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ABSTRACT

Recently, the comprehensive understanding of human motion has been a promi-
nent area of research due to its critical importance in many fields. However, ex-
isting methods often prioritize specific downstream tasks and roughly align text
and motion features within a CLIP-like framework. This results in a lack of rich
semantic information which restricts a more profound comprehension of human
motions, ultimately leading to unsatisfactory performance. Therefore, we propose
a novel motion-language representation paradigm to enhance the interpretabil-
ity of motion representations by constructing a universal motion-language space,
where both motion and text features are concretely lexicalized, ensuring that each
element of features carries specific semantic meaning. Specifically, we introduce a
multi-phase strategy mainly comprising Lexical Bottlenecked Masked Language
Modeling to enhance the language model’s focus on high-entropy words crucial
for motion semantics, Contrastive Masked Motion Modeling to strengthen mo-
tion feature extraction by capturing spatiotemporal dynamics directly from skele-
tal motion, Lexical Bottlenecked Masked Motion Modeling to enable the motion
model to capture the underlying semantic features of motion for improved cross-
modal understanding, and Lexical Contrastive Motion-Language Pretraining to
align motion and text lexicon representations, thereby ensuring enhanced cross-
modal coherence. Comprehensive analyses and extensive experiments across mul-
tiple public datasets demonstrate that our model achieves state-of-the-art perfor-
mance across various tasks and scenarios.

1 INTRODUCTION

Understanding how we conceptualize and verbalize motion is a critical issue in the study of the
human mind and communication. As a long-standing research hotspot, human motion understanding
has led to the development of various tasks, including human motion-text retrieval (Petrovich et al.,
2023; Yu et al., 2024), motion captioning (Guo et al., 2022b), and action recognition (Mahmood
et al., 2019; Punnakkal et al., 2021), all of which have made significant progress in recent years.

Despite significant advancements in specific motion tasks, a considerable gap persists in achiev-
ing a nuanced comprehension of human motion, especially concerning fine-grained semantics and
behavioral reasoning, since existing methods (Petrovich et al., 2023; Plappert et al., 2018; Zhou
et al., 2024b) often lack interpretability in the context of motion understanding. For instance, as
depicted in Fig. 1(a), when attempting to retrieve the motion associated with the phrase “Person is
walking normally in a circle”, the correct motion may be identified; however, the corresponding fea-
ture mapping within the unified cross-modal semantic space diverges significantly, failing to align
with the semantic keywords essential for human comprehension. This semantic deficiency in the
dense representations stems from their sole reliance on contrastive learning (Radford et al., 2021),
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Figure 1: (a) Visualization of lexical representations of our framework and the traditional dense
paradigm, and (b) conceptual comparison of our framework and the traditional dense paradigm. The
color intensity reflects the higher values along the dimension.

which enforces cross-modal simply and rough alignment between dense text and motion embed-
dings primarily through cosine similarity, as illustrated in Fig. 1(b). Moreover, certain elements
in text and motion are redundant and irrelevant. Such dense representations will incorporate this
redundant information, which adversely affects the fine-grained semantic alignment of the represen-
tations. Consequently, it remains both crucial and challenging to further investigate interpretable
representations of motion to bridge the understanding gap between language and human actions.

Lexical representation (Formal et al., 2021; Shen et al.; Xiao et al., 2022) integrates interpretability
and efficiency by employing vocabulary elements to represent data, with each dimension corre-
sponding to a specific term. The magnitude of each dimension indicates the significance of the
associated term, enabling an intuitive understanding of data that aligns with human cognition, while
the activation of only relevant vocabulary ensures sparsity and efficiency. In contrast, dense repre-
sentation encapsulates data in a whole vector without clear dimensional significance, which limits
their interpretability and obscures the underlying semantics. Drawing from this concept, we propose
leveraging lexical representation to embed both motion and text within a cohesive lexical space,
thereby enhancing clarity and fostering a more nuanced and intuitive comprehension of motion.

In this paper, we present a novel human motion-language pre-training framework that incorpo-
rates lexical representation to extract aligned sparse representations, thereby improving the inter-
pretability of motion representations for better human motion understanding. Our method employs
a multi-phase training strategy consisting of four key phases: i) Lexical Bottlenecked Masked Lan-
guage Modeling (LexMLM), which enhances the pretrained language model’s focus on high-entropy
motion-related words for capturing the motion semantics; ii) Contrastive Masked Motion Modeling
(CMMM), which improves motion feature extraction by directly capturing spatial and temporal
dynamics from skeletal motion; iii) Lexical Bottlenecked Masked Motion Modeling (LexMMM),
which enables the motion model to identify the underlying semantic features of motion, facilitat-
ing improved cross-modal understanding; and iv) Lexical Contrastive Motion-Language Pretraining
(LexCMLP), which aligns motion and text representations within a unified vocabulary space to en-
hance cross-modal coherence. Through these training phases, our motion and language models
effectively prioritize critical motion information and lexicon, yielding aligned and semantically rich
sparse lexicon representations. Additionally, we conduct comprehensive visualization analyses of
both motion and text across various modalities and perspectives. Extensive experiments on pub-
licly available datasets demonstrate that our proposed method achieves state-of-the-art performance
across diverse tasks and scenarios.

Our contributions can be summarized as follows:

• We integrate the lexical representation paradigm into the motion-language representation
framework, aligning both motion and text within a shared lexical vocabulary space. This
integration significantly enhances interpretability and fosters a more intuitive and compre-
hensive understanding of human motion.

• We propose a novel pre-training framework that learns aligned and semantically rich sparse
lexical features for both motion and text, allowing the respective models to efficiently con-
centrate on key motion information and core vocabulary.
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• We utilize advanced visualization techniques, including feature visualization and word
clouds, to conduct thorough analyses of our method across motion, language, and cross-
modal dimensions, thereby showcasing its interpretability and effectiveness.

• Comprehensive evaluations on several public datasets reveal that our model achieves state-
of-the-art performance, affirming the efficacy of the proposed approach, while also show-
casing its robust versatility across a wide range of tasks and scenarios.

2 RELATED WORK

Human Motion Understanding. In the motion-language domain, human motion understanding
encompasses key tasks such as motion-text retrieval (Fujiwara et al., 2024b; Athanasiou et al., 2024;
Fujiwara et al., 2024a) and motion captioning. Motion-Text Retrieval focuses on retrieving rel-
evant motion data based on textual queries. A notable approach in this area is TMR (Petrovich
et al., 2023; Bensabath et al., 2024), which constructs a cross-modal embedding space (Yan et al.,
2024; 2021; Xu et al., 2024) through CLIP-style contrastive learning and negative filtering. Mo-
tionCLIP (Tevet et al., 2022a) further enhances this task by leveraging the image-text joint space.
MotionPatch (Yu et al., 2024) utilizes motion patches along with pre-trained ViT weights for ef-
fective motion-language modeling. Motion Captioning aims to generate descriptive captions for
human motions. TM2T (Guo et al., 2022b) encodes motion sequences and employs a translation
network to bridge the gap between motion and text tokens. MotionGPT (Jiang et al., 2024) treats
human motions as a foreign language, enabling descriptions through an expanded vocabulary.

Lexical Representation. Lexical representation is celebrated for its interpretability and efficiency,
making it a popular choice in information retrieval (Formal et al., 2021). This approach highlights
the importance of vocabulary in text representation and employs sparsity techniques and inverted
indexing systems to enhance retrieval speed and reduce latency. Unlike traditional methods such as
TF-IDF and BM25 (Robertson et al., 1995), which lack learning capabilities, neural-model-based
lexical weighting retrieval methods (Shen et al.) leverage language models for term-centric searches.
These methods fall into two main categories: those using causal language models (CLM)(Radford
et al., 2018; 2019; Brown et al., 2020; Nogueira et al., 2019; Touvron et al., 2023; Zhang et al., 2022)
and those based on masked language models (MLM)(Devlin, 2018; Liu, 2019; Sanh, 2019). How-
ever, a notable limitation is their tendency to fine-tune pre-trained language models directly, often
overlooking the mismatch between general language modeling and relevance-driven lexical weight-
ing (Luo et al., 2023; Zhou et al., 2024a; Chen et al., 2023). Moreover, the inherent semantic gap
between motion and text presents significant challenges in aligning them within a shared embedding
space. To address these challenges, we propose a novel multi-phase training framework specifically
designed for motion-language learning, supported by a comprehensive analysis of its effectiveness.

3 METHOD

The primary objective of our methodology is to achieve seamless alignment of motion and text
within a unified semantic space that captures the fundamental semantic features of motion, facil-
itating a comprehensive and in-depth understanding of motion. An illustration of our approach is
shown in Fig. 2. We will discuss the critical components of the model architecture in Section 3.1
and the multi-phase training method in Section 3.2.

3.1 MODEL ARCHITECTURE

Lexical Space. We utilize the word embedding space of pre-trained language models (PLMs)
space as our interpretable lexical space to encapsulate semantically meaningful relationships be-
tween motion and language, aligning seamlessly with human cognition. In contrast to conventional
techniques like TF-IDF and BM25 (Robertson et al., 1995), this approach leverages advanced natu-
ral language processing methodologies (Devlin, 2018; Radford et al., 2018), including pre-training
strategies and models developed on extensive language datasets, thereby significantly enhancing its
capacity to capture the nuanced semantic information inherent in real-world human motions.
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Figure 2: The framework of our method, including i) LexMLM, which enhances the language model’s focus
on high-entropy motion-related words; ii) CMMM, which captures spatial and temporal dynamics for robust
motion representation; iii) LexMMM, which enables the motion model to identify semantic features and im-
prove cross-modal understanding; and iv) LexCMLP, which aligns motion and text within a unified vocabulary
space, ensuring cross-modal coherence.

Text Encoder. We utilize a pre-trained language model (Devlin, 2018) as our text encoder to
effectively capture the semantic information from the input text. For an input motion caption of
length L, denoted as X = [x1, . . . , xL], the language model outputs text embedding with a shape of
RL×Ce , where Ce represents the dimensionality of the common embedding space.

Motion Encoder. In contrast to existing methods (Jiang et al., 2024; Petrovich et al., 2023) that
utilize specifically designed input formats and encoders for motion synthesis tasks Zhang et al.
(2023); Petrovich et al. (2022); Guo et al. (2024); Athanasiou et al. (2022) in motion captioning and
motion-text retrieval, our approach directly employs sequences of skeleton keypoints as inputs and
designs a transformer equipped with both spatial and temporal attention to enhance interpretability.
Formally, the input 3D motion sequence is represented as X ∈ RT×J×Cin , where T denotes the
number of frames, J indicates the number of joints, and Cin specifies the input feature dimensions.
We first project this sequence into a latent space F0 ∈ RT×J×Cf and integrate learnable spatial joint
position embeddings PS

pos ∈ R1×J×Cf along with temporal position embeddings PT
pos ∈ RT×1×Cf .

The features are fed into the transformer to extract spatiotemporal information. Following feature
extraction, a linear layer projects these features into the unified embedding space E ∈ RT×J×Ce .

Lexical Disentanglement Head. The lexical disentanglement head is crafted to transform dense
motion and text embeddings into sparse lexical representations. This process begins with the appli-
cation of a language model head (LM-Head) (Devlin, 2018) space, which converts the motion and
text from the embedding space into the lexicon space:

Elex = LM-Head(Eembed) ∈ R|V|, (1)

where |V| denotes the vocabulary size, Eembed denotes the motion or text embedding and Elex

encapsulates the lexical representations corresponding to the input embeddingsEembed.

Subsequently, we adopt a strategy inspired by the SPLADE model (Formal et al., 2021) to reframe
the data within a high-dimensional vocabulary framework:

p = log(1 + ReLU(MaxPool(Elex)) ∈ R|V|, (2)

where the ReLU activation ensures non-negativity of all values and provides sparsity, MaxPool(·)
conducts a maximum pooling operation along the sequence dimension and saturation function
log(1 + ·) is utilized to prevent some terms from dominating the overall representation.
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To further encourage sparsity, we follow (Paria et al., 2020) to introduce the FLOPs regularizer such
that only a small number of token embeddings in V are non-zeros:

RFLOPS =
∑
k∈V

(
1

N

N∑
i=1

p
(i)
k )2 (3)

Consequently, the resulting vector p serves as the sparse lexicon representation.

Lexical Bottleneck Masked Decoder. A key challenge in learning the lexicon-importance dis-
tribution lies in the absence of direct supervision. Moreover, PLMs (Devlin, 2018; Radford et al.,
2018; 2019) are typically designed to reconstruct the entire text, which does not inherently prioritize
motion-related key terms. To address this, we employ a Lexical Bottleneck Masked Decoder that
reconstructs the entire text using dense representations derived from the sparse lexical representa-
tions. This approach enables the encoder to selectively emphasize motion-relevant tokens rather
than treating all tokens with equal importance.

To facilitate this process, we propose a continuous bag-of-words (CBoW) (Shen et al.) derived from
the lexicon-importance distribution p. Specifically, we define the bottleneck as follows:

Ecbow = p · sg(W (te)) ∈ R|d| (4)

where W(te) = [e(w1), e(w2), . . .] ∈ R|V|×d is the learnable word embedding matrix from the lan-
guage model, with d indicating the embedding dim Ce and e(wi) ∈ Rd representing the word
embedding for lexicon wi, and sg(·) represents stop-gradient.

Finally, the bottleneck Ecbow is fed into a simple decoder to reconstruct the masked tokens.

3.2 MULTI-PHASE LEXICAL-BOTTLENECKED PRETRAINING

The primary objective of our model is to integrate motion and text within a unified semantic space,
accurately reflecting the intricate relationships between these modalities. However, significant chal-
lenges arise from the inherent differences between motion and language. Motion encoders often
struggle to translate motion into lexical representations, while pre-trained language models (De-
vlin, 2018; Radford et al., 2018; Achiam et al., 2023), designed for sentence reconstruction, do
not prioritize vocabulary relevant to motion. Additionally, relying solely on contrastive learning
for modality alignment does not guarantee semantic accuracy. To tackle these challenges and en-
sure meaningful semantic correspondences, we propose an approach that goes beyond traditional
contrastive learning. Our multi-phase pre-training strategy progressively aligns motion and text,
preserving the semantic structure and emphasizing the importance of motion-related vocabulary.

3.2.1 LEXICAL BOTTLENECKED MASKED LANGUAGE MODELING

Pre-trained language models, typically trained with Masked Language Modeling (Devlin, 2018) or
Next Token Prediction (Radford et al., 2018; 2019), focus on recovering words from context. Con-
sequently, they often assign higher scores to low-entropy words, such as articles and prepositions,
while neglecting high-entropy words crucial for distinguishing motion content. This highlights the
necessity for additional pre-training to adapt PLMs for more effective lexical representation.

To address this challenge, we propose Lexical Bottleneck Masked Language Modeling (LexMLM),
which consists of three key components: a Text Encoder, a Lexical Disentanglement Head, and a
Lexical Bottleneck Masked Decoder. Following standard practices, we pre-train the text encoder
using the MLM objective. Given a masked input x̄, where 30% of the tokens are replaced by
the [MASK] token, the text encoder generates embeddings and reconstructs the masked tokens.
These embeddings are then converted into a sparse, meaningful lexicon representation p by the
Lexical Disentanglement Head, with sparsity enforced through a FLOPs regularizer. To further
improve lexical representation and capture word importance without explicit labels, we propose the
Bottleneck Masked Decoder to reconstruct the heavily masked input x̂ using the learned lexicon
representation p. We enhance this process with curriculum-masked modeling, gradually increasing
the masking ratio from 50% to 100%. The whole LexMLM loss function is as follows:

LLexMLM = −λ1

∑
D

∑
j∈M(enc)

logP (oj = xj |x̄)−λ2

∑
D

∑
j∈M(dec)

logP (oj = xj |x̂;Ecbow)+λ3RFLOPS, (5)
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where D denotes the whole dataset, M(enc) and M(dec) denote the set of masked position in x̄ and x̂,
oj denotes the logit of xj , and xj refers to the original text token, the Ecbow is calculated as Eq.4.

3.2.2 CONTRASTIVE MASKED MOTION MODELING

In the motion-language domain, much of the existing research (Guo et al., 2022b; Petrovich et al.,
2023; Jiang et al., 2024) has focused on generation using handcrafted features, leaving a gap in the
development of motion encoders that can directly capture both the spatial and temporal dynamics
of skeletal motion for human motion understanding. To address this limitation, we propose a pre-
training strategy for our motion encoder based on contrastive masked motion modeling (CMMM).
In this approach, the motion sequence is processed through two parallel pathways: one with the full
sequence X , and the other with a randomly masked portion of the input Xm. Both pathways share
the same encoder weights, ensuring consistent feature extraction from both masked and unmasked
inputs. To align the representations, we employ an InfoNCE loss (Oord et al., 2018) from contrastive
learning, which encourages both pathways to produce similar embeddings, enhancing the encoder’s
ability to learn robust motion representations. Additionally, each pathway includes a simple decoder
head that reconstructs the embeddings back into the motion sequence, X̂ ∈ RT×J×Cin . This recon-
struction process ensures that the learned features retain sufficient information to accurately recover
the original sequence. By combining contrastive alignment with masked motion reconstruction, the
encoder learns to capture robust motion features. The overall CMMM loss consists of reconstruction
loss, velocity loss, and contrastive loss. The complete loss function is defined as:

LCMMM = λ1

T∑
t=1

J∑
j=1

∥ x̂t,j − xt,j ∥2 +λ2

T−1∑
t=1

J∑
j=1

∥ v̂t,j − vt,j ∥2 +λ3Linfo(em, ew), (6)

where the v̂ and v mean the velocity of x̂ and x,and em and ew are the embedding of x and xm.

3.2.3 LEXICAL BOTTLENECKED MASKED MOTION MODELING

Despite the effectiveness of CMMM in extracting spatial-temporal motion embeddings, significant
challenges persist in converting these embeddings into meaningful lexical representations. Unlike
the extraction of lexical representations from text, this task requires a complex cross-modal con-
version, where motion data must be translated into relevant textual representations. This process is
inherently difficult due to the need to capture the intricate relationships between the dynamics of
motion and the semantics of language, often resulting in the misalignment of representations.

To address this, we introduce Lexical Bottlenecked Masked Motion Modeling (LexMMM), com-
posed of a Motion Encoder, a Lexical Disentanglement Head, and a Lexical Bottleneck Masked
Decoder. The Motion Encoder extracts spatiotemporal motion embeddings, while the Lexical Dis-
entanglement Head converts them into a sparse lexical representation, with a FLOPs regularizer
applied to enforce sparsity. Similar to LexMLM, the Bottleneck Masked Decoder then reconstructs
the masked text X̂ input using the learned lexicon representation. We enhance the model with
curriculum-masked modeling, gradually increasing the mask ratio from 50% to 100%. At full mask-
ing, the process can be interpreted as a motion captioning task. The whole LexMMM loss function
is as follows:

LLexMMM = −λ1

∑
D

∑
j∈M(dec)

logP (oj = xj |x̂;Ecbow) + λ2RFLOPS, (7)

where D denotes the whole dataset, M(dec) denotes the set of masked position in x̂, oj denotes the
logit of xj , and xj refers to the original text token, the Ecbow is calculated as Eq.4.

3.2.4 LEXICAL CONTRASTIVE MOTION-LANGUAGE PRETRAINING

While the previous training stages effectively established a solid basis for generating semantic lex-
icon representations from both motion and text encoders, the independent tuning of these compo-
nents resulted in suboptimal parameter configurations, thereby constraining the in-depth alignment
between motion and text representations for comprehensive human motion understanding.

To achieve this, we introduce a novel cross-modal alignment strategy called Lexical Contrastive
Motion-Language Pretraining (LexCMLP). This method utilizes motion and text encoder to form
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Setting Methods Text to motion retrieval Motion to text retrieval
R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑ MedR ↓ R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑ MedR ↓

Dense

TEMOS 2.12 4.09 5.87 8.26 13.52 173.0 3.86 4.54 6.94 9.38 14.00 183.25
T2M 1.80 3.42 4.79 7.12 12.47 81.00 2.92 3.74 6.00 8.36 12.95 81.50
TMR 8.92 12.04 16.33 22.06 33.37 25.00 9.44 11.84 16.90 22.92 32.21 26.00
MotionPatch 10.80 14.98 20.00 26.72 38.02 19.00 11.25 13.86 19.98 26.86 37.40 20.50

Lexicon
† TMR 7.83 10.42 15.04 20.93 31.94 26.50 8.68 10.32 15.68 21.37 30.91 27.50
† MotionPatch 9.13 12.86 16.78 23.83 34.71 22.50 10.03 11.89 17.13 23.44 33.38 24.50
Ours 11.80 17.11 23.25 30.81 43.36 14.00 12.39 15.55 22.17 29.25 40.34 17.00

Table 1: Results on the motion-text retrieval benchmark on HumanML3D. The symbol † indicates that the
lexicon representation is used directly in place of the dense embedding.

Setting Methods Text to motion retrieval Motion to text retrieval
R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑ MedR ↓ R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑ MedR ↓

Dense

TEMOS 7.11 13.25 17.59 24.10 35.66 24.00 11.69 15.30 20.12 26.63 36.39 26.50
T2M 3.37 6.99 10.84 16.87 27.71 28.00 4.94 6.51 10.72 16.14 25.30 28.50
TMR 10.05 13.87 20.74 30.03 44.66 14.00 11.83 13.74 22.14 29.39 38.55 16.00
MotionPatch 14.02 21.08 28.91 34.10 50.00 10.50 13.61 17.26 27.54 33.33 44.77 13.00

Lexicon
† TMR 9.87 12.13 19.64 28.19 42.16 15.50 10.62 11.18 20.07 27.13 36.51 18.00
† MotionPatch 10.82 18.48 26.38 31.02 46.51 12.50 11.53 15.11 24.92 30.18 40.52 15.00
Ours 15.13 23.74 31.61 36.81 54.12 8.00 15.01 19.47 30.06 35.63 47.53 10.50

Table 2: Results on the motion-text retrieval benchmark on KIT-ML. The symbol † indicates that the lexicon
representation is used directly in place of the dense embedding.

contrastive pairs between sparse motion and caption lexicon representations. By applying a con-
trastive loss, we maximize the similarity between matching motion and text pairs while minimizing
it for non-matching pairs. Additionally, to prevent semantic alignment in irrelevant spaces, the Lex-
ical Bottleneck Masked Decoders from both LexMLM and LexMMM are retained as the lightly
weighted auxiliary losses L1

aux and L2
aux. This fine-tuning approach strengthens the alignment of

lexical representations across modalities, ensuring that the motion and text lexicons are effectively
synchronized within the shared vocabulary space. The whole LexCMLP loss function is as follows:

LLexMMM = λ1Linfo(pm, pt) + λ2RFLOPS + λ3L
1
aux + λ4L

2
aux, (8)

where pm and pt represent the lexical representations of motion and text.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. To validate the effectiveness of our sparse lexical representations, we conduct experi-
ments on two commonly used public datasets: the HumanML3D (Guo et al., 2022a) dataset and
the KIT Motion-Language dataset (Plappert et al., 2016). The HumanML3D dataset extends the
AMASS (Mahmood et al., 2019) and HumanAct12 (Guo et al., 2020) motion capture datasets by
adding natural language annotations, comprising 23,384 motions for training, 1,460 for validation,
and 4,380 for testing. The KIT-ML dataset is focused primarily on locomotion, derived from motion
capture data, 4,888 motions for training, 300 for validation, and 830 for testing.

Evaluation Metrics. We validate the representation alignment using the motion-text retrieval task
and assess the semantics through the motion captioning task. To evaluate the alignment performance,
we follow previous methods (Petrovich et al., 2023) and use standard metrics, including Recall
at various ranks (R@1, R@5, etc.), and the median rank (MedR) for both text-to-motion (t2m)
and motion-to-text (m2t) retrieval tasks. For evaluating semantic capability, we employ the same
linguistic metrics as previous works (Jiang et al., 2024) including BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), CIDEr (Vedantam et al., 2015), and BERTScore (Zhang et al., 2019).

Implementation Details. We utilize pretrained BERT (Devlin, 2018) as our text encoder and im-
plement a transformer (Vaswani et al., 2017) with spatial and temporal attention mechanisms for the

Methods HumanML3D KIT-ML
Bleu@1↑ Bleu@4↑ Rouge↑ Cider↑ Bert Score↑ Bleu@1↑ Bleu@4↑ Rouge↑ Cider↑ Bert Score↑

TM2T 48.9 7.00 38.1 16.8 32.2 35.1 6.2 28.7 28.9 30.4
MotionGPT 48.2 12.47 37.4 29.2 32.4 - - - - -

Ours 49.7 13.62 39.2 53.1 33.1 43.4 8.9 35.2 65.3 31.2
Table 3: Results on motion-to-text captioning benchmarks on HumanML3D and KIT-ML.
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Figure 3: The PCA visualization of the spatiotemporal features extracted by our motion encoder.

motion encoder. Our experiments employ the Adam optimizer (Kingma & Ba, 2014), with learning
rates set to 10−5 for the text encoder, 10−4 for the motion encoder, and 10−3 for the Lexical Dis-
entanglement Head and Lexical Bottleneck Masked Decoder. During the LexMLM phase, we train
with a batch size of 128 for 50 epochs. In the CMMM phase, we use a batch size of 64 and train for
200 epochs. For the LexMMM phase, we freeze the lexical space and fine-tune the motion encoder
to align with the language domain, using a batch size of 64 for 150 epochs. Finally, in the LexCMLP
phase, we use a batch size of 64 and train for 20 epochs at a learning rate of 10−5.

4.2 EXPERIMENTAL RESULTS

Motion-Text Retrieval Results. To evaluate the alignment between our text and motion lexical
representations, we conduct motion-text retrieval benchmarks on the HumanML3D and KIT-ML
datasets. We compare our proposed method with previous works, including TEMOS (Petrovich
et al., 2022), T2M (Guo et al., 2022a), TMR (Petrovich et al., 2023), and MotionPatch (Yu et al.,
2024). Additionally, we implement modified versions of TMR and MotionPatch by substituting their
dense embeddings with lexicon representations. All evaluation metrics are consistent with those
used in (Yu et al., 2024) to ensure a fair comparison. As illustrated in Tables 1 and 2, simply re-
placing dense embeddings with lexicon representations results in inferior performance, particularly
for MotionPatch, indicating a significant loss of effectiveness from the pre-trained ViT (Dosovitskiy
et al., 2020). In contrast, our method consistently outperforms existing approaches across all metrics
in both datasets, demonstrating the effectiveness of our lexical representations and methods.
Motion Captioning Results. To evaluate the semantic capturing ability of our model, we con-
duct motion captioning benchmarks on the HumanML3D and KIT-ML datasets. We compare our
approach with recent methods, including TM2T (Guo et al., 2022b) and MotionGPT (Jiang et al.,
2024). As illustrated in Table 3, our method outperforms these contemporary techniques in generat-
ing text descriptions for specified motions. Notably, it excels in the CIDEr metric, which measures
the model’s effectiveness in capturing key information.

4.3 ABLATION STUDIES

Method R@1 R@5 Cider
Baseline 7.32 24.73 0.2
+ LexMLM 8.82 26.17 0.8
+ CMMM 12.98 32.73 0.9
+ LexMMM 14.51 35.68 61.8
+ LexCMLP 15.07 36.22 65.3

Table 4: Ablation experiments on different
pre-training phases.

Ablation Studies on Multi-phase Training. We con-
ducted ablation studies on the KIT-ML to evaluate the
effectiveness of our multi-phase pertaining approach.
We implemented a CLIP-style baseline similar to prior
works (Petrovich et al., 2023), incorporating a motion en-
coder, a text encoder, and contrastive loss. Additionally,
we replaced the motion decoder with language decoder
for motion captioning. We progressively introduced dif-
ferent training phases to elucidate their contributions. The
results reveal that the pre-training phases, CMMM and LexMLM, significantly enhance motion-text
retrieval performance by improving the capabilities of both encoders. The LexMMM phase, which
enriches the cross-modal understanding of the motion encoder, leads to notable gains in motion cap-
tioning metrics. The final alignment phase further elevates overall model performance. Detailed
tuning for each phase is provided in the appendix.
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(a) Lexicon Visualization (b) Word Weight Distribution 

Figure 5: (a)Visualization of lexical representations of input motion and caption, and (b) the distri-
bution of high-importance words extracted by the original BERT and ours.
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Figure 4: Results on KIT-ML dataset over
different sparsity.

Ablation Studies on Sparsity. Top-K Sparsify-
ing (Shen et al.; Formal et al., 2021) adjusts the sparsity
of lexicon-weighted representations, striking a balance
between efficiency and effectiveness by retaining only
the top-k weighted lexicons while setting others to zero.
Applied exclusively during inference, this method intro-
duces no additional training overhead. Fig. 4 illustrates
the storage and retrieval performance across different
sparsity levels on the KIT-ML dataset, where our model
demonstrates superior storage efficiency and retrieval
performance compared to previous approaches.

4.4 INTERPRETABLE QUALITATIVE ANALYSIS

Lexical Representation Visualization. We visualize the lexical representations of motion and
text in Fig.5(a) using wordcloud(Oesper et al., 2011), where larger words represent higher lexical
values. These visualizations show that the learned lexical representations align well with the motion
semantics such as “monkey”, “kick”, “flail” and “dance waltz”, highlighting the effectiveness of
our method. Furthermore, the model accurately associates relevant words beyond those found in
brief captions. For example, when inputting the “dance waltz” motion, our model learns classic
movements like “hold” and related terms such as “partner”, “ballroom” and “box step”, reflecting
its ability to efficiently explain the input motion by capturing comprehensive and contextually rich
lexical information from both motion and text.

Motion Features PCA Visualization. We present the results of the principal component analysis
(PCA) conducted on the motion spatial-temporal features extracted by our model. In this visual-
ization, darker colors indicate stronger weights allocated by the model. As shown in Fig. 3, for the
continuous local action “wave right hand”, our model accurately maintains its focus on the right
elbow and wrist. The subsequent frames are filled with blank spaces. In contrast, for the repetitive
full-body motions “sit down” and “stand up”, our model effectively captures this repetitive pattern
and continuously attends to body parts such as the knee, ankle, and foot to a certain extent. This
effective identification of relevant joints and dynamic emphasis aligns well with motion semantics,
demonstrating that our model accurately extracts semantically relevant spatial-temporal motion fea-
tures. Additional intuitive video demonstrations are provided in the supplementary materials.

Word Weight Distribution Visualization. Fig. 5(b) illustrates the frequency statistics of signif-
icant vocabulary before and after pre-training. Our text model demonstrates a stronger emphasis
on motion-related vocabulary and relevant adjectives. In contrast, the original BERT (Devlin, 2018)
tends to focus on low-entropy words such as “the”, “of” and “a”. The presence of terms like “person”
and “man” highlights inconsistencies in motion caption styles within the dataset, including varia-
tions like “a person action”, “the man action”, “a figure action” and simply “action”. As a result, the
model also fixates on unnecessary details, such as punctuation variations in some sentences. Fur-
thermore, the frequency distribution reveals imbalances, notably the significant disparity between
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“left” and “right”. These underscore potential quality issues in the dataset and provide insights for
future analysis and improvements of the dataset and methods.

5 CONCLUSION

In this paper, we introduce the lexical representation paradigm to the motion-language domain, map-
ping motions and texts into a shared vocabulary space. We propose a novel multi-phase pre-training
framework that efficiently learns aligned, semantically correct sparse lexicon representation for both
modalities, which significantly enhances interpretability and depth in human motion understanding.
Comprehensive analyses and extensive experiments on multiple public datasets, demonstrate that
our model achieves state-of-the-art performance across various tasks and scenarios.
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Moton & Caption Moton & CaptionWord Cloud

a man squats 
extraordinarily low 

then bolts up in 
an unsatisfactory 

jump.

a man full-body 
sideways jumps 

to his left.

Word Cloud

a man is pretending 
to be a chicken. 

constantly pecking at 
the ground and 

waving his arms like a 
chicken.

a person does a 
full golf swing.

Figure 6: Visualization of lexical representations of input motion and caption.

A MORE RESULTS

A.1 LEXICAL REPRESENTATION VISUALIZATION

We visualize the lexical representations of motion and text in Fig.6 using wordcloud, where larger
words represent higher lexical values. These visualizations show that the learned lexical repre-
sentations align well with the motion semantics such as “chicken”, “jump”, “swing” and “wave”,
highlighting the effectiveness of our method. Furthermore, the model accurately associates rele-
vant words beyond those found in brief captions, reflecting its ability to efficiently explain the input
motion by capturing comprehensive and rich lexical information from both motion and text.

A.2 MOTION FEATURES PCA VISUALIZATION

We present the results of the principal component analysis (PCA) conducted on the motion spatial-
temporal features extracted by our model in Fig.7. In this visualization, darker colors indicate
stronger weights allocated by the model. Our model is able to focus on the correct body parts
and track the motion changes along the temporal dimension. This effective identification of relevant
joints and dynamic emphasis aligns well with the motion semantics, demonstrating that our model
accurately captures semantically relevant spatial-temporal motion features.

A.3 THE RESULTS OF TEXT TO MOTION RETRIEVAL

We present the results of text-to-motion retrieval in Fig.9. Our method effectively identifies key-
words such as “monkey” and “scratch” retrieving results that are more closely aligned with the
target motion. Although TMR and MotionPatches retrieve similar actions, the motions still exhibit
noticeable differences compared to the “monkey” actions. In Fig.10, we further illustrate the results
of retrieval using multiple keywords, which may better reflect typical search practices. Our method
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Figure 7: The PCA visualization of the spatiotemporal features extracted by our motion encoder.

ensures that the retrieved motions are simultaneously related to both “run” and “jump” while ex-
isting methods tend to miss one of the keywords. These results demonstrate the effectiveness of
our approach, especially in handling keyword-based retrieval. In addition, our model also supports
non-parametric indexing, that is, without using a text encoder, the weight of the keyword is directly
set to 1. It can also be combined with techniques such as sparse storage and inverted indexing to
further improve the efficiency and effectiveness of retrieval.

A.4 THE RESULTS OF MOTION CAPTIONING

We present the results of motion captioning in Fig.8. The captions generated by our method exhibit
greater distinction, capturing more detailed and relevant keywords. For instance, in the dataset,
swimming is a common action, but our approach effectively identifies specific details like “butterfly
stroke” and “standing”. Similarly, for waltz, in addition to the general term, our method highlights
unique movements such as the “box step”. This showcases the model’s ability to capture critical
information, further demonstrating the effectiveness of our approach.
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Input Motions

GT: a person does a swimming motion while 
standing. a man does a box step waltz backwards

TM2T: a person is stretch their arm and then 
stretch their arm a person is dance the waltz

MotionGPT: the person is doing arm exercises. a person is doing the waltz dance

Ours: a person does a swimming exercise 
while standing. a man dances a box step waltz backwards

Input Motions

GT:

the person is preforming a swimming 
stroke know as the butterfly stroke.  the 
arms swing from behind the head and 
reenter the water propelling the person 
forward.

a man side-skips from left to right repeatedly

TM2T: a person is swim in place a person walk sideways to the left and then to 
the right

MotionGPT: the man swims the breast stroke. a man sideskip from left to right 

Ours: the person swims the butterfly stroke. a man side-skips from left to right repeatedly

Figure 8: The motion captioning results. The red words highlight the keywords.

person scratches head and armpit like a monkey then pretends to hold a babyInput Text

(a) Ours

Rank #1

person scratches 
head and armpit 
like a monkey 

then pretends to 
hold a baby

Rank #2 Rank #3

person is acting 
like a human 

monkey.

a man is standing 
with feet wide apart 

and arms out 
swinging/swaying 
different motions 

acting like a monkey.

(b) MotionPatch

Rank #1

person is acting 
like a human 

monkey.

Rank #2 Rank #3

a person acting 
like a tiger

someone doing 
the chicken 

dance

(c) TMR

Rank #1
the figure curls its arms 
outwards from its chest, 
it lowers its arms in the 

motion towards its 
groin and then raises 
them upwards at head 

level.

Rank #2 Rank #3

moving hands 
in a random 

pattern.

a person raises both 
hands to chest level out 
in front of them makes 
a swatting motion with 

right hand for five 
seconds and then a 

single swatting motion 
with their right.

Figure 9: The text to motion retrieval results. The red box means the right sample.
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Rank #1
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their arms up to 
their chest level.

Rank #4
person appears 
to be running in 
straight line then 

jumps over 
something and 

continues running.

Rank #5 Rank #6
a person runs 
forward and 
jumps over 

something, then 
turns around and 
jumps back over it.

a person steps 
backward, 

jumps up, runs 
forward, then 

runs backward.

(c) TMR

Rank #1

a person runs 
down to our left, 

stops for a 
second, then 

continues to run.

Rank #2 Rank #3
person appears 
to be running in 
straight line then 

jumps over 
something and 

continues running.

a person runs 
forward with one 
leg crossing in 

front of the other 
repetitively before 
coming to a stop.

Figure 10: The keywords to motion retrieval results.

B DETAILED ABLATION STUDIES

B.1 LEXICAL BOTTLENECKED MASKED LANGUAGE MODELING

λ1 λ2 λ3 R@1 R@5 Cider
1 0 1e-4 7.91 24.87 0.2
0 1 1e-4 7.62 24.79 0.2
1 1 1e-4 8.13 25.31 0.4

0.1 1 1e-4 8.37 25.81 0.5
0.1 1 1e-5 8.31 25.66 0.5

Table 5: Ablation experiments of the hyper-
parameters of LexMLM on KIT-ML.

As shown in Table 5, we conducted ablation experi-
ments on the hyperparameters of LexMLM loss us-
ing the KIT-ML dataset. The results highlight the
importance of MLM pretraining for the text encoder
and the significance of pretraining the Lexical Bot-
tleneck Masked Decoder. Furthermore, assigning a
larger weight to λ2 improves performance, demon-
strating that lexical bottlenecked masked modeling
is more effective for extracting key terms. Overall,
the ablation study illustrates the effectiveness of the
different components in LexMLM.

M(enc) M(dec) R@1 R@5 Cider
15% 15% 8.31 25.66 0.5
15% 30% 8.35 25.71 0.5
30% 30% 8.42 25.79 0.5
30% 50% 8.55 25.88 0.6
50% 50% 8.31 25.69 0.6
30% 70% 8.73 25.95 0.7
30% 100% 8.38 25.76 0.5
30% 50-100% 8.82 26.17 0.8

Table 6: Ablation experiments of the mask
proportion of LexMLM on KIT-ML.

As shown in Table 6, we conducted ablation ex-
periments on different mask ratios of the LexMLM
loss using the KIT-ML dataset. Increasing the mask
ratio in the encoder yields better results, while a
higher mask ratio in the decoder further improves
performance. This reflects the strength of both stan-
dard Masked Language Modeling and our Lexical
Bottleneck Masked Language Modeling approach.
However, directly setting the mask ratio to 100%
harms the model’s effectiveness. To address this, we
adopted a curriculum learning strategy, gradually in-
creasing the mask ratio from 50% to 100%. These
results demonstrate the impact of varying mask ra-
tios and the effectiveness of our method.

B.2 CONTRASTIVE MASKED MOTION MODELING
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mask λ3 R@1 R@5 Cider
0% 0 10.86 29.17 0.8
15% 0 11.48 29.93 0.8
30% 0 11.73 30.53 0.8
50% 0 11.97 31.02 0.8
60% 0 11.86 30.83 0.8
70% 0 11.81 30.81 0.8
50% 1 12.62 32.03 0.9
50% 0.1 12.98 32.73 0.9
50% 0.01 12.58 32.26 0.9

Table 7: Ablation experiments of CMMM on KIT-
ML.

As shown in Table 7, we conducted ablation
experiments on different mask ratios and the
weights of the contrastive loss in CMMM us-
ing the KIT-ML dataset. For the reconstruction
loss, we used both MSE loss and velocity loss,
each with a weight of 1. Our primary focus is
on demonstrating the impact of different mask
ratios and contrastive loss weights. The results
indicate that increasing the mask ratio appropri-
ately improves performance. Moreover, incor-
porating the contrastive loss further enhances
the retrieval capability of the model. These ab-
lation studies highlight the effectiveness of both masked motion modeling and contrastive motion
modeling, validating the overall performance of CMMM. of both masked motion modeling and
contrastive motion modeling, validating the overall performance of CMMM.

B.3 LEXICAL BOTTLENECKED MASKED MOTION MODELING

M(dec) R@1 R@5 Cider
15% 13.85 34.71 49.5
30% 14.02 35.13 54.7
40% 14.36 35.39 57.3
50% 14.27 35.31 57.9
60% 14.12 35.15 57.1
70% 13.92 34.95 56.8

100% 13.57 34.12 51.9
40-100% 14.51 35.68 61.8

Table 8: Ablation experiments of the mask
proportion of LexMMM on KIT-ML.

As shown in Table 8, we conducted ablation exper-
iments on different mask ratios in LexMMM us-
ing the KIT-ML dataset. Increasing the mask ra-
tio appropriately enhances the model’s capability.
We also applied curriculum learning, gradually rais-
ing the mask ratio from 40% to 100%. Through
cross-modal pretraining with LexMMM, our method
significantly improves the model’s semantic under-
standing, helping it extract the correct keywords.
This leads to improved retrieval performance. Over-
all, the experiments demonstrate the effectiveness of
our LexMMM pretraining, particularly in enhancing
semantic understanding.

B.4 LEXICAL CONTRASTIVE MOTION-LANGUAGE PRETRAINING

λ1 λ2 λ3 λ4 R@1 R@5 Cider
1 1e-4 1e-2 0 14.62 35.79 62.4
1 1e-4 0 1e-2 14.82 35.96 63.7
1 1e-4 1e-2 1e-2 15.07 36.22 65.3
1 1e-4 1e-3 1e-3 15.01 36.13 65.1

Table 9: Ablation experiments of the hyperparam-
eters of LexCMLP on KIT-ML.

As shown in Table 9, we conducted ablation ex-
periments on different hyperparameters in Lex-
CMLP using the KIT-ML dataset. A smaller
weight was assigned to preserve the MLM loss
obtained from the Lexical Bottleneck Masked
Decoder, forcing the model to output accurate
semantic information, which enhances its un-
derstanding and representational capacity. The
experimental results demonstrate that our Lex-
CMLP further improves the alignment of lexical representations and the model’s ability to accurately
grasp semantic information, proving the effectiveness of our method.
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Text Encoder Parameters Text to motion retrieval Motion to text retrieval
R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑ MedR ↓ R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑ MedR ↓

T5-Small 80M 4.40 7.14 10.02 14.19 21.25 60.00 5.66 6.66 9.88 13.85 19.79 68.00
T5-Base 250M 4.95 7.62 10.31 14.81 23.62 46.00 5.59 6.98 10.59 14.49 20.99 54.00
T5-Large 780M 5.82 8.72 11.66 16.93 26.27 37.00 6.69 8.33 12.16 16.70 23.53 45.00
T5-XL 3B 7.39 11.00 14.65 20.65 31.29 28.00 7.94 10.06 15.08 19.88 29.05 33.00

T5-XXL 11B 8.41 12.82 15.96 23.67 34.42 24.00 8.97 11.49 16.69 22.63 32.16 28.00
DistilBERT 66M 10.80 14.98 20.00 26.72 38.02 19.00 11.25 13.86 19.98 26.86 37.40 20.50

Table 10: Ablation Study of the Motivation on the Motion-Text Retrieval Benchmark Using the
HumanML3D Dataset. While performance improves with the increasing size of T5 models, the
largest T5-XXL still underperforms compared to the smaller DistilBERT.

C MORE TABLES AND FIGURES

C.1 MORE ABLATION STUDIES ABOUT THE MOTIVATION

To further clarify the motivation behind our method, we conducted an ablation study on the the exist-
ing state-of-the-art approach, MotionPatch Yu et al. (2024), using a series of text encoders of varying
model sizes, ranging from T5-Small to T5-XXL Chung et al. (2024); Raffel et al. (2020). The exper-
imental results are summarized in Table 10. It is evident that increasing the model size of T5 leads
to improved performance. However, despite its significantly larger size, the performance of the T5
model remains substantially inferior to that of the original text encoder, DistilBERT Sanh (2019).
This indicates that employing a more powerful text encoder does not necessarily enhance the align-
ment of semantic keywords critical for human understanding. These observations are supported by
prior studies. For example, in the ablation study of MotionPatch Yu et al. (2024), a more advanced
text encoder failed to deliver improved representational performance. Similarly, TMR Petrovich
et al. (2023) advised the use of DistilBERT instead of the larger CLIP series text encoders. Ad-
ditionally, TMR++ Bensabath et al. (2024) analyzed text annotations across various datasets (Hu-
manML3D, KIT-ML, Babel) and demonstrated that while text augmentations can partially bridge the
domain gap, significant differences persist between datasets. Hence, simply adopting a more power-
ful text encoder does not address the core issue identified in our study. A deeper and more nuanced
understanding of the correlation between textual descriptions and motion is required. Consequently,
the design of a lexical representation in our paper is both necessary and justified.

C.2 EXTENSION TO TEXT-TO-MOTION GENRATION TASK

Our method can be seamlessly integrated into text-to-motion (T2M) generation tasks. Currently,
by simply replacing the text encoder in existing methods with our proposed text encoder to ex-
tract a more refined and sparse lexical representation, we observe consistent performance improve-
ments across various generative architectures. Comparative experiments were conducted on mul-
tiple frameworks, including VAE-based methods (e.g., T2M Guo et al. (2022a)), diffusion-based
approaches (e.g., MDM Tevet et al. (2022b)), autoregressive models (e.g., T2M-GPT Zhang et al.
(2023)), and non-autoregressive models (e.g., MoMask Guo et al. (2024)). The results, summa-
rized in Table 11, show notable gains, particularly in metrics evaluating motion-text alignment, such
as R-precision (Top-1, Top-2, Top-3 accuracy) and Multimodal Distance (MM-Dist). These im-
provements are primarily attributed to two factors: (1) CLIP-based text encoders, pre-trained on
image-text datasets, do not sufficiently focus on motion-related content, and (2) these encoders fail
to capture temporal information during the text-image pretraining process. In contrast, our text
encoder is specifically designed to identify motion-relevant keywords during pretraining and align
them with a motion encoder that captures spatiotemporal motion information, leading to enhanced
performance in T2M tasks. This aligns with recent observations in specialized T2M studies, such as
HumanTomato Lu et al. and LGTM Sun et al. (2024), which highlight similar limitations of original
CLIP text encoders. However, the majority of mainstream T2M research still emphasizes improving
generation paradigms to achieve better results.

As shown in Fig. 11, when multiple actions are present in a sentence, the original MoMask often
overlooks some actions, resulting in poor performance. This improvement arises because the pre-
trained CLIP-text encoder does not prioritize motion-related information, and the lack of temporal
information in images makes it less sensitive to the sequential nature of actions. In contrast, ours
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Paradigms Methods FID ↓ Top1 ↑ Top2 ↑ Top3 ↑ MM-Dist ↓

VAE T2M 1.087±.021 0.455±.003 0.636±.003 0.736±.002 3.347±.008

T2M§ 0.942±.009 0.472±.004 0.653±.002 0.748±.003 3.104±.006

Diffusion MDM 0.544±.044 0.320±.005 0.498±.004 0.611±.007 5.566±.027

MDM§ 0.524±.036 0.357±.004 0.536±.003 0.643±.005 5.212±.021

AR T2M-GPT 0.141±.005 0.492±.003 0.679±.002 0.775±.002 3.121±.009

T2M-GPT§ 0.133±.005 0.506±.004 0.684±.003 0.781±.004 3.002±.006

NAR
MoMask 0.045±.002 0.521±.002 0.713±.002 0.807±.002 2.958±.008

MoMask§ 0.041±.002 0.532±.002 0.721±.003 0.814±.002 2.852±.008

VAE T2M 3.022±.107 0.361±.005 0.559±.007 0.681±.007 3.488±.028

T2M§ 2.836±.062 0.372±.004 0.574±.004 0.695±.005 3.235±.016

Diffusion MDM 0.497±.021 0.164±.004 0.291±.004 0.396±.004 9.191±.022

MDM§ 0.482±.009 0.214±.005 0.319±.004 0.418±.005 8.682±.014

AR T2M-GPT 0.514±.029 0.416±.006 0.627±.006 0.745±.006 3.007±.023

T2M-GPT§ 0.502±.016 0.423±.005 0.641±.006 0.752±.006 2.927±.015

NAR MoMask 0.204±.011 0.433±.007 0.656±.005 0.781±.005 2.779±.022

MoMask§ 0.186±.009 0.441±.006 0.668±.004 0.792±.005 2.693±.013

Table 11: Evaluation on the Text-to-Motion Generation Benchmarks: HumanML3D dataset (upper
section) and KIT-ML dataset (lower section). The symbol § indicates that our text encoder is used
to replace their original CLIP-text encoder.

text encoder focuses more on motion keywords, capturing multiple key movements and temporal in-
formation, yielding better results. Similarly, the importance of effective conditional encoders is be-
ing increasingly recognized in other domains, such as text-to-image generation and music-to-dance
synthesis. In summary, simply replacing the original encoder with our method yields measurable
performance improvements. This is an initial attempt. The motion-text field is rapidly evolving, with
numerous related tasks emerging, such as Text to Human-Object Interaction(HOI) Motion Genera-
tion Xu et al. (2023), Text to Human-Scene Interaction (HSI) Motion Generation Cen et al. (2024),
Text to Human-Human Interaction (HHI) Motion Generation Liang et al. (2024), and scenarios in-
volving multiple people, controllable actions, long sequences, and variations in skeletal structures.
These areas demonstrate significant potential. We aim to explore its application to a broader range
of human motion-related tasks in the future.

C.3 COMPLEXITY ANALYSIS OF THE MODEL

Computational Consumption of Model Training. We compare the training time of different mod-
els on the HumanML3D dataset using a single A6000 GPU and report the results in Table 12.
During the training process, TM2T, MotionGPT, and our proposed method all require pretraining
the motion encoder, which involves higher computational costs. Notably, our method (4̃0 hours)
is significantly faster than TM2T (4 days) and MotionGPT (over 4 days). This demonstrates that
while our multi-phase training strategy introduces additional steps compared to simpler methods,
it remains computationally efficient relative to many existing motion-language approaches. In con-
trast, methods like TMR and MotionPatch leverage a pre-trained motion encoder and only train the
alignment phase, resulting in reduced computational demands. To ensure a fair comparison, we re-
placed the dense heads in these methods with our Lexical Disentanglement Head, denoting them as
†TMR and †MotionPatch, respectively. Our evaluation shows that the computational costs of †TMR
and †MotionPatch remain nearly identical to the original TMR and MotionPatch implementations.
While we attempted to utilize a pre-trained motion encoder in our method to reduce computational
demands, this configuration resulted in significantly degraded performance. Therefore, future work
will focus on fine-tuning the pre-trained motion encoder with our Lexical Disentanglement Head.
This approach has the potential to effectively balance computational efficiency and performance.

Inference Efficiency. It is also important to note that in practical text-to-motion retrieval scenar-
ios, motion features are pre-extracted and stored, meaning retrieval efficiency primarily depends on
the text encoder. As shown in Fig. 4, our method supports sparsification techniques that reduce
feature dimensions, improving computational efficiency during retrieval. Additionally, as demon-
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strated in Fig. 10, our model supports keyword-based searches by directly activating specific feature
dimensions with weights set to 1, thereby eliminating the need for a text encoder during retrieval.
This capability significantly improves efficiency for targeted queries. When combined with rapid
search techniques such as inverted indexing, our approach offers substantial potential for optimizing
retrieval speed and scalability.

Methods Training Epoch Training Time
T2M 300 + 270 + 300 + 50 ∼ 3 days
TMR 500 ∼ 20 minutes

MotionPatch 50 ∼ 30 minutes
† TMR 500 ∼ 20 minutes

† MotionPatch 50 ∼ 30 minutes
TM2T 300 + 300 ∼ 4 days

MotionGPT 3000 ≫ 4 days
Ours 50 + 200 + 150 + 20 ∼ 40 hours

Table 12: Comparison of Training Epochs and Time on Motion-to-Text Captioning Benchmarks for
HumanML3D. The symbol † indicates that the lexicon representation is directly used instead of a
dense embedding. “≫ 4 days” signifies that the training time for MotionGPT greatly exceeds 4
days.

C.4 ROBUSTNESS AND EFFECTIVENESS ANALYSIS OF THE LEARNED REPRESENTATION

We conducted two experiments on HumanML3D Guo et al. (2022a) and Motion-X Lin et al. (2024)
to evaluate the robustness and effectiveness of the learned lexical representations. Since Motion-X
includes data overlapping with HumanML3D, we removed the overlapping content to ensure a fair
assessment of generalization.

Small Dataset Training, Large Dataset Testing. We trained our model on the smaller Hu-
manML3D dataset and tested it on the larger Motion-X dataset. As shown in Table 14, our method
outperforms existing approaches such as TMR and MotionPatch. Motion-X features more diverse
scenarios, longer text descriptions, and richer semantics, which present challenges for methods like
TMR and MotionPatch that rely on dense embeddings of global features. In contrast, our lexical
representation captures keyword-level importance, allowing it to generalize better across diverse
data.

Large Dataset Training, Small Dataset Testing. We trained our model on the larger Motion-
X dataset and tested it on the smaller HumanML3D dataset. As shown in Table 13, all methods
performed better than in the first experiment, underscoring the value of larger datasets. Importantly,
our method continued to outperform others, further demonstrating its robustness and effectiveness.

However, unlike the image domain, where data is relatively easy to obtain, the human motion do-
main faces significant challenges in acquiring motion data. High-quality datasets primarily rely on
motion capture (MoCap) systems. Datasets like KIT-ML and HumanML3D are among the largest
and highest-quality MoCap datasets currently available. There are also datasets, such as Motion-
X, that use algorithms to automatically extract human motion from videos. While this approach
significantly expands dataset size, it often suffers from issues like jitter and anomalies. With fu-
ture advancements in related technologies, it may become easier to extract more accurate human
motion data from videos, enabling rapid dataset expansion. In addition, the quality of motion cap-
tions requires further improvement. As shown in Fig. 5(b), the distribution of keywords in datasets
is imbalanced, and many descriptions are overly simplistic, failing to highlight meaningful differ-
ences. Phrases like “a person action” are common, resulting in significantly higher text similarity
compared to other domains (e.g., as noted in TMR). While some datasets now include fine-grained
annotations, many rely on AI-generated descriptions, such as those created by ChatGPT-like models,
raising concerns about quality and consistency. Therefore, it is also necessary to deepen our under-
standing of human motion to improve dataset quality. Overall, constructing larger and higher-quality
datasets remains a critical direction. We hope that our interpretable sparse lexical representations
can enhance our understanding of motion, facilitating the creation of more accurate and detailed text
annotations. This would improve the quality of datasets and advance human motion understanding
and generation tasks.
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Methods Text to motion retrieval Motion to text retrieval
R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑ MedR ↓ R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑ MedR ↓

TMR 0.06 0.11 0.24 0.39 0.51 829.00 0.08 0.16 0.21 0.37 0.56 861.50
MotionPatch 0.12 0.28 0.49 0.78 0.96 768.00 0.14 0.29 0.48 0.82 0.98 781.00
Ours 0.24 0.46 0.82 0.98 1.24 503.00 0.26 0.48 0.86 1.02 1.43 516.00

Table 13: Zero-Shot Text-to-Motion Retrieval Results. Methods are trained on HumanML3D and
tested on Motion-X.

Methods Text to motion retrieval Motion to text retrieval
R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑ MedR ↓ R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑ MedR ↓

TMR 1.62 2.58 3.74 5.71 7.12 213.00 1.81 2.68 3.86 5.82 7.43 224.50
MotionPatch 1.86 2.78 3.92 5.87 7.96 201.00 1.92 2.84 4.12 6.03 7.64 208.50
Ours 2.76 3.82 5.13 7.42 8.76 182.00 2.83 3.96 5.28 7.89 8.98 186.00

Table 14: Zero-Shot Text-to-Motion Retrieval Results. Methods are trained on Motion-X and tested
on HumanML3D.

Caption Origin MoMask

a man stands up, 
walks clock-wise 

in a circle, then sits 
back down.

MoMask(Ours)

a person walks 
forward and jumps 
over an object, then 
turns around to jump 
over it again and walk 

back.

Figure 11: The Text to Motion Generation Results. Our text encoder replaces the original CLIP-text
encoder in MoMask. When multiple actions are present in a sentence, the original MoMask often
overlooks some actions, resulting in poor performance. This improvement arises because the pre-
trained CLIP-text encoder does not prioritize motion-related information, and the lack of temporal
information in images makes it less sensitive to the sequential nature of actions. In contrast, ours
text encoder focuses more on motion keywords, capturing multiple key movements and temporal
information, yielding better results.
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D MORE DISCUSSIONS

From the perspective of socio-cognitive terminology, our research provides a new unit of under-
standing for human motion. From the viewpoint of the semantic triangle model and socio-cognitive
terminology, we establish a strong connection between human motion and language. The semantic
triangle model underscores the relationship between the mind, language, and the world, highlighting
how symbols (language) mediate our understanding of the world and influence our cognitive pro-
cesses. Socio-cognitive terminology further emphasizes how language reflects human cognition and
social interaction. In our approach, language is not merely a tool for describing actions but serves as
a key to linking natural language vocabulary with the features and patterns of motion. This enables
language to act as a mediator, enriching our understanding and generation of human motion. Our
work offers a fresh perspective on the interplay between motion and language, providing a solid
foundation for future human motion understanding and generation.

D.1 DOES THE PROPOSED ALIGNMENT PARADIGM GENERATE UNEVEN SEMANTIC DENSITY
WITHIN THE JOINT FEATURE SPACE?

The proposed alignment paradigm does indeed reflect a certain degree of uneven semantic density
within the joint feature space, primarily due to the inherent imbalance in the motion and language
data.

From the perspective of socio-cognitive terminology, this uneven distribution can be seen as a re-
sult of the varying informational density across different lexical items, as seen in polysemy and
metaphorical extensions. The lexicon in the dataset carries different levels of semantic richness,
with words often being overloaded due to their metaphorical or contextual usage across a range of
motion scenarios. For example, terms like “transition,” which occur frequently, carry a higher se-
mantic density, whereas more specific actions, such as “lick,” appear less frequently and thus exhibit
lower semantic density.

From an AI perspective, the semantic imbalance reflects the inherent challenges posed by the
dataset’s structure. Datasets like HumanML3D and KIT-ML utilize full-sentence annotations, which
obscure the underlying imbalance in the semantic distribution. A clearer example can be found in
the Babel Punnakkal et al. (2021) dataset, which, like HumanML3D, uses motion data from AMASS
but annotates the motions using action classes rather than full sentences. Because Babel relies on
action class annotations, it offers a more intuitive view of the distributional imbalances in the data.
Babel’s action classes exhibit a clear long-tailed distribution, with the most frequent action, “tran-
sition,” occurring 17,287 times, while the 50th most frequent action, “sports moves,” occurs 280
times, the 100th most frequent action, “communicate,” occurs 52 times, and the 200th most fre-
quent action, “lick,” occurs only 5 times. The frequency of actions follows Zipf’s law, underscoring
the disparity in action occurrences across categories and highlighting the uneven semantic density
within the dataset.

Our proposed alignment paradigm facilitates a shift towards a more interpretable and sparse lexical
representation. This approach enables a clearer analysis of the relationship between different terms,
as we can now observe how specific words and actions are distributed within the joint feature space.
By transforming both motion and text into interpretable representations, we can better capture the
semantic relationships between different actions and words. For instance, actions that often occur to-
gether, such as “eating food” and “raising right hand to mouth,” share a closer semantic relationship
than unrelated actions, such as “dancing” and “extending arms.”

In conclusion, the proposed paradigm does reflect uneven semantic density in the joint feature space,
but this is consistent with the underlying imbalance present in the data. The relationships between
terms are influenced by their frequency and contextual usage, and further linguistic analysis could
provide deeper insights into these connections, ultimately contributing to a better understanding and
generation of human motion. Our method, by focusing on sparse lexical representations, allows us to
examine and address these semantic disparities, paving the way for improved motion-text alignment
and more effective human motion understanding and generation.
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D.2 WHAT IS THE RELATION OF DIFFERENT TERMS?

From the perspective of Socio-Cognitive Terminology, the relationships among terms in our lexicon
can be understood through interconnected dimensions reflecting cognitive, linguistic, and cultural
structures. Terms are related through synonymy and antonymy, where synonyms like “walking”
and “strolling” capture similar concepts, while antonyms like “fast” and “slow” highlight opposi-
tional dynamics in motion semantics. These relationships help associate related terms within shared
semantic categories. Prototypicality and categorization further organize terms around central proto-
types; for instance, “running” may serve as a prototype for rapid movements, with subcategories like
“sprinting” and “jogging.” Additionally, terms are grouped into broader categories, such as “physical
actions” (e.g., “jump,” “bend”) and “social interactions” (e.g., “greet,” “wave”).

Terms also exhibit hierarchical relationships, where broader hypernyms like “movement” encompass
specific hyponyms such as “running,” “swimming,” and “cycling.” Cross-category links further con-
nect terms from different domains, such as actions and emotions (e.g., “angry punching”). Cultural
and contextual dependencies influence term meanings based on societal norms and specific scenar-
ios, such as “handshake” varying across cultures or “intense activity” differing between sports and
medical contexts. Moreover, these relationships are dynamic and adaptable, evolving with societal
shifts and technological advancements; for example, new terms like “virtual gestures” may emerge
in the metaverse.

By structuring terms around these relationships, our lexicon enhances motion understanding by cap-
turing nuanced distinctions, facilitating semantic alignment between motion and text, and supporting
tasks like motion captioning and retrieval. Ultimately, these interconnected relationships enable our
model to align motion and text representations effectively, improving interpretability and robustness
in motion-language tasks.

D.3 HOW TO UNDERSTAND THE OVERLAP BETWEEN WORDS AND SYNONYMS (VERBS)?

The overlap between words and synonyms (e.g., verbs) in our lexical representation framework
reflects the intrinsic flexibility and evolution of human language. From the perspective of Socio-
Cognitive Terminology, this overlap serves both functional and interpretative roles, enabling our
model to capture nuanced motion semantics and align text with motion effectively. Understanding
this overlap requires examining the principles of polysemy and synonymy in the lexicon, as well as
their implications for representation learning in the motion-language domain.

The Functional Role of Polysemy and Synonymy. Polysemy arises as a natural result of linguistic
and conceptual evolution. Words gain additional meanings over time, often through mechanisms like
metaphor and metonymy, creating layers of semantic variants clustered around a prototypical core.
For instance, in the context of motion, terms like “walk” or “run” may develop nuanced meanings
based on pace, style, or cultural interpretation. This flexibility enables a single lexical item to capture
a range of related motions, enriching the representation’s adaptability and interpretability. Similarly,
synonymy reflects different perspectives on similar phenomena. Near-synonyms such as “jump,”
“leap,” and “hop” provide slightly distinct viewpoints on upward motion, influenced by factors like
intensity or purpose. In specialized discourse, this diversity allows for greater descriptive precision
and contextual relevance. For example, “dancing waltz” may activate related terms like “spin,”
“circle,” and “partner,” each offering a complementary perspective on the action.

Implications for Lexical Representation. In our approach, the BERT vocabulary, constructed
via Byte Pair Encoding (BPE), inherently includes synonyms and morphological variations. For in-
stance, words like “walk,” “walking,” and “walked” co-exist within the lexicon, allowing the model
to generalize across tenses and contexts. While this design effectively leverages existing linguistic
diversity, we have not yet applied explicit optimizations to reduce redundancy or refine the represen-
tation of synonyms and polysemous terms. The overlap among terms is particularly evident during
motion-text alignment. Lexical representations of motion-related queries often activate clusters of
semantically related words. For example, a query involving “run” may also highlight terms like
“sprint” or “dash,” reflecting the shared semantic space in which motion concepts are embedded.
This redundancy is not a flaw but rather a functional aspect that enhances the model’s ability to
handle diverse linguistic expressions of motion.
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Cognitive and Practical Perspectives. From a cognitive semantics viewpoint, our representa-
tion system aligns with Geeraerts’ theory of prototypical categorization. New lexical items and
meanings are integrated into existing semantic structures without drastically altering the conceptual
framework. For example, terms like “kick” or “strike” naturally connect to a core concept of forceful
limb movement, while their specific contexts (e.g., “karate kick”) expand the category’s richness.
Practically, this overlap aids in improving retrieval and captioning tasks. The lexical representa-
tion effectively captures nuances in motion semantics, outperforming traditional dense embeddings.
The activation of synonyms and polysemous terms allows the model to retrieve motions or generate
captions that align with diverse textual descriptions, ensuring robustness across tasks and datasets.

Future Directions While our current implementation demonstrates the utility of synonymy and
polysemy, there is potential for further refinement. For instance, Socio-Cognitive Terminology re-
search could inform new methods to optimize the BERT vocabulary for the motion-language do-
main, reducing redundancy while preserving semantic richness. Recent studies in natural language
processing have explored vocabulary restructuring for improved model interpretability, and similar
techniques could benefit motion-language tasks.

D.4 SUMMARY

We sincerely appreciate the insightful comments of the reviewers, which have provided us with a
fresh perspective by introducing the framework of Socio-Cognitive Terminology. From this vantage
point, our research offers a new unit of understanding for human motion by aligning motion and text
representations within a shared semantic space. This approach highlights the intricate interplay be-
tween linguistic structures and cognitive patterns, enabling a more nuanced interpretation of motion
semantics. It is important to note that our work represents an initial exploration of this intersection
and the need for further studies by experts in terminology science to address the unique challenges of
defining and categorizing terms in the human motion domain. Just as Rita Temmerman’s pioneering
research in the life sciences laid the groundwork for the development of Socio-Cognitive Terminol-
ogy, we hope our study serves as a stepping stone toward a deeper understanding of motion-related
terminology. As Temmerman noted, understanding is a never-ending process. We aspire for our
method to contribute meaningfully to the field, enhancing both the understanding and generation
of human motion, and fostering further interdisciplinary research at the intersection of language,
cognition, and motion.
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