
Lower Bounds for Chain-of-Thought Reasoning in Hard-Attention Transformers

Alireza Amiri 1 Xinting Huang 2 Mark Rofin 2 Michael Hahn 2

Abstract
Chain-of-thought reasoning and scratchpads have
emerged as critical tools for enhancing the com-
putational capabilities of transformers. While
theoretical results show that polynomial-length
scratchpads can extend transformers’ expressiv-
ity from TC0 to PTIME, their required length
remains poorly understood. Empirical evidence
even suggests that transformers need scratchpads
even for many problems in TC0, such as PAR-
ITY or MULTIPLICATION, challenging optimistic
bounds derived from circuit complexity. In this
work, we initiate the study of systematic lower
bounds for the number of CoT steps across dif-
ferent algorithmic problems, in the hard-attention
regime. We study a variety of algorithmic prob-
lems, and provide bounds that are tight up to log-
arithmic factors. Overall, these results contribute
to emerging understanding of the power and limi-
tations of chain-of-thought reasoning1.

1. Introduction
Chain-of-Thought reasoning (CoT) has become a standard
practice for solving hard problems with LLMs, enhanc-
ing the capabilities of Transformers (Nye et al., 2021; Wei
et al., 2022b) and powering a new generation of state-of-
the-art models, such as OpenAI o1 (Jaech et al., 2024) and
DeepSeek-R1 (Guo et al., 2025). Models trained under
this paradigm are optimized to generate a long CoT before
answering any user’s request, which significantly elevates
their reasoning abilities. However, the use of CoT may sub-
stantially increase the number of tokens produced by the
model and raise the inference costs (Han et al., 2024), in
some cases reaching millions of tokens for a single task
(Chollet, 2025). Hence, shortening the generated CoT se-

1Sharif University of Technology. Work done in part while
interning at Saarland University. 2Saarland University. Correspon-
dence to: Michael Hahn <mhahn@lst.uni-saarland.de>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1Code link: https://github.com/lacoco-lab/
scratchpad_bounds

1 1 1 0 1 1 0 1 1SEP

0 01 1 1
f(11101)f(1) f(11) f(111) f(1110)

f(1) f(11) f(111) f(1110)

Tr ansf or mer

Figure 1: High-sensitivity problems such as PARITY are dif-
ficult to learnably and generalizably represent for transform-
ers. Such problems can be solved by CoTs decomposing
them into a sequence of local steps. We study the length that
such CoTs need to have, as a function of the input length.

quences without compromising quality became an important
research direction (Deng et al., 2024). At the same time,
there is so far little understanding of the minimal sufficient
length of the CoT in a given case; thus the theoretical limits
of CoT compression are unclear.

To gain understanding of those limits, we take up the prob-
lem of provably bounding the length of CoT sequences
sufficient to solve various algorithmic problems with trans-
formers. By providing the lower bounds on the length of the
CoT, our paper complements an established line of research
on the expressive power of transformers that has focused on
the model size when the answer is provided without CoT
(e.g. Strobl et al., 2023; Bhattamishra et al., 2020a; Sanford
et al., 2024b; Chen et al., 2024).

A simple example is the PARITY function – deciding
whether the number of 1’s in a bit string is even or odd.
Transformers empirically struggle to learn it on longer in-
puts (e.g. Bhattamishra et al., 2020a; Delétang et al., 2023;
Butoi et al., 2024; Hahn & Rofin, 2024), and this difficulty
is resolved by a CoT consisting of the parities of increasing
prefixes, as in Figure 1 (e.g. Anil et al., 2022). Here, every
decoding step depends only on a bounded number of tokens.
However, for an input of length N , this CoT requires Θ(N)
extra decoding steps, a substantial computational burden.

An interesting and pertinent question is thus whether such
a linear-length CoT is optimal, or whether a shorter CoT
might exist. The goal of this paper is to develop explicit
and unconditional bounds on the length of CoTs. This

1

https://github.com/lacoco-lab/scratchpad_bounds
https://github.com/lacoco-lab/scratchpad_bounds

Lower Bounds for CoT Reasoning

question is analogous to the classical question of bounding
the time complexity of Turing machines. We argue that
it is of foundational interest in the context of LLM-based
systems relying on CoT reasoning (Jaech et al., 2024; Guo
et al., 2025).

We study this question in the unique-hard attention (UHAT)
regime, a popular theoretical abstraction of self-attention,
in which every attention head attends to the unique posi-
tion where attention weights are maximized (e.g. Hahn,
2020; Hao et al., 2022; Barceló et al., 2024; Svete & Cot-
terell, 2024; Bergsträßer et al., 2024; Yang et al., 2024;
Barceló et al., 2025). Importantly, bounds in this regime
entail bounds on realistic softmax transformers operating
at fixed precision, as their expressiveness is upper-bounded
by UHAT (Jerad et al., 2025).

In this model, we rigorously prove that the CoT for PARITY
described above is optimal up to constant factors (Theo-
rem 4.2). Besides PARITY, we consider three other tasks
(MULTIPLICATION, MEDIAN, REACHABILITY) that are
also empirically challenging for transformers to solve with-
out CoT. Across tasks, we show that CoT lengths need to
scale at least linearly in the size of the original problem.
We further show that our bounds are optimal up to loga-
rithmic factors. Overall, these lower bounds place broad
constraints on the inference-time compute needed to enable
transformers to solve these problems.

2. Background
2.1. Sensitive Functions Require CoTs

Prior work has often studied the abilities of transformers
through the lens of circuit complexity (e.g. Hao et al., 2022;
Merrill & Sabharwal, 2023a; Strobl, 2023; Feng et al.,
2023; Li et al., 2024; Chiang, 2025; Merrill & Sabhar-
wal, 2023b). Transformers express a subset of the circuit
complexity class TC0, which covers problems solvable
by bounded-depth threshold circuits (Merrill & Sabharwal,
2023b; Strobl, 2023; Chiang, 2025). By the unproven con-
jecture TC0 ̸= NC1, many problems, such as graph reach-
ability, are thus not solvable by transformers without CoTs.
Hence, the success of CoT has been linked to its ability
to expand expressiveness beyond TC0 (Feng et al., 2023;
Merrill & Sabharwal, 2024a; Li et al., 2024).

However, CoT is empirically beneficial even for tasks well
in TC0, such as PARITY (Anil et al., 2022): PARITY is ex-
pressible in TC0 and also by certain models of transformers
(Chiang & Cholak, 2022; Kozachinskiy, 2024), but practical
transformers consistently struggle to learn it via SGD in
long inputs (e.g. Bhattamishra et al., 2020a) unless a CoT
is provided (e.g. Anil et al., 2022). Hahn & Rofin (2024)
show that this fact can be explained in terms of the loss land-
scape: Transformers require very sharp minima to represent

functions that, like PARITY, are simultaneously sensitive to
every input bit, and hence do not practically learn them on
long inputs; sharpness is starkly reduced in the presence of
a CoT. In fact, the result of Hahn & Rofin (2024) extends be-
yond PARITY, and is grounded in a foundational concept in
the analysis of Boolean Functions, sensitivity. For a boolean
function f : {0, 1}∗ → {0, 1}, the sensitivity counts how
many Hamming neighbors have the opposite output:

s(f, x) =
∣∣{i = 1, . . . , |x| such that f(x) ̸= f(x⊕i)}

∣∣
(1)

where x⊕i is obtained from x by flipping the i-th bit. The av-
erage sensitivity is defined as the average over the Hamming
cube, at string length N (e.g. O’Donnell, 2014):

asN (f) =
1

2N

∑
x∈{0,1}N

s(f, x) (2)

In PARITY, flipping any bit flips the output, hence
asN (PARITY) = N . Hahn & Rofin (2024) show that such
linear growth of sensitivity with input length produces high
sharpness in transformers’ loss landscapes. This unifies a
string of empirical results finding that transformers have an
inductive bias towards low average sensitivity (Bhattamishra
et al., 2023; Vasudeva et al., 2024; Abbe et al., 2023). Hahn
& Rofin (2024) applied this result to the PARITY function;
but, in this paper, we identify a range of other tasks also fac-
ing linear growth of sensitivity, including tasks within TC0

(MULTIPLICATION and MEDIAN), and a task conjectured
not to be in TC0 (REACHABILITY). We thus overall

focus on algorithmic tasks with asN (f) = Θ(N).

including both tasks within TC0, and tasks conjectured to
be outside it.

2.2. Model of Transformers

The theoretical literature on transformers has developed var-
ious formal abstractions of transformers. In this paper, we
study the regime of unique hard attention (UHAT), a popu-
lar theoretical model of self-attention, where every attention
head attends to the unique position where attention scores
are maximized (e.g. Hahn, 2020; Hao et al., 2022; Barceló
et al., 2024; Svete & Cotterell, 2024; Bergsträßer et al.,
2024; Yang et al., 2024; Barceló et al., 2025). UHAT is an
appealing modeling choice, both because strong techniques
for proving lower bounds are available (see Section 3), and
because interpretability work shows that language models
heavily rely on heads focusing their attention on few posi-
tions (e.g. Cabannes et al., 2024; Olsson et al., 2022; Clark
et al., 2019; Voita et al., 2019; Ebrahimi et al., 2020).

We now introduce the relevant notions and notation.
We assume a finite alphabet Σ, with token embeddings
e(σ) ∈ Rd. There further are positional encodings

2

Lower Bounds for CoT Reasoning

p1,p2,p3, . . . ,pnmax
∈ Rd, where nmax is the maximal

context size of the transformer. We consider an input string
x ∈ Σ∗, with length |x| = N . We define the activations
y
(k)
i ∈ Rd at position i of the k-th layer (k = 1, . . . , L) as

follows. The zero-th layer consists of token and positional
encodings: y

(0)
i := e(xi) + pi (i = 1, . . . , N). In each

layer l = 1, . . . , L, we first compute attention scores for the
h-th head (h = 1, . . . ,H):

a
(k,h)
i,j =(y

(k−1)
j)TKT

k,hQk,hy
(k−1)
i

where Kk,h (“key”), Qk,h (“query”) are ∈ Rd×d. In soft-
max attention, the attention weights â(k,h)i,j are then obtained
via the softmax transform. In the UHAT model, these are
idealized as one-hot weights:

â
(k,h)
i,j =

exp(a
(k,h)
i,j)∑i

s=1 exp(a
(k,h)
i,s)

[Softmax] (3)

â
(k,h)
i,j =

{
1 j = args≤i max a

(k,h)
i,s

0 else
[UHAT] (4)

The UHAT model can be viewed as the limit of the Softmax
model when one attention score ai,s far exceeds the others.
If more than one s attains the maximal attention score, ties
are broken according to some fixed rule (e.g., choosing the
left- or right-most match, Yang et al. (2024); Jerad et al.
(2025)). The output of the attention block is computed by
weighting according to attention weights â

(k,h)
i,j (j ≤ i)2,

and applying a linear transformation V (“value”); these are
then aggregated across heads and combined with a skip-
connection:

y
(k)
i := fMLP

y
(k−1)
i +

H∑
h=1

i∑
j=1

â
(k,h)
i,j Vk,hy

(k−1)
j


(5)

where fMLP : Rd → Rd. For our purposes here, fMLP

may be arbitrary.3 Finally, next-token predictions are made
by T := O · y(L)

n for some parameter O ∈ R|Σ|×d, where
we are assuming some numbering of the alphabet Σ.

2.3. Formalizing CoTs

Definition 2.1. Let Σ be a finite alphabet. Given a function
f : Σ∗ → Σ+ and an alphabet Ξ ⊃ Σ, a chain-of-thought
(CoT) is a map g : Σ∗ → Ξ+ ending in the suffix f(x).

2We assume causal masking in line with standard language
model architectures, in order to allow autoregressive generation of
the CoT. Our techniques are also applicable to the setting where
the input itself is processed with bidirectional attention as assumed
by Abbé et al. (2024) (Remark B.7).

3Transformers additionally implement layer norm (Ba et al.,
2016). Our bounds are robust to such position-wise operations.
For instance, layer norm following the MLP can be absorbed into
fMLP for the purposes of our theorems.

We write ΞN to be the (finite) set of symbols appearing in
at least one string xg(x) for x with |x| ≤ N .

We note that Ξ is not restricted to be finite. Some theoretical
work has allowed the CoT vocabulary to grow with the input
length (Bhattamishra et al., 2020b; Abbé et al., 2024); our
lower-bounds are robust to this.

We now formalize what it means for a CoT to be expressible
in UHAT. For maximal generality, we assume a relaxed
definition: rather than requiring that a single transformer
perform the task across all input lengths (which makes it
hard to distinguish unboundedly many positions), we only
ask that a family of transformers perform the task with a
bounded number of layers and heads:
Definition 2.2. We say that a transformer T computes the
CoT g(x) on input x ∈ Σ∗ if all symbols in xg(x) appear in
the vocabulary of T and |xg(x)| is bounded by the maximal
context window, and if, when T is run on xg(x), its output
at position |x|+ i− 1 is a one-hot vector with “one” at the
index corresponding to g(x)i ∈ Σ, for i = 1, . . . , |g(x)|.

We say that the CoT g(x) is expressible in UHAT across
input lengths if, for each input length n, there is a UHAT
transformer Tn computing g(x) for all |xg(x)| = n, and the
numbers of layers and heads are uniformly bounded.

While we bound layers and heads, we do not expect the
width to necessarily stay bounded, which allows positional
encodings to keep all unboundedly many positions distinct.
This is a very weak requirement, a necessary precondition
for the existence of a single length-generalizing transformer
across input lengths, and much more relaxed than the degree
of uniformity often assumed in lower bounds for transform-
ers (e.g. Merrill & Sabharwal, 2023a; Huang et al., 2024).
It is nonetheless sufficient for proving essentially matching
lower and upper bounds.

3. Results: Generic CoT Bounds
Our goal is to study the required length of the CoT |g(x)| as
a function of the input length |x|, under the constraint that
the CoT is expressible in the sense of Def. 2.2. Following
standard practice in computational complexity, we focus on
the worst-case complexity, which – for a given input length
N , amounts to maxx:|x|=N |g(x)|.

It is well-known that transformer CoTs are universal in the
sense that they can simulate Turing machines (Pérez et al.,
2019; Bhattamishra et al., 2020b; Hou et al., 2024; Merrill
& Sabharwal, 2024a; Malach, 2024; Wei et al., 2022a; Qiu
et al., 2024). Constructions use a variety of assumptions
about attention; we first note that this property holds in our
setup:
Fact 3.1 (Universality of UHAT CoTs). Consider a Turing
machine that terminates within ≤ τ(N) steps on all inputs

3

Lower Bounds for CoT Reasoning

of length ≤ N . Then there is a CoT g(x) over a countable
alphabet Ξ computing the output of the Turing machine,
with length |g(x)| = O(τ(|x|)), expressible in UHAT.

The construction is discussed in Appendix B.3. As a conse-
quence, all PTIME problems have polynomial-length CoTs,
and problems outside of PTIME cannot have polynomial-
length CoTs (Merrill & Sabharwal, 2024a). More generally,
CoT is upper-bounded by Turing machine time complexity.
The converse does not hold: Many problems have efficient
parallel algorithms that can be expressed by self-attention
without any CoT. As a simple example, the Boolean AND
function of N variables requires Ω(N) steps with a Turing
machine, simply because every input needs to be considered
in the worst case, but it can be represented by a very simple
transformer with just one attention head, and no CoT. Our
main technical contribution in this paper is to show that a
diverse set of algorithmic problems do require long CoTs,
of length linear in the input.

Our key technical tool, and first central result, is a generic
CoT lower bound (Theorem 3.3). In order to state and prove
this bound, we use the method of random restrictions, a key
technique for understanding bounded-depth circuits (e.g.
Hastad et al., 1994; Furst et al., 1984; Boppana, 1997) and
transformers (Hahn, 2020).

Definition 3.2. Let N be an input length. A restriction ρ
is a a family of maps ρN : [1, N] → Σ ∪ {∗}, for N =
1, 2, We write ρΣ∗ for the set of strings x ∈ Σ∗ where
xi = ρ|x|(i) whenever ρ|x|(i) ̸= ∗.

We show that the existence of a sublinear-length CoT has
strong implications for the function computed.

Theorem 3.3 (Generic CoT Bound). Assume that f has
a UHAT-expressible CoT g(x) of length |g(x)| = o (|x|).
Choose any C ∈ (0, 1). Then there is a restriction ρ such
that

1. |{i ≤ N : ρN (i) = ∗}| ≥ CN for sufficiently large N

2. For each N , f is constant on ΣN ∩ ρΣ∗

The first condition says that ρ leaves a large fraction of
input positions open; the second condition says that it is
nonetheless sufficient for fixing the output.

A simple example of a UHAT-computable function is the
AND function, where fixing a single bit to 0 fixes the output
to 0; it is easily computed by a UHAT transformer where
a single attention head attends to an occurrence of 0 if any
exists. Even though every bit can potentially matter to the
output, this is easily computed in UHAT without CoT. On
the other hand, the PARITY function cannot be fixed by
fixing any strict subset of the input bits; hence, Theorem 3.3
entails a linear-length lower bound for a CoT there.

Theorem 3.3 is shown via Lemma 3.4, an analogue of the
classical Switching Lemma (Hastad et al., 1994) for AC0

circuits, which permits collapsing bounded-depth circuits
into shallow circuits on ρΣ∗. Like that classical lemma, it
is based on randomizing ρ and showing that the probability
of satisfying the desired properties is nonzero; hence, a
satisfying ρ exists.

Lemma 3.4. Given a UHAT transformer T operating over
the finite alphabet Σ, and C ∈ (0, 1), there is c ∈ N, K ∈ N
(c and K each only depending on the number of layers and
heads, and |Σ|), and a restriction ρ such that

1. |{i ≤ N : ρN (i) = ∗}| ≥ CN if N ≥ K

2. On ΣN ∩ ρΣ∗, each activation y
(l)
i (i ∈ [1, N], l ∈

[1, L]) depends only on at most c input positions

The lemma is a strengthening of Theorem 1 of Hahn (2020),
the proof is in Appendix B.1. Note that Lemma 3.4 applies
to transformer computations without a CoT, whereas Theo-
rem 3.3 broadens the scope to functions computable with a
o(N)-length CoT. In order to deduce Theorem 3.3, we first
apply Lemma 3.4 to obtain a restriction on the input x itself
(not the CoT tokens). We then show that it is possible to fix
c ·H · L · |g(x)| further input symbols to fix every symbol
appearing in the CoT, and hence the function output f(x).
If |g(x)| = o(|x|), the resulting restriction still leaves a con-
stant fraction of input positions free (say, 9

10CN positions).
We provide the full argument in Appendix B.1.

4. Results: Application to Algorithmic
Problems

We now proceed to proving explicit lower bounds for vari-
ous algorithmic problems. For each problem, we first exam-
ine sensitivity to establish difficulty for transformers based
on the results reviewed in Section 2.1 (independent of un-
proven conjectures about TC0). For high-sensitivity prob-
lems, we then use Theorem 3.3 to lower-bound CoT length,
and construct an explicit CoT that matches the bound up to
logarithmic factors.

4.1. Lower Bounds for Regular Languages

Definition 4.1. PARITY takes an input x ∈ {0, 1}N , and
decides if the number of 1’s is even or odd.

PARITY is the archetype of a highly-sensitive function, with
asn(PARITY) = n, and it has long been documented empir-
ically that transformers struggle with it (e.g. Bhattamishra
et al., 2020a; Delétang et al., 2023; Anil et al., 2022; Butoi
et al., 2024): We provide the following lower bound:

Theorem 4.2. Any UHAT CoT for PARITY has length
Ω (N).

4

Lower Bounds for CoT Reasoning

The proof is a direct consequence of Theorem 3.3: as long
as one does not fix all input symbols, one can never fix the
output of PARITY. The UHAT bound is tight, and is attained
by the straightforward CoT consisting of the parities of
increasing prefixes of the input.

We note that Theorem 4.2 is substantively different from
bounds based on learnability arguments applying to sub-
set parities (e.g. Kim & Suzuki, 2024; Abbé et al., 2024;
Abbe et al., 2023; Wies et al., 2022), distinct from the PAR-
ITY function applying to the full input (see Section 5 for
discussion).

Why is Theorem 4.2 nontrivial? At first sight, one might
wonder if Theorem 4.2 is trivial: Every bit matters for PAR-
ITY, and a hard attention head can only attend to a single
position; hence, one might be tempted to argue that a lin-
ear number of CoT steps is trivially needed to take every
bit into consideration. However, importantly, the behavior
of the attention heads itself is input-dependent and can in
principle be influenced by every input bit. While each head
in UHAT attends to only one position, the entire input glob-
ally determines which position this is (e.g., for the boolean
AND function of N bits, even though every bit can matter,
a single head is enough). Key to showing Theorem 4.2 is
that it is sufficient to fix a fraction of input bits to “distract”
all attention heads and prevent them from considering the
full input. More broadly, our results establish a dichotomy
on simulating finite-state automata:

Corollary 4.3. Let f be the membership problem of a finite-
state language L. Then exactly one of the following holds:

1. L ∈ AC0 and f is expressible in UHAT without CoT

2. L ̸∈ AC0, and any UHAT CoT for f has length Ω(N)

The proof is in Appendix C.1.1. Importantly, f is affected
by the sensitivity-based barrier discussed in Section 2.1
if and only L ̸∈ AC0 (Remark C.2). Overall, this result
complements results on transformer shortcuts to automata
(Liu et al., 2023) by establishing when a shortcut (i.e., a
solution with CoT) can be represented well by transformers.

Experiments We trained transformers on PARITY on
lengths between 1 and 500 (Figure 2 and Appendix C.1.2;
results averaged across three runs). We considered the full
CoT from Figure 1 (dots along diagonal line). We also con-
sidered CoTs where only every k-th step of the CoT was
provided, shortening the CoT by 1/k (dots below diagonal
line). Across input lengths, the model is successful when
k ⪅ 3. We also verified that two LLMs (DeepSeek-R1, Guo
et al. (2025), and o1-mini, Jaech et al. (2024)) produce CoTs
of at least linear length (Figure 6).

Full CoT Dot-by-Dot CoT

0

100

200

300

400

500

0 100 200 300 400 500
Input Length

C
oT

 L
en

gt
h

Acc

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0

100

200

300

400

500

20 40 60
Input Length

C
oT

 L
en

gt
h

Acc

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 2: Results for PARITY. Left: CoTs consisting of
prefix sum parities, accuracy as a function of input and CoT
lengths. CoTs of length Θ(N) succeed even on very long
inputs. Right: Dot-by-dot scratchpads help much less, even
when much longer then the input (Theorem 4.11).

4.2. Multiplication

We next examine basic arithmetic operations. For N -digit
numbers, both addition and multiplication are in TC0,
and both operations can in principle be expressed by soft-
attention transformers (Feng et al., 2024), but empirical
research has found transformers to succeed much better
at addition than at multiplication, which remains hard for
transformers (Yang et al., 2023). Addition has low sensi-
tivity and can be represented in UHAT and fixed precision
(Feng et al., 2024); multiplication is shown expressible by
unbounded-precision transformers but not fixed-precisioin
transformers (Feng et al., 2024). We examine the difficulty
of computing each of the 2N output digits in multiplication.

Definition 4.4. Given two N -digit integers X,Y encoded
in binary, let Mk be the k-th bit of the binary representation
of the product XY .

Multiplication has high sensitivity; most importantly and
interestingly, it turns out that digits in the middle of the
result are particularly sensitive (Figure 7). For these:

Theorem 4.5. A UHAT CoT for MN requires length Ω(N).

The proof is in Appendix C.2.1. Importantly, addition faces
no such hurdle, as any digit has at most polylogarithmic
average sensitivity due to the existence of an AC0 (and
UHAT) construction for adding N -digit numbers without
CoT (Feng et al., 2024); thus, transformers can output each
digit in parallel better for addition than for multiplication
(Figure 12).

Given our Ω(N) lower bound (Theorem 4.5), what is the
best upper bound? Existing work providing scratchpads for
transformers performing multiplication (Hou et al., 2024)
uses the naive grade-school algorithm, which has Θ(N2)
complexity, much larger than the Ω(N) lower bound. In
fact, there is a UHAT scratchpad matching the Ω(N) lower
bound up to a logarithmic factor:

Theorem 4.6. There is a UHAT scratchpad for the full

5

Lower Bounds for CoT Reasoning

Figure 3: Accuracy of a transformer trained on autoregres-
sive 12-digit multiplication (most significant digit at the left,
zero-padded on the left), on a test set with 10K number
pairs. High-sensitivity digits in the middle show substan-
tially decreased accuracy even if digits at beginning and end
are predicted exactly. See Figure 8 for more.

product, M1 . . .M2N , with length Θ(N logN).

The construction is based on the Fourier transform (Ap-
pendix C.2.3).

Remarks Theorem 4.5 concerns direct decoding of an
individual digit MN ; we comment on barriers on autore-
gressive decoding of products in Appendix C.2.2. Recent
work has found that custom positional encodings which
match structurally corresponding digits to help with addition
(Zhou et al., 2023; McLeish et al., 2024; Cho et al., 2024a;b;
Sabbaghi et al., 2024). Theorem 4.5 holds for arbitrary posi-
tional encoding vectors, suggesting that, while beneficial in
the case of ADDITION, specialized positional encodings are
insufficient to overcome the difficulty of MULTIPLICATION.

Experiments We trained small transformers (2 layers, 2
heads) to multiply binary numbers with up to 16 digits,
either directly, or with the O(N logN) CoT from Theo-
rem 4.6. Multiplication failed to generalize when no CoT
was given (Figure 12), with difficulty driven by the high-
sensitivity middle digits (Figure 3). The CoT succeeded at
all lengths up to 16 (Table 1).4 See Appendix C.2.4 for de-
tails. We also verified that two LLMs (DeepSeek-R1 (Guo
et al., 2025) and o1-mini (Jaech et al., 2024)) produce CoTs
of at least linear length (Figure 6).

4.3. Order Statistics

We next consider another task in TC0, which concerns
finding order statistics.

4We focused extensive experiments to numbers of up this length
due to resource constraints.

Definition 4.7. Consider the MEDIAN task, where the input
consists of N numbers, each with B bits, and the target is
the ⌊N/2⌋-th number when the list is sorted.

TC0 circuits solve this by selecting the number that is si-
multaneously smaller than and greater than ⌊N/2⌋ other
numbers. However, the median, especially its last bit, is
sensitive to alterations of the N integers (Appendix C.3).
We obtain a CoT bound:

Theorem 4.8. For the MEDIAN task, a UHAT scratchpad
requires length Ω(N). This bound is attained.

The proof is in Appendix C.3; the bound is attained by a
CoT enumerating the lowest ⌊N/2⌋ numbers.

Experiments We trained transformers on MEDIAN on
input lengths between 6 and 398 (Figure 5 and Ap-
pendix C.3.2), corresponding to 1 to 99 decimal numbers
(each with B digits). We considered the full CoT (upper
most dots in each input length). Like PARITY, we also con-
sidered CoTs where only every k-th step of the CoT was
provided (starting from the smallest number), shortening
the CoT by 1/k (dots below the upper most dots in each
input length). Across input lengths, the model is always
successful when using the full CoT, and there is a chance of
failure when k ≥ 2 (accuracies are averaged over 3 runs).

4.4. Graph Reachability

Another foundational aspect of reasoning is graph reacha-
bility.

Definition 4.9. Given a set of vertices V and a set of di-
rected edges E ⊆ V ×V , the Reachability task is defined as
follows. Input: Given some numbering of V , we assume a
list of all edges E, each coded as a pair of log V -digit binary
numbers. We also assume a query pair of two vertices i, j.
Output: A binary label, indicating if there is a path from i
to j.

The reachability problem in graphs, even in directed acyclic
graphs (DAG), is NL-complete (Jones et al., 1976); hence,
by the unproven conjecture TC0 ̸= NC1, is expected not
to be solved by transformers without CoTs. We provide an
unconditional lower bound, even for a sub-family of graphs
for which the reachability problem is solvable in TC0, by
observing that PARITY is reducible to DAG reachability:

Theorem 4.10. There is a family G of DAGs inside which
reachability is solvable in TC0, but cannot be represented
by a transformer at sublinear average sensitivity. A UHAT
CoT needs length Ω (|E| log |V |). This bound is attained.

The proof proceeds by coding PARITY into DAGs with 2N
vertices (lower bound), and coding breadh-first search into
a CoT (upper bound), see Appendix C.4.

6

Lower Bounds for CoT Reasoning

Experiments We generate random DAGs with sizes rang-
ing from 5 to 35 vertices and use them to train Transformers
to solve a DAG reachability task in the general case with a
O(|E| log |V |)-length scratchpad. The results, presented in
Figure 4, show that a scratchpad of this length is indeed suf-
ficient to solve the task. In contrast, a model trained without
a scratchpad performs at chance level. See Appendix C.4.2
for details.

0 100 200 300 400 500 600
Input length

0.6

0.8

1.0

A
cc

ur
ac

y

Scratchpad
No scratchpad

Figure 4: Results for DAG reachability. Without a CoT, the
model performs at chance level for all but very small graphs.
An O(|E| log |V |)-length CoT leads to a perfect accuracy
independent of the graph size.

4.5. Limitations of Dot-by-Dot CoTs

Recent work has observed a benefit even for CoTs con-
sisting just of repetition of a single token (“pause token”),
which might give a transformer the opportunity to perform
extra computations even without outputting any intermedi-
ate steps (Goyal et al., 2024; Pfau et al., 2024). While the
power of such “dot-by-dot” CoTs remains in TC0, provided
their length is polynomially bounded, they may still enable
additional computations (Pfau et al., 2024), which raises the
potential challenge of unauditable unobservable computa-
tions in LLMs. Our methods result in additional barriers for
such CoTs, suggesting that high-sensitivity computations
require a substantial degree of reliance on explicit CoT to-
kens. Specifically, for PARITY, such a CoT cannot have
polynomially bounded length:

Theorem 4.11. Consider a UHAT-expressible CoT for PAR-
ITY where g(x) has the form#f(x). (“dot-by-dot
CoT”). Then |g(x)| = ω(|x|k) for any k ∈ N.

The proof is in Appendix B.2. Complementing this lower
bound, an exponentially-sized UHAT CoT does exist in
principle (Appendix B.2). Overall, we have thus a super-
polynomial separation between the lengths required for full
CoTs (Θ(N)) and dot-by-dot CoTs (ω(poly(N)))

Experiments Figure 2B shows that a dot-by-dot variant
of the CoT for PARITY is not successful at expanding the

0

50

100

150

200

0 100 200 300 400
Input Length

C
oT

 L
en

gt
h

Acc

0.00

0.25

0.50

0.75

1.00

Figure 5: Results for MEDIAN: CoTs consisting of the
sorted first ⌊N/2⌋ numbers. Accuracy as a function of input
and CoT lengths.

lengths at which a transformer is learned successfully.

5. Discussion
5.1. Implications

Across Sections 4.1–4.4, our lower bounds are tight up to
polylogarithmic factors. By showing that the UHAT CoT
length must scale with the input length, they provide barri-
ers on the possibility for self-attention to solve these tasks
with small inference-time compute in generating additional
tokens.

An attractive approach for shortening CoT reasoning and re-
ducing inference-time compute is by fine-tuning transform-
ers to perform reasoning in fewer and fewer steps (Deng
et al., 2024). Our results show that such a process is likely
to run up against representational limitations of the archi-
tecture. The findings demonstrate efficiency limitations to
CoT-based reasoning that might be overcome via tool use
or stronger architectures. Logarithmic growth of the depth
may be one way to overcome these (Merrill & Sabharwal,
2024b); within fixed-depth architectures, certain SSM archi-
tectures overcome at least the difficulty of PARITY (Grazzi
et al., 2024). It remains to be understood if this applies to
the other problems from Sections 4.1–4.4.

5.2. Related Work

Theoretical Understanding of Scratchpads and CoT
The first theoretical study of scratchpads for transformers
is by Pérez et al. (2019), who showed that transformers
can autoregressively simulate the computations of a Turing
machine. More recently, work has shown that polynomial-
length CoT can allow transformers to transcend the com-
plexity class TC0 (Feng et al., 2023; Merrill & Sabharwal,
2024a; Li et al., 2024), and express all problems in PTIME,

7

Lower Bounds for CoT Reasoning

PARITY

20 40 60
Length of the bitstring

0

1000

2000

3000

4000

5000

N
um

be
r o

f t
ok

en
s

in
 th

e
C

oT DeepSeek-R1
o1-mini

MULTIPLICATION

4 6 8
Number of digits

2000

4000

6000

N
um

be
r o

f t
ok

en
s

in
 th

e
C

oT DeepSeek-R1
o1-mini

MEDIAN

20 40 60 80
Sequence length

0

2000

4000

6000

8000

10000

N
um

be
r o

f t
ok

en
s

in
 th

e
C

oT DeepSeek-R1
o1-mini

Figure 6: Length of reasoning traces of DeepSeek R1 (Guo et al., 2025) and o1-mini (Jaech et al., 2024) LLMs prompted to
solve the tasks of parity (left), multiplication (center), and median (right). We only include traces leading to the correct
answer. In both cases, the growth of CoT appears at least linear. Manual inspection of reasoning traces of DeepSeek R1
shows that the model perform the counting of all ones for PARITY, and the naive quadratic algorithm for MULTIPLICATION.
The experimental details are provided in Appendix D.

which by widely believed but unproven conjectures far ex-
ceeds TC0. There are also lower bounds for scratchpads for
single-layer transformers (Peng et al., 2024; Barceló et al.,
2025), showing that a one-layer transformer (both the input
itself and the CoT are processed by a single layer) requires a
substantial number of steps to solve certain problems, such
as iterated function composition. Chen et al. (2024) ex-
tended this line of work to multi-layer transformers, proving
a benefit for CoT in iterated function composition.

Another angle to understanding CoTs is via learnability ar-
guments (Wies et al., 2022; Kim & Suzuki, 2024; Hahn &
Goyal, 2023; Abbé et al., 2024). A particularly promising
angle is the globality degree (Abbé et al., 2024), with poten-
tially broad implications for scratchpads, though resulting
lower-bounds remain largely conjectural beyond special
cases (Appendix E.2). Interestingly, the globality degree
is linked to our sensitivity-based techniques and could in
principle lead to stronger bounds; a future full proof of the
main conjecture of Abbé et al. (2024) would, in combina-
tion with our unconditional results here, entail even further
results (Appendix E.2).

Lower bounds for transformers Lower bounds for
UHAT transformers primarily rest on random restrictions,
either directly (Hahn, 2020; Barceló et al., 2024) or via re-
duction to known circuit bounds proven with those (Hao
et al., 2022). A key technical step in our work is to expand
the reach of the random restriction technique to transform-
ers including CoTs. Another approach to obtaining lower
bounds relies on circuit conjectures from computational
complexity (Merrill & Sabharwal, 2023b; Sanford et al.,
2024a) and is thus conditional on these (widely believed)
conjectures. There are further techniques for single-layer
transformers (Kozachinskiy, 2024; Peng et al., 2024; San-
ford et al., 2024b; Bhattamishra et al., 2024; Barceló et al.,

2025), for autoregressive transformers (Chen et al., 2024),
and for length-generalizng transformers (Huang et al., 2024)
relying on communication complexity or VC dimension.

Relation to Results on Subset Parities Our results con-
cerning PARITY are distinct from results on Subset Parities.
A long string of results has established difficulty of learning
subset parities – that is, parity functions restricted to subsets
U ⊆ {1, . . . , N} – in various setups, and established bene-
fits for providing intermediate steps (e.g. Wies et al., 2022;
Abbe et al., 2023; Kim & Suzuki, 2024; Yang et al., 2025).
Intuitively, the difficulty of learning subset parities emerges
from the fact that one has to identify the set U from the
exponentially-large power-set. In learning such functions,
there is a provable benefit to providing intermediate steps
in training (Wies et al., 2022; Abbe et al., 2023; Kim &
Suzuki, 2024; Yang et al., 2025). However, this argument
does not readily imply that causal transformers will find the
PARITY function difficult to learn and that CoTs will help
there, because the PARITY function applies to a very specific
set (U = {1, . . . , N}). Our results thus are distinct from
results on subset parities due to Wies et al. (2022); Abbe
et al. (2023); Kim & Suzuki (2024); Yang et al. (2025).
Interestingly, Abbe et al. (2024) show that PARITY may
be easy to learn for MLPs with Rademacher initialization;
however, this requires a weight norm substantially growing
with N , making transformer length generalization unlikely
(Huang et al., 2024).

Mechanistic Understanding of CoT Concurrent with the
theoretical line of work, the mechanisms behind the CoT
abilities in LLMs have been studied empirically. Wang
et al. (2024) used path patching to identify attention heads
critical for CoT and found that only a few attention heads
are important for that. Dutta et al. (2024) showed that LLMs

8

Lower Bounds for CoT Reasoning

employ multiple neural pathways that work in parallel to
generate the final answer, all writing to the residual stream.
Kudo et al. (2024) demonstrated for arithmetic reasoning
that single-step subproblems can be solved by LLMs even
before the scratchpad begins, while more complicated tasks
are solved during CoT generation.

5.3. Limitations and Open Questions

One limitation of our bounds is that they apply in the worst-
case setting. Providing average-case bounds is an interesting
problem for future research. A second limitation of our
results is that they focus on the UHAT model, while there
are other formal models of transformers (e.g. log-precision
transformers, Merrill & Sabharwal (2023a)). Our results
pose the open question whether some other model might
enable substantially shorter but still learnable CoTs:

Open Problem 5.1. Are there sublinear-length CoTs for
any high-sensitivity problem from Sections 4.1–4.4 that are
expressible by some formal model of transformers (other
than UHAT; e.g., log-precision transformers), while being
practically learnable?

Solving this problem in the affirmative might have sub-
stantial implications for real-world LLMs, and any such
solution is likely to require further progress in understand-
ing the learnability properties of transformers. On the other
hand, a negative answer might suggest that tool use or ar-
chitectural improvements are likely to be unavoidable for
transformer-based LLMs even on many TC0 problems, due
to architectural limitations that make successful CoTs im-
practically long.

6. Conclusion
The success of scratchpad and chain-of-thought techniques
raises the need to understand their strengths and limitations.
Here, we have provided lower bounds for the number of
steps required for CoT reasoning in various fundamental
algorithmic problems, in the UHAT model. These bounds
are tight up to polylogarithmic factors, and are attained by
realistically trainable models. Taken together, our results
provide theoretical bounds on the ability of transformers to
solve reasoning problems with CoT.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Author Contributions
MH coordinated the project. All authors contributed to the
conceptual framework. Experiments were contributed by
AA (Section 4.2), XH (Section 4.3), MR (Section 4.4), and
MH (Sections 3, 4.1, and 4.5). MH contributed the bounds
for UHAT transformers, with input from the other authors.
AA and MH jointly developed theory in Section 4.2.

Acknowledgments
Funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – Project-ID 232722074 –
SFB 1102. The authors thank Satwik Bhattamishra, Will
Merrill, Sophie Hao, Anej Svete, Franz Novak, Ryan Cot-
terell, Emmanuel Abbé, and Andy Yang for discussion, and
Yash Sarrof and Entang Wang for feedback on the paper.

References
Abbe, E., Bengio, S., Lotfi, A., and Rizk, K. Generaliza-

tion on the unseen, logic reasoning and degree curricu-
lum. In Krause, A., Brunskill, E., Cho, K., Engelhardt,
B., Sabato, S., and Scarlett, J. (eds.), International Con-
ference on Machine Learning, ICML 2023, 23-29 July
2023, Honolulu, Hawaii, USA, volume 202 of Proceed-
ings of Machine Learning Research, pp. 31–60. PMLR,
2023. URL https://proceedings.mlr.press/
v202/abbe23a.html.

Abbé, E., Bengio, S., Lotfi, A., Sandon, C., and Saremi, O.
How far can transformers reason? the globality barrier
and inductive scratchpad. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?
id=FoGwiFXzuN.

Abbe, E., Cornacchia, E., Hazła, J., and Kougang-Yombi,
D. Learning high-degree parities: The crucial role of the
initialization. arXiv preprint arXiv:2412.04910, 2024.

Anil, C., Wu, Y., Andreassen, A., Lewkowycz, A., Misra,
V., Ramasesh, V., Slone, A., Gur-Ari, G., Dyer, E., and
Neyshabur, B. Exploring length generalization in large
language models. Advances in Neural Information Pro-
cessing Systems, 35:38546–38556, 2022.

Ba, L. J., Kiros, J. R., and Hinton, G. E. Layer normalization.
CoRR, abs/1607.06450, 2016. URL http://arxiv.
org/abs/1607.06450.

Barceló, P., Kozachinskiy, A., Lin, A. W., and Podolskii, V.
Logical languages accepted by transformer encoders with
hard attention. In The Twelfth International Conference
on Learning Representations, 2024. URL https://
openreview.net/forum?id=gbrHZq07mq.

9

https://proceedings.mlr.press/v202/abbe23a.html
https://proceedings.mlr.press/v202/abbe23a.html
https://openreview.net/forum?id=FoGwiFXzuN
https://openreview.net/forum?id=FoGwiFXzuN
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
https://openreview.net/forum?id=gbrHZq07mq
https://openreview.net/forum?id=gbrHZq07mq

Lower Bounds for CoT Reasoning

Barceló, P., Kozachinskiy, A., and Steifer, T. Ehrenfeucht-
haussler rank and chain of thought. arXiv preprint
arXiv:2501.12997, 2025.

Barrington, D. A. M., Compton, K., Straubing, H., and
Thérien, D. Regular languages in nc1. Journal of Com-
puter and System Sciences, 44(3):478–499, 1992.

Bergsträßer, P., Köcher, C., Lin, A. W., and Zetzsche, G. The
power of hard attention transformers on data sequences:
A formal language theoretic perspective. In The Thirty-
eighth Annual Conference on Neural Information Pro-
cessing Systems, 2024. URL https://openreview.
net/forum?id=NBq1vmfP4X.

Bhattamishra, S., Ahuja, K., and Goyal, N. On the ability
and limitations of transformers to recognize formal lan-
guages. In Webber, B., Cohn, T., He, Y., and Liu, Y. (eds.),
Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2020, On-
line, November 16-20, 2020, pp. 7096–7116. Association
for Computational Linguistics, 2020a. doi: 10.18653/V1/
2020.EMNLP-MAIN.576. URL https://doi.org/
10.18653/v1/2020.emnlp-main.576.

Bhattamishra, S., Patel, A., and Goyal, N. On the com-
putational power of transformers and its implications in
sequence modeling. arXiv preprint arXiv:2006.09286,
2020b.

Bhattamishra, S., Patel, A., Kanade, V., and Blunsom, P.
Simplicity bias in transformers and their ability to learn
sparse boolean functions. In Rogers, A., Boyd-Graber,
J. L., and Okazaki, N. (eds.), Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2023, Toronto,
Canada, July 9-14, 2023, pp. 5767–5791. Association
for Computational Linguistics, 2023. doi: 10.18653/
V1/2023.ACL-LONG.317. URL https://doi.org/
10.18653/v1/2023.acl-long.317.

Bhattamishra, S., Hahn, M., Blunsom, P., and Kanade,
V. Separations in the representational capabilities
of transformers and recurrent architectures. CoRR,
abs/2406.09347, 2024. doi: 10.48550/ARXIV.2406.
09347. URL https://doi.org/10.48550/
arXiv.2406.09347.

Boppana, R. B. The average sensitivity of bounded-depth
circuits. Information processing letters, 63(5):257–261,
1997.

Butoi, A., Khalighinejad, G., Svete, A., Valvoda, J., Cot-
terell, R., and DuSell, B. Training neural networks
as recognizers of formal languages. arXiv preprint
arXiv:2411.07107, 2024.

Cabannes, V., Arnal, C., Bouaziz, W., Yang, X. A., Char-
ton, F., and Kempe, J. Iteration head: A mechanistic
study of chain-of-thought. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?
id=QBCxWpOt5w.

Chen, L., Peng, B., and Wu, H. Theoretical lim-
itations of multi-layer transformer. arXiv preprint
arXiv:2412.02975, 2024.

Chiang, D. Transformers in uniform TC$ˆ0$. Transac-
tions on Machine Learning Research, 2025. ISSN 2835-
8856. URL https://openreview.net/forum?
id=ZA7D4nQuQF.

Chiang, D. and Cholak, P. Overcoming a theoretical lim-
itation of self-attention. In Muresan, S., Nakov, P., and
Villavicencio, A. (eds.), Proceedings of the 60th Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), ACL 2022, Dublin, Ire-
land, May 22-27, 2022, pp. 7654–7664. Association
for Computational Linguistics, 2022. doi: 10.18653/
V1/2022.ACL-LONG.527. URL https://doi.org/
10.18653/v1/2022.acl-long.527.

Cho, H., Cha, J., Awasthi, P., Bhojanapalli, S., Gupta, A.,
and Yun, C. Position coupling: Improving length gener-
alization of arithmetic transformers using task structure.
In The Thirty-eighth Annual Conference on Neural In-
formation Processing Systems, 2024a. URL https:
//openreview.net/forum?id=5cIRdGM1uG.

Cho, H., Cha, J., Bhojanapalli, S., and Yun, C. Arithmetic
transformers can length-generalize in both operand length
and count. arXiv preprint arXiv:2410.15787, 2024b.

Chollet, F. Openai o3 breakthrough high score on arc-
agi-pub, December 2025. URL https://arcprize.
org/blog/oai-o3-pub-breakthrough. Ac-
cessed: 2025-01-25.

Clark, K., Khandelwal, U., Levy, O., and Manning, C. D.
What does BERT look at? An analysis of BERT’s atten-
tion. In Proceedings of BlackboxNLP 2019, 2019.

Cooley, J. W. and Tukey, J. W. An algorithm for the machine
calculation of complex fourier series. Mathematics of
computation, 19(90):297–301, 1965.

Delétang, G., Ruoss, A., Grau-Moya, J., Genewein, T., Wen-
liang, L. K., Catt, E., Cundy, C., Hutter, M., Legg, S., Ve-
ness, J., and Ortega, P. A. Neural networks and the chom-
sky hierarchy. 2023. URL https://openreview.
net/pdf?id=WbxHAzkeQcn.

Deng, Y., Choi, Y., and Shieber, S. From explicit CoT to
implicit CoT: Learning to internalize CoT step by step.
arXiv preprint arXiv:2405.14838, 2024.

10

https://openreview.net/forum?id=NBq1vmfP4X
https://openreview.net/forum?id=NBq1vmfP4X
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.18653/v1/2023.acl-long.317
https://doi.org/10.18653/v1/2023.acl-long.317
https://doi.org/10.48550/arXiv.2406.09347
https://doi.org/10.48550/arXiv.2406.09347
https://openreview.net/forum?id=QBCxWpOt5w
https://openreview.net/forum?id=QBCxWpOt5w
https://openreview.net/forum?id=ZA7D4nQuQF
https://openreview.net/forum?id=ZA7D4nQuQF
https://doi.org/10.18653/v1/2022.acl-long.527
https://doi.org/10.18653/v1/2022.acl-long.527
https://openreview.net/forum?id=5cIRdGM1uG
https://openreview.net/forum?id=5cIRdGM1uG
https://arcprize.org/blog/oai-o3-pub-breakthrough
https://arcprize.org/blog/oai-o3-pub-breakthrough
https://openreview.net/pdf?id=WbxHAzkeQcn
https://openreview.net/pdf?id=WbxHAzkeQcn

Lower Bounds for CoT Reasoning

Dutta, S., Singh, J., Chakrabarti, S., and Chakraborty, T.
How to think step-by-step: A mechanistic understanding
of chain-of-thought reasoning. Transactions on Machine
Learning Research, 2024.

Ebrahimi, J., Gelda, D., and Zhang, W. How can self-
attention networks recognize dyck-n languages? In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pp. 4301–4306, 2020.

Feng, G., Zhang, B., Gu, Y., Ye, H., He, D., and Wang,
L. Towards revealing the mystery behind chain of
thought: A theoretical perspective. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=qHrADgAdYu.

Feng, G., Yang, K., Gu, Y., Ai, X., Luo, S., Sun, J., He,
D., Li, Z., and Wang, L. How numerical precision af-
fects mathematical reasoning capabilities of llms. arXiv
preprint arXiv:2410.13857, 2024.

Furst, M., Saxe, J. B., and Sipser, M. Parity, circuits, and the
polynomial-time hierarchy. Mathematical systems theory,
17(1):13–27, 1984.

Goyal, S., Ji, Z., Rawat, A. S., Menon, A. K., Kumar, S., and
Nagarajan, V. Think before you speak: Training language
models with pause tokens. In The Twelfth International
Conference on Learning Representations, 2024.

Grazzi, R., Siems, J., Franke, J. K., Zela, A., Hutter, F., and
Pontil, M. Unlocking state-tracking in linear rnns through
negative eigenvalues. arXiv preprint arXiv:2411.12537,
2024.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., Zhang, X., Yu, X., Wu,
Y., Wu, Z. F., Gou, Z., Shao, Z., Li, Z., Gao, Z., Liu, A.,
Xue, B., Wang, B., Wu, B., Feng, B., Lu, C., Zhao, C.,
Deng, C., Zhang, C., Ruan, C., Dai, D., Chen, D., Ji, D.,
Li, E., Lin, F., Dai, F., Luo, F., Hao, G., Chen, G., Li,
G., Zhang, H., Bao, H., Xu, H., Wang, H., Ding, H., Xin,
H., Gao, H., et al. Deepseek-r1: Incentivizing reasoning
capability in llms via reinforcement learning. 2025. URL
https://arxiv.org/abs/2501.12948.

Hahn, M. Theoretical limitations of self-attention in neural
sequence models. Transactions of the Association for
Computational Linguistics, 8:156–171, 2020.

Hahn, M. and Goyal, N. A theory of emergent in-
context learning as implicit structure induction. arXiv
Preprint, 2023. URL https://arxiv.org/abs/
2303.07971.

Hahn, M. and Rofin, M. Why are sensitive functions hard
for transformers? In Proceedings of the 2024 Annual Con-
ference of the Association for Computational Linguistics
(ACL 2024), 2024. arXiv Preprint 2402.09963.

Han, T., Fang, C., Zhao, S., Ma, S., Chen, Z., and Wang,
Z. Token-budget-aware llm reasoning. arXiv preprint
arXiv:2412.18547, 2024.

Hao, Y., Angluin, D., and Frank, R. Formal language recog-
nition by hard attention transformers: Perspectives from
circuit complexity. Transactions of the Association for
Computational Linguistics, 10:800–810, 2022.

Harvey, D. and Van Der Hoeven, J. Integer multiplication in
time O(n log n). Annals of Mathematics, 193(2):563–617,
2021.

Hastad, J., Wegener, I., Wurm, N., and Yi, S.-Z. Optimal
depth, very small size circuits for symmetrical functions
in ac0. Information and Computation, 108(2):200–211,
1994.

Hou, K., Brandfonbrener, D., Kakade, S., Jelassi, S., and
Malach, E. Universal length generalization with turing
programs. arXiv preprint arXiv:2407.03310, 2024.

Hsieh, C.-P., Sun, S., Kriman, S., Acharya, S., Rekesh,
D., Jia, F., and Ginsburg, B. RULER: What’s the Real
Context Size of Your Long-Context Language Models?
In First Conference on Language Modeling, COLM, 2024.
doi: 10.48550/ARXIV.2404.06654.

Huang, X., Yang, A., Bhattamishra, S., Sarrof, Y., Krebs,
A., Zhou, H., Nakkiran, P., and Hahn, M. A formal
framework for understanding length generalization in
transformers. arXiv preprint arXiv:2410.02140, 2024.

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky,
A., Low, A., Helyar, A., Madry, A., Beutel, A., Car-
ney, A., et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Jerad, S., Svete, A., Li, J., and Cotterell, R. Unique
hard attention: A tale of two sides. arXiv preprint
arXiv:2503.14615, 2025.

Jones, N. D., Lien, Y. E., and Laaser, W. T. New problems
complete for nondeterministic log space. Mathematical
systems theory, 10:1–17, 1976.

Jukna, S. Boolean Function Complexity: Advances and
Frontiers. 2012.

Kim, J. and Suzuki, T. Transformers provably solve par-
ity efficiently with chain of thought. In NeurIPS 2024
Workshop on Mathematics of Modern Machine Learning,
2024. URL https://openreview.net/forum?
id=E7HwPhfX1B.

11

https://openreview.net/forum?id=qHrADgAdYu
https://openreview.net/forum?id=qHrADgAdYu
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2303.07971
https://arxiv.org/abs/2303.07971
https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=E7HwPhfX1B
https://openreview.net/forum?id=E7HwPhfX1B

Lower Bounds for CoT Reasoning

Kim, N. and Schuster, S. Entity tracking in language models.
In Rogers, A., Boyd-Graber, J., and Okazaki, N. (eds.),
Annual Meeting of the Association for Computational
Linguistics, ACL, July 2023.

Kozachinskiy, A. Lower bounds on transformers with infi-
nite precision. arXiv preprint arXiv:2412.20195, 2024.

Kudo, K., Aoki, Y., Kuribayashi, T., Sone, S., Taniguchi, M.,
Brassard, A., Sakaguchi, K., and Inui, K. Think-to-talk
or talk-to-think? when llms come up with an answer in
multi-step reasoning. arXiv preprint arXiv:2412.01113,
2024.

Lehnert, L., Sukhbaatar, S., McVay, P., Rabbat, M., and
Tian, Y. Beyond a*: Better planning with transformers via
search dynamics bootstrapping. In ICLR 2024 Workshop
on Large Language Model (LLM) Agents, 2024.

Li, Z., Liu, H., Zhou, D., and Ma, T. Chain of thought em-
powers transformers to solve inherently serial problems.
In The Twelfth International Conference on Learning
Representations, 2024.

Linial, N., Mansour, Y., and Nisan, N. Constant depth
circuits, fourier transform, and learnability. Journal of
the ACM, 40(3):607–620, 1993.

Liu, B., Ash, J. T., Goel, S., Krishnamurthy, A., and Zhang,
C. Transformers learn shortcuts to automata. In The
Eleventh International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/
forum?id=De4FYqjFueZ.

Malach, E. Auto-regressive next-token predictors are
universal learners. In Forty-first International Con-
ference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=i56plqPpEa.

McLeish, S., Bansal, A., Stein, A., Jain, N., Kirchenbauer,
J., Bartoldson, B. R., Kailkhura, B., Bhatele, A., Geip-
ing, J., Schwarzschild, A., et al. Transformers can do
arithmetic with the right embeddings. arXiv preprint
arXiv:2405.17399, 2024.

Merrill, W. and Sabharwal, A. A logic for expressing log-
precision transformers. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023a.

Merrill, W. and Sabharwal, A. The parallelism tradeoff:
Limitations of log-precision transformers. Transactions
of the Association for Computational Linguistics, 11:531–
545, 2023b.

Merrill, W. and Sabharwal, A. The expressive power of
transformers with chain of thought. In The Twelfth
International Conference on Learning Representations,
2024a. URL https://openreview.net/forum?
id=NjNGlPh8Wh.

Merrill, W. and Sabharwal, A. A little depth goes a long
way: The expressive power of log-depth transformers.
In NeurIPS 2024 Workshop on Mathematics of Modern
Machine Learning, 2024b.

Merrill, W., Petty, J., and Sabharwal, A. The Illusion of
State in State-Space Models. In International Conference
on Machine Learning, 2024.

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H.,
Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma,
M., Luan, D., et al. Show your work: Scratchpads for
intermediate computation with language models. arXiv
preprint arXiv:2112.00114, 2021.

O’Donnell, R. Analysis of Boolean Functions. Cambridge
University Press, 2014.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T. J., Mann, B., Askell, A., Bai, Y., Chen,
A., Conerly, T., Drain, D., Ganguli, D., Hatfield-Dodds,
Z., Hernandez, D., Johnston, S., Jones, A., Kernion, J.,
Lovitt, L., Ndousse, K., Amodei, D., Brown, T. B., Clark,
J., Kaplan, J., McCandlish, S., and Olah, C. In-context
learning and induction heads. ArXiv, abs/2209.11895,
2022.

Peng, B., Narayanan, S., and Papadimitriou, C. On lim-
itations of the transformer architecture. arXiv preprint
arXiv:2402.08164, 2024.

Pérez, J., Marinković, J., and Barceló, P. On the turing
completeness of modern neural network architectures.
arXiv preprint arXiv:1901.03429, 2019.

Pfau, J., Merrill, W., and Bowman, S. R. Let’s think dot
by dot: Hidden computation in transformer language
models. In First Conference on Language Modeling,
2024. URL https://openreview.net/forum?
id=NikbrdtYvG.

Qiu, R., Xu, Z., Bao, W., and Tong, H. Ask, and it shall be
given: Turing completeness of prompting. arXiv preprint
arXiv:2411.01992, 2024.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language Models are Unsupervised Multi-
task Learners. OpenAI, 2019a.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. OpenAI Blog, 1(8):9, 2019b.

Sabbaghi, M., Pappas, G., Hassani, H., and Goel, S. Ex-
plicitly encoding structural symmetry is key to length
generalization in arithmetic tasks. arXiv preprint
arXiv:2406.01895, 2024.

12

https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=i56plqPpEa
https://openreview.net/forum?id=i56plqPpEa
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=QZgo9JZpLq
https://openreview.net/forum?id=QZgo9JZpLq
https://openreview.net/forum?id=NikbrdtYvG
https://openreview.net/forum?id=NikbrdtYvG

Lower Bounds for CoT Reasoning

Sanford, C., Hsu, D., and Telgarsky, M. Transformers,
parallel computation, and logarithmic depth. In Forty-first
International Conference on Machine Learning, 2024a.

Sanford, C., Hsu, D. J., and Telgarsky, M. Representational
strengths and limitations of transformers. Advances in
Neural Information Processing Systems, 36, 2024b.

Schönhage, A. Asymptotically fast algorithms for the nu-
merical muitiplication and division of polynomials with
complex coefficients. In European Computer Algebra
Conference, pp. 3–15. Springer, 1982.

Siegelman, H. and Sontag, E. D. On the computational
power of neural nets. Journal of Computer and System
Sciences, 50:132–150, 1995.

Strobl, L. Average-hard attention transformers are constant-
depth uniform threshold circuits. CoRR, abs/2308.03212,
2023. doi: 10.48550/ARXIV.2308.03212. URL https:
//doi.org/10.48550/arXiv.2308.03212.

Strobl, L., Merrill, W., Weiss, G., Chiang, D., and Angluin,
D. Transformers as recognizers of formal languages: A
survey on expressivity. CoRR, abs/2311.00208, 2023.
doi: 10.48550/ARXIV.2311.00208. URL https://
doi.org/10.48550/arXiv.2311.00208.

Svete, A. and Cotterell, R. Transformers can represent
n-gram language models. In Proceedings of the 2024
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pp. 6841–6874,
2024.

Vasudeva, B., Fu, D., Zhou, T., Kau, E., Huang, Y., and
Sharan, V. Simplicity bias of transformers to learn low
sensitivity functions. arXiv preprint arXiv:2403.06925,
2024.

Voita, E., Talbot, D., Moiseev, F., Sennrich, R., and Titov, I.
Analyzing multi-head self-attention: Specialized heads
do the heavy lifting, the rest can be pruned. In Pro-
ceedings of the 57th Conference of the Association for
Computational Linguistics, ACL 2019, Florence, Italy,
July 28- August 2, 2019, Volume 1: Long Papers, pp.
5797–5808, 2019.

Wang, Y., Hu, S., Zhang, Y., Tian, X., Liu, X., Chen, Y.,
Shen, X., and Ye, J. How large language models imple-
ment chain-of-thought? OpenReview, 2024.

Wei, C., Chen, Y., and Ma, T. Statistically meaningful
approximation: a case study on approximating turing
machines with transformers. Advances in Neural Infor-
mation Processing Systems, 35:12071–12083, 2022a.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi,
E. H., Le, Q., and Zhou, D. Chain of thought prompt-
ing elicits reasoning in large language models. CoRR,
abs/2201.11903, 2022b. URL https://arxiv.org/
abs/2201.11903.

Wies, N., Levine, Y., and Shashua, A. Sub-task decom-
position enables learning in sequence to sequence tasks.
arXiv preprint arXiv:2204.02892, 2022.

Yang, A., Chiang, D., and Angluin, D. Masked hard-
attention transformers recognize exactly the star-free lan-
guages. In The Thirty-eighth Annual Conference on Neu-
ral Information Processing Systems, 2024.

Yang, C., Li, Z., and Wipf, D. Chain-of-thought provably
enables learning the (otherwise) unlearnable. In The
Thirteenth International Conference on Learning Repre-
sentations, 2025.

Yang, Z., Ding, M., Lv, Q., Jiang, Z., He, Z., Guo, Y., Bai,
J., and Tang, J. Gpt can solve mathematical problems
without a calculator. arXiv preprint arXiv:2309.03241,
2023.

Zhou, H., Bradley, A., Littwin, E., Razin, N., Saremi, O.,
Susskind, J., Bengio, S., and Nakkiran, P. What algo-
rithms can transformers learn? a study in length general-
ization. arXiv preprint arXiv:2310.16028, 2023.

13

https://doi.org/10.48550/arXiv.2308.03212
https://doi.org/10.48550/arXiv.2308.03212
https://doi.org/10.48550/arXiv.2311.00208
https://doi.org/10.48550/arXiv.2311.00208
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903

Appendix Contents

A. FAQ
1. Isn’t it obvious that one needs at least a linear number of steps to solve these algorithmic problems?

In general, serial computation models such as Turing machines need at least a linear number of steps in order to
solve tasks that require knowing the full input. The situation is different for parallel computation as performed by
transformers: Many problems do have direct parallel solutions. For instance, for all regular languages expressible in
the circuit complexity class AC0, transformers can express these in the UHAT model without CoT (Theorem 4.3),
essentially via parallel ‘shortcuts’. Our results are notable in that they establish that many algorithmic problems do
require linear-length CoTs, with barriers on the possibility of substantial parallel shortcuts.

2. All lower bounds in this paper are essentially on the order of Ω(N) or Ω(N logN). Do any algorithmic problems
require substantially super-linear (e.g., quadratic) CoTs?

This question is closely linked to deep unsolved questions at the heart of computational complexity. Due to the Turing
completeness of transformer CoTs, proving such lower bounds on CoTs would entail superlinear (e.g., quadratic) lower
bounds on multitape Turing machine time complexity, which has been extremely challenging, even for NP-complete
problems.

3. Transformers are already known to be Turing-complete. Why does this paper construct CoTs for the algorithmic
problems – isn’t reducing to known Turing machine constructions enough?

Compared to modern random-access models, single-tape Turing machines (as used in typical Turing machine com-
pleteness proofs for transformers) require substantial overhead to process data structures central to many algorithmic
problems. For instance, a straightforward implementation of the queue used in breadth-first search (Theorem 4.10) takes
a quadratic number of steps on a single-tape Turing machine, as the head needs to repeatedly move between start and
end position of the queue. It is thus not immediate from Turing completeness that these problems can all be solved at
(near-)linear CoT lengths. Multi-tape Turing machines (which can also be coded into CoTs) may provide substantially
better bounds, but CoTs derived from Turing machine constructions are still likely to have substantial overhead (even if
just constant factors). In contrast, we show that explicit constructions on the four algorithmic problems studied can be
practically learned, confirming that the upper bounds are meaningful.

4. Implementations of self-attention already have quadratic complexity. Why should one be concerned with a further
linear number of CoT steps?

It is true that generating N tokens, with KV-Cache, will have just O(N2) complexity, asymptotically the same as
directly providing an answer. However, it can still lead to substantial overhead, even if just by a constant factor, if the
number of CoT tokens grows appreciably with N (compare Figure 6). Thus, any potential sublinear CoTs would be of
great interest in increasing efficiency; our results demonstrate barriers to such solutions.

5. What is the practical impact of the results? Do the results relate to any specific NLP tasks?

PARITY, MULTIPLICATION, MEDIAN, REACHABILITY are foundational problems, which instantiate simple models
of reasoning problems that have been of broad interest. For instance, PARITY is a simple example of state tracking,
a family of reasoning problems that have been of substantial interests and that still pose challenges for LLMs (e.g.
Merrill et al., 2024; Kim & Schuster, 2023; Hsieh et al., 2024). There also has been a large amount of interest in the
ability of transformers and LLMs to perform arithmetic such as MULTIPLICATION, as it is a fundamental ingredient
of mathematical reasoning. REACHABILITY is a simple case of search, which is foundational to many aspects of
reasoning, and transformers’ abilities to perform such problems have been an object of interest (e.g. Lehnert et al.,
2024). On all these problems, our results entail barriers on the possibility of transformer algorithms avoiding substantial
CoTs.

6. Definition 2.1 enforces a finite input alphabet, but allows an infinite CoT alphabet. Why?

The input alphabet needs to be finite for Theorem 3.3 to go through, because the proof of Lemma B.3 by Hahn (2020)
involves a union bound over the alphabet. On the other hand, this is not needed for the CoT tokens. Some prior work
(Bhattamishra et al., 2020b; Abbé et al., 2024) allows the CoT vocabulary to grow with the input length. Theorem 3.3
can accommodate this, and we indeed find this useful in our constructions.

14

Lower Bounds for CoT Reasoning

7. Definition 2.2 allows using different transformers T at every input length. Isn’t this unrealistic? What about the role of
length generalization?

It is true that, in practice, one will expect transformers to perform the tasks across input lengths. However, the
theoretical literature on transformers has developed different approaches to formalize this. Notably, a single transformer
at fixed width may have trouble solving a single task across unboundedly many input lengths unless very specific
positional encodings are used (e.g. Merrill & Sabharwal, 2024a), and work has thus often considered cases where the
width may grow with the length (e.g. Liu et al., 2023; Huang et al., 2024; Bhattamishra et al., 2024). To accommodate
such variability, we aim for the most general setup under which we can prove lower bounds. We hence expect only the
depth and the number of heads to stay constant, but allow everything else to grow with the input length. This is the
most general setup under which our techniques allow us to show Theorem 3.3.

8. The results in this paper are proven for a hard-attention model, whereas real-world implementations use softmax
attention, which can express functions that hard-attention transformers cannot. In particular, UHAT is bounded by
AC0, whereas softmax transformers are bounded by TC0. Given this difference, what do the results entail about
real-world LLMs?

It is true that softmax attention can express some functions that hard attention (and AC0) cannot, such as the MAJORITY
function. On the other hand, TC0 is an overly optimistic upper bound on practical abilities of transformers, as many
TC0 functions are not practically learned by transformers due to the sensitivity limitations discussed in Section 2.1.
Hence, we focused on tasks for which existing results based on average sensitivity (Hahn & Rofin, 2024) entail that
transformers will struggle across different formal models of self-attention, irrespective of differences in expressive
capacity (Section 2.1), including problems within TC0. Thus, for the tasks considered here, a CoT is practically needed
irrespective of the specific formalization of self-attention; this is also confirmed by our experiments, where transformers
consistently failed in the absence of CoTs. We further note that existing CoT constructions from the literature can
by and large be expressed well using hard-attention operations (Appendices E.1 and B.3). In LLM experiments, we
observed algorithms in line with our theoretical constructions (Appendix D). Our results thus place strong constraints
on any possibility of evading linear lower bounds. In principle, it is possible that other formal models of transformers
allow substantially faster CoTs on some algorithmic problems while maintaining practical learnability (Problem 5.1);
rigorously proving or refuting the existence of such solutions is likely to require substantial advances in understanding
transformers’ learnability properties.

9. CoT lower bounds are proven for hard attention, while experiments are conducted with softmax attention. Isn’t there a
mismatch between theory (hard attention) and experiments (softmax transformers)?

It is true that we do not conduct experiments in the hard-attention setup, because there is no efficient training procedure
for that setup. Our experiments, conducted in the practical softmax attention setting, complement the theoretical results
in two ways:

(a) First, transformers consistently failed in the absence of CoT on the four algorithmic tasks. This supports the
theoretical prediction that a CoT improves transformers’ ability to solve these tasks.

(b) Second, by showing that CoTs implementing the theoretical upper bounds can be practically learned, we demon-
strate the real-world meaningfulness of our theoretical bounds.

B. General Theoretical Results
B.1. Proof of Theorem 3.3: Generic CoT Bound (Main Result)

Here, we prove our main lower bound (Theorem 3.3), which provides a generic condition under which sublinear CoTs can
be possible. Our techniques build on lower-bounding methods for bounded-depth circuits (Furst et al., 1984; Hastad et al.,
1994). Recall the definition of restrictions (Definition 3.2).

Definition B.1. We say ρ′ ≻ ρ if, whenever ρ′N (i) = ∗, then ρN (i) = ∗ (1 ≤ i ≤ N).

Definition B.2 (c-Transformer). A c-Transformer conforms to the definition of transformers from Section 2.2, except that
each y

(0)
i is a function of ≤ c input positions. That is, there are functions fi such that:

y
(0)
i = fi(x1...N) (6)

and fi depends on at most c of its inputs.

15

Lower Bounds for CoT Reasoning

We build on the following lemma shown by Hahn (2020), rephrased for self-containedness. It can be viewed as a transformers
analogue of the Switching Lemma (Hastad et al., 1994) for bounded-depth circuits:

Lemma B.3 (Depth Reduction Lemma). Given a UHAT c-Transformer T with L layers, a constant C ∈ (0, 1], and
restrictions ρN = ρ1, ρ2, . . . such that

|{i ≤ N : ρN (i) = ∗}| ≥ CN (7)

for all sufficiently large N .

Choose any C ′ ∈ (0, C). Then there are restrictions ρ′1 ≻ ρ1, ρ
′
2 ≻ ρ2, . . . such that

|{i ≤ N : ρ′N (i) = ∗}| ≥ C ′N (8)

for all sufficiently large N , and such that there is a c · (|Σ|ckH + 1)-transformer T ′ with L− 1 layers, for some integer k
(depending on C ′), such that, for each i ∈ [1, N] and each l ∈ [1, L],

y
(l)
i in T

equals

y
(l−1)
i in T ′

whenever the input is in ρ′Σ∗.

Proof. This is a stronger statement of Lemma 4 of Hahn (2020). That lemma only stated that the final output y(L)
N was

preserved in T ′. However, by the way T ′ is obtained in that proof5, the stronger statement for all activations follows. We
also note that the original statement considered Σ = {0, 1}, but the proof transfers to arbitrary finite alphabets Σ without
change, except that T ′ is now a c · (|Σ|ckH + 1)-transformer, rather than a c · (2ckH + 1)-transformer.

We note that Hahn (2020) did not assume causal masking, whereas we are assuming it by default (Section 2.2). Causal
masking can be easily simulated in UHAT, by setting up positional encodings in such a way that a(k,h)i,j is extremely small
whenever j > i. Hence, the proof of the Depth Reduction Lemma continues to work in the presence of hard-coded causal
masking.

This lemma entails the following fact, a strengthening of Theorem 1 of Hahn (2020):

Lemma B.4 (Restated from Lemma 3.4). Let T be a UHAT transformer operating over a finite alphabet. Take any
C ∈ (0, 1). Then there is c ∈ N, k ∈ N such that, for each N > k, there is ρ such that

1. |{i : ρ(i) = ∗}| ≥ CN

2. within ρΣ∗, each y
(l)
i is determined by ≤ c input positions

Proof. By applying Lemma B.3 iteratively, L times.

Remark B.5. A reader might wonder why, instead of introducing Lemma B.4, one cannot simply apply Theorem 1 of Hahn
(2020) independently to each layer of a Transformer. The reason is that the latter approach would only ensure the existence
of L independent restrictions – one for each layer –whereas Lemma B.4 guarantees that a single restriction fixes each y

(l)
i .

We now conclude the key result, Theorem 3.3:

Theorem B.6 (Restated from Theorem 3.3). Assume that f has a UHAT-expressible CoT g(x) of length |g(x)| = o (|x|).
Choose any C ∈ (0, 1). Then there is a restriction ρ such that

1. |{i ≤ N : ρN (i) = ∗}| ≥ Cn for sufficiently large N

5“We can thus remove layer 0, convert layer-1 activations y(1)
j into layer-0 activations y(0)

j , and obtain a (c · (2ckH + 1))-transformer
performing the same computation as before when ρ(3) is applied.” (quoted from Hahn, 2020). Here, “ρ(3)” corresponds to the restriction
ρ′ from the statement of the lemma.

16

Lower Bounds for CoT Reasoning

2. For each N ∈ N, f is constant on ΣN ∩ ρΣ∗

Proof. First, we obtain a restriction ρ(0), and integers c, k from Lemma 3.4, applying T only on the input x ∈ Σ∗ itself.

For any N > k, we now consider the following. Let M := max|x|=N |g(x)|. Without loss of generality, we can pad the
CoTs for all x with |x| = N to have length M .

Let g(x) = g1 . . . gM ∈ ΞM .

We now construct a sequence ρ(0) ≺ ρ(1) ≺ ρ(2) ≺ ρ(3) ≺ ...ρ(M) while maintaining the following properties for
k = 1 . . .M (†):

1.
∣∣∣{i : ρ(k)N (i) = ∗}

∣∣∣ ≥ CN − k · c ·H · L

2. For each l ∈ [0, L], i ∈ [1, k − 1], the activation y
(l)
N+i is constant on all strings in ΣN ∩ ρ

(k)
N Σ∗.

3. g1 . . . gk ∈ Ξk is constant on all strings in ΣN ∩ ρ
(k)
N Σ∗.

We prove this by induction.

Inductive Base (k = 1) We can fix y
(1)
N , . . . ,y

(L)
N by fixing at most ≤ c · L input positions, obtaining ρ(1) ≻ ρ, with∣∣∣{i : ρ(1)(i) = ∗}
∣∣∣ ≥ CN − c · L ≥ CN − 1 · c ·H · L (9)

Since g1 is determined by y
(L)
N , this also fixes g1.

Inductive Step (k > 1) Assume that the claim has been shown for all k′ < k (Inductive Hypothesis). Note that gk is
determined by y

(L)
N+k−1. By the Inductive Hypothesis, gk−1 is fixed by ρ(k−1); hence, y(0)

N+k−1 also is. We now perform the
following construction for each layer l = 1, 2, . . . , L, and – within each layer – for each head h = 1, . . . ,H . We iteratively
expand ρ(k−1) by restricting more input tokens.

At a given layer l and head h, let ρ̃ ≻ ρ(k−1) be the restriction obtained after treating layers 1, . . . , l − 1 and, within layer l,
heads 1, . . . , h− 1. The activation y

(l−1)
N+k−1 is now already fixed by ρ̃. Our goal is now to restrict a few more input positions

to fix the attention of this head to a specific position, and thus fix its output. For this, determine the maximal value of
any attention score over all inputs satisfying the restriction, and fix input tokens so that this value is achieved, forcing the
attention head to attend to a specific position. Formally, for each j ∈ [1, N + k − 1], we consider

Aj := max
x∈ΣN∩ρ(k−1)Σ∗

a
(l,h)
N+1,j (10)

Now let ĵ be the j that maximizes Aj (under the tie-breaking procedure, e.g. choosing the leftmost one, if more than one
attain the same Aj). One possibility is that ĵ ∈ [N +1, . . . , N +k− 1]; then attention is guaranteed to fall onto this position
because each relevant activation is constant across ρ(k−1)Σ∗ by Inductive Hypothesis. The more interesting possibility is
when ĵ ∈ [1, N]. Note that y(l−1)

ĵ
depends only on ≤ c input tokens in ρΣ∗; hence, we can expand the restriction ρ̃ by

fixing ≤ c additional input symbols to force y
(l−1)

ĵ
to take on a value leading to that maximal attention score a

(l,h)

N+k−1,̂j
.

Overall, performing this sequentially on each layer and head, we ultimately fix all activations y(l)
N+k−1 and hence gk, with a

restriction ρ(k) that restricts at most ≤ c · L ·H further input tokens beyond ρ(k−1).

This concludes the inductive proof of the claim (†). Overall, by taking ρ := ρ(M), we have fixed an additional ≤
c ·H · L · |g(x)| = o(N) input positions to fix all CoT tokens. As the output f(x) is part of the CoT, f(x) must also be
constant across all x ∈ ΣN ∩ ρMΣ∗.

Remark B.7. We assume, by default, causally masked attention throughout the transformer (Section 2.2), for consistency
with typical modern language models. Our results are also compatible with setups where attention is bidirectional on the
input and causal masking at most applies during CoT generation, which is the setup assumed by Abbé et al. (2024). As
explained in the proof of the Depth Reduction Lemma, it holds independently of whether causal masking is applied to the
input or not.

17

Lower Bounds for CoT Reasoning

B.2. Proof of Theorem 4.11 (Barriers for Dot-by-Dot Scratchpads)

Theorem B.8 (Repeated from Theorem 4.11). Consider a UHAT-expressible CoT for PARITY where g(x) has the form

.#f(x) (“dot-by-dot CoT”) (11)

This CoT has length ω(|x|k) for all k > 0.

Proof. In such a CoT, we can consider the suffix f(x) as the target of prediction given the input x . . .# of length
n := |x| + |g(x)| − 2, with N := |x|. The function predicting f(x) based on a prefix x . . .# acts on an input of length
n = N + |g(x)| − 2, where N = |x|, and has average sensitivity N . We note the following fact: Due to the inclusion
of UHAT in AC0 (Hao et al., 2022), and the known bound on the average sensitivity of AC0 circuits (Corollary 12.14
in Jukna (2012)); originally due to Linial et al. (1993); Boppana (1997)), we have asN (f) = O(poly(log(n))). Hence,
N = O(poly(log(N + |g(x)|))); hence |g(x)| cannot be bounded by a polynomial of N .

Theorem B.9 (Exponentially-Sized Dot-by-Dot Scratchpad for PARITY). PARITY has a UHAT dot-by-dot CoT of length
O(exp(N))

Proof. We lay out a construction for a dot-by-dot scratchpad of length 2N + 2, expressible in a UHAT Transformer with
two layers, one attention head, and d = 2N hidden dimensions. Each of the first 2N positions in a scratchpad is assigned a
unique bitstring ξ(i) ∈ {0, 1}N (i ∈ [1, 2N]): that is, i-th token in a scratchpad (or N + i-th token overall) corresponds to a
binary encoding of i− 1.

The construction works as follows. In the first layer, each of the 2N scratchpad tokens assigned with ξ(i) determines whether
the input string is equal to ξ(i). In the second layer, the (2N + 1)-th scratchpad token gathers information from them and
uses it to predict the hard-coded value of parity for the input string (which is the (2N + 2)-th scratchpad token).

In the first layer, at the position corresponding to string ξ(i), an attention head sends out a query looking for positions j
where xj ̸= ξ

(i)
j . For this, the query corresponding to bit string ξ(i), emanating from the i-th position in the CoT (overall,

index N + i), has the form (
ξ
(i)
1 . . . ξ

(i)
N (1− ξ

(i)
1) . . . (1− ξ

(i)
N)
)

(12)

At this position, the key and value vectors are zero.

The key and value corresponding to the j-th bit in the input has the form Kj :

Kj =

{
ej xj = 0

eN+j xj = 1
(13)

where e... ∈ R2N are one-hot vectors.

Keys of all tokens in the scratchpad are constant vectors of -1.

Then, the attention score

aN+i,j =


1 xj ̸= ξ

(i)
j

0 xj = ξ
(i)
j

< 0 j > N

(14)

If one position j achieves a 1, one of these will be selected by tie-breaking; if none does, one of the N input bits will be
selected. The MLP at the query position checks if the retrieved value vector indeed indicates a mismatch xj ̸= ξ

(i)
j , using

knowledge about ξ(i) forwarded via the residual connection. If no mismatch is found, the transformer can conclude that
x = ξ(i), and use that in the second layer.

In the second layer, we are interested in the (2N + 1)-th scratchpad token, superceeding all positions corresponding to ξ(i).
At this position, the second-layer attention head attends to the unique position at which the first layer found no mismatch,
and retrieves the hard-coded answer computed from the positional embedding of that position.

18

Lower Bounds for CoT Reasoning

B.3. Proof of Fact 3.1 (Universality of UHAT CoTs)

A substantial number of constructions coding Turing machine computations into transformer CoTs have been presented
in the literature (e.g. Pérez et al., 2019; Wei et al., 2022a; Bhattamishra et al., 2020b; Hou et al., 2024; Qiu et al., 2024;
Malach, 2024), but they all use different assumptions about the formal model of transformers. For self-containedness, we
here provide a simple construction. Our construction is largely equivalent to that of Wei et al. (2022a), but we present it in a
simplified and self-contained manner in the notation used in our paper. We also note that constructions from Bhattamishra
et al. (2020b); Hou et al. (2024); Qiu et al. (2024); Malach (2024) can also be expressed straightforwardly in UHAT. We
discuss existing constructions from the literature at the end of this subsection.

Construction Consider a Turing machine defined by

1. a finite tape alphabet Σ

2. a finite state set Q

3. the action set
A := {LEFT,RIGHT} ∪ {WRITE(σ) : σ ∈ Σ} (15)

4. a transition function δ, mapping Σ×Q to A×Q

5. a start state s0 ∈ Q

6. a terminating set T ⊂ Q

with the following computation:

1. We consider a tape with positions 0, 1, 2,

2. At the beginning, the machine starts at position 0 and in state s0; the tape holds a finite input word starting at 0, ending
in a separator symbol. All remaining tape positions hold a blank symbol BLANK ∈ Σ.

3. At each step, the next action and state are decided based on δ applied to the current state and the current tape symbol

4. The machine stops when a state from T is reached

5. The final state indicates whether the input word was accepted or rejected

We encode the computations as follows. We first encode the input word as a string over the input alphabet Σ, followed by a
separator symbol. We then construct a CoT over the infinite alphabet

Ξ := N×A×Q (16)

For each state transition, we record (i) the tape position after carrying out δ (an element of N), (ii) the output of δ (an element
of A×Q).

We relate this construction to other constructions in Appendix E.

We now show that this is implemented by UHAT as defined in Section 2.3. We need to define a set of UHATs TN , operating
on inputs with length ≤ N , with uniformly bounded number of layers and heads. We define

ΞN := [0, N]×A×Q (17)

First, let N be a bound on the input length. At each position,

1. The input token ξ = (i, a, q) ∈ [0, N]×A×Q provides the tape position i, the output a of δ, and the resulting state q.

19

Lower Bounds for CoT Reasoning

2. An attention head attends to the last step at which the Turing machine head had been at tape position i while doing a
WRITE operation.

The key, given input token ξ′ = (i′, a′, q′), is the one-hot vector indicating the tape position i′, an indicator for
a′ ∈ {WRITE(σ) : σ}, and a scalar indicating the position i′. ei′ ∈ RN

1∃σ:δi=WRITE(σ) ∈ R
i ∈ R

 (18)

The query, given input token ξ = (i, a, q), is 3Nei ∈ RN

2N ∈ R
1 ∈ R

 (19)

If the tape position has previously appeared, the attention score will be maximized by the most recent position at
which a write operation occurred; otherwise, it will fall somewhere else. We define the value, given input token
ξ′ = (i′, a′, q′), as (

ei′

ea′

)
(20)

The MLP then checks if the value is in {(
ei

eWRITE(σ)

)
: σ ∈ Σ

}
(21)

If not, the symbol at tape position i must be what it was set to before the computation started. Else, the symbol at the
position must be as given by the action a′ ∈ A retrieved.

Simultaneously, a second head attends to position i and check whether it is part of the original input (i.e., precedes the
separator); if it is, that position provides the symbol; if it is not, the tape position has not yet been written to.

Based on the information gathered by these two heads, the MLP then computes the next action, and outputs the new
tape position, the action, and the new state.

Comparison to other constructions Our construction is closest to that of Wei et al. (2022a). It is also similar to that of
Qiu et al. (2024). The original Turing completeness proof for scratchpads (Pérez et al., 2019) recomputed the current tape
position in every step, an idea used by Merrill & Sabharwal (2024a); our translation differs by keeping the tape position
explicitly in the CoT, rather than recomputing it in every step; we believe that this reduces some technical challenges in the
construction (at the price of making the transformer’s width and parameters dependent on the input length). Bhattamishra
et al. (2020b) noted that the classical RNN construction of Siegelman & Sontag (1995) can be straightforwardly replicated
in a transformer using hard attention and unbounded-precision activations. This construction also is expressible in the UHAT
model. A related translation, albeit in the special case where the Turing machine produces no repeated strings, is developed
in Theorem 4.1 of Hou et al. (2024); hence our lower bounds also hold for the “Turing programs” scratchpad technique
proposed by Hou et al. (2024). Another translation (applicable to, but not specific to transformers) is used by Malach (2024),
it uses even simpler computations in each step, but may suffer a polynomial slowdown compared to Turing machines.

C. Applications to Algorithmic Tasks
C.1. PARITY and other Finite-State Languages

C.1.1. PROOF OF COROLLARY 4.3: CHARACTERIZATION FOR FINITE-STATE LANGUAGES

Corollary C.1 (Restated from Corollary 4.3). Let f be the membership problem of a finite-state language L. Then f exactly
one of the following holds:

1. L ∈ AC0 and f is expressible in UHAT without CoT

2. L is not decidable in AC0, and any UHAT CoT for f has length Ω(N)

20

Lower Bounds for CoT Reasoning

Proof. We show this using the characterization of regular languages in AC0 by Barrington et al. (1992) and the follow-up
result on hard-attention transformers by Yang et al. (2024).

First, if L ∈ AC0, then it is definable in UHAT (without CoT) by Corollary 8 of Yang et al. (2024).

Conversely, if L ̸∈ AC0, then by Theorem 3 of Barrington et al. (1992), the syntactic morphism of L is not quasi-aperiodic.
That is, if ηL is the syntactic morphism of L6, then there is t ∈ N such that ηL(Σt) contains a nontrivial group G. As
in the proof of Theorem 3 of Barrington et al. (1992), we now consider an element m ∈ G of order k > 0, and define
M ′ := {m,m2, . . . ,mk} to be the subgroup defined by m; its identity element is mk. We can then find strings u, v ∈ Σt

such that ηL(u) = m, ηL(v) = mk.

Namely, there are strings α, β ∈ Σ∗ such that either αuβ ∈ L, αvβ ̸∈ L, or the other opposite holds. By passing from L to
its complement if needed, we may assume without loss of generality that αuβ ∈ L, αvβ ̸∈ L. We now consider inputs of
the form

α(u|v)∗β (22)
Now assume that a UHAT CoT with length |g(x)| = o(|x|) exists for deciding, on such inputs, membership in L. By
hard-coding the (fixed) strings α, β, we can convert this into a UHAT CoT performing the same problem with only the
inner part, a word in (u|v)∗, given as input. As |u| = |v|, we can further convert this into a UHAT CoT over a new
alphabet Σ′ = {a, b}, translating u ∈ Σt to a ∈ Σ′ and v ∈ Σt to b ∈ Σ′, cutting the string length by a constant factor of
t = |u| = |v|. We now reach a contradiction: On inputs of the chosen form, checking membership in L amounts to counting
how often u (or, after changing the alphabet, a) appears modulo k. Fixing any constant fraction of symbols cannot fix the
result. By Theorem 3.3, the UHAT CoT cannot have had length |g(x)| = o(|x|) in the first place. Hence, any UHAT CoT
for deciding membership in L has length Ω(N).

Remark C.2. We also mentioned, below Theorem 4.3, that f is affected by the sensitivity-based barrier discussed in
Section 2.1 if and only L ̸∈ AC0. This is seen as follows. First, if L ∈ AC0, then by the result of Boppana (1997),
asN (f) = O(poly(log(N))) = o(N). Second, if L ̸∈ AC0, then the deciding membership of strings from α(u|v)∗β as
defined in the proof of Theorem 4.3 amounts to counting how often u appears modulo k. Any function Σ∗ → {0, 1} that
exhibits this behavior on strings from α(u|v)∗β must have a high sensitivity. Overall, this means that shortcuts to finite-state
automata without linear-length CoT (Liu et al., 2023) are likely to be learned well on long inputs if and only the automaton
can be simulated in AC0.

C.1.2. EXPERIMENT

We trained a 2-layer 2-head transformer using the GPT-2 architecture (Radford et al., 2019b), with d = 256. Each model
was trained at a fixed input and CoT length. Each training and testing input was generated randomly on the fly. Training was
for 30K steps, at a batch size of 64, with AdamW (learning rate 1e-4).

C.2. Arithmetic

C.2.1. PROOF OF THEOREM 4.5 (LOWER BOUND FOR MULTIPLICATION))

Theorem C.3. A UHAT CoT for MN requires length Ω(N).

Proof. In order to understand the difficulty of different digits in multiplication, we first review the connection between
multiplication and bit string convolution. The integers X , Y , XY can be written in terms of binary coefficients ξi, ηi ∈ {0, 1}
as:

X =

N∑
i=0

2iξi

Y =

N∑
i=0

2iηi

XY =

(
N∑
i=0

2iξi

)
·

(
N∑
i=0

2iηi

)
6We refer to Barrington et al. (1992) for the relevant definition.

21

Lower Bounds for CoT Reasoning

ADDITION MULTIPLICATION

1

2

3

4

0.0 2.5 5.0 7.5 10.0
Position

S
en

si
tiv

ity

Length

2.5

5.0

7.5

10.0

3

6

9

0 5 10 15 20
Position

S
en

si
tiv

ity

Length

4

6

8

10

Figure 7: Arithmetic. Average sensitivity (Section 2.1) of the results digits as a function of the length N of the operands
(colored lines) and the position k (x-axis). The most significant digit is at position k = 0.
Left: ADDITION. Sensitivity grows sublinearly with n.
Right: MULTIPLICATION. Sensitivity grows rapidly with the length of the multiplicands, and is highest in the middle, where
sensitivity shows linear growth with n.

Figure 8: Accuracy of transformers trained on 12-digit multiplication (most significant digit at the left, zero-padded on
the left), either autoregressively (left) or in parallel (right), on a test set with 10K number pairs. In both setups, the
high-sensitivity digits in the middle (compare Figure 7 Right) show substantially decreased accuracy even if digits at
beginning and end are predicted exactly.

22

Lower Bounds for CoT Reasoning

Figure 9: Numerical Experiments for Conjecture C.5: 100 different combinations samples for each T. Blue dots indicate
values for (23) for 100 different sampled (A,B,C). Right: Zoomed in on T = 7,8,9.

=
∑
i,j

2i+jξiηj

=
∑
k

2k
∑

i+j=k

ξiηj

Hence, the N -th digit of XY , MN , is determined by, on the one hand, the high-order parity
⊕

i+j=k ξiηj , XOR-red with
carries obtained from terms at lower k’s. Now if one fixes CN input bits, for C small, the result cannot be fixed.

Remark C.4. Regarding as(MN), we note that the innermost digits MN are, up the impact of carries, derived from
high-degree parities as discussed in the proof of Theorem 4.5. In accordance with this, we find that as(Mk) is approximately
min(k, 2N − k) and in particular peaks at k ≈ N (Figure 7). Empirically, the middle digits are the hardest for transformers
(Figure 8).

C.2.2. REMARK: AUTOREGRESSIVE MULTIPLICATION

Theorem 4.5 shows that querying individual digits of a product of N -digit numbers requires at least a linear-length CoT.
An interesting question is whether autoregressive decoding can help, i.e., the earlier digits in the result can serve as an
effective chain-of-thought for later digits. Empirical results cast doubt on such a possibility, because transformers struggle
substantially more with multiplication than addition even in autoregressive generation (Figure 12).

Here, we outline a path to rigorously showing this. The key idea is the following conjecture, which is of purely combinatorial
nature:
Conjecture C.5. Given two binary encodings X,Y ∈ {0, 1}N of N -bit integers, let Mi(X,Y) be the i-th bit of the product
XY . We assume standard binary encoding with the most significant bit on the left.

Then, there is a constant D > 0 such that for any T ∈ [1, N], sets A,B ⊆ [1, N], C ⊆ [1, T − 1], we have∣∣∣∣∣∣E
M̂T (X,Y)

∏
i∈A

X̂i

∏
j∈B

Ŷj

∏
k∈C

M̂k(X,Y)

∣∣∣∣∣∣ ≤ 2−D·T (23)

where X̂i = 2Xi − 1 ∈ {−1, 1}, and similar for Ŷ , M̂ .

This statement intuitively states that digits of the product are not substantively correlated with combinations of individual
digits in the inputs or preceding digits in the result. We provide numerical evidence for this conjecture in Figure 9. Any
proof of this conjecture would imply lower bounds on autoregregressive multiplication. Formally, we are interested in
autoregressive predictors

FT : {0, 1}2N+T−1 → {0, 1} (24)

23

Lower Bounds for CoT Reasoning

with the property that
MT = FT (X1, X2, . . . , XN , Y1, Y2, . . . , YN ,M1, . . . ,MT−1) (25)

We then have bounds based on sensitivity (hence learnability by Section 2.1) and UHAT expressiveness:

Lemma C.6. Assume Conjecture C.5. Then any Boolean function implementing FN needs to satisfy7

as(FN) = Ω(N) (27)

A CoT directly outputting M1 . . .M2N , without ω(1) further intermediate steps, cannot be implemented in UHAT.

Proof. It is sufficient to show the lower bound on average sensitivity; the claim about UHAT follows from the inclusion
of UHAT in AC0 and Boppana’s upper bound on the average sensitivity of AC0 functions (Boppana, 1997). We refer to
O’Donnell (2014) to background on Fourier analysis of Boolean functions. We consider the Fourier transform of FN as a
Boolean function:

F̂N (X,Y,M1...N−1) =
∑

A,B⊆[1,N];C⊆[1,N−1]

λA,B,C ·

∏
i∈A

X̂i

∏
j∈B

Yj

∏
k∈C

M̂k

 (28)

for unique coefficients λA,B,C ∈ R given by

λA,B,C = EX,Y

M̂N (X,Y)
∏
i∈A

X̂i

∏
j∈B

Ŷj

∏
k∈C

M̂k(X,Y)

 (29)

We have, by the conjecture,

λ2
A,B,C =

E

M̂N (X,Y)
∏
i∈A

X̂i

∏
j∈B

Ŷj

∏
k∈C

M̂k(X,Y)

2

≤ 2−2DN

Now, for any η ∈ (0, 1), the number of tuples (A,B,C) where |A| + |B| + |C| ≤ η · 3N is ≈ 2γηN for some γη > 0.
Hence, ∑

A,B,C:|A|+|B|+|C|≤η·3N

|λA,B,C |2 ⪅ 2(γη−2D)N

By Parseval’s Theorem:

1 =
∑

A,B⊆[1,N];C⊆[1,N−1]

λ2
A,B,C

We choose η so that γη < 2D. Then, by the link between Fourier transforms and average sensitivity (O’Donnell, 2014), we
find:

as(FN) =
∑

A,B,C

(|A|+ |B|+ |C|) · |λA,B,C |2

≥3ηN
∑

A,B,C:|A|+|B|+|C|≥η·3N

|λA,B,C |2

≥3ηN · (1− 2(γη−2D)N)

=Ω(N)

This concludes the proof.
7In fact, the stronger bound

as(FT) = Ω(T) (26)

can be concluded uniformly for T , independently of N . This is because FT is only relatively weakly dependent on digits at positions
much larger than T , making products trivially close to zero in Conjecture C.5 when A or B include indices substantially greater than T .

24

Lower Bounds for CoT Reasoning

C.2.3. CONSTRUCTION OF O(N logN)-LENGTH COT FOR MULTIPLICATION

Whereas the traditional approach for multiplying two N -digit numbers requires Θ(N2) steps, modern algorithms are
more efficient for large inputs, and achieve an asymptotic runtime up to Θ(N logN) (e.g. Schönhage, 1982; Harvey &
Van Der Hoeven, 2021). We illustrate this by demonstrating a scratchpad whose length, O(N logN), matches a widely
conjectured lower bound on the asymptotic time complexity of multiplication in the Turing machine model. It is based on
the Schönhage-Strassen algorithm (Schönhage, 1982).8

Background: Number Theoretic Transform (NTT) The Number Theoretic Transform is an analogue of the Discrete
Fourier Transform (DFT) that operates over finite fields. While the DFT leverages the complex roots of unity, the NTT
employs roots of unity in a modular arithmetic setting. Formally, let Fq denote a finite field of size q, where q = pk for some
prime p and integer k. Consider a prime p such that there exists a primitive n-th root of unity ω ∈ Fq , ωn ≡ 1 (mod p) and
for all 1 ≤ k < n, ωk ̸= 1. The NTT is then defined as a mapping of an input vector of length n, say a = (a0, a1, . . . , an−1),
to an output vector A = (A0, A1, . . . , An−1), where:

Ak =

n−1∑
j=0

ajω
jk (mod p), for k = 0, 1, . . . , n− 1.

This transformation can be seen as a modular version of the classical DFT. The inverse of the NTT (INTT) is similarly
defined, allowing for the reconstruction of the original vector from its transformed version. The INTT is expressed as:

aj =
1

n

n−1∑
k=0

Akω
−jk (mod p), for j = 0, 1, . . . , n− 1,

where 1
n refers to the modular multiplicative inverse of n modulo p, which must exist for the INTT to be valid. In the context

of multiplication, the use of NTT allows for a scratchpad with O(N logN) length, compared to the O(N2) length of the
naive scratchpad.

CoT Construction and Analysis The Schönhage-Strassen algorithm provides a method to perform integer multiplication
efficiently (Schönhage, 1982). To translate this into a scratchpad for use in a UHAT framework, the steps of the algorithm
are defined here. We note that the required attention pattern is, for any input length N , input-independent, which ensures
that the CoT is expressible in UHAT. The number of CoT steps scales as O(N logN) because the NTT is computed using
the divide-and-conquer Fast Fourier Transform strategy (Cooley-Tukey Algorithm, Cooley & Tukey, 1965).

We use “-1” as separator token.

Input encoding We encode the input:

[−1] [First Number] [−1] [Second Number] [−1]

Input Reversal and Padding Given two binary numbers, we first reverse their bit sequences and pad them to the nearest
power of two, 2n, where n is chosen such that 2n is greater than or equal to the length of the input sequences. This ensures
that the sequences are of a length suitable for efficient NTT computation.

[−1] [First Number Reversed and Padded]

[−1] [Second Number Reversed and Padded]

8The Schönhage-Strassen algorithm (Schönhage, 1982) requires O(N logN log logN) steps, slightly different from the O(N logN)
CoT length. This is because we use an unbounded CoT alphabet to encode and perform arithmetic on the entries of the NTT. Moving to a
constant-size CoT alphabet would incur a log logN factor as in the standard Schönhage-Strassen algorithm. The algorithm of Harvey &
Van Der Hoeven (2021) attains O(N logN) complexity, but is substantially more complex.

25

Lower Bounds for CoT Reasoning

NTT Transformation The padded sequences are then transformed using the NTT, which operates in a finite field. The
output is a sequence A0, . . . , An−1 ∈ {0, . . . , p− 1}.

[−1] [NTT of First Number] [−1] [NTT of Second Number]

This part takes O(N logN) steps because the NTT is computed using the divide-and-conquer Fast Fourier Transform
strategy (Cooley-Tukey Algorithm). Every step combines two fixed previously computed results; the attention pattern can
be hard-coded into positional encodings and the modular arithmetic required can be hard-coded into the MLP map fMLP

(Section 2.2).

Convolution In the NTT domain, the two transformed sequences are multiplied pointwise, modulo our prime number.
This convolution corresponds to a multiplication in the original domain. We found that training was improved by first
copying the NTTs with each digit marked with an index hint (Zhou et al., 2023) indicating its position, as a way of indicating
which pairs of numbers to match in pointwise multiplication.

[−1] [Convolution] [−1]

This part takes just O(N) steps.

Inverse NTT After the convolution, we apply the inverse NTT to convert the sequence back to the domain.

[−1] [Result of Inverse NTT] [−1]

Again involving a divide-and-conquer FFT, this takes O(N logN) steps.

Recombination Finally, we recombine the elements of the transformed sequence to produce the final multiplication result.
Starting from the leftmost element, we multiply by 20, the next by 21, and so on, summing these weighted values to get the
desired output.

[Recombined Final Result] [−1]

Example Below is an example of the full CoT for 2 digit binary multiplication (10 * 11) using prime p = 5.

• Input:
−1 1 0 −1 1 1 −1

• Target:
−1 0 1 0 0︸ ︷︷ ︸

First Number Reverse and Pad

−1 1 1 0 0︸ ︷︷ ︸
Second Number Reverse and Pad

−1 1 2 4 3︸ ︷︷ ︸
NTT of First Number

−1 2 3 0 4︸ ︷︷ ︸
NTT of Second Number

−1 a 1 b 2 c 4 d 3︸ ︷︷ ︸
NTT of First with Index Hints

−1 a 2 b 3 c 0 d 4︸ ︷︷ ︸
NTT of Second with Index Hints

−1 a 2 b 1 c 0 d 2︸ ︷︷ ︸
Convolution with Index Hints

−1 2 1 0 2︸ ︷︷ ︸
Convolution

−1 0 1 1 0︸ ︷︷ ︸
INTT of Convolution

−1 0 1 1 0︸ ︷︷ ︸
Result (Recombined)

−1

C.2.4. EXPERIMENTS

Setup All experiments were conducted on NVIDIA A100 GPUs (40GB memory each). We experimented with two
different transformer architectures: a BART-based encoder-decoder model (for autoregressive decoding of multiplication)
and an encoder-only model (for parallel decoding).

26

Lower Bounds for CoT Reasoning

Model Configurations We experiment with three setups:

1. Direct parallel decoding of each digit M1, . . . ,M2N (and analogously for addition) in parallel. To avoid training
separate transformers for each digit, we use a transformer encoder (i.e., transformer with bidirectional attention)
reading in the two N -digt operands, and providing predictions for each of the 2N results digit at the top layer. Due
to high sensitivity of the middle digits (Figure 7) and Theorem 4.5, we expect that this setup will be difficult for
MULTIPLICATION, though not for ADDITION.

2. Autoregressive decoding of the result M1 . . .M2N (and analogously for addition). We expect that this setup is still
difficult for MULTIPLICATION as discussed in Appendix C.2.2.

3. Autoregressive decoding of the O(N logN)-length CoT. We expect that this setup will make the task feasible for
transformers.

Encoder-only Model for Direct Parallel Decoding: We employed a transformer encoder with 2 layers, 2 attention heads,
a feed-forward network dimension of 512, and a model dimension of 128. The vocabulary size was determined by the
tokenizer used for encoding the digits and arithmetic symbols.

Encoder-Decoder Model for Autoregressive Decoding: In autoregressive decoding, we slightly deviated from the theoretical
setup in Section 2.2 in allowing bidirectional attention on the input (though not on the CoT) as in Abbé et al. (2024), for
consistency with the Direct Parallel Decoding setup, where we use bidirectional attention for efficiency, as described above.
We built on the BART architecture, with a 1-layer encoder and a 2-layer decoder. Both the encoder and decoder had 2
attention heads, and the decoder’s feed-forward network dimension was 512. The model dimension for both encoder and
decoder was 128.

Note on Bidirectional Attention: As the results in Hahn (2020) do not presuppose causal masking, our lower bounds are also
applicable in the setup with bidirectiobnal attention (Remark B.7).

Datasets All experiments were conducted on binary numbers. We trained and evaluated both models without CoT on
datasets consisting of 2-digit, 4-digit, and 6-digit arithmetic problems for both addition and multiplication. For the CoT, we
used a training dataset of 5 million samples and 10,000 test samples. The dataset sizes for 8-digit to 12-digit multiplication
were smaller due to the limited number of possible combinations, with 50,000 samples for training and 10,000 for testing.
In both cases, the test data is held-out, without overlap with the training data.

Training Configurations For the CoT multiplication experiments, we used the following training configuration: - Number
of training epochs: 20 - Batch size (per device): 8 for both training and evaluation - Gradient accumulation steps: 4 -
Learning rate: 0.0001

Multiplication Task Training Set Size Accuracy (%)
8-digit 50,000 99.83
9-digit 50,000 99.87
10-digit 50,000 99.82
11-digit 50,000 99.85
12-digit 5,000,000 99.84
13-digit 5,000,000 99.82
14-digit 5,000,000 99.96
15-digit 5,000,000 99.91
16-digit 5,000,000 99.83

Table 1: Accuracy results of the O(N logN)-length CoT for MULTIPLICATION for different digit sizes. All accuracies are
computed on tests sets disjoint from the training set.

27

Lower Bounds for CoT Reasoning

0 100 200 300 400 500
N

0

50

100

150

200

250

300

Av
er

ag
e

Se
ns

iti
vi

ty

Average Sensitivity as a Function of N

Figure 10: Average sensitivity of the last digit of MEDIAN as a function of N when B ∼ 1 + ⌈logN⌉. We estimate
average sensitivity by sampling 200 input strings at each N , and 200 bit flips for each input. As predicted theoretically
(Appendix C.3), average sensitivity grows linearly in this regime where exp(B) ⪆ N .

C.3. MEDIAN Task

C.3.1. THEORY

We first establish the claim that the last digit of MEDIAN is sensitive to changes of the integers, in the regime where
N << exp(B).9 Changing the first digit in any of the numbers with order rank < ⌊N

2 ⌋ can get it to have rank > ⌊N
2 ⌋.

Under uniform sampling of the numbers, the chance that this will change the last digit is ≈ 1
2 . Changing other digits will

additionally have some nonzero (though smaller) chance of flipping the last output digit. Hence, the average sensitivity of
the last digit is ⪆ N

2 . This is illustrated in Figure 10. Hence, the task is challenging for transformers by the results reviewed
in Section 2.1.

Now we proceed to showing the CoT bounds.

Theorem C.7 (Restated from Theorem 4.8). For the MEDIAN task, a UHAT scratchpad requires length Ω(N). This bound
is attained.

Proof. We note that the input length is BN , where B is the number of bits in each integer. To show the lower bound by
applying Theorem 3.3, we note that fixing, say, 1

10N = BN
10B digits cannot fix the median.

Now we show that the bound is attained. Recall that the input consists of N unique numbers in binary encoding, each with
B bits. Let a1, . . . , aN be the integers in the input, and let ai1 , . . . , aiN be the same numbers ordered by magnitude. Now
the CoT simply consists of

ai1 . . . ai⌊N/2⌋ (30)

To implement this in UHAT, we first use B attention heads in order to aggregate each ai on the basis of the B bits entering
its binary representations:

ai =

B−1∑
j=0

2jλB(i−1)+j+1 (31)

where λ ∈ {0, 1}BN is the input string consisting of N integers with B digits each. This number ai is stored, e.g. as a
one-hot encoding, in the activation y(1) at the last digit of its binary representation in the input. The CoT then orders the

9If N is on the order of or even larger than exp(B), then uniform sampling of numbers (even with replacement) will have a high
chance of producing the same number and low sensitivity. We hence focus on the regime where N << exp(B).

28

Lower Bounds for CoT Reasoning

numbers by magnitude, stopping at the k-th index. Importantly, this is expressible with a single attention head as follows: If
the integer i is represented as the one-hot vector ei, then eTi K

TQej produces the desired behavior when10

(KTQ)ij =

{
−1 if i ≤ j

N + j − i else
(32)

Stopping at ⌊N/2⌋ can be hard-coded via positional encodings.

C.3.2. EXPERIMENT

To simplify the setup, we deviated from the theoretical construction by using decimal numbers instead of binary numbers,
and also using decimal numbers instead of atomic encodings in the CoT. We considered three-digit numbers (B = 3, but
with decimal instead of binary encoding).11

We experiment with N = {1, 9, 19, 29, 39, 49, 59, 69, 79, 89, 99}. The resulting input length is between 6 and 398 (including
BOS and SEP token). The N numbers are randomly sampled from {0, 1, · · · , 999} with replacement. We train separate
models for each N , and test on the same length. Note that the size of the test set varies with N , concretely it is (N+10)×20.
Because when N = 1, there are only 1000 possible inputs. The test examples are excluded from training set. The input
format is as follows (for the case N = 3), including full scratchpad:

BOS 3 4 3 ; 0 1 9 ; 8 5 2 ; SEP 0 1 9 ; 3 4 3 ; EOS .

We use “;” to separate each number. As mentioned, we experiment with the full scratchpad and without any scratchpad, as
well as every kth element in the full scratchpad, where k = {2, 3, 4, 5, 6, 9, 12}. The models are trained with cross entropy
loss on tokens after SEP (excluding itself). The input length in figure 5 refers to number of tokens before and including SEP,
and CoT length refers to number of token after SEP and before the final answer (last 3 digits). While models are trained
to predict both the scratchpad and the answer, we do not consider scratchpad during testing. In other words, to evaluate
the models, we give them tokens up to SEP, and let them generate with greedy search, and take the last generated number
before EOS as the prediction. The prediction is considered correct only when it matches all digits in the answer. We run
each experiment (each N and each kind of scratchpad) with 3 random seeds, and report the average accuracy.

Regarding hyperparameters, we use the same model architecture for all experiments in this section, which has 3 layers, 4
attention heads in each layer, and model dimensionality of 256. We use batch size of 64, train models for 50k steps, use
learning rate starting from 3× 10−4 and decreasing linearly. We use AdamW optimizer, with β1 = 0.9, β2 = 0.999 and
weight decay of 0.01. All dropout rates are set to zero. Note that we observe that low accuracy is always accompanied with
big training loss.

C.4. Graph Reachability

C.4.1. PROOF OF THEOREM 4.10

Theorem C.8 (Restated from Theorem 4.10). There is a family G of DAGs inside which reachability is solvable in TC0, but
cannot be represented by a transformer at sublinear average sensitivity. A UHAT CoT needs length Ω (|E| log |V |). This
bound is attained.

Proof. For the lower bound, the proof proceeds by coding PARITYn into DAGs with 2n vertices. For i = 1, . . . , N + 1,
we introduce two vertices vi,odd and vi,even. Whenever xi = 1, we add edges vi,odd → vi+1,even and vi,odd → vi+1,even.
When xi = 0, the edges instead connect vi,odd → vi+1,odd and vi,even → vi+1,even. Then, x has even parity if and only
if there is a path from v1,even to vN+1,even. We define G as the set of these graphs. If G is guaranteed to be in G, then a
TC0 circuit is sufficient for deciding membership. As the graphs in G code PARITY, reachability cannot be represented
by transformers at low sensitivity. Also, fixing a small constant fraction of edges, while staying within G, cannot fix the
reachability.

10We note that definitions of autoregressive sorting by transformers are also given in RASP-L (Zhou et al., 2023) and C-RASP (Huang
et al., 2024).

11In preliminary experiments, we found that it is important to have diverse inputs (i.e., B not too small in relation to N) to avoid
learning a “increment-by-1” algorithm (imagine when N = 100, we sample 100 number from [0, 99] without replacement, which means
the sorted list and the median is always the same).

29

Lower Bounds for CoT Reasoning

To show that the Ω (|E| log |V |) bound is attainable, we note that a CoT of length O(|E| log |V |) can encode breadth-first
search, a generalization of the DFS/BFS CoT for the cycle task in Abbé et al. (2024). The input consists of the edges and the
query, such as:

BOS 06 08 ; 04 01 ; 04 05 ; 01 03 ; 08 00 ; 01 05 ; ... QUERY1 03 QUERY2 04 SEP

Whereas the input codes each vertex as a ⌈log |V |⌉-length number (keeping the input alphabet finite), each vertex is coded
as an atomic token inside the CoT. At the beginning of the CoT, each edge is translated from binary representations to this
atomic representation. This takes O(|E| log |V |) steps.12

We then implement a standard first-in-first-out queue. As nothing can be deleted from the CoT sequence once it has been
generated, we maintain a pointer ∈ N that indicates the current head of the queue. The CoT then starts with the first query
vertex. We copy into the CoT all the edges starting with the end of the edge. We then move to the second edge in the CoT
and write down all the edges starting with the end of that edge, and so on. If at any point we encounter the target vertex, we
exit. Throughout, in every CoT step, we additionally maintain the pointer ∈ N indicating the current head of the queue.

C.4.2. EXPERIMENT

We show that the CoT described in Theorem C.8 is sufficient for Transformers to solve the problem of DAG reachability in
the general case. For that, we train Transformers to predict the reachability of two vertices in a random DAG, both with and
without a CoT.

Data generation. Each random DAG is generated by sampling a random lower triangular adjacency matrix and instantiating
a DAG from it. We then compute the distances between all pairs of vertices in the graph. When sampling examples for
training or evaluation, we select, with equal probability, either an unconnected pair labeled as 0 or a connected pair labeled
as 1. For connected pairs, we sample the pairs such that the distribution of possible distances is uniform.

For example, in a chain graph A → B → C, the unconnected pairs (C,B), (C,A), and (B,A) are sampled with a
probability of 1/6 each. The connected pairs (A,B) and (B,C) are sampled with a probability of 1/8 each (distance =
1), while the pair (A,C) is sampled with a probability of 1/4 (distance = 2). This way, we avoid the bias toward shorter
distances.

For each generated DAG, we compute the Weisfeiler-Lehman hash and ensure that the hashes of the training and test DAGs
do not overlap. When provided to the model, the input data is encoded as described in Theorem C.8.

Model and training. We use a decoder-only Transformer based on the GPT-2 architecture (Radford et al., 2019a). The
model has 4 layers, 4 attention heads per layer, and 256 hidden dimensions. The model is trained for 50k steps using
AdamW with a batch size of 64 samples.

We train the models in two regimes: with and without a CoT. In the CoT regime, we generate a BFS-based CoT as described
in Theorem C.8 and append it to the input data. To simplify and reduce computational cost, we represented all vertex indices
as decimal numbers, eschewing conversion to atomic symbols. During training, we optimize the next-token prediction
loss on the CoT and answer parts of the sequence, while ignoring the predictions for the input tokens. During evaluation,
the model autoregressively generates the CoT and the final prediction. The no-CoT regime is similar, but the CoT is not
appended to the input, requiring the model to generate the answer directly.

Evaluation accuracy is checked every 9k steps. If the evaluation accuracy exceeds 99.5%, training is terminated early.

Results. The model’s accuracy for various input sizes, corresponding to DAGs with 5 to 35 vertices, is shown in Figure 4.
All values are averaged over three runs.

For all graph sizes except one, Transformers with CoT achieve near-perfect accuracy, while Transformers without CoT
perform at chance level. The exception is for graphs with the smallest size (5 vertices), where both regimes achieve
approximately 90% accuracy. This discrepancy may be due to the limited number of distinct DAGs of this size, leading to
insufficient training signal for the model to learn the algorithm of CoT construction.

12Formally, a =
∑B

i=0 λi2
i, define âj :=

∑j
i=0 λi2

i. The CoT then translates the binary representation of each vertex index
a ∈ [1, |V |] into the atomic representation by enumerating 0â10 . . . â1⌈log |V |⌉

30

Lower Bounds for CoT Reasoning

D. Experiments with Pretrained LLMs
Approach. To test our predictions on the necessary CoT length, we run experiments with state-of-the-art LLMs trained to
generate CoT reasoning before responding to a user’s request: DeepSeek-R1 (Guo et al., 2025) and o1-mini (Jaech et al.,
2024). If, contrary to our predictions, a sub-linear algorithm for any of the discussed problems exists, these models might
discover it and solve the task with a CoT of sub-linear size. Verifying this serves as a basic sanity check for our theory.

We tested the models on three tasks: parity, multiplication, and median. For the parity task, we generated random
bitstrings of various lengths, ranging from 10 to 70, and asked the models to calculate their parity. We then selected
the CoTs that led to correct answers and calculated their average size for each input length. The prompt provided to
both models was: You will receive a string. You have to manually calculate its parity.
Finish your response with 1 if the parity is odd, and 0 if the parity is even.

The approach for the multiplication task was similar. We generated random pairs of numbers with lengths rang-
ing from 3 to 9 digits, prompted the models to multiply them, and computed the sizes of the correct CoTs. The
prompt provided was: You will receive two numbers. You have to multiply them manually.
Finish your response with the precise result of the multiplication.

For the median task, we generated sequences of odd length and prompted the models to find the median. The numbers were
generated uniformly from 1 to 105. The prompt provided was: You will receive a sequence of numbers.
You have to manually compute its median. Finish your response with the value of
the median of this sequence.

Results. The results of the experiment are shown in Figure 6. For all three tasks, the size of the CoTs grew at least linearly,
supporting the theoretical prediction that no CoT exists to solve parity, multiplication, or median in a sub-linear number of
steps.

A qualitative inspection of the reasoning traces of DeepSeek-R1 revealed that, when computing the parity of a bit sequence,
it copied every bit, counted the number of ones, and then determined the evenness of that count. For multiplication, it used a
naive quadratic algorithm. However, the performance of DeepSeek-R1 dropped significantly for numbers with 10 digits or
more, suggesting that its multiplication algorithm is not truly length-generalizable.

E. Further Discussion on Related Work
E.1. CoT Constructions in the Literature

Besides CoTs emulating Turing machines (Appendix B.3), various other more specialized CoT constructions have been
considered in the literature. Feng et al. (2023) provide a general construction of transformers for a very broad class of
dynamic programming (DP) algorithms. This construction essentially only uses hard-attention operations, and can be
expressed in UHAT as long as the aggregation function used in the DP algiorithm can be expressed. This includes, for
instance, evaluating Boolean formulas. Cabannes et al. (2024) analyzed the algorithm learned by a transformer trained
on scratchpads for various algorithmic problems, identifying an “iteration head” attention pattern. This head effectively
computes a unique hard attention pattern iterating through the input, combining material from the input with the last CoT
step. Relatedly, the Inductive Scratchpad Abbé et al. (2024) is a construction where each step is a function specifically of the
previous CoT step and the input.

E.2. Relation to Globality Degree

Here, we discuss the relation of our results to the work by Abbé et al. (2024) on the Globality Degree. We recall their
definition, rephrased for self-containedness:

Definition E.1 (rephrased from Definition 2 of Abbé et al. (2024)). For an alphabet A of cardinality O(poly(n)), and a
distribution D on An ×A, D has constant globality if and only if there is k ∈ N such that, for each n, there exists S ⊆ [n],
|S| = k, such that

I
[
(X[S], P̂X);Y

]
= n−O(1) (33)

where (X,Y) ∼ D, and P̂X is the histogram of tokens in X .

31

Lower Bounds for CoT Reasoning

Figure 11: Multiplication: Comparing the number of tokens used in the O(N logN) NTT CoT (Appendix C.2.3) vs a CoT
implementation of the naive O(N2) algorithm. The token count of the NTT CoT is piecewise constant because the length
only depends on the prime p used in the construction; length is asymptotically O(N logN).

Here, we think of (X,Y) ∈ An ×A as a pair of input and label; hence, Y will generally be a function of X .

If one assumes |A| = O(1) and puts aside the knowledge of the token histogram, then constant globality is equivalent to
the presence of nontrivial correlations with the circuit complexity class NC0 (Lemma 6 in Abbé et al. (2024)), a highly
restricted class contained within AC0 and easily simulated by UHAT.

The key conjecture of Abbé et al. (2024) states:

Conjecture E.2 (Conjecture 1 of Abbé et al. (2024)). A distribution PX,Y with well-behaved PX
13 is efficiently weakly

learnable by a T-regular Transformer14 if and only if PX,Y has constant globality.

For CoTs, the implied prediction is that (i) tasks with nonconstant globality require a CoT for efficient learning, (ii) a CoT is
learnable if and only if each of its intermediate steps has constant globality. A version of Conjecture E.2 is shown formally
for a cycle classification task, though the conjecture makes far-reaching predictions beyond that. The practical predictions
made by this conjecture are related to those of our theory, but not equivalent; for instance:

1. (diverging prediction) PARITY has low globality, because the conditioning on the histogram is not constrained.
Conjecture E.2 thus provides a more optimistic prediction here than our results.

2. (converging prediction) The Cycle task of Abbé et al. (2024) requires a linear-length CoT by Theorem 3.3, and can
also be shown to not be representable at sub-linear average sensitivity under a reasonable input encoding. Difficulty is
predicted under both perspectives.

Overall, there are similarities and differences between the practical predictions made by Conjecture E.2 and our unconditional
lower bounds. On a technical level, the theoretical arguments of Abbé et al. (2024) rely on bidirectional attention at least on
the original input (if not the scratchpad), different from the causally masked transformers generally used in LMs. Expanding
those arguments to causally masked transformers is an interesting problem for further research.

13This is defined in Definition 6 in (Abbé et al., 2024). A simple example is the uniform distribution over {0, 1}N .
14Informally, this is a bidirectional transformer under a standard initialization (Definition 4 in (Abbé et al., 2024)).

32

Lower Bounds for CoT Reasoning

(a) 4D In-Domain Autoregressive (b) 6D In-Domain Autoregressive (c) 8D In-Domain Autoregressive

(d) 4D Held-Out Autoregressive (e) 6D Held-Out Autoregressive (f) 8D Held-Out Autoregressive

(g) 4D Held-Out Direct (h) 6D Held-Out Direct (i) 8D Held-Out Direct

Figure 12: Arithmetic: Results on ADDITION and MULTIPLICATION of binary numbers, no CoT. Top row: In-Domain test
data, Middle row: Held-Out test data (autoregressive decoding), bottom row: Held-Out test data (direct parallel decoding).
Addition is learned well, even when the digits are directly decoded. In contrast, multiplication does poorly.

33

