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ABSTRACT

This paper considers an important Graph Anomaly Detection (GAD) task, namely
open-set GAD, which aims to train a detection model using a small number of
normal and anomaly nodes (referred to as seen anomalies) to detect both seen
anomalies and unseen anomalies (i.e., anomalies that cannot be illustrated the
training anomalies). Those labelled training data provide crucial prior knowledge
about abnormalities for GAD models, enabling substantially reduced detection er-
rors. However, current supervised GAD methods tend to over-emphasise fitting
the seen anomalies, leading to many errors of detecting the unseen anomalies as
normal nodes. Further, existing open-set AD models were introduced to handle
Euclidean data, failing to effectively capture discriminative features from graph
structure and node attributes for GAD. In this work, we propose a novel open-set
GAD approach, namely normal structure regularisation (NSReg), to achieve gen-
eralised detection ability to unseen anomalies, while maintaining its effectiveness
on detecting seen anomalies. The key idea in NSReg is to introduce a regularisa-
tion term that enforces the learning of compact, semantically-rich representations
of normal nodes based on their structural relations to other nodes. When being op-
timised with supervised anomaly detection losses, the regularisation term helps in-
corporate strong normality into the modelling, and thus, it effectively avoids over-
fitting the seen anomalies and learns a better normality decision boundary, largely
reducing the false negatives of detecting unseen anomalies as normal. Extensive
empirical results on seven real-world datasets show that NSReg significantly out-
performs state-of-the-art competing methods by at least 14% AUC-ROC on the
unseen anomaly classes and by 10% AUC-ROC on all anomaly classes.

1 INTRODUCTION

Detection of anomalous nodes in a graph is a crucial task in the context of Graph Anomaly Detection
(GAD) (Akoglu et al., 2015; Ma et al., 2021). Its popularity has been growing in recent years due
to its wide range of real-world applications, such as detection of malicious users in social networks,
illegal transactions in financial networks, and faults in sensor networks. There have been numerous
GAD methods introduced (Akoglu et al., 2015; Ding et al., 2019; Liu et al., 2021; Ma et al., 2021;
Qiao et al., 2024a), with the majority of them designed as unsupervised approaches. However, they
are often associated with high detection errors due to the lack of knowledge about anomalies.

There has been growing interest in supervised Anomaly Detection (AD) methods (Jiang et al., 2023;
Pang et al., 2023; Tang et al., 2022; Pang et al., 2019; 2021b) because they are able to utilise labelled
anomaly data to substantially reduce the high detection errors of unsupervised approaches. Such
methods assume the availability of a limited number of labelled anomalies, which is usually feasible
to obtain in real-world applications and can be utilised to enable anomaly-informed supervision.
Despite their generally superior performance, these methods prove less effective in open-set AD
where training models with labelled anomalies (referred to as seen anomalies) fails to adequately
represent anomalies at inference time, particularly in the context of newly emerging types/classes
of anomalies that are substantially different from those seen in training (i.e., unseen anomalies).
This is because such methods often concentrate solely on modelling abnormal patterns derived from
labelled anomalies, thus exhibiting poor generalisation to the unseen anomalies, i.e., many unseen
anomalies are detected as normal, as shown in Figure 1(a-b). Further, they are mostly designed for
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handling Euclidean data like image and tabular data (Pang et al., 2019; 2023), thereby overlooking
valuable discriminative information on the structure and node attributes in graph data for GAD.
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Figure 1: Visualisation of node representa-
tions with anomaly score contour lines of three
supervised GAD models: baseline classifier
Binary Cross-Entropy (BCE), recent state-of-
the-art BWGNN (Tang et al., 2022), and our
proposed NSReg, on two real-world datasets:
Photo and ogbn-proteins. The models are
trained using a limited number of seen anoma-
lies and normal nodes. BCE and BWGNN
overly focus on the decision boundary between
the seen anomalies and normal nodes, whereas
NSReg mitigates overfitting to the seen anoma-
lies, resulting in more generalised detection of
seen and unseen anomalies.

To address these issues, this paper focuses on the
practical yet under-explored problem of open-set
GAD, aiming to enhance the generalisation for
both seen and unseen anomaly nodes by leverag-
ing a small set of labelled seen anomaly nodes.
To this end, we propose a novel open-set GAD
approach, namely normal structure regularisation
(NSReg), to leverage the rich normal graph in-
formation embedded in the labelled nodes. The
key idea in NSReg is to introduce a regulari-
sation term that enforces the learning of com-
pact, semantically-rich representations of normal
nodes based on their structural relations to other
nodes. When being optimised with supervised
AD losses, the regularisation term incorporates
strong normality into the modelling, and thus, it
effectively avoids overfitting the seen anomalies,
while learning better normality decision bound-
ary. This helps substantially reduce the errors of
detecting unseen anomalies as normal.

In particular, to capture those semantically-rich
normal structure relations, NSReg differentiates
the labelled normal nodes that are connected in
their local neighbourhood from those that are
not. This is done by predicting three types of
normal-node-oriented relation prediction, includ-
ing: connected normal nodes, unconnected nor-
mal nodes, and unconnected normal nodes to un-
labelled nodes. We show theoretically that our
regularisation module prioritises establishing dis-
tinct node representations based on their structural
relationships with the normal class, rather than at-
tempting to predict these anomalies without grounded information. As a result, it effectively rein-
forces the structural normality of the graph in the representation space and enforces a more stringent
decision boundary for the normal class, enabling better separability of the unseen anomaly nodes
from the normal nodes, as shown in Figure 1(c). Moreover, NSReg is a plug-and-play module, which
can be integrated as a plugin module into various supervised GAD learning approaches to enhance
their generalisability to unseen anomalies. It is worth noting that NSReg is designed to enhance the
generalisation of supervised GAD to unseen anomalies by leveraging discriminative structural in-
formation derived from a small number of labelled nodes. It is not intended for unsupervised GAD,
where label information is unavailable, and models designed for the unsupervised setting are prone
to different issues, e.g., the failure to capture anomaly patterns of interest or high false positives.

In summary, our main contributions are as follows:

• We study an under-explored problem of GAD, namely open-set GAD, and validate the
feasibility of leveraging graph structural normality to regularise representation learning in
supervised GAD, resulting in effective mitigation of the overfitting on the seen anomalies.

• We propose NSReg that regularises supervised GAD models by differentiating normal-
node-oriented relations. It tackles the problem by enforcing better separation between un-
seen anomalies and normal nodes while retaining seen anomaly detection performance.

• NSReg is a plug-and-play regularisation term that can be applied to enhance the generali-
sation of different supervised GAD methods.

• We show through extensive empirical studies that NSReg significantly outperforms all com-
peting methods by at least 14% AUC-ROC on the unseen anomaly classes and by 10%
AUC-ROC on all anomaly classes.
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2 RELATED WORK

Graph Anomaly Detection. GAD methods are usually designed as unsupervised learning to bypass
the reliance of labelled data (Ma et al., 2021; Jiang et al., 2023). Earlier shallow methods (Peng et al.,
2018; Perozzi & Akoglu, 2016; Gao et al., 2010; Li et al., 2017; Yu et al., 2018) leverage various
heuristics to detect anomalies. Recent GAD methods predominantly utilise graph neural networks
(GNNs) (Wu et al., 2020) and have demonstrated superior performance due to their strong repre-
sentation learning capacity. There are numerous unsupervised GNN-based GAD methods proposed
(Ding et al., 2019; Li et al., 2019; Zhao et al., 2020; Ding et al., 2021a; Wang et al., 2021b; Liu et al.,
2021; Xu et al., 2022; Qiao & Pang, 2024; He et al., 2024). However, these methods are not trained
using real anomalies and have proven to be ineffective when their heuristic optimisation objective
mismatches the actual anomaly patterns. To leverage anomaly-specific prior knowledge, supervised
learning that utilises labelled anomalies (Wang et al., 2021a; Tang et al., 2022; Chai et al., 2022;
Dou et al., 2020; Huang et al., 2022; Wang et al., 2021c; Gao et al., 2023; Wang et al., 2023b; Chen
et al., 2024; Zhuo et al., 2024) and learning schemes such as meta learning and transfer learning
have also been explored for GAD (Ding et al., 2021b; 2022a; Zhou et al., 2023; Wang et al., 2023a).
Nevertheless, these methods are prone to overfitting the small number of labelled anomaly nodes
and do not implement effective regularisation to ensure the generalisation on the unseen anomalies.
It is important to distinguish open-set GAD from graph out-of- distribution (OOD) detection (Wu
et al., 2023; Gong & Sun, 2024; Lin et al., 2024); the two tasks are fundamentally different. OOD
detection targets distinguishing between in-distribution (ID) and OOD data, which are novel classes
beyond the classes of interest and absent during training. In open-set GAD, the anomaly class is
of interest, with both seen and unseen anomalies potentially present during training, though unseen
anomalies remain unlabelled and are not considered by GAD loss functions.

Towards Supervised Anomaly Detection. Although numerous AD methods have been proposed
(Chandola et al., 2009; Pang et al., 2021a), most of them (Zenati et al., 2018; Park et al., 2020;
Roth et al., 2022) adopt optimisation objectives that focus on representation learning and are indi-
rect for anomaly scoring. More recent works (Sohn et al., 2021; Ruff et al., 2020; Pang et al., 2019;
2023; 2021b; Zhao & Hryniewicki, 2018) leverage a small number of labelled anomalies to per-
form optimisation and anomaly scoring in an end-to-end pipeline, significantly improving detection
performance. However, such methods are originally designed for non-structured data and cannot
explore structural information when directly applied for GAD.

Imbalanced Node Classification. Another closely related line of research is imbalanced classifi-
cation (Chawla et al., 2002; Zhou & Liu, 2006; Johnson & Khoshgoftaar, 2019), which is a long-
standing challenge in mitigating the class imbalance in the training data. A variety of approaches
(Ding et al., 2022b; Wang et al., 2021d; Qu et al., 2021; Zhao et al., 2021; Park et al., 2022) have
been proposed to mitigate class imbalance in the training graph data to avoid overfitting the majority
classes. However, these methods only assume a fixed number of known classes and do not consider
the potential unseen classes at inference time. As a result, they fail to generalise to unseen anomaly
classes in open-set GAD.

3 OUR PROPOSED APPROACH

3.1 PROBLEM STATEMENT

We consider open-set GAD on attributed graphs. Let G = (V, E ,X) be an attributed graph with
a node set V , an edge set E and a feature matrix X, which contains significantly fewer anomalous
nodes Va than normal nodes Vn. In open-set GAD, during training, the labelled training nodes Vtrain

are often unable to illustrate all possible anomaly classes at inference. For clarity, we use Vseen
a to

denote anomaly nodes that can be illustrated by the labelled anomaly nodes (seen anomalies) and
Vunseen
a to denote the unseen anomalies, such that Va = Vseen

a ∪ Vunseen
a and Vtrain

a ⊂ Vseen
a .

Our objective is to learn a scoring function ϕ : (G,V) → R, such that ϕ(G, va) ≫ ϕ(G, vn), for all
va ∈ Vseen

a ∪Vunseen
a and vn ∈ Vn. In this paper, we consider a GNN-based anomaly scoring function

ϕ, which consists of a pipeline with two components: a graph representation learner ψ(G,V; Θψ):
(G,V) → Z and an anomaly scoring function η(Z; Θη) : Z → R, where Θψ and Θη are learnable
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Figure 2: An overview of our proposed approach, NSReg, illustrating the integration of the NSR
module into a graph anomaly detector as a plug-and-play module for regularising supervised GAD
training, where red arrows indicate the “plugging points”. The box with dashed border line filled in
teal illustrates the decomposition of NSReg’s overall learning objective in the shared representation
space Z . Here, LNSR focuses on enforcing a more stringent decision boundary for the normal
class, enabling better separability of the unseen anomaly nodes from the normal nodes, which is not
considered by LAD.

parameters. We aim to obtain the following anomaly scoring mapping:

ϕ(G,V; Θϕ) = η(ψ(G,V; Θψ); Θη), (1)

with the support of the labelled nodes and the graph structure. The main challenges are the unfore-
seeable nature of anomalies and the risk of overfitting to labelled anomaly nodes.

3.2 OVERVIEW OF NSREG

In this paper, we propose a novel open-set GAD framework, namely normal structure regularisation
(NSReg), as a solution to tackle the aforementioned challenges. The key insight behind NSReg is
to explicitly guide the representation learner in capturing discriminative normal structural informa-
tion from the graph characterised by the labelled normal nodes, supplementing the incomplete and
often biased label information provided by the labelled anomalies that represent the seen anomalies.
The modelling of this structural normality effectively calibrates the normality decision boundary,
enabling better generalisation to the unseen anomalies, i.e., better separation between the unseen
anomalies and normal nodes.

As illustrated in Figure 2, NSReg leverages a novel Normal Structure Regularisation (NSR) module
to enforce compact and uncluttered normal subspace in the representation space. During training,
the NSR module is integrated as a regularising component with a supervised graph anomaly detector,
both sharing the same representation learner for joint optimisation, to enable the joint learning of
the structural normality and seen anomaly patterns for GAD. The general objective of NSReg can
be defined as the following:

argmin
Θϕ,ΘNSR

∑
v∈V
LAD(sv, yv) + λ

∑
r∈R
LNSR(qr, cr), (2)

where Θϕ and ΘNSR are the respective learnable parameters of the anomaly detection ϕ and the
NSR module, and LAD is the loss function of a supervised GAD model, with sv being the predicted
anomaly score and yv being the ground truth. Additionally, LNSR signifies the loss function of the
NSR module adjusted by the regularisation coefficient λ, with qr denoting the predicted normality
of a relation sample r, and its normality cr is defined by a labelling function C. During inference,
the representation learner ψ∗ is combined with the trained anomaly scoring network η∗ to form
an end-to-end pipeline for detection, and the NSR module is disconnected from the representation
learner since the normal structural information has already been learned. This simplifies the infer-
ence process without introducing any additional NSR module-related runtime or resource overhead.

3.3 NORMAL STRUCTURE REGULARISATION (NSR)

The design of the NSR module, which is the core of NSReg, is motivated by the limitations of
most supervised GAD methods, which are only designed to maximise separability between normal
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nodes and seen anomalies, but fail to provide sufficient supervision for the representation learner to
effectively differentiate unseen anomaly representations from the normal class. In an open-set en-
vironment, we are unable to obtain the prior knowledge of the unseen anomalies, and thus, difficult
to learn the unseen anomaly patterns. Thus, NSReg takes a step back and focuses on learning better
normality, which would help distinguish the unseen anomalies from the normal nodes better. NSReg
achieves this by modelling the normal-node-oriented relations (i.e., {r = (v, u) | v ∈ Vn, u ∈ V}),
which is aimed at enforcing a stricter definition of the normal region and recalibrating misplaced un-
seen anomaly representations within the representation space. By modelling three types of normal-
node-oriented relations as a discriminative task, NSReg enhances representation learning with sig-
nificantly enriched normality semantics, effectively disentangling unseen anomaly nodes from nor-
mal nodes in the representation space. We first provide a theoretical analysis of enforcing structural
normality and then detail the two core components of NSR: normal-node-oriented relation genera-
tion and modelling.

Preserving Structural Normality Improves Representation Learning for GAD. We analyse the
effects of enforcing structural normality in the representation space and its advantages for enhanc-
ing generalisation to unseen anomalies. We consider a mapping g : (Rd,Rd) → R[0,1] in the
node representation space Z , which takes the representations of nodes in each relation as inputs to
model their normality. The normality of the relations is defined by a labelling function C, where
0 and 1 indicate the lowest and the highest levels of normality, respectively. C should satisfy that
0 <= max(Ca) ≪ min(Cn) <= 1, where Cn and Ca indicate the respective set of the labels for
the relations between only the normal nodes and the relations between normal and anomaly nodes
respectively, emphasising a significant differentiation in the scale of normality.

Specifically, g = gC ◦ gE consists of two sub-mappings: gE , a linear mapping that fuses the node
representations to produce relation representations, with the option to incorporate a scaling function
on these node representations; and gC , a linear mapping with a monotonic final activation function
to assign normality scores based on the representation. Note that both the scaling function and
activation function are required to be homeomorphic. If Z is shared with a discriminative graph
anomaly detector, the normal nodes and the observed anomalies will be well separated into two
isolated dense regions. Based on this observation, we demonstrate through the following proposition
that differentiating between these two types of relations will force any anomalous nodes, including
unseen ones, to be excluded from the normal region.

Proposition 1. Consider a well-trained mapping g that effectively distinguishes between the two
types of normal-node-oriented relations within a relation representation space H, derived from a
node representation space Z . The first type consists exclusively of relations among normal nodes,
while the second type involves one normal and one anomalous node, with normality defined by some
labeling function C, regardless their connectivity. Consider the subspace of all normal nodes in Z
as a connected open set Zn, the boundary of which is defined by some closed hypersurfacesM =
{Mi|i ∈ {1, · · · , k}}. Furthermore, letZm denote the union of the interior of eachMi ⊂M. Given
such Zn and Zm, we can obtain that z ∈ Zn is true for all z ∈ Zm, indicating their equivalence.

The proof, along with an intuitive diagram (Figure 5), is provided in Appendix A. There are two key
insights we can obtain from this proposition. First, since it is obvious that Zn is a subset of Zm, by
proving their equivalence, we observe that inside the boundary of the normal subspace, no anoma-
lous subspace exists, and therefore, no anomaly nodes, whether seen or unseen, are present. Second,
this implies that for normal-node-oriented relations involving anomalies to be distinguishable from
relations exclusively between normal nodes, the only way to adjust the representation learner is to
ensure that no anomaly node resides within the normal space Zn. Therefore, enforcing structural
normality will result in the displacement of misplaced anomalies from the normal subspace. These
insights motivate the design of our NSR module, which is detailed below.

Normal-node-oriented Relation Generation. The relation generation module implements the la-
belling function C and oversees relation sampling, specifically tailored to integrate structural nor-
mality knowledge in open-set GAD. It first samples normal-node-oriented relations and defines their
normality, considering three types of relations, including connected normal relations R(n,c,n), un-
connected normal relations R(n,u,n), and unconnected normal to other nodes, R(n,u,u). A labelling
function C (an illustrative diagram is provided in Figure 6), which meets the requirements outlined
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in Proposition 1, is then used to define their normality scores as follows:

C(r) =


1 if r ∈ R(n,c,n) = {(v, u) | v, u ∈ Vtrain

n , (v, u) ∈ E}
α if r ∈ R(n,u,n) = {(v, u) | v, u ∈ Vtrain

n , (v, u) /∈ E}
0 if r ∈ R(n,u,u) = {(v, u) | v ∈ Vtrain

n , u ∈ V \ Vtrain, (v, u) /∈ E},
(3)

where 0 ≪ α < 1 is the specification of the normality of R(n,u,n) relative to other two types of
relations. α = 0.8 is set by default to define a three-level normality hierarchy we want to enforce.
This specification effectively embeds the homophilic assumption between the normal nodes while
preserving the difference between the most related and related normal relations. We also find it
unnecessary to include normal - seen anomaly pairs because similar information can be learned
from supervised GAD objectives. Due to space limit, please refer to Appendix C.5 for details.

Normal-node-oriented Relation Modelling. This module instantiates the discriminative mapping
g for normal relation modeling as a neural network, denoted F . It first generates the representations
of relations by fusing the representations of their corresponding end nodes using a learnable mapping
FE , which is then fed into a normality prediction network FC to model their normality. Specifically,
FE can be defined as:

hr = FE
(
ψ(G, v), ψ(G, u)

)
= σ(zv) ·WE ◦ σ(zu), (4)

where σ is the sigmoid function, WE is a learnable weight matrix, and ◦ is element-wise product.
zv and zu are the representations of the node in relation r, generated by the node representation
learner ψ, which comprises a GNN-based representation learner followed by a projection network.
The default GNN is a two-layer GraphSAGE (Hamilton et al., 2017) considering its good learning
capacity and scalability. The relation modelling network is then optimised according to the following
loss function:

LNSR = −
(
cr · log

(
FC(hr)

)
+ (1− cr) · log

(
1− FC(hr)

))
, (5)

where cr is the relation label subject to the labelling function C and FC is implemented as a learner
layer followed by the Sigmoid function. This design satisfied all the conditions required for Propo-
sition 1, ensuring that the normality enforced by the NSR module is accurately reflected in the
shared representation space. It produces distinctive node representations in relation to those of the
labelled normal nodes, thereby enforcing significantly enriched, fine-grained normality among the
node representations. This enhancement directly regularises the representation learning of super-
vised anomaly detectors, enabling better separation of the unseen anomaly nodes from the normal
nodes.

Note that our NSR module is different from PReNet (Pang et al., 2023). PReNet is a weakly-
supervised anomaly detector trained with an anomaly-oriented relation network, whereas NSR is a
regularisation term focusing on learning fine-grained normal representations to regularise supervised
anomaly detectors.

3.4 OPEN-SET GAD USING NSREG

Training. NSReg is trained through batch gradient descent over a predefined number of iterations.
At each iteration, we first sample a batch of bAD training nodes V , which contains bnAD labelled
normal nodes and all labelled anomaly nodes (note that the number of labelled anomalies is typically
very small) for tuning the anomaly scoring network η and the representation learner ψ. In addition,
the normal-node-oriented relation generation is performed to generate bNSR relation samples R for
optimising the NSR module and ψ. The overall training objective of NSReg can be formulated as:

argmin
Θϕ,ΘNSR

−1
|V |

(
YV log(SV ) + (1− YV ) log

(
1− SV )

)
+

λ

|R|LNSR(QR, CR), (6)

where the first term is a simple supervised cross-entropy-loss-based anomaly detector and the second
term is our NSR module. As shown in Sec. 4.1, the NSR term can be also effectively combined
with other supervised GAD models in the first term. During training, the GAD loss is computed
initially based on the first term of the objective function and is used to update the parameters of
the anomaly scoring network η. Subsequently, the NSR loss can be calculated using the second
term of the objective function to update the relation modelling network. Finally, the combined GAD
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and NSR losses are aggregated and backpropagated to update the parameters of the representation
learner. A Python-style pseudocode for training is provided in the Appendix B.1.

Inference. During inference, given a test node v, NSReg first generates its representation zv , which
is then scored using the trained anomaly scoring network η: sv = ϕ(G, v) = η(ψ(G, v)).

4 EXPERIMENTS

Datasets. NSReg is extensively evaluated using seven real-world attributed graph datasets. To
the best of our knowledge, no publicly available GAD datasets include multiple types of human-
annotated natural anomaly classes. Therefore, we adapt imbalanced node classification and binary-
labelled GAD datasets to define anomaly subclasses with distribution discrepancies for open-set
GAD evaluation. For imbalanced node classification datasets with multiple minor classes, such as
Photo, Computers, and CS (Shchur et al., 2018), we treat each minor class (those with less than
5% of total nodes) as seen anomalies, and the rest as unseen anomalies. This is consistent with the
general definition of anomalies, characterised by rarity and significant difference from the majority.
In the case of Yelp (Rayana & Akoglu, 2015) and T-Finance (Tang et al., 2022), two well-known
GAD datasets with binary labels, we cluster the learned representations of the anomaly class to
create anomaly subclasses. Three large-scale attributed graph datasets, ogbn-arxiv, ogbn-proteins
(Hu et al., 2020), and T-Finance (Tang et al., 2022) are also adapted to evaluate NSReg at scale.
More details about the datasets are presented in Appendix B.2.

This approach provides a realistic and comprehensive evaluation of detecting real-world anomalies,
while also introducing an open-set GAD scenario with guaranteed semantic deviation across multi-
ple anomaly classes. There are GAD datasets with injected anomalies using added artificial edges
or node attributes in some earlier GAD works, but, following previous studies (Tang et al., 2023;
Qiao et al., 2024b), they are not used here since their injection patterns are often unintentionally
incorporated into the design of detection models, resulting in unwanted information leakage.

Evaluation Protocol and Metrics. For each dataset, we treat one of the anomaly classes as the
seen anomaly, with the other anomaly classes as unseen anomalies. We alternate this process for
all anomaly classes, and report the results averaged over all cases. All experiments are repeated for
5 random runs. For example, the CS dataset includes 8 anomaly classes, each is treated as ‘seen’
in turn, resulting in 8 sub-experiments per run, with a total of 40 sub-experiments across 5 runs.
The Python style code for the evaluation protocol is presented in Appendix B.3. We employ two
widely used and complementary performance metrics in GAD: the Area Under Receiver Operating
Characteristic Curve (AUC-ROC) and the Area Under Precision-Recall Curve (AUC-PR). In par-
ticular, AUC-ROC measures both true positives and false positives, while AUC-PR summarises the
precision and recall of the anomaly classes, offers a focused measure exclusively on the anomaly
classes.

Competing Methods. NSReg is compared with 20 competing methods from multiple related ar-
eas, including four popular unsupervised methods, eight state-of-the-art (SOTA) supervised methods
and one baseline method. Specifically, DOMINANT (Ding et al., 2019), GGAN (Chen et al., 2020),
(Wang et al., 2021b), CoLA (Liu et al., 2021), AEGIS (Ding et al., 2021a) CONDA (Xu et al., 2022),
TAM (Qiao & Pang, 2024) and ADA-GAD (He et al., 2024) are implemented as our unsupervised
baselines due to their popularity and competitive performance among unsupervised GAD methods.
The SOTA methods consist of recently proposed supervised anomaly detectors for Euclidean data:
DevNet (Pang et al., 2019), PReNet (Pang et al., 2023), and those for graph data: DCI (Wang et al.,
2021c), BWGNN (Tang et al., 2022), AMNet (Chai et al., 2022), GHRN (Gao et al., 2023), CON-
SISGAD (Chen et al., 2024) and PMP (Zhuo et al., 2024), and two imbalanced node classification
methods as well: GraphSMOTE (Zhao et al., 2021) and GraphENS (Park et al., 2022). Addition-
ally, a generic hybrid baseline XGBGraph introduced by Tang et al. (2023) is also included. The
classification method using binary cross-entropy (BCE) is considered as a baseline model.

Implementation Details. NSReg comprises a representation learner featuring a two-layer Graph-
SAGE (Hamilton et al., 2017), followed by a two-layer projection network, each containing 64
hidden units per layer. NSReg is optimised using the Adam (Kingma & Ba, 2014) optimiser for
200 epochs for the Photo, Computers, and CS datasets with a learning rate of 1 × 10−3, and for
400 epochs for Yelp with a learning rate of 5 × 10−3 due to its larger number of nodes. We set the
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Table 1: AUC-ROC and AUC-PR (mean±std) for detecting all anomalies and exclusively unseen
anomalies. The boldfaced are the best results. “-” denotes unavailable result due to out-of-memory.

AUC-ROC AUC-PR

Test Set Method Photo Computers CS Yelp Average Photo Computers CS Yelp Average

All-
Anom.s

DOMINANT 0.429±0.001 0.576±0.007 0.402±0.000 0.609±0.003 0.504±0.003 0.072±0.000 0.184±0.005 0.187±0.000 0.221±0.003 0.166±0.002
COLA 0.825±0.033 0.630±0.020 0.481±0.015 0.302±0.013 0.560±0.020 0.246±0.034 0.233±0.024 0.253±0.011 0.103±0.003 0.209±0.018
TAM 0.626±0.004 0.435±0.002 0.637±0.009 0.295±0.006 0.498±0.005 0.122±0.002 0.131±0.001 0.318±0.006 0.138±0.087 0.177±0.024

PReNet 0.698±0.019 0.632±0.028 0.547±0.016 0.692±0.004 0.642±0.017 0.459±0.010 0.374±0.031 0.363±0.011 0.336±0.006 0.383±0.015
DevNet 0.599±0.079 0.606±0.064 0.769±0.029 0.675±0.020 0.662±0.048 0.223±0.155 0.284±0.093 0.684±0.018 0.315±0.027 0.375±0.073

DCI 0.772±0.061 0.683±0.051 0.856±0.012 0.689±0.059 0.750±0.023 0.452±0.099 0.427±0.069 0.635±0.028 0.351±0.044 0.466±0.031
BWGNN 0.728±0.026 0.722±0.008 0.769±0.029 0.727±0.012 0.737±0.019 0.313±0.066 0.461±0.012 0.687±0.048 0.366±0.015 0.457±0.035
AMNet 0.773±0.001 0.671±0.007 0.873±0.003 0.695±0.011 0.753±0.006 0.487±0.003 0.395±0.016 0.784±0.004 0.337±0.013 0.501±0.009
GHRN 0.741±0.015 0.604±0.023 0.757±0.036 0.713±0.021 0.704±0.009 0.360±0.034 0.324±0.024 0.615±0.056 0.349±0.020 0.412±0.016

CONSISGAD 0.706±0.033 0.597±0.040 0.683±0.067 0.738±0.010 0.681±0.023 0.481±0.035 0.326±0.033 0.530±0.084 0.365±0.025 0.424±0.027
PMP 0.726±0.003 0.718±0.006 0.889±0.003 0.712±0.016 0.761±0.006 0.447±0.007 0.460±0.010 0.789±0.004 0.245±0.023 0.485±0.008

G. ENS 0.712±0.005 0.672±0.009 0.845±0.027 0.572±0.011 0.700±0.013 0.246±0.008 0.319±0.015 0.515±0.016 0.199±0.010 0.320±0.012
G. SMOTE 0.616±0.043 0.700±0.046 0.731±0.009 0.727±0.019 0.694±0.029 0.135±0.041 0.369±0.043 0.732±0.060 0.300±0.019 0.384±0.041

BCE 0.807±0.014 0.724±0.027 0.854±0.039 0.712±0.017 0.774±0.024 0.515±0.011 0.481±0.026 0.756±0.006 0.376±0.017 0.532±0.015

NSReg (Ours) 0.908±0.016 0.797±0.015 0.957±0.007 0.734±0.012 0.849±0.013 0.640±0.036 0.559±0.018 0.889±0.016 0.398±0.014 0.622±0.021

Unseen-
Anom.s

DOMINANT 0.428±0.002 0.576±0.008 0.401±0.000 0.633±0.004 0.510±0.004 0.041±0.000 0.156±0.006 0.169±0.000 0.135±0.002 0.125±0.002
COLA 0.826±0.034 0.629±0.024 0.482±0.015 0.291±0.015 0.557±0.022 0.156±0.029 0.201±0.015 0.232±0.011 0.055±0.002 0.161±0.014
TAM 0.621±0.004 0.435±0.002 0.638±0.009 0.293±0.001 0.497±0.004 0.073±0.001 0.110±0.001 0.294±0.006 0.053±0.000 0.133±0.002

PReNet 0.460±0.042 0.557±0.033 0.497±0.016 0.615±0.007 0.532±0.025 0.044±0.004 0.205±0.032 0.232±0.010 0.129±0.005 0.153±0.013
DevNet 0.468±0.040 0.537±0.083 0.739±0.032 0.621±0.026 0.591±0.045 0.045±0.005 0.200±0.060 0.606±0.021 0.142±0.022 0.248±0.027

DCI 0.614± 0.093 0.629±0.061 0.847±0.013 0.637±0.059 0.681±0.033 0.083±0.038 0.288±0.060 0.558±0.035 0.157±0.024 0.272±0.015
BWGNN 0.598±0.008 0.570±0.026 0.829±0.030 0.674±0.022 0.668±0.022 0.068±0.004 0.286±0.014 0.620±0.060 0.167±0.015 0.285±0.023
AMNet 0.603±0.004 0.606±0.008 0.860±0.004 0.604±0.014 0.668±0.008 0.068±0.002 0.237±0.010 0.739±0.006 0.143±0.009 0.297±0.007
GHRN 0.611±0.014 0.533±0.024 0.729±0.038 0.659±0.035 0.633±0.011 0.068±0.003 0.181±0.020 0.552±0.060 0.148±0.019 0.237±0.024

CONSIS 0.474±0.060 0.516±0.049 0.645±0.075 0.675±0.022 0.578±0.022 0.048±0.008 0.145±0.028 0.427±0.099 0.161±0.025 0.195±0.040
PMP 0.509±0.006 0.660±0.007 0.876±0.003 0.708±0.027 0.688±0.011 0.051±0.002 0.296±0.012 0.734±0.005 0.138±0.023 0.305±0.009

G. ENS 0.518±0.009 0.610±0.009 0.699±0.011 0.536±0.017 0.591±0.012 0.053±0.002 0.232±0.012 0.447±0.017 0.094±0.008 0.207±0.010
G. SMOTE 0.464±0.046 0.643±0.056 0.835±0.043 0.716±0.020 0.665±0.041 0.044±0.004 0.232±0.043 0.678±0.066 0.167±0.018 0.280±0.033

BCE 0.650±0.026 0.662±0.015 0.866±0.005 0.658±0.023 0.709±0.017 0.070±0.007 0.293±0.018 0.723±0.009 0.170±0.015 0.314±0.012

NSReg (Ours) 0.836±0.031 0.752±0.019 0.953±0.008 0.690±0.025 0.808±0.021 0.221±0.057 0.417±0.024 0.866±0.021 0.196±0.020 0.425±0.031

number of labelled anomalies to 50 and the percentage of labelled normal nodes to 5% by default.
Each batch of training nodes includes all labelled anomalies and randomly sampled number of la-
belled normal nodes capped at 512. Similarly, each batch of relations is capped at 512, with an equal
number of samples for each relation type. The default value of α is set to 0.8 and λ is set to 1 for
all datasets. The analysis of their sensitivity can be found in Appendix C.6, where NSReg maintains
stable performance, showing its robustness to the choice of hyperparameters. Further details are
provided in Appendix B.4. In our default setting, 50 anomalies are used for training along with 5%
of randomly selected normal nodes, while the remaining data is reserved for evaluation.

4.1 MAIN RESULTS

GAD Performance on Both Seen and Unseen Anomalies. We first evaluate the performance of
NSReg on detecting all test anomalies (i.e., V \ Vtrain, including samples of both seen and un-
seen anomaly classes). The results of 3 best unsuperivsed baselines and all supervised baselines
are reported in Table 1 (the upper part). Please refer to C.1 in the Appendix for complete results
of all baselines. We can see that NSReg achieves consistently and significantly better performance
than all competing methods across all datasets in terms of both AUC-ROC and AUC-PR. On aver-
age, NSReg demonstrates a significant performance advantage over all competing methods, among
which the supervised baselines prove to be considerably more effective than the unsupervised ones.
Specifically, for AUC-ROC, NSReg achieves an improvement of 9.7% and 11.6% compared to the
best and second-best competing methods, BCE and PMP, respectively. Additionally, NSReg shows
16.9% and 28.2% improvement compared to these two methods in terms of AUC-PR. The signifi-
cant overall performance gain is mainly attributed to NSReg’s strong capability of detecting unseen
anomalies, while at the same time achieving an effective fitting of the seen anomalies.

GAD Generalisation to Unseen Anomalies. The capability of detecting unseen anomalies in the
test data (i.e., Vtest

n ∪Vunseen
a ) is more indicative for evaluating a model’s open-set GAD ability. As

shown in Table 1 (lower part), NSReg again achieves significantly better performance, compared to
the competing methods. Notably, on average, NSReg exhibits a greater margin of improvement on
the unseen anomaly classes, with a 14% and 17.4% improvement over the top-2 performing com-
peting methods in terms of AUC-ROC. Similarly, a 35% and 39.4% performance gain over the top-2
performing competing methods is observed for AUC-PR. The substantially enhanced performance
underscores NSReg’s strong ability in reducing the errors of detecting unseen anomalies as normal.

Data Efficiency. We investigate NSReg’s data efficiency by varying the number of seen anoma-
lies around the default setting, including 5, 15, 25, 50, and 100, in order to understand the
model’s capacity to handle variations in data availability. The results are illustrated in Figure
3. Due to space constraints, we report results on the AUC-PR results on all test anomalies
and provide the AUC-ROC results in Appendix C.7. The results show that NSReg consistently
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Table 2: Our NSR as a plugin module in
supervised AD models DevNet, DCI and
BWGNN.

Metric AUC-ROC AUC-PR

Dataset Ori +NSR Diff. Ori +NSR Diff.

D
ev

N
et

Photo 0.599 0.684 +0.085↑ 0.223 0.424 +0.201↑
Computers 0.606 0.646 +0.040↑ 0.284 0.340 +0.056↑

CS 0.769 0.949 +0.180↑ 0.684 0.872 +0.188↑
Yelp 0.675 0.684 +0.009↑ 0.315 0.315 +0.008↑

Avg. Diff. +0.079↑ +0.113↑

D
C

I

Photo 0.772 0.865 +0.093↑ 0.452 0.577 +0.125↑
Computers 0.683 0.738 +0.055↑ 0.427 0.501 +0.074↑

CS 0.856 0.857 +0.001↑ 0.635 0.623 -0.012
Yelp 0.689 0.740 +0.051↑ 0.351 0.387 +0.036↑

Avg. Diff. +0.050↑ +0.056↑

B
W

G
N

N

Photo 0.728 0.802 +0.074↑ 0.313 0.530 +0.217↑
Computers 0.635 0.726 +0.091↑ 0.348 0.458 +0.110↑

CS 0.845 0.879 +0.034↑ 0.687 0.718 +0.031↑
Yelp 0.727 0.747 +0.020↑ 0.366 0.394 +0.028↑

Avg. Diff. +0.055↑ +0.097↑

Table 3: Large-scale GAD results. “-” denotes
unavailable result due to out-of-memory.

Metric Datasets ogbn-arxiv ogbn-proteins T-Finance avg.

AUC-
ROC
(All)

PReNet 0.581±0.006 0.613±0.035 0.892±0.017 0.695±0.019
DevNet 0.601±0.015 0.622±0.057 0.654±0.210 0.626±0.094

DCI 0.566±0.041 0.815±0.037 0.763± 0.111 0.715±0.063
BWGNN 0.587±0.013 0.727±0.067 0.922±0.011 0.745±0.030
AMNet 0.600±0.049 0.711±0.077 0.889±0.024 0.733±0.050
GHRN 0.588±0.009 0.674±0.019 0.923±0.010 0.728±0.013
G.ENS - - 0.847±0.087 -

G.SMOTE - - 0.875±0.016 -
BCE 0.592±0.004 0.568±0.020 0.922±0.011 0.694±0.012

NSReg 0.659±0.012 0.843±0.029 0.929±0.007 0.810±0.016

AUC-
PR

(All)

PReNet 0.288±0.004 0.432±0.028 0.571±0.140 0.430±0.057
DevNet 0.304±0.009 0.436±0.017 0.323±0.327 0.354±0.118

DCI 0.275±0.033 0.597±0.062 0.264±0.240 0.379±0.112
BWGNN 0.263±0.009 0.582±0.026 0.746±0.023 0.530±0.019
AMNet 0.272±0.053 0.576±0.053 0.644±0.046 0.497±0.051
GHRN 0.271±0.007 0.564±0.005 0.727±0.031 0.521±0.014
G.ENS - - 0.332±0.076 -

G.SMOTE - - 0.573±0.077 -
BCE 0.310±0.003 0.524±0.008 0.726±0.034 0.520±0.015

NSReg 0.336±0.006 0.723±0.020 0.757±0.020 0.605±0.125

achieves significantly improved AUC-PR performance on the overall anomaly detection across
the complete spectrum of the Photo, Computers, and CS datasets. On Yelp, NSReg either out-
performs, or is on par with the competing methods across the entire range for overall perfor-
mance. Similar findings can be observed on detecting unseen anomalies (see Figures 9 and 10).

Figure 3: AUC-PR on all anomalies w.r.t.
number of labelled anomalies.

NSReg as a Plug-and-Play Module. This section ex-
amines the effect of using the NSR module of NSReg
as a plugin module to enhance three other supervised
methods, referred to as NSR-enabled models. Table
2 shows the GAD performance on detecting all test
anomalies, with the original BWGNN, DCI and De-
vNet as the baselines. Due to the page limit, the re-
sults for unseen anomalies are reported in Table 8 in
Appendix C.2. We can observe that the NSR-enabled
BWGNN, DCI and DevNet yield significant perfor-
mance improvements across all datasets in both eval-
uation metrics. In particular, on average, it improves
DevNet by over 10% for AUC-ROC and 30% for AUC-
PR, for all anomalies and unseen anomalies. Similarly,
for BWGNN, its NSR-variant outperforms the original
model by over 7% in terms of AUC-ROC on both test sets and more than 14% for AUC-PR. For DCI,
NSR also yields similar level of performance improvement. The consistent improvement demon-
strates not only the high generalisability of our proposed NSR but also the importance of enforcing
structural normality in supervised GAD.

Large-scale GAD Performance. We compare NSReg’s GAD performance with supervised base-
lines on all test nodes and unseen anomalies of three large-scale GAD datasets, as presented in Table
3 and Table 12 in Appendix C.4. Notably, NSReg consistently demonstrates advantageous perfor-
mance, as observed in other datasets in Table 1. Moreover, NSReg exhibits superior efficiency in
terms of data utilisation for large-scale GAD tasks—it achieves effective structural regularisation
and significantly improves generalisation with only 100 seen anomalies, accounting for only less
than 1% of total anomalies.

4.2 ABLATION STUDY

This section empirically explores the effectiveness and significance of enforcing our structural nor-
mality within node representations by answering the following questions, with AUC-PR results
reported in Table 4 and a visualisations included in Figure 4. We include the results in AUC-ROC
in Table 10 in Appendix C.3 due to space limits.

How important is graph structural information when enforcing normality? We answer this
question by replacing the NSR module with the one-class hypersphere objective in Deep SAD
(SAD) (Ruff et al., 2020), which minimises the volume of normal node representations to learn
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Figure 4: Node representations learned via
various regularisation schemes on Photo.

No Reg. SAD CL (u.s.)

CL (s.) NSR (ours)

0 1
Normal
Seen
Anomalies
Unseen
Anomalies

Table 4: Our proposed NSR vs other regularisers in
AUC-PR.

All anomalies

Dataset SAD CL (s.) CL (u.s.) NSR (dual) NSR (Ours)

Photo 0.269±0.215 0.513±0.018 0.583±0.012 0.623±0.029 0.640±0.036
Computers 0.381±0.190 0.492±0.014 0.539±0.024 0.539±0.023 0.559±0.018

CS 0.700±0.016 0.795±0.009 0.843±0.020 0.858±0.042 0.889±0.016
Yelp 0.175±0.046 0.392±0.013 0.330±0.078 0.399±0.021 0.398±0.014

average 0.381±0.117 0.548±0.014 0.574±0.034 0.605±0.029 0.622±0.021
Unseen anomalies

Dataset SAD CL (s.) CL (u.s.) NSR (dual) NSR (Ours)

Photo 0.053±0.004 0.068±0.004 0.133±0.019 0.207±0.049 0.221±0.057
Computers 0.285±0.134 0.318±0.018 0.379±0.032 0.389±0.028 0.417±0.024

CS 0.631±0.019 0.743±0.010 0.797±0.025 0.834±0.046 0.866±0.021
Yelp 0.090±0.017 0.178±0.011 0.152±0.045 0.190±0.023 0.196±0.020

Average 0.265±0.044 0.327±0.011 0.365±0.030 0.405±0.037 0.425±0.031

the normality without considering the graph structure information. Table 4 shows that NSR can
significantly outperform the one-class learning SAD, highlighting the advantage of enforcing graph
structure-informed normality. This is because, by simply tightening the normal representations with-
out considering their structural relationships, SAD may not necessarily learn discriminative unseen
anomaly representations, as illustrated in Figure 4(SAD). We also found the one-class learning-
based SAD is unstable due to its notorious risk of model collapse, while our NSR does not have this
issue due to the fine-grained structural relation prediction.

Why is our proposed NSR more effective at structural regularisation? To answer this question,
we replace our NSR module with supervised and unsupervised contrastive learning (CL (s.) and
CL (u.s.) in Table 4), which enforce similarities between nodes based on their connections. NSReg
consistently outperforms both baselines on all tests for both metrics. This is because the NSR
module is tailored to ensure that its enforced normality, which is normal-node-oriented and thus
better aligned with the objective of enhanced normal class modelling, is reflected in the shared
representation space, therefore resulting in a more stringent normal class subspace and significantly
mitigating overfitting on the seen anomalies, as shown in Figure 4 (NSR).

Can we just augment the seen anomalies to improve the generalisation on the unseen ones?
This can be answered by comparing the results of NSReg with graph augmentation-based methods
G.SMOTE and G.ENS in Table 1. NSReg significantly outperforms the two methods, suggesting
that merely augmenting seen anomalies is inadequate for generalising to unseen ones. This is due to
the fact that the augmented anomaly samples mainly resemble only the seen abnormalities, which
may even further increase the risk of overfitting on the seen anomalies.

Can we perform the relation prediction in NSR with less types of relations? We compare NSR
with its variant that is trained without the second relation R(n,u,n) (NSR (dual) in short). Table 4
shows that the default NSR outperforms NSR (dual) by a non-trivial margin on almost all cases. This
is because R(n,u,n) is essential for defining our normality hierarchy, enabling finer granularity in
relation modeling, preserving the structural differences between more closely related normal nodes
and other nodes, on top of enforcing the distinction between normal and anomaly nodes.

5 CONCLUSION AND FUTURE WORK

This paper introduces a novel open-set GAD approach, Normal Structure Regularisation (NSReg),
which employs a plug-and-play regularisation term to enhance anomaly-discriminative normality
from graph structures, thereby reinforcing strong normality in node representations during super-
vised GAD model training. By aligning node representations with their structural relationships
relative to the normal nodes, NSReg establishes a stringent decision boundary for the normal class
and enhances its generalisation to unseen anomalies by reducing the errors of detecting them as
normal. Comprehensive empirical results show the superiority of NSReg in detecting both seen and
unseen anomalies compared to 20 competing methods on several real-world graph datasets.

In terms of limitations, despite its impressive effectiveness in improving generalisation in open-set
GAD, NSReg models normality only within the immediate neighbourhood of the labelled normal
nodes. While this is not an issue at present, as real-world interactions grow more complex and larger
in scale, exploring normal relations beyond immediate neighbours to gain additional information for
open-set GAD may become necessary, which we leave for future work.
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A APPENDIX

Appendix
The appendix section is structured as follows. In Appendix A, we details the proof of the proposition
1. In Appendix B, we provide extended details of the experimental setup, including dataset informa-
tion, experimental protocol, and implementation specifics. In Appendix C , we provide additional
results that were not included in the main section due to space limitations.

A PROOF OF PROPOSITION 1

Z
σ(Z)

σ
za2

zn

za1 σ(za1)

σ(za2)

σ(zn)

σ(zm)
Path l

Figure 5: Proposition 1 proof intuition: Z and σ(Z) represent the shared node representation spaces
before and after applying the scaling function σ, respectively. In this plot, the grey region represents
the normal subspace Zn, and the union of the grey and red regions represents Zm. The boundary of
the normal subspace, M, is depicted by the black lines. The goal is to prove that the red regions,
which denote the neighbourhood of anomalies, do not exist within the normal subspace for a well-
trained relation discriminator.
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For convenience, we define a labelling function C with a range of [0, 1]. This function assigns a
normality score of 0 to relations between normal nodes and anomaly nodes. In contrast, relations
exclusively between normal nodes receive scores ranging from a significantly greater value than 0,
denoted as α, to a maximum of 1. For simplicity, we use the mapping of our default choice of relation
modelling function F . It is worth noting that any function that satisfies the condition specified in
Sec. 3.3 can be proved using the same approach. We show via proof by contradiction that, if F is
well-trained to distinguish the normal nodes exclusive relations and those that involves anomalies in
node representation space shared with a supervised anomaly detector, no anomaly node lies in the
normal region within the shared representation space of η and F , where normal nodes form a dense
subspace.

We assume the normal region in the shared representation space is a connected open set, due to the
high similarity and dense distribution of normal representations forced by supervised discriminative
loss LAD. For a well-trained F and any given normal node from the region n, suppose there are
two anomaly nodes, a1 and a2, where a1 lies outside the normal region and a2 overlaps with the
normal region. Note that such a1 can be easily found, as LAD will ensure a sufficient number of
seen anomalies residing outside of the normal subspace Zn. Consider a path connecting these two
anomaly nodes:

lt = tσ(za1) + (1− t)σ(za2), t ∈ (0, 1). (7)

The homeomorphic of the Sigmoid function will ensure that we are able to find the scaled represen-
tation of a normal node σ(zm) along the path at t = tm. Then we have:

σ(zm) = tmσ(za1) + (1− tm)σ(za2). (8)

Applying F to the relation between n and m, we have:

F (hnm) = WC · hnm + b

= WC(diag(σ(zn) ·WE)σ(zm)) + b

= WC(diag(σ(zn) ·WE)(tmσ(za1) + (1− tm)σ(za2)) + b

= tm

(
WC diag

(
σ(zn) ·WE

)
σ(za1) + b

)
+ (1− tm)

(
WC diag

(
σ(zn) ·WE

)
σ(za2) + b

)
= tm

(
WChna1 + b

)
+ (1− tm)

(
WChna2 + b

)
= tmF (hna1) + (1− tm)F (hna2).

Since F is well trained, we have F (hna1) < γ − δ and F (hna2) < γ − δ, where σ(γ) = α and
δ ∈ R(0,γ). Therefore, we have :

F (hnm) = tmF (hna1) + (1− tm)F (hna2) < γ − δ
qnm = σ(F (hnm)) < σ(γ − δ) < α

which contradicts with the fact that qnm > α.

B MORE EXPERIMENTAL DETAILS

B.1 PSEUDOCODE FOR TRAINING NSREG

The training procedure of NSReg is described in the following pseudocode:

B.2 DATASETS

B.2.1 DATASET STATISTICS

Table 5 shows the statistics of the seven datasets used. Note that the Yelp dataset is a heterogeneous
graph containing three different views. We choose the edge subset of the “Review-User-Review
(RUR)” view in our experiments.
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Algorithm 1 Training NSReg

Require: G and Y train s.t. Y train ≪ |V|
Ensure: ϕ : (G, v)→ R - an anomaly scoring mapping

1: Initialize variables
2: for i = 1 in [1, ..., nepochs] do
3: V← Sample bAD nodes from Vtrain.
4: R← Sample bNSR relations as described in Sec. 3.4.
5: LAD ← Compute the supervised GAD loss.
6: Perform gradient descent for η.
7: LNSR ← Compute the NSReg loss.
8: Perform gradient descent for F,E.
9: L ← Compute the total loss as in Eq. 6

10: Perform gradient descent for ψ.
11: end for
12: return ϕ

Table 5: A summary of dataset statistics

# Dim. # Nodes # Edge # Ano. Classes # Ano. PAno. %
Photo 745 7,487 119,043 2 369 4.92

Computers 767 13,381 245,778 5 2,064 15.42
CS 6,805 18,333 81,894 8 4,159 22.69

Yelp 32 45,954 98,630 2 6,677 14.53
ogbn-arxiv 128 169,343 1,166,243 4 27,830 16.43

ogbn-proteins 8 132,534 39,561,252 2 10,693 8.07
T-Finance 10 39,357 21,222,543 2 1,803 4.58

B.2.2 DATASET PREPROCESSING

For the imbalance attributed node classification datasets Photo, Computers, CS and ogbn-proteins,
we treat each class that has less than 5% of the total number of nodes of the graph as an anomaly class
and the remaining classes as normal. In the ogbn-arxiv dataset, with the original graph containing
40 subclasses, for experimental efficiency, any class representing 3% to 5% of the total nodes is
considered an anomaly class. Note that the normal class is defined as the combination of all the
majority classes, from which labelled normal nodes are randomly and uniformly drawn, and remain
consistent through the entire experiment.

For the Yelp and T-Finance datasets, which only contain binary anomaly labels, we first apply an
unsupervised representation learning method Deep Graph Infomax (DGI) for representation learn-
ing and then apply k-means clustering to partition the anomaly class into two anomaly subclasses
using their node representations. Specifically, our DGI model employs a two-layer GraphSAGE as
the representation learner with 128 hidden units per layer. The model is optimised for 1,000 epochs
using the Adam optimiser with the learning rate and the batch size set to 1× 10−3 and 512, respec-
tively. To further magnify the distribution shift, instead of employing random sampling, we conduct
weighted random sampling to generate training anomaly nodes, where the probability associated
with each anomaly node is proportional to its distance from its corresponding cluster centroid.

B.3 EXPERIMENTAL PROTOCOL

In this section, we outline the process of conducting open-set GAD experiments and encapsulate it
in Algorithm 2. For each dataset, we alternate treating each anomaly class as the seen anomaly, with
the remaining anomaly classes as unseen, for all anomaly classes. For example, in the CS dataset,
8 out of 15 classes are marked as anomalies. The results for this dataset underwent 5 independent
runs of 8 sub-experiments, with each anomaly class treated as ‘seen’ in rotation, totaling 40 sub-
experiments for CS. Note that the normal class remains consistent across each run, and the labelled
normal nodes are uniformly drawn.
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Algorithm 2 Open-set GAD Experimental Protocol

Require: G,Y, and anomaly class index idxanom.
Ensure: The overall and unseen AUC-ROC and AUC-PR values.

1: Vn ← {v | yv /∈ idxanom}
2: Vtrain

n ← Sample the training normal nodes.
3: for c in idxanom do
4: Vseen

a ← {v | yv == c}
5: Vunseen

a ← {v | yv not in idxanom}
6: Vtrain ← sample from Vseen

a and Vtrain
n .

7: ϕ← Train an anomaly detection network using NSReg as described in Algorithm 1.
8: AUC-ROCall

c , AUC-PRall
c ← evaluate ϕ using V \Vtrain.

9: AUC-ROCuseen
c , AUC-PRunseen

c ← evaluate ϕ using Vn ∪ Vunseen \Vtrain.
10: Record class AUC-ROC and AUC-PR.
11: end for
12: Calculate the average performance AUC-ROCall, AUC-PRall, AUC-ROCunseen, and

AUC-PRunseen.
13: return AUC-ROCall, AUC-PRall,AUC-ROCunseen, AUC-PRunseen

B.4 IMPLEMENTATION DETAILS

B.4.1 DEPENDENCIES

NSReg is implemented in Python and makes extensive use of Pytorch (Paszke et al., 2019) and
Pytorch Geometric (Fey & Lenssen, 2019). We summarise the main scientific computing libraries
and their versions used for our implementation as follows:

• python==3.8.13

• pytorch==1.10.1 (py3.8 cuda11.3 cudnn8.2.0 0)

• pytorch geometric==2.0.4 (py38 torch 1.10.0 cu113)

• numpy==1.23.5

• scipy==1.10.0

• scikit-learn==1.2.1

• cudatoolkit==11.3.1

• dgl==1.0.2

B.4.2 HYPERPARAMETER SETTINGS

For NSReg, in addition to the hyperparameters reported in Sec. 4, we set the numbers of neighbours
used for GraphSAGE aggregation to 25 and 10 for the first layer and the second layer, respectively,
for better runtime efficiency. The same sampling strategy as NSReg is employed for the GNN-
adapted competing methods that were designed for Euclidean data. Our anomaly scoring network η
is a two-layer neural network with 32 hidden units in the hidden layer. BCE, DevNet and PReNet are
trained for the same number of epochs (200) as NSReg using the Adam optimiser using the learning
rate of 1 × 10−3. We keep the default hyperparameter settings for the other baselines except for
GraphSMOTE, for which the pretraining and training epoch numbers are both set to 2,500 where
the model exhibits convergence.

For the large-scale datasets ogbn-arxiv and ogbn-proteins, we set the default number of labelled
anomalies to 100, and a reduced percentage of labelled normal nodes to 1% to make it more chal-
lenging and practical for real-world applications. For ogbn-proteins, where it is set to 2 to enforce
stronger structural regularisation due to its large number of nodes and highly dense connections (i.e.,
over a hunderd thousand nodes with over 300 average degree).
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B.4.3 VISUALISATION METHOD

We utilise UMAP (McInnes et al., 2018), a widely adopted non-linear invertible dimensionality re-
duction algorithm, in conjunction with the Matplotlib library to generate contour plots representing
anomaly scores. Specifically, we apply UMAP to transform node representations at the anomaly
scoring (final) layer of each method into a 2-dimensional representation space. Within the bound-
aries of the 2D representation space for each method, determined by the maximum values of each
dimension, we create a uniform mesh with a step size of 0.1. Subsequently, all points within the
mesh are coloured based on the anomaly scores assigned by the final layer, utilising their represen-
tations transformed by the inverse transformation of the same UMAP model.

B.5 HARDWARE CONFIGURATION

Our experiments are conducted using a single NVIDIA A100 GPU and 28 CPU cores from an AMD
EPYC 7663 Processor on a HPC cluster.

B.6 LABELLING FUNCTION ILLUSTRATION

u
0

0 0
α

1

❌ ❌

❌

❌ Not considered

Labelled Normal

Unlabelled Normal

Labelled Amom.

Unlabelled Amom.
Connected

Figure 6: An illustrative plot of the labelling function C
.

Figure 6 illustrates the labelling function C in the NSReg as mentioned in Equation 3.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 COMPLETE ANOMALY DETECTION PERFORMANCE

The table presents the anomaly detection performance of NSReg compared with all baseline meth-
ods, evaluated on both all test anomalies and exclusively on unseen anomalies. Consistent conclu-
sions with Section 4.1 can be drawn: NSReg significantly outperforms the baseline methods across
all datasets in terms of both metrics. The primary difference from Table 1 is that this table includes
all unsupervised methods, some of which were omitted in the main text due to space constraints.
Unsurprisingly, these unsupervised methods are less effective for open-set GAD due to the lack of
anomaly prior knowledge.

Although NSReg achieves superior performance overall, one exception is that XGBGraph performs
surprisingly well on the Yelp dataset.We believe this is incidental, as XGBGraph is a generic hybrid
method combining parameter-free node feature propagation with XGBoost, without GAD-specific
training. This enables it to perform particularly well on the Yelp dataset. A similar observation was
noted in the benchmark paper (Tang et al., 2023) where XGBGraph significantly outperformed all
state-of-the-art methods on this dataset by a large margin. However, this strong performance is not
universal and is not observed on other datasets.

C.2 DETAILED RESULTS FOR NSR AS A PLUG-AND-PLAY MODULE

We present the complete results of plugging our NSR module into three state-of-the-art supervised
AD model, DevNet, DCI and BWGNN, with the original models as the baselines for both all test
anomalies and in Table 7 the unseen anomalies in Table 8 in terms of both AUC-ROC and AUC-PR.
Similar substantial performance improvement can be observed as Sec. 4.1.
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Table 6: AUC-ROC and AUC-PR (mean±std) for detecting all anomalies and exclusively unseen
anomalies. The boldfaced are the best results. “-” denotes unavailable result due to out-of-memory.

AUC-ROC AUC-PR

Test Set Method Photo Computers CS Yelp Average Photo Computers CS Yelp Average

All-
Anom.s

DOMINANT 0.429±0.001 0.576±0.007 0.402±0.000 0.609±0.003 0.504±0.003 0.072±0.000 0.184±0.005 0.187±0.000 0.221±0.003 0.166±0.002
GGAN 0.435±0.003 0.566±0.008 0.396±0.005 0.323±0.007 0.430±0.006 0.078±0.001 0.177±0.005 0.186±0.001 0.103±0.001 0.136±0.002

OCGNN 0.523±0.049 0.506±0.013 0.509±0.015 0.445±0.083 0.496±0.034 0.095±0.012 0.158±0.008 0.238±0.006 0.029±0.008 0.130±0.003
COLA 0.825±0.033 0.630±0.020 0.481±0.015 0.302±0.013 0.560±0.020 0.246±0.034 0.233±0.024 0.253±0.011 0.103±0.003 0.209±0.018
AEGIS 0.543±0.053 0.426±0.067 0.491±0.053 - - 0.095±0.015 0.132±0.019 0.227±0.025 - -

CONDA 0.529±0.000 0.523±0.000 0.403±0.041 0.309±0.017 0.441±0.018 0.106±0.000 0.150±0.000 0.193±0.011 0.107±0.003 0.139±0.005
TAM 0.626±0.004 0.435±0.002 0.637±0.009 0.295±0.006 0.498±0.005 0.122±0.002 0.131±0.001 0.318±0.006 0.138±0.087 0.177±0.024

ADA-GAD 0.391±0.010 0.557±0.004 0.310±0.040 - - 0.069±0.003 0.174±0.001 0.163±0.009 - -
PReNet 0.698±0.019 0.632±0.028 0.547±0.016 0.692±0.004 0.642±0.017 0.459±0.010 0.374±0.031 0.363±0.011 0.336±0.006 0.383±0.015
DevNet 0.599±0.079 0.606±0.064 0.769±0.029 0.675±0.020 0.662±0.048 0.223±0.155 0.284±0.093 0.684±0.018 0.315±0.027 0.375±0.073

DCI 0.772±0.061 0.683±0.051 0.856±0.012 0.689±0.059 0.750±0.023 0.452±0.099 0.427±0.069 0.635±0.028 0.351±0.044 0.466±0.031
BWGNN 0.728±0.026 0.722±0.008 0.769±0.029 0.727±0.012 0.737±0.019 0.313±0.066 0.461±0.012 0.687±0.048 0.366±0.015 0.457±0.035
AMNet 0.773±0.001 0.671±0.007 0.873±0.003 0.695±0.011 0.753±0.006 0.487±0.003 0.395±0.016 0.784±0.004 0.337±0.013 0.501±0.009
GHRN 0.741±0.015 0.604±0.023 0.757±0.036 0.713±0.021 0.704±0.009 0.360±0.034 0.324±0.024 0.615±0.056 0.349±0.020 0.412±0.016

CONSIS 0.706±0.033 0.597±0.040 0.683±0.067 0.738±0.010 0.681±0.023 0.481±0.035 0.326±0.033 0.530±0.084 0.365±0.025 0.424±0.027
PMP 0.726±0.003 0.718±0.006 0.889±0.003 0.712±0.016 0.761±0.006 0.447±0.007 0.460±0.010 0.789±0.004 0.245±0.023 0.485±0.008

G. ENS 0.712±0.005 0.672±0.009 0.845±0.027 0.572±0.011 0.700±0.013 0.246±0.008 0.319±0.015 0.515±0.016 0.199±0.010 0.320±0.012
G. SMOTE 0.616±0.043 0.700±0.046 0.731±0.009 0.727±0.019 0.694±0.029 0.135±0.041 0.369±0.043 0.732±0.060 0.300±0.019 0.384±0.041
XGBGraph 0.792±0.000 0.710±0.000 0.750±0.000 0.805±0.000 0.764±0.000 0.521±0.000 0.472±0.000 0.553±0.000 0.482±0.000 0.507±0.000

BCE 0.807±0.014 0.724±0.027 0.854±0.039 0.712±0.017 0.774±0.024 0.515±0.011 0.481±0.026 0.756±0.006 0.376±0.017 0.532±0.015

NSReg (Ours) 0.908±0.016 0.797±0.015 0.957±0.007 0.734±0.012 0.849±0.013 0.640±0.036 0.559±0.018 0.889±0.016 0.398±0.014 0.622±0.021

Unseen-
Anom.s

DOMINANT 0.428±0.002 0.576±0.008 0.401±0.000 0.633±0.004 0.510±0.004 0.041±0.000 0.156±0.006 0.169±0.000 0.135±0.002 0.125±0.002
GGAN 0.435±0.006 0.566±0.009 0.395±0.005 0.319±0.008 0.429±0.007 0.046±0.001 0.150±0.004 0.168±0.001 0.055±0.000 0.105±0.002

OCGNN 0.523±0.050 0.506±0.013 0.509±0.015 0.445±0.100 0.496±0.040 0.054±0.008 0.133±0.010 0.217±0.006 0.016±0.005 0.105±0.002
COLA 0.826±0.034 0.629±0.024 0.482±0.015 0.291±0.015 0.557±0.022 0.156±0.029 0.201±0.015 0.232±0.011 0.055±0.002 0.161±0.014
AEGIS 0.533±0.078 0.428±0.073 0.490±0.055 - - 0.054±0.012 0.112±0.018 0.207±0.024 - -

CONDA 0.525±0.000 0.523±0.000 0.402±0.041 0.296±0.017 0.437±0.018 0.061±0.000 0.127±0.000 0.174±0.010 0.058±0.003 0.105±0.005
TAM 0.621±0.004 0.435±0.002 0.638±0.009 0.293±0.001 0.497±0.004 0.073±0.001 0.110±0.001 0.294±0.006 0.053±0.000 0.133±0.002

ADA-GAD 0.392±0.015 0.556±0.004 0.308±0.040 - - 0.040±0.002 0.149±0.001 0.147±0.008 - -
PReNet 0.460±0.042 0.557±0.033 0.497±0.016 0.615±0.007 0.532±0.025 0.044±0.004 0.205±0.032 0.232±0.010 0.129±0.005 0.153±0.013
DevNet 0.468±0.040 0.537±0.083 0.739±0.032 0.621±0.026 0.591±0.045 0.045±0.005 0.200±0.060 0.606±0.021 0.142±0.022 0.248±0.027

DCI 0.614± 0.093 0.629±0.061 0.847±0.013 0.637±0.059 0.681±0.033 0.083±0.038 0.288±0.060 0.558±0.035 0.157±0.024 0.272±0.015
BWGNN 0.598±0.008 0.570±0.026 0.829±0.030 0.674±0.022 0.668±0.022 0.068±0.004 0.286±0.014 0.620±0.060 0.167±0.015 0.285±0.023
AMNet 0.603±0.004 0.606±0.008 0.860±0.004 0.604±0.014 0.668±0.008 0.068±0.002 0.237±0.010 0.739±0.006 0.143±0.009 0.297±0.007
GHRN 0.611±0.014 0.533±0.024 0.729±0.038 0.659±0.035 0.633±0.011 0.068±0.003 0.181±0.020 0.552±0.060 0.148±0.019 0.237±0.024

CONSIS 0.474±0.060 0.516±0.049 0.645±0.075 0.675±0.022 0.578±0.022 0.048±0.008 0.145±0.028 0.427±0.099 0.161±0.025 0.195±0.040
PMP 0.509±0.006 0.660±0.007 0.876±0.003 0.708±0.027 0.688±0.011 0.051±0.002 0.296±0.012 0.734±0.005 0.138±0.023 0.305±0.009

G. ENS 0.518±0.009 0.610±0.009 0.699±0.011 0.536±0.017 0.591±0.012 0.053±0.002 0.232±0.012 0.447±0.017 0.094±0.008 0.207±0.010
G. SMOTE 0.464±0.046 0.643±0.056 0.835±0.043 0.716±0.020 0.665±0.041 0.044±0.004 0.232±0.043 0.678±0.066 0.167±0.018 0.280±0.033
XGBGraph 0.625±0.000 0.651±0.000 0.718±0.000 0.758±0.000 0.688±0.000 0.075±0.000 0.308±0.000 0.447±0.000 0.238±0.000 0.267±0.000

BCE 0.650±0.026 0.662±0.015 0.866±0.005 0.658±0.023 0.709±0.017 0.070±0.007 0.293±0.018 0.723±0.009 0.170±0.015 0.314±0.012

NSReg (Ours) 0.836±0.031 0.752±0.019 0.953±0.008 0.690±0.025 0.808±0.021 0.221±0.057 0.417±0.024 0.866±0.021 0.196±0.020 0.425±0.031

Table 7: Results of plugging our NSR module into three SOTA supervised AD models DevNet, DCI
and BWGNN, with the original models as the baselines on all test anomalies.

Metric AUC-ROC AUC-PR

Dataset Ori +NSR Diff. Ori +NSR Diff.

DevNet

Photo 0.599 0.684 +0.085↑ 0.223 0.424 +0.201↑
Computers 0.606 0.646 +0.040↑ 0.284 0.340 +0.056↑

CS 0.769 0.949 +0.180↑ 0.684 0.872 +0.188↑
Yelp 0.675 0.684 +0.009↑ 0.315 0.315 +0.008↑

Avg. Diff. +0.079↑ +0.113↑

DCI

Photo 0.772 0.865 +0.093↑ 0.452 0.577 +0.125↑
Computers 0.683 0.738 +0.055↑ 0.427 0.501 +0.074↑

CS 0.856 0.857 +0.001↑ 0.635 0.623 -0.012
Yelp 0.689 0.740 +0.051↑ 0.351 0.387 +0.036↑

Avg. Diff. +0.050↑ +0.056↑

BWGNN

Photo 0.728 0.802 +0.074↑ 0.313 0.530 +0.217↑
Computers 0.635 0.726 +0.091↑ 0.348 0.458 +0.110↑

CS 0.845 0.879 +0.034↑ 0.687 0.718 +0.031↑
Yelp 0.727 0.747 +0.020↑ 0.366 0.394 +0.028↑

Avg. Diff. +0.055↑ +0.097↑

C.3 DETAILED ABLATION STUDY RESULTS.

We present the comprehensive results of the ablation study in Table 9 and 10, corresponding to Table
4 in the paper. The performance in AUC-ROC shows a similar trend as AUC-PR, aligning with our
observations and findings in Sec. 4.2.
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Table 8: Results of plugging our NSR module into three SOTA supervised AD models DevNet, DCI
and BWGNN, with the original models as the baselines on unseen anomalies.

Metric AUC-ROC AUC-PR

Met. Dataset Ori +NSR Diff. Ori +NSR Diff.

DevNet

Photo 0.468 0.513 0.045↑ 0.045 0.092 0.047↑
Computers 0.573 0.623 0.050↑ 0.200 0.266 0.066↑

CS 0.739 0.944 0.205↑ 0.606 0.841 0.235↑
Yelp 0.621 0.632 0.011↑ 0.142 0.146 0.004↑

Avg. Diff. 0.078↑ 0.088↑

DCI

Photo 0.614 0.780 0.166↑ 0.083 0.201 0.118↑
Computers 0.629 0.693 0.064↑ 0.288 0.380 0.092↑

CS 0.847 0.847 0.000 0.558 0.547 -0.011
Yelp 0.637 0.699 0.062↑ 0.157 0.190 0.033↑

Avg. Diff. 0.073↑ 0.058↑

BWGNN

Photo 0.598 0.628 0.030↑ 0.068 0.078 0.010↑
Computers 0.570 0.662 0.092↑ 0.209 0.272 0.063↑

CS 0.829 0.873 0.044↑ 0.620 0.678 0.058↑
Yelp 0.674 0.703 0.029↑ 0.167 0.188 0.021↑

Avg. Diff. 0.049↑ 0.038↑

Table 9: Our proposed NSR module vs other regularisation methods for all test anomalies.

Dataset SAD CL (unsup) CL (s) NSR (dual) NSR

AUC-ROC

Photo 0.599±0.134 0.807±0.010 0.891±0.010 0.894±0.016 0.908±0.016
Computers 0.644±0.126 0.743±0.012 0.781±0.022 0.778±0.021 0.797±0.015

CS 0.819±0.014 0.894±0.006 0.927±0.012 0.927±0.022 0.957±0.007
Yelp 0.522±0.041 0.731±0.014 0.665±0.072 0.732±0.016 0.734±0.012

average 0.646±0.079 0.794±0.011 0.816±0.029 0.833±0.019 0.849±0.013

AUC-RR

Photo 0.269±0.215 0.513±0.018 0.583±0.012 0.623±0.029 0.640±0.036
Computers 0.381±0.190 0.492±0.014 0.539±0.024 0.539±0.023 0.559±0.018

CS 0.700±0.016 0.795±0.009 0.843±0.020 0.858±0.042 0.889±0.016
Yelp 0.175±0.046 0.392±0.013 0.330±0.078 0.399±0.021 0.398±0.014

Average 0.646±0.079 0.794±0.011 0.816±0.029 0.833±0.019 0.849±0.013

C.4 DETAILED LARGE-SCALE GAD RESULTS

In this section, we present the complete results for large-scale GAD in Tables 11 and 12. We ob-
serve NSReg consistently outperforms the baseline methods by a large margin on unseen anomalies,
similar to our discussion in Sec. 4.1.

C.5 EFFECT OF INCLUDING NORMAL-ANOMALY RELATIONS

This section investigates the effect of including an additional type of normal relation that connects
normal and anomaly nodes in the relation modelling of NSReg. We report the GAD performance for
all test anomalies and the unseen anomalies in both AUC-ROC and AUC-PR in Table 13. We found
that the inclusion of connected normal-anomaly relations is less effective than the default NSReg
in terms of average performance, although it can achieve comparable performance on the CS and
Yelp datasets. This is because the structural distinction between the normal and the seen anomalies
is usually sufficiently preserved by the GAD loss. Additionally, it could introduce unnecessary
complexity into the hierarchy of the relation modelling, resulting in less effective modelling of the
normality that is not addressed by the GAD loss.
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Table 10: Our proposed NSR module vs other regularisation methods for unseen anomalies.

Dataset SAD CL (unsup) CL (s) NSR (dual) NSR

AUC-ROC

Photo 0.516±0.047 0.652±0.018 0.807±0.017 0.810±0.031 0.836±0.031
Computers 0.614±0.103 0.685±0.015 0.733±0.027 0.730±0.025 0.752±0.019

CS 0.797±0.016 0.883±0.006 0.920±0.013 0.924±0.021 0.953±0.008
Yelp 0.511±0.026 0.677±0.023 0.613±0.071 0.679±0.018 0.690±0.025

average 0.610±0.048 0.724±0.016 0.768±0.032 0.786±0.024 0.808±0.021

AUC-RR

Photo 0.053±0.004 0.068±0.004 0.133±0.019 0.207±0.049 0.221±0.057
Computers 0.285±0.134 0.318±0.018 0.379±0.032 0.389±0.028 0.417±0.024

CS 0.631±0.019 0.743±0.010 0.797±0.025 0.834±0.046 0.866±0.021
Yelp 0.090±0.017 0.178±0.011 0.152±0.045 0.190±0.023 0.196±0.020

Average 0.265±0.044 0.327±0.011 0.365±0.030 0.405±0.037 0.425±0.031

Table 11: Results on large-scale graph datasets for all test anomalies, where “-” denotes unavailable
results due to out of memory.

Metric Datasets ogbn-arxiv ogbn-proteins T-Finance avg.

AUC-
ROC
(All)

PReNet 0.581±0.006 0.613±0.035 0.892±0.017 0.695±0.019
DevNet 0.601±0.015 0.622±0.057 0.654±0.210 0.626±0.094

DCI 0.566±0.041 0.815±0.037 0.763± 0.111 0.715±0.063
BWGNN 0.587±0.013 0.727±0.067 0.922±0.011 0.745±0.030
AMNet 0.600±0.049 0.711±0.077 0.889±0.024 0.733±0.050
GHRN 0.588±0.009 0.674±0.019 0.923±0.010 0.728±0.013
G.ENS - - 0.847±0.087 -

G.SMOTE - - 0.875±0.016 -
BCE 0.592±0.004 0.568±0.020 0.922±0.011 0.694±0.012

NSReg 0.659±0.012 0.843±0.029 0.929±0.007 0.810±0.016

AUC-
PR

(All)

PReNet 0.288±0.004 0.432±0.028 0.571±0.140 0.430±0.057
DevNet 0.304±0.009 0.436±0.017 0.323±0.327 0.354±0.118

DCI 0.275±0.033 0.597±0.062 0.264±0.240 0.379±0.112
BWGNN 0.263±0.009 0.582±0.026 0.746±0.023 0.530±0.019
AMNet 0.272±0.053 0.576±0.053 0.644±0.046 0.497±0.051
GHRN 0.271±0.007 0.564±0.005 0.727±0.031 0.521±0.014
G.ENS - - 0.332±0.076 -

G.SMOTE - - 0.573±0.077 -
BCE 0.310±0.003 0.524±0.008 0.726±0.034 0.520±0.015

NSReg 0.336±0.006 0.723±0.020 0.757±0.020 0.605±0.125

C.6 DETAILED HYPERPARAMETER ANALYSIS

We report the GAD performance on all test anomalies in both AUC-ROC and AUC-PR with respect
to λ and α in Figure 7 and Figure 8, respectively. The results demonstrate stability across a wide
spectrum, indicating the robustness of NSReg with respect to their settings.
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Figure 7: Overall GAD performance of NSReg w.r.t α.
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Table 12: Results on large-scale graph datasets for unseen anomalies, where “-” denotes unavailable
results due to out of memory.

Metric Datasets ogbn-arxiv ogbn-proteins T-Finance avg.

AUC-
ROC

(Unseen)

PReNet 0.465±0.008 00.250±0.058 00.881±0.029 0.532±0.032
DevNet 0.494±0.019 0.264±0.112 0.642±0.227 0.467±0.119

DCI 0.465±0.045 0.672±0.095 0.742±0.106 0.626±0.082
BWGNN 0.499±0.014 0.429±0.156 0.903±0.023 0.610±0.064
AMNet 0.519±0.053 0.339±0.263 0.872±0.045 0.577±0.120
GHRN 0.493±0.012 0.309±0.043 0.908±0.012 0.570±0.022
G.ENS - - 0.835±0.100 -

G.SMOTE - - 0.878±0.016 -
BCE 0.478±0.005 0.120±0.033 0.921±0.010 0.506±0.016

NSReg 0.570±0.016 0.748±0.047 0.928±0.006 0.749±0.023

AUC-
PR

(Unseen)

PReNet 0.124±0.002 0.029±0.004 0.431±0.147 0.195±0.051
DevNet 0.142±0.006 0.032±0.007 0.284±0.306 0.153±0.106

DCI 0.125±0.011 0.182±0.172 0.185±0.221 0.164±0.135
BWGNN 0.135±0.004 0.058±0.018 0.609±0.029 0.267±0.017
AMNet 0.141±0.024 0.048±0.030 0.461±0.067 0.217±0.040
GHRN 0.132±0.003 0.044±0.002 0.583±0.057 0.238±0.021
G.ENS - - 0.201±0.061 -

G.SMOTE - - 0.459±0.095 -
BCE 0.136±0.002 0.025±0.001 0.629±0.047 0.263±0.017

NSReg 0.165±0.005 0.488±0.042 0.669±0.024 0.441±0.024

Table 13: NSReg vs. NSReg considering connected normal-anomaly relation (NSReg + NA).

AUC-ROC AUC-PR

NSReg + NA NSReg NSReg + NA NSReg

Photo 0.860±0.017 0.908±0.016 0.561±0.019 0.640±0.036
computers 0.761±0.013 0.797±0.015 0.538±0.018 0.559±0.018

CS 0.965±0.005 0.957±0.007 0.904±0.014 0.889±0.016
Yelp 0.738±0.004 0.734±0.012 0.401±0.009 0.398±0.014

all

Average 0.831±0.010 0.849±0.013 0.601±0.015 0.622±0.021

Photo 0.747±0.032 0.836±0.031 0.107±0.018 0.221±0.057
Computers 0.708±0.015 0.752±0.019 0.392±0.025 0.417±0.024

CS 0.962±0.006 0.953±0.008 0.884±0.018 0.866±0.021
Yelp 0.689±0.009 0.690±0.025 0.193±0.010 0.196±0.020

unseen

Average 0.777±0.016 0.808±0.021 0.394±0.018 0.425±0.031
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Figure 8: Overall GAD performance of NSReg w.r.t λ.

C.7 DETAILED DATA EFFICIENCY RESULTS

In this section, our primary focus is on showing the data efficiency performance of NSReg in terms
of AUC-ROC, which complements the discussion of AUC-PR in Sec. 4.1. As illustrated in Figure
9 and Figure 10, NSReg consistently achieves remarkable performance similar to AUC-PR. Specif-
ically, across the entire spectrum, NSReg outperforms the baselines on both overall and unseen
anomaly detection for the Photo, Computers, and CS datasets. For the Yelp dataset, NSReg either
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outperforms or achieves comparable performance, particularly when the number of labelled training
anomalies exceeds 5. While GraphSMOTE slightly outperforms NSReg in unseen anomaly detec-
tion, its effectiveness in the seen anomalies is limited, resulting in less effective overall detection
performance.
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Figure 9: Data efficiency of NSReg and the competing methods in utilising labelled data in AUC-
ROC for both all test anomalies and the unseen anomalies.
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Figure 10: Data efficiency of NSReg and the competing methods in utilising labelled data in AUC-
PR for both all test anomalies and the unseen anomalies.
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