optimal if the policy it induces, 7 €
argmax, E[>", v'r¢|so, 7], is Pareto-optimal.

Even some reasonable-sounding reward functions need not
be Pareto-optimal. Going back to the Russell/Norvig grid
example, an intuitive reward design would be requiring
Tlava < Thack < Tgoal- Consider three example reward
functions in Table 1 that satisfy this constraint:

POliCy Tlava | Thack | Tgoal
R -1 | =01 ] +1
G -1 0 +0.5
B -1 | =09 0

Table 1. Three example reward functions of Russell/Norvig grid
world.

Both R and G are Pareto-optimal, while B is Pareto-
dominated (see Figure 4, where B’s areas are entirely en-
closed by that of R and of G). Roughly, B doesn’t encour-
age getting to the goal and is also not particularly good at
avoiding lava.

In fact, many of the reward functions that satisfy r4,, <
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Thack < Tgoal are not Pareto-optimal. Out of 1000 such
rewards that we sampled randomly, 90.5% were Pareto-
dominated. Next, we present a simple rule that is sufficient
to guarantee environment-independent Pareto-optimal re-
ward functions in 3-Tier MDPs.

Definition 5.2. Tiered Reward: In a 3-Tier Markov Decision
Process with discount factor v € (0, 1), a reward function
defined by

Tobs ifse Sl
R(S) = Q Tpack 1f s € So
Tgoal if s € S3

is considered a Tiered Reward if

Tobs < irback < Tgoal-

1—
and states in S7 and S5 are absorbing.

Theorem 5.3 (Pareto-optimal rewards in 3-Tier MDP). In a
3-Tier Markov Decision Process, a Tiered Reward is Pareto-
optimal.

Proof. Let m* be the optimal policy induced with Tiered
Reward R(s). Suppose, for the sake of contradiction, there
exists some policy 7 that dominates 7*. Then, by our defi-
nition of Pareto dominance,

t t
=) g, VtE=0,1,2,.., 00,
=0 =0

where o; and g; are the probabilities of reaching obstacles
and goals in exactly ¢ steps following 7, and oy and g; are
the same for 7*. We can write the value function (of 7 being
evaluated on R(s)) as

e} t—1 t—1
V= Z gt (’Ytrgoal_FZ ij Tback)"'Ot (’Ytrobs+z ’VJ Tback) .
t=0 7=0 j=0

The value of 7* (V) can be written similarly. Denote

t—1
ftg = FVtTgoal + Z ’Yj Tback and
j=0
t—1
fto = ’ytrobs + Z ’Y] Tback-

j=0
That is, f; is the reward obtained on a trajectory that reaches
a goal in ¢ steps and f! is the reward obtained on a trajectory
that reaches an obstacle in ¢ steps. With 7,45 < ﬁrback <
Tgoal, We show below that f{ is strictly decreasing and f;
strictly increasing with respect to £.

Then,

o0

V-V ZZ(gt—gf)ftg+ (0t — o) fY
—0

t=0 t=

o0 t
O g =) = £0)

oo t

We have shown, through the value function, that 7 is strictly
better than 77* with respect to the reward function R. But 7*
was chosen to optimize R, so that’s a contradiction. Since
no such 7 can exist, that means 7* is not dominated by any
policy, and is therefore Pareto-optimal. O

We leave some details of the proof in Appendix A and pro-
vide some intuition for Tiered Reward here. The middle
term in Definition 5.2, ﬁrl,ack, is equal to the cumula-
tive discounted return for infinitely getting a reward in the
background tier ((1 + v + 72 + ...)"pack)- SO, in a gross
simplification, as long as the reward at the goal is more ap-
pealing than infinitely wandering in background states, and
the obstacle less appealing, the reward induces behavior that
arrives at the goal early and avoids the obstacles. Following
this simple constraint, we as reward designers can easily
create Pareto-optimal reward functions without requiring
knowledge of the transition probabilities in the environment.

6. Generalizing to k Tiers

In Sections 4 and 5, we limited the discussion to 3-Tier
MDPs. But MDPs with more than 3 tiers can usefully model
important problems such as those with well-defined subgoal
states. Specifically, each subgoal region could be its own
tier, instead of being grouped into one big background tier.
Even though these problems could still be solved as a 3-Tier
MDP, more knowledge about the environment could help
design better reward functions and accelerate learning. So,
in this section, we consider the reward-design problem in
Tier MDPs with more than three tiers.

Definition 6.1. Tiered Reward: In a k-Tier(k > 3) Markov
Decision Process with discount factor v € (0, 1) where the
goal tier (k) is absorbing, the reward function R is a Tiered
Reward if R(s) = r;,Vs € S;,i = 1,2,..., k, for reward
values 11,72, ..., 7, € R, that satisfy

7"1<(

1—

1
e < (=) < < (=) <0,
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Figure 5. A Tiered Reward in a grid world with 6 tiers. Start state
is in the bottom left corner, goal state in top right.

Notice that the Tiered Reward in the k tiers case uses a
stricter condition than that of 3 tiers. First, all reward
values are non-positive. We enforce this constraint not
only because of mathematical convenience (used later in
Equation 1), but also because step-wise penalty has been
proved to support faster learning (Koenig & Simmons,
1993). Specifically, with a zero-initialized value function,
step penalties create an incentive for the agent to try state—
action pairs it has never experienced before, resulting in
rapid exploration. Secondly, the reward values of higher
tiers are exponentially greater than the lower ones. For
adjacent tiers ¢ and ¢ + 1, the reward values always sat-
isfy r; < ﬁriﬂ < 0. One such reward is visualized in
Figure 5.

This definition can be understood as a generalization of the
3-Tiered Reward constraint. When the agent resides within
tieri € {2,3, ..., k— 2}, the k tiers could be partitioned into
3 groups to construct a 3-Tier MDP. In particular, S7 will
include tiers 1 through ¢ — 1, S5 is just tier 4, and Sj is tiers
i+ 1 to k. Note that we can generalize Theorem 5.3 to allow
states in .S and S5 to have any reward values as long as they
satisfy the inequality in Definition 5.2 for a fixed reward
value in S5. Namely, denote r;,,, = max{ry,...,7;_1} and
Thigh = min{rj;1,...,7}, and as a k-Tiered Reward they
satisfy

1
Tlow < (1 — ’y)T’L < (1 — )thigh
And since v € (0,1),
I 2
Tlow < (ﬁ)ﬁ' < (E) Thigh < Thigh- (1)

That is, (710w, 74, Thigh) is a Tiered Reward function in the
3-Tier MDP with tiers S7, S, and S3, and therefore induces
Pareto-optimal policies (Theorem 5.3). So, at tier ¢, the
policy that optimizes the k-Tiered Reward will push agents
to higher tiers as fast as possible and avoid lower tiers,
as if they were goals and obstacles, respectively. In the
special case that the agent resides within tier ¢ = 1, the

constraint from Definition 6.1 will treat tiers 2 through &
as if they are all goals, pushing the agent towards them. In
the case that ¢ = k, the agent is already in the “goal tier”.
So overall, k-Tiered Reward will induce in a ratchet-like
policy—go to the higher tiers as fast as possible while not
falling back to the lower tiers—that makes learning fast.
In fact, it has been shown that a similar increasing-reward
profile leads to fast learning (Sowerby et al., 2022). Okudo
& Yamada (2021) and Zhai et al. (2022) have also shown that
intermediate rewards can accelerate learning and provably
improve sample efficiency in goal-reaching tasks.

Besides encouraging early visitation of good tiers, using
Tiered Reward also guarantees maximum total visitation of
all good tiers. This property is formalized in Theorem 6.2.

Theorem 6.2 (Tiered Reward and Cumulative Tier Visita-
tion). In a k-Tier Markov Decision Process that has Tiered
Reward R(s), the induced optimal policy is 7*. Let p® €
[0, 1] be the probability of being in tier d € {1,2, ..., k} for
the first time at timestep t following policy 7*. Then, there is
no policy m, along with its induced probability distribution
pl, that satisfies both:

t t
dopi <> Pt vt=0,1,2,...,00, and
=0 =0

Vd = [2..k],¥t = 0,1,2, ..., co.

t t
dopt =
1=0 =0

The proof is similar to that of Theorem 5.3 and can be
found in Appendix B. To state the theorem in words, if a k-
Tier MDP has a Tiered Reward structure, then the resulting
policy will visit the worst tier (S7) for as few times as
possible, while visiting all the other good tiers (Ss, ..., Sk)
as often as possible, respectively.

7. Conclusion

To resolve the policy-preference problem, we present a
strict partial ordering over the policy space using Pareto-
optimality. Then, in contrast to standard reward-design solu-
tions that are environment-dependent, we presented Tiered
Rewards—a class of environment-independent reward func-
tions that provably leads to (Pareto) optimal behavior. One
interesting direction for future work is theoretical guarantees
on Tiered Reward leading to asymptotically faster learning.
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A. Details in Proof of Theorem 5.3

Proof that f7 is strictly decreasing:

t t—1
g g _ t+1 E j t E j
ft+1 - ft =7 Tgoal + ’erback: — 7Y Tgoal — ’yjrback:
j=0 j=0

= ’yt (7 - 1)Tgoal + 'Ytrback

1
= 'Yt(l ’Y)( 1_ ,Vrb‘“k Tgoal)

<0
because 0 < v < 1 and 1— < Tgoal -
Proof that f{ is strictly increasing:
t t—1
ftOJrl - fto = ’yH_lTobs + Z’V]rback - Pytrobs - Z’erback
Jj=0 Jj=0

= ’Yt (7 - 1)Tobs + 'Ythack

1
= ’7t(1 - ’7)(1 — fyrback - Tobs)
>0

because 0 < v < 1 and rgps < ﬁ

The pass from the first equality to the second (*) is justified as follows:

00 co t co t—1
Z - 901! —Z g] M= ZZ 9] )Y
t=0 t= 0]:0 t=0 j=0
[e%e) t oo t—1
= ( gj ft ZZ g] ft
t=0 j=0 t=1 j=0
0 t
=3 > (g -9 - Z Z I
t=0 j=0 =0 4j=0
[e%} t
=> O g -9~ 1)
t=0 j=0
Similarly,
Z(Ot —o0))ff = Z ZOJ = )
t=0 t=0 ;=0
B. Proof of Theorem 6.2

Proof. The proof is similar to that of Theorem 5.3. Suppose, for the sake of contradiction, that there exists some such policy

7. We can express the value functions as
oo k
V= Z’yt Z Tm - Dy, and

Z’V Zrm p*m.

m=1
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Denote f{"™ = ~'rp,. Then, fi™ — f/t, = rmy' (1 —v) < 0,Vm. It’s easy to see f;™ — f’t, is strictly increasing in m, so

| i
t=0 m=1
k e’}
= Z Zf (pi" —pi™)
m=1 t=0
k oo t
= Z( m fm )(Z _ p;m)
m=1 t=0 7=0
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= Z(ft ft1+1 Z ZP] —P]

t=0 m=1

00 t k k
=Y (=102 00w = 9™

t=0 7=0 m=1 m=1
:Z(ftl_ftlJrl)' (1-1)

~
Il
o
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Note that the (xx*) step is justified only because 22:0 pit —p;™ > 0,Vm = [2..k],Vt. The inequalities show that m
achieves higher reward than the optimal policy, which is a contrad1ct10n. No such 7 exists. O



