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ABSTRACT

Despite rapid advancements, machine learning, particularly deep learning, is hindered by
the need for large amounts of labeled data to learn meaningful patterns without overfitting
and immense demands for computation and storage, which motivate research into archi-
tectures that can achieve good performance with fewer resources. This paper introduces
dreaMLearning, a novel framework that enables learning from compressed data without
decompression, built upon Entropy-based Generalized Deduplication (EntroGeDe), an
entropy-driven lossless compression method that consolidates information into a compact
set of representative samples. dreaMLearning accommodates a wide range of data types,
tasks, and model architectures. Extensive experiments on regression and classification tasks
with tabular and image data demonstrate that dreaMLearning accelerates training by up
to 10x, reduces peak memory usage of training data by 10x, and cuts storage by 37%, with
a minimal impact on model performance. These advancements enhance diverse ML appli-
cations, including distributed and federated learning, and tinyML on resource-constrained
edge devices, unlocking new possibilities for efficient and scalable learning.

1 INTRODUCTION
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Figure 1: Performance benefits of dreaMLearning vs. coreset selection (CS) baselines, averaged over
experimental results of CIFAR-10/100 and ImageNet-1k at a 10% subset. dreaMLearning outperforms
existing CS methods across all four key metrics, with pronounced gains in storage and memory efficiency
enabled by direct training on compressed data (no full decompression or additional subset selection).

Scaling machine learning (ML) systems to handle larger datasets and more complex model architectures places
increasing demands on computational system resources, e.g., storage, memory, and processing power |Shen
et al.| (2024); [Menghani| (2023); Zhou et al.| (2022);|Nguyen et al.[(2021). Training high-performance models
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typically requires extensive and diverse datasets, but storing and accessing such data repeatedly is costly,
especially in resource-constrained settings such as edge devices, federated learning.

Methods such as dataset distillation [Wang et al.|(2018); |Cazenavette et al.|(2022)) and coreset selection |Sener
& Savarese] (2018)); Sinha et al.| (2020); (Coleman et al.; Toneva et al.| (2019); Paul et al.|(2021)); Mirzasoleiman
et al.| (2020); Killamsetty et al.| (2021azb); Zhang et al.| (2024); |Qin et al.| (2023)) trade-off accuracy for
training speed-ups by carrying out the training on a smaller number of samples, e.g., a carefully chosen
subset of the data for coreset selection or a synthetically crafted dataset in distillation. However, they often rely
on computationally intensive optimization and assume full dataset access during both the selection/distillation
and, in many cases, the training process. These added computational costs also affect the overall speed-up
possible with these techniques. Finally, these methods tend to be tightly coupled to the model and the task.

Classical lossless data compression can be used to reduce the footprint of the dataset when stored, but require
decompression and loading of the uncompressed dataset into memory for the training process, including
coreset selection or dataset distillation, if applied. Lossy compression methods are available, but trade-off
storage space for accuracy and may generate unintended results {Underwood et al.|(2024). In the case of
images, the accuracy-compression trade-off has been shown to be non-linear, dependent on the ML task,
model and data|Zhao et al.| (2020).

This raises a fundamental question: can we develop a task- and model-independent ML system that can reduce
storage costs, provide high memory efficiency during the data selection/distillation process, maintain high
accuracy, and result in an overall runtime speed-up during training?

We propose dreaMLearning, a
general-purpose framework that
enables direct training on com-
pressed data without decompres-
sion, streamlining from storage
to training Fig. [1| summarizes its
benefits based on our experimen-
tal results. The framework is
built upon Generalized Dedupli- . e
cation (GeDe) |Vestergaard et al. 2 {Jp o

(2019)), a lossless, random-access compress E

compression method. As illustrated R BB 1
in Fig. 2] conventional pipelines ! i ERRRRRR  icusitcaion
typically require decompressing the - S

data followed by (iterative) core- (b) dreaMLearning framework.

set selection through computation- Figure 2: A comparison between the existing pipeline and the proposed
ally intensive optimization proce- dreaMLearning framework. dreaMLearning saves storage, memory,
dures. In contrast, dreaMLearn- and runtime by enabling training directly on compressed data without
ing directly produces training-ready ~decompression or subset selection.

compressed datasets that retain the

essential characteristics required for effective learning. By removing the need for decompression or subset
selection, our approach substantially reduces storage requirements, memory footprint, and runtime overhead.
Fig[3]demonstrates the effectiveness of dreaMLearning using a simple linear regression example with gra-
dient descent, a fundamental ML algorithm. Fig. [3a]shows that, under a uniform per-step cost, training on
45 compressed samples converges faster than full-batch gradient descent on the 1,000-sample dataset. It
also more closely tracks the full-batch gradient than mini-batch gradient descent (batch size 45), thereby
reducing oscillations and accelerating convergence. As shown in Fig.[3b] the compressed samples capture the
underlying distribution, including outliers, preserving characteristics required for robust learning.
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This paper shows that the dreaMLearning framework can be implemented with different degrees of complexity
and adapt to required data characteristics and performance demands. For example, simpler data sets and
problems can rely on a fixed selection of samples, while more complex data sets may introduce lightweight
random sampling approaches, and even frequency-domain transformations to improve compressibility for stor-
age in some cases while maintaining memory and accuracy gains. This flexible design allows dreaMLearning
to support diverse data modalities, model architectures, and learning tasks.

This work makes the following contributions.

FlrSta we lntrOduce drea‘ML?aFnlngz a unlﬁed 8.0 M Mini-batch GD (bs=45) with 1000 original samples —] 80 Original data
framework that enables training directly on 2.5 T Rt T Ao s J 607 * Compreseadata

.. . nitial poirt atch GD with 45 Compressed samples
compressed data, eliminating the need for de- o} % Srnaaeor 1 et e

compression or subset selection. Second, we g5 || ;("_/ . ZZ
propose EntroGeDe, an entropy-based exten- oo]\ 20
sion of Generalized Deduplication that jointly 55 \\

optimizes information retention and compres- s0] L

sion efficiency, two traditionally conflicting B A =g e
objectives in prior GeDe methods. Third,

through extensive experiments on tabular and (a) Convergence contour of GD. (b) Compressed and original data.
image datasets, we show that dreaMLearning Figure 3: Linear regression with gradient descent (GD).
significantly improves training speed, mem-

ory usage, and storage efficiency, while maintaining competitive accuracy.

2 BACKGROUND AND RELATED WORK

This section reviews foundational techniques that underpin our approach, focusing on two key areas: data
compression via GeDe and coreset selection for efficient model training. We first describe GeDe, which
enables lossless compression with efficient random access, and discuss recent extensions to various data types
and analytical tasks. Next, we survey coreset selection methods, and highlight their limitations in scalability
and computational overhead. Finally, we introduce our proposed method, dreaMLearning, which unifies these
two techniques to enable efficient model training directly on compressed data.

2.1 GENERALIZED DEDUPLICATION

it

Deduplication|Quinlan & Dorward| (2002); Meyer & Bolosky| (2012) com- - et =, - o= mmssio o,
presses data by replacing identical data chunks with pointers to their first sonooo R nonoieRnono
occurrence. GeDe extends this technique to encompass similar, albeit | |
non-identical data chunks. As illustrated in Figure |§|, GeDe splits data |
chunks into frequently appearing parts, bases, and high-variance parts,
deviations, and deduplicates bases and stores deviations unchanged along-
side pointers to corresponding bases to enable lossless decompression. Figure 4: An example of GeDe
Unlike many other lossless compression algorithms, GeDe also supports applied to 8-bit data chunks.
efficient random access |Vestergaard et al.| (2020).
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The key question that determines GeDe compression performance is how and where to split data chunks into
bases and deviations. In general, allocating more data to the base (i.e., the collections of all bases) improves
compression since more data is deduplicated, but can also increase the number of unique bases, which reduces
compression Hurst et al.| (2022). Various heuristic methods have been proposed for allocating data between
base and deviation. One early approach pre-computes inter-bit correlations and uses the maximum correlation
for each bit to select bits for allocation to the base|Vestergaard et al.|(2020). A recent variant, GreedyGD |[Hurst
et al. (2024), uses a greedy search algorithm to iteratively minimize the number of new bases created by
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enlarging the base. GreedyGD also introduces data pre-processing that significantly improves compression
using GeDe; it has been further refined for floating-point data Taurone et al.| (2023). GeDe has also been
applied to image compression, where it performs particularly well Rask & Lucani|(2024).

As it enables efficient random access, GeDe also facilitates analytics directly on compressed data without
decompression |Hurst et al.| (2021). Moreover, accessing only the bases elements suffices for approximate
analytics, accelerating tasks. For instance, one may perform highly accurate k-means clustering on GeDe-
compressed data much faster and with lower memory usage than with uncompressed data Hurst et al.| (2021}
2022). Similar results have also been achieved for anomaly detection [Taurone et al.[(2024), while allocating
additional bits to the base improves performance Hurst et al.[(2022)).

2.2 CORESET SELECTION

Coreset selection (CS) identifies subsets of data that retain the essential learning characteristics of the
full dataset. Several strategies have been proposed, including geometry-based methods Sener & Savarese
(2018)); |Sinha et al.| (2020), uncertainty-based methods |Coleman et al., and error/loss-based methods Toneva
et al.| (2019)); [Paul et al.| (2021)). The state-of-the-art rests on gradient-based methods Mirzasoleiman et al.
(2020); Killamsetty et al.| (2021a3b)), which leverage gradients computed during training to select data
points aligned with the model’s optimization dynamics. CRAIG |Mirzasoleiman et al.| (2020) and GRAD-
MATCH [Killamsetty et al.| (2021a)) iteratively select subsets whose gradients match those of the full data,
leading to comparable training dynamics. GLISTER |Killamsetty et al.|(2021b)) formulates subset selection as
a bi-level optimization problem, maximizing validation performance rather than minimizing training loss.
Still, these approaches are computationally intensive, as they require multiple rounds of gradient computation
and optimization, and become particularly burdensome on large-scale datasets or complex models with costly
gradient evaluations. InfoBatch |Qin et al.|(2023) introduces an unbiased dynamic data pruning strategy that
accelerates training by adaptively discarding redundant samples without explicit gradient matching. However,
its validation is limited to settings where at least 30% of the training data is retained, and its applicability in
more aggressive data reduction regimes remains unclear.

A complementary line of work fixes the subset to avoid update overhead. TDDS [Zhang et al.| (2024) ranks
samples based on their contribution to training, combining temporal consistency with gradient-based metrics.
Nevertheless, TDDS requires training on the full data upfront. Dataset Quantization (DQ)|Zhou et al.| (2023)
clusters data points and forms a coreset by representatives from each cluster guided by submodular maximiza-
tion Iyer et al.|(2021) to effectively reduce data size while preserving essential information. Nevertheless, a
fixed subset may not always optimize model performance.

Contrariwise to these methods, dreaMLearning integrates lossless data compression into coreset construction
into a pipeline to enable scalable and effective model training from compact data representations. It employs
entropy-based generalized deduplication (EntroGeDe) to extract a compact set of aggregate representations
from clusters of similar data points, which form condensed rather than raw samples, thereby capturing
rich statistics. The extracted coreset is training-ready without decompression or selection. Selection and
compression are entropy-driven, offering a trade-off between compression power and learning utility.

3  ENTROPY BASED GENERALIZED DEDUPLICATION

In existing GeDe-based compression methods [Vestergaard et al.| (2020); Hurst et al.| (2022} 2024); [Taurone
et al.| (2023)); Rask & Lucanil (2024)); [Hurst et al.| (2021)); Taurone et al.| (2024), the base can be accessed
directly without decompression. Combined with some (small) meta-data generated during the compression
process, e.g., the number of times each base is used, these bases can serve as an interesting summary of the
original data that support approximate, yet very accurate analytics, e.g., [Hurst et al.|(2022;2024). Selecting
base bits for GeDe typically balances two conflicting objectives: compression efficiency and analytics utility.

4
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If the selected bits that form the bases gener-
ate a lot of duplicates of the bases for each
sample, i.e., few unique bases compared to the
number of samples in the dataset, this results
in a high compression. However, a given bit
selection also affects the quality of meaningful
analytics in two ways. First, a larger number
of bases results in a richer summary for the
data, while potentially reducing compression
efficiency. Second, if bits from say a given
dimension corresponds to the most significant
bits for the value of the data, then the ana-
lytic calculation is likely to be more accurate
compared to choosing the least significant bits.
For analytics calculations, existing methods
assume deviation bits to be zero (Hurst et al.|
20215 2022; 2024)).

In contrast to past methods, EntroGeDe lever-
ages entropy per bit position to guide both clus-
tering and compression processes, as outlined
in Algorithm [I] This entropy-guided selection
allows EntroGeDe to balance information re-
tention and data deduplication. Additionally,
we compute the average deviation per base to
improve accuracy compared to previous zero-
filling strategies.

Intrinsic clustering process We prepro-
cess the dataset using the GreedyGeDe
method (Hurst et all 2021), converting it to
binary format and calculating the entropy of
each bit position. For each of the d columns,
we select the most significant non-constant bits
(MSBs), rank them by decreasing entropy, and
choose the top 3 bits, proceeding to the next
MSBs if 5 > d until § is reached. Using
these [ bits, we cluster the n data points into
m clusters (m < n) based on their unique
bit combinations. The centroid of each clus-
ter serves as a condensed sample, weighted by
the cluster size. These samples are appended
to the original dataset for further compression,
with minimal impact on the compression ratio
due to m < n. In storage-constrained envi-
ronments, we store only the 3 bit positions,
generating representative samples on demand.

Algorithm 1 Entropy-based Generalized Deduplication

Require: Dataset D with n data points; analytics bit count

3; plateau threshold

Ensure: Compressed dataset D’ consisting of selected base

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:

bit positions B;OS, bases B, deviations A with base IDs,

and condensed sample weights w

: Preprocess and convert D to binary format; let [, <

total number of bits per data point

Compute entropy H (p;) for each bit position p; in D
// Clustering phase (prioritizing high-entropy bits)
Consider MSBs of all d columns first; if § > d, proceed
to next MSBs

Sort bit positions in decreasing order of entropy

Select top S bit positions for clustering

Cluster data points based on matching values at selected
bit positions

Compute cluster centroids as condensed samples; record
cluster sizes as weights w

: “ompressic se (prioritizing low-entropy bits
// Compression phase (prioritizing low-entropy bits

Initialize base bit positions Bp,s <— constant positions (v
bits), set number of bases n;, < 1, base length [, < v,
deviation length [; < [; — [, plateau counter ¢ < 0
Compute initial size S* using Equation|[I]
Sort remaining bit positions by increasing entropy
for each position p; in sorted list do
Add p; t0 By
Update bases B at B
Update ny, +— |B,lb<—lb+1,ld(—ld—1
Compute compressed size S
if S < S* then
S* <8, Bpys < Bpos
c+0
else
c+—c+1
if c > 7 or n, = n then
break
end if
end if
end for

/. *
return D’: B .,

B, A with base IDs, and weights w

Compression considerations To maximize duplicate patterns, we select base bits in order of increasing
entropy, prioritizing low-entropy bits shared across data points. We initialize with constant bit positions B
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of size v, setting the number of bases n;, = 1, base bit length I, = v, deviation bit length l; = I, — [}, where
l; is the total bit count, and plateau counter ¢ = 0. Each deviation’s base ID uses [log,(n)] bits, and each
condensed sample’s weight uses [log,(n)] bits. The initial best compressed size S™* is:

S = nply + (n +m)([logy(ny)] + la) + mllogy(n)] + Sparams (1)

where nl;, denotes the size of the bases. (n+m)([log,(np)] +14) represents the size of deviations, including
deviation bits and base IDs. m[log,(n)] accounts for the weights’ size. Sparams. the size of compression
parameters, is typically negligible. Non-constant bit positions are sorted by increasing entropy. Each position
p; is added to By, updating n;, based with the number of unique bases at By, incrementing [;, by 1, and
decrementing [, by 1. The compressed size .S is recomputed using Equation If S is less than the current
best size S*, we update S* and Byos and reset c to 0. Otherwise, c is incremented by 1. The process terminates
when c reaches the threshold 7 or n, = n, indicating no further compression. The hyperparameter 7 balances
compression efficiency and computational cost. Upon completion, the bases, base IDs, and deviations for the
optimal compression are stored.

4 DIRECT LEARNING ON COMPRESSED DATA

DreaMLearning operates on bit-level data across domains, independently of specific tasks or model architec-
tures. To demonstrate this versatility, we illustrate direct learning on compressed data through with two tasks:
regression on tabular data and classification on image data.

4.1 REGRESSION WITH TABULAR DATASETS
4.1.1 COMPRESSION

Given a tabular dataset {(x;,y;)}" ; with features x; € R and targets y; € R, we apply the EntroGeDe
algorithm (Algorithm 1) for compression. This yields m condensed samples (x5, y§) with weights w;, where
m < n. Each sample summarizes a cluster of original data points, preserving essential patterns for learning.
Given EntroGeDe’s fine-grained random access property, these weighted samples can be directly used for
model training without full decompression, offering both computational efficiency and data fidelity.

4.1.2 LEARNING

Linear regression estimates a parameter vector € R to model the relationship between inputs and targets
via ¢; = xiTO. The mean squared error (MSE) loss is defined as:

J(0)= 5> (x[0-v)". @)

The optimal parameters, 8, minimize this loss function, typically achieved through gradient descent (GD),
which iteratively updates the parameters in the direction of the negative gradient, as
0i11=0;— 2 i VoJ(6:) =6; — 2 i (X-Tet - yz) X4y (3)
[ [ Z
where « is the learning rate, and V.J(6;) is the gradient of the loss function with respect to the parameters 6
at iteration ¢. To support learning on compressed data, we adapt this process using the m weighted condensed
samples from EntroGeDe. The weighted loss becomes:

70) = 53w (x50 - 1) @

Jj=1
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with the corresponding update rule:
o = cT c c
9t+1:0t_ﬁz:1wj (%5760 - v5) 5. 5)
=

This formulation enables efficient training directly on EntroGeDe compressed data, significantly reducing
computational overhead while preserving the underlying structure and predictive power of the original data.

4.2 CLASSIFICATION WITH COMPRESSED IMAGE DATASETS

Direct learning from compressed images is harder than tabular regression due to high dimensionality and
inherent variability. The key issues are: (i) condensed samples may not capture full dataset diversity; (ii)
limited inter-sample similarity reduces deduplication/compression efficacy. We address this by (a) randomly
sampling images for training and (b) applying a frequency-domain transform to improve compressibility.

4.2.1 COMPRESSION

As shown in Section[5] randomly sampled subsets achieve performance comparable to state-of-the-art coreset
selection methods with substantially lower computational cost. To leverage this efficiency, we adopt a
simplified EntroGeDe approach that omits clustering and focuses exclusively on compression. Consequently,
m = 0 in Equation[] as no condensed samples are generated.

We adopt class-wise compression to reduce computational overhead and exploit intra-class similarities,
achieving better compression ratios than cross-class approaches. We apply the Discrete Cosine Transform
(DCT) to shift images from the spatial to the frequency domain. This provides two key advantages: (1)
concentration of energy in fewer coefficients, enhancing compressibility, and (2) revealing latent similarities
not apparent in the spatial domain. The transformation introduces negligible data loss, limited to minor
rounding errors with no significant impact on ML/DL performance. Each RGB image is first converted to the
YCbCr color space (without subsampling), then DCT is applied independently to each channel. EntroGeDe is
then used to compress the transformed data, significantly improving compression efficiency.

4.2.2 LEARNING

During training, a random subset of compressed images is retrieved directly from storage, avoiding full dataset
decompression. This low-cost access allows subsets to be updated each epoch, maintaining exposure to diverse
data throughout training. For DCT-compressed datasets, each retrieved image is first inverse-transformed to
the spatial domain and then converted back to RGB. Training follows standard procedures without the need
of modifying the loss function or other components.

4.3 ADVANTAGES OF DREAMLEARNING

The dreaMLearning framework, which integrates compression and learning, offers several advantages over
traditional methods. First, it reduces storage requirements through effective compression. Second, it
minimizes memory usage by loading only necessary image subsets into RAM. Third, it accelerates training
due to the smaller dataset size. Fourth, it eliminates the need for full dataset decompression, streamlining the
pipeline. These advantages come with minimal impact on model performance, as demonstrated in Section [5]

5 EXPERIMENTS

This section evaluates dreaMLearning’s performance across multiple datasets and models, benchmarking it
against state-of-the-art methods. We assess MSE/accuracy, total training time, peak RAM, and storage.
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Baselines For regression, we com-
pare dreaMLearning to full train-
ing. For classification, we evalu-
ate against GRAD-MATCH Killam{
setty et al.| (2021a), GLISTER |Kil{
lamsetty et al.| (2021b), DQ Zhou
et al.| (2023), TDDS [Zhang et al.

(2024), InfoBatch |Qin et al.| (2023), roo] Mty e - fas
plus full-data and random sam- ™ fracion of training dota (mi) Y rmngtmegecondn
pling. Following original protocols, o
GRAD-MATCH/GLISTER update (a) Data fraction vs. MSE & storage. (b) Training time vs. MSE.
every 20 epochs; DQ/TDDS use Figure 5: Linear regression on California Housing.
fixed subsets. InfoBatch prunes dy-

namically under the same training budget. dreaMLearning and random sampling update each epoch.

- 85%
108% =o= Compressed dataset MSE K — Full dataset (n=16512, CR=1)
— = Full dataset MSE 7 Compressed dataset (m=92, CR=0.44)
..+ Compressed dataset CR ,* 5
106%
70%

104%

Normalized test MSE
w

©
&

o

2

&

%o
65° °
N

]

£

s

2

102%

Datasets and models We evaluate on California Housing [Pace & Barry| (1997), CIFAR-10/100 Krizhevsky
et al.| (2009), and ImageNet-1K |Deng et al.| (2009), using linear regression (gradient descent) for California
Housing and ResNet-18 for the others. California Housing: 20,640 samples (8 features, 1 target), split 80%
train / 20% test. CIFAR-10/100: 50,000 32 x 32 color training images and 10,000 test images; 10 and 100
classes, respectively. ImageNet-1K: 1,281,167 training and 50,000 validation images across 1,000 classes.

Table 1: CIFAR-10 and CIFAR-100 results across subset sizes.

CIFAR-10 CIFAR-100
5% 10% 20% 5% 10% 20%
Method Acc.  Time  Acc. Time Acc. Time Storage  Acc.  Time  Acc. Time Acc. Time Storage
Full 952  100%  95.2 100% 952 100% 100% 782 100%  78.2 100% 782 100% 100%
Random 88.6 56% 902 107%  93.6 20.5% 100% 652 56% 699 109% 742  204% 100%
GRAD-MATCH 839 149% 892 287% 925 61.5% 100% 468 149% 613 21.7% 689  40.0% 100%
GLISTER 75.6 10.8% 887 19.1% 920 353% 100% 403 10.8% 583 188% 689  362% 100%
DQ 67.0 15.0% 787 202% 867 29.9% 100% 204 15.0% 36.6 259% 550 37.5% 100%
TDDS 738 97.0% 852 103.6% 90.8 1192%  100% 327 97.0% 519 1063% 629 117.7%  100%
InfoBatch 625 57% 706 104% 73.6 194% 100% 335 51% 567 103% 599 203% 100%

dreaMLearning 889 5.6% 902 10.6% 937 20.5% 80% 654 56% 69.6 109% 742  20.6% 73%

Training settings For regression, training on compressed data uses condensed samples with associated
weights stored in the compressed representation. We train linear regression with batch gradient descent
(learning rate 0.001) until convergence on an Apple M3 Pro (18 GB RAM), averaging results over 10 runs.
For classification, CIFAR-10/100 use ResNet-18 for 200 epochs (batch size 128, SGD optimizer, cosine
learning-rate decay, initial learning rate 0.05, weight decay 5 x 10~%, momentum 0.9). Training runs on an
NVIDIA Tesla P100 GPU, with results averaged over 5 runs. ImageNet-1K uses ResNet-18 for 90 epochs
(batch size 256, SGD optimizer, step learning rate decays with step size 30 and gamma 0.1, initial learning
rate 0.1, weight decay 10~%, momentum 0.9). Training runs on an NVIDIA GeForce RTX 4090. Due to
computational cost, experiments are run once.

Metrics We report test MSE/accuracy, total training time, peak RAM usage of training data, and storage.
Except the test MSE/accuracy, all metrics are normalized to the full-data training baseline (set to 1).

Regression results Figure [Sa|shows the MSE of linear regression on the California Housing dataset across
varying fractions of condensed data and their storage requirements. Using condensed data equivalent to 5%
of the training set, dreaMLearning achieves performance comparable to the full dataset while requiring less
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than 50% of the storage. Figure [5b|demonstrates that dreaMLearning, with 92 condensed samples (0.6% of
training data, 44% storage), yields an MSE only 4% higher than the full dataset. Its entropy-based clustering
in EntroGeDe accelerates convergence by efficiently compressing information into fewer samples.

Classification results Table|I| summarizes CIFAR-10/100 performance across 5%, 10%, and 20% subset
budgets. dreaMLearning achieves the best or tied-best accuracy among subset methods while maintaining
near-linear scaling in time with the budget. On CIFAR-10, dreaMLearning achieves 88.9% / 90.2% / 93.7%
accuracy with 5% / 10% / 20% budgets, respectively, nearly matching full-data performance (95.2%) at just
10%. On CIFAR-100, it attains 65.4% / 69.6% / 74.2% accuracy with 5% / 10% / 20% budgets, outperforming
all baselines at each budget except for a marginal difference with Random at 10% (+0.3%). Compared to
GRAD-MATCH and GLISTER, dreaMLearning delivers higher accuracy at every budget with much lower
time (e.g., 5.6% vs 14.9% at 5% on both datasets). Fixed-subset methods (DQ, TDDS) incur large accuracy
losses, and while InfoBatch is slightly faster at some budgets (e.g., 10.4% vs 10.6% time on CIFAR-10 at
10%), it suffers substantial accuracy drops (70.6% vs 90.2% on CIFAR-10; 56.7% vs 69.6% on CIFAR-100
at 10%). dreaMLearning lowers storage to 80% (CIFAR-10) and 73% (CIFAR-100), and constrains peak data
RAM to the subset size by streaming and materializing only needed compressed items instead of first loading
the entire dataset as baselines do. This eliminates transient full-dataset memory overhead and enables scaling
to larger regimes. Overall, dreaMLearning consistently provides the best accuracy-time trade-off across all
budgets, while also reducing storage and ensuring memory usage scales proportionally with the subset size.

On ImageNet- 1k, prior work identifies InfoBatch as the strongest

scalable subset baseline Qin et al.|(2023). Accordingly, we bench- Table 2: ImageNet-1K 10% results.

mark dreaMLearning against InfoBatch, random sampling, and full-  Method Acc.  Time  Storage
data training. Under a 10% subset size, results are summarized in ~ Full 69.1  100%  100%
Table@ dreaMLearning matches the fastest baseline in training time ™ gypgom 597 100%  100%
while attaining the highest subset accuracy (59.9% vs. 59.7% for  InfoBatch 561 100%  100%

Random and 56.1% for InfoBatch) and reduces storage to 63% of the dreaMLearning 599 10.0%  63%
full dataset. Due to the dataset’s large size, data must be streamed
from disk, and peak data RAM is identical across methods and determined solely by batch size and image
dimensions. dreaMLearning can further reduce disk I/O by caching most shared bases in memory so that only
per-image deviations while training. Future work will quantify these I/O savings and refine cache policies.

6 CONCLUSION AND FUTURE WORK

We introduce dreaMLearning, a unified framework that seamlessly integrates entropy-based generalized
deduplication (EntroGeDe) with machine learning, enabling efficient training directly on compressed data
without decompression. Our approach leverages EntroGeDe to produce condensed, weighted samples for
regression tasks on tabular data, while incorporating lightweight random sampling and frequency-domain
transformations for classification on high-dimensional image datasets. Extensive evaluations on datasets such
as California Housing, CIFAR-10/100, ImageNet-1K demonstrate substantial gains in training speed, memory
efficiency, and storage requirements, all while maintaining competitive accuracy. These advancements
position dreaMLearning as a promising solution for scalable and efficient learning, particularly in distributed,
federated, and edge computing environments. However, the current scope of dreaMLearning is limited to
tabular and image data, leaving its performance on other modalities, such as time series, text, or graphs,
unexplored. The effectiveness of EntroGeDe hinges data-specific redundancy patterns, which may be
compromised by temporal dependencies in time series data or the sparse structures in textual data. To address
these constraints, future work will extend dreaMLearning to diverse data modalities, integrate adaptive
compression strategies, and further investigate its applications in resource-constrained settings to enhance its
robustness and versatility.
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APPENDIX

The appendix aims to provide additional details for dreaMLearning focusing on an expanded performance
evaluation on the highlighted datasets and problems of the main paper, implications on other key problems
(e.g., linear regression, logistic regression) looking at issues of complexity and overall performance, as well
as providing a motivation behind the use of the EntroGeDe scheme. Some discussions rely on additional,
suitable datasets for the specific problems considered.

A CLASSIFICATION WITH DIFFERENT DATA FRACTIONS

In the following, we present detailed results derived from experiments conducted on 1%, 5%, 10% and 20%
fractions of CIFAR10/100 to highlight the effects of this selection on the accuracy and training time.

Figures[6]and[7] present results on CIFAR-10 and CIFAR-100, respectively. Tables [3]and 4] summarize the
details. We analyze dreaMLearning alongside GRAD-MATCH, GLISTER, DQ, TDDS, and InfoBatch. DQ
reports no 1% result on CIFAR-100 because its pipeline partitions the training set into 10 bins (5,000 samples
per bin, 50 per class), making a 1% per-class selection infeasible. Moreover, DQ consistently underperforms
in both accuracy and time relative to the other methods. For example, dreaMLearning reaches ~ 40% accuracy
at 1% of the data, whereas DQ achieves ~20% even at 5%. InfoBatch likewise omits the 1% setting, as this
subset size is not supported by its protocol/implementation.

Accuracy vs. fraction of data Tables E] and E] report accuracy across 1%, 5%, 10%, and 20% budgets
for CIFAR-10/100. On CIFAR-10, dreaMLearning attains 71.0%/88.9%/90.2%/93.7% at 1%/5%/10%/20%,
respectively, outperforming GRAD-MATCH and GLISTER at all budgets and matching Random at 10%
while exceeding it at 5% and 20%. InfoBatch trails substantially at the same budgets (e.g., 70.6% at 10%,
73.6% at 20%). On CIFAR-100, dreaMLearning reaches 38.7%/65.4%/69.6%/74.2%, leading all baselines at
1%, 5%, and 20%; at 10% it is within 0.3 percentage points of Random (69.9%). These results show that
dreaMLearning consistently provides the strongest accuracy among subset methods across budgets, especially
on the more challenging CIFAR-100.

Accuracy vs. time Training time scales near-linearly with budget for dreaMLearning and Random, while
subset-selection baselines incur large overheads. On CIFAR-10 at 10%, dreaMLearning trains in 596 s,
comparable to Random (601 s) and slightly above InfoBatch (584 s), but with much higher accuracy than
InfoBatch (90.2% vs 70.6%). At 5% and 20%, the pattern holds (315/1158 s for dreaMLearning vs 314/1154
s for Random and 324/1094 s for InfoBatch). GRAD-MATCH and GLISTER require substantially more time
(e.g., 1617 s and 1076 s at 10%). On CIFAR-100, dreaMLearning remains competitive in time (1%: 89 s; 5%:
313 s; 10%: 597 s; 20%: 1159 s), close to Random (88/312/612/1151 s) and InfoBatch (—/290/581/1146 s),
while offering state-of-the-art accuracy among subset methods at most budgets. TDDS consistently exceeds
full-data training time even at 10-20% subsets.
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Figure 6: Training ResNet18 model on 1%, 5%, 10% and 20% of CIFAR10 dataset. In (a), we show the
fraction of data used vs. accuracy. In (b), we show the time vs. accuracy.

o]

o
o]
o

(=] ~
o o
~
o

u
o

* Ful
30 { =*¢ Random

-—- Full
== Random

Test accuracy (%)
w B
o o

Test accuracy (%)
5
AN

GRAD-MATCH GRAD-MATCH
—#— GLISTER —&— GLISTER
20 ¥ DQ 20 ~%- DQ
-4~ TDDS —— TDDS
101 —#— InfoBatch 10 1 == InfoBatch
dreaMLearning dreaMLearning
T T T T 0 T T
1% 5% 10% 20% 10? 103
Fraction of training data Time (seconds)
(a) (b)

Figure 7: Training ResNet18 model on 1%, 5%, 10% and 20% of CIFAR100 dataset. In (a), we show the
fraction of data used vs. accuracy. In (b), we show the time vs. accuracy.

B THE EFFECTIVENESS OF ENTROPY BASED GEDE

In GeDe-based compression methods, selecting base bits is crucial for performance, as it determines how
data is split into bases and deviations for compression. The proposed EntroGeDe method selects base bits
based on their entropy, which measures information content at each bit position. The entropy is calculated as:

H(X) = —p;ilogypi — (1 — p;)logy (1 — pi), (6)

where p; is the probability of a bit being 1 at the i-th position. High-entropy bits, with balanced Os and 1s,
indicate high information content and are prioritized for analytics. Conversely, low-entropy bits, with skewed
distributions, contain more redundancy and are selected for compression. EntroGeDe leverages high-entropy
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Table 3: CIFAR10: Accuracy (%) and Time (seconds) for different data fractions

Method 1% 5% 10% 20%
Acc. Time Acc. Time Acc. Time Acc. Time

Full 95.2+0.16 5640+ 14.2 95.2+0.16 5640+14.2 952+0.16 5640+14.2 952+0.16 5640+ 14.2
Random 69.3 £ 1.71 89 +04 88.6 £0.42 314+0.3 90.2+0.22 601 £0.2 93.6 £0.12 1154 + 3.0
GRAD-MATCH 55.5 +1.52 399 +£5.5 83.9+0.38 838+6.7 89.2+0.30 1617+66.4 92.5+0.15 3468 +12.2
GLISTER 36.9+234 272+2.6 75.6 £0.77 60772 88.7£0.59 1076£30.6 92.0+£0.10 1991 +93.7
DQ 40.3+£1.03 621 +5.6 67.0+1.63 844 +3.1 78.7+£0.64 1139+20.5 86.7+0.58 1688 £ 4.3
TDDS 38.4+091 5275+52.4 73.8+£0.66 5471 +24.3 85.2+0.08 5844+£585 90.8+0.23 6720+178.3
InfoBatch N/A N/A 62.5£6.79 324+0.8 70.6 £5.83 584 £ 1.6 73.6 £1.33 1094 + 2.1

dreaMLearning ~ 71.0 £ 0.69 90+ 2.5 889+0.27 315+0.7 902+0.34 596+46 93.7+£0.09 1158 +2.7

Table 4: CIFAR100: Accuracy (%) and Time (seconds) for different data fractions

Method 1% 5% 10% 20%
Acc. Time Acc. Time Acc. Time Acc. Time

Full 78.24+0.19 5640 +21.6 78.2+0.19 5640+21.6 78.2+0.19 5640+21.6 78.2+0.19 5640+ 21.6
Random 38.4+0.62 88 + 0.2 65.2+0.32 312+0.7 699+0.26 612+0.9 7424026 1151+34
GRAD-MATCH 17.54+0.25 403+3.8 46.84+0.75 756+8.2 61.34+0.33 1224+14.3 68.94+0.28 2254+ 39.8
GLISTER 3.7+ 1.35 268 +1.9 40.3+0.51 665+27.7 583+£0.68 1063+7.9 68.9+0.36 20414 74.1
DQ N/A N/A 20.44+0.64 1212+11.3 36.6+0.71 1460+19.9 55.04+0.46 2113+4.8
TDDS 12.34+0.33 5462 +28.4 32.7+0.43 5692+39.8 51.9+0.12 5998 +324 62.9+0.22 6640+ 19.0
InfoBatch N/A N/A 33.5+844 290+0.7 56.7+3.82 581+35 5994+1.06 1146+7.7

dreaMLearning ~ 38.7 £ 0.43 89+0.1 654+0.27 313£05 69.6+£039 597+25 7424022 1159+0.8

bits to generate the condensed samples, and low-entropy bits for effective compression (deduplication). The
approach is relatively simple compared to previous GeDe methods, e.g., GreedyGD, due to its ability to
manage much larger dimensions in the data than previous schemes.

We validate effectiveness of EntroGeDe using the California Housing dataset Pace & Barry|(1997)), comparing
high- and low-entropy bit selections on linear regression MSE and storage. Figure [§|shows that high-entropy
bit selection significantly reduces MSE, confirming superior information retention. Figure [0]demonstrates
that low-entropy bit selection substantially lowers storage needs, validating its compression efficiency.
Therefore, EntroGeDe was designed to effectively combine high- and low-entropy bit selection to optimize
both information retention and compression, providing an improved accuracy-compression trade-off inherent
in existing GeDe methods.

C COMPLEXITY REDUCTION ANALYSIS OF DREAMLEARNING

Training on compressed data substantially reduces complexity compared to using the full dataset, owing to
fewer samples. The complexity reduction of dreaMLearning for linear regression and classification tasks is
analyzed below under various considerations.

C.1 LINEAR REGRESSION TASKS

Consider a dataset of n samples, where each sample is represented as a feature vector x; € R? and a target
value y; € R. Linear regression estimates a parameter vector § € R? to model the relationship between
inputs and targets via §; = x; 6. In dreaMLearning, we employ m(m < n) compressed samples, denoted
x§ and y;. These samples are generated by EntroGeDe, with associated weights w; reflecting the number of
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Figure 8: Compressed data fraction vs. MSE. Figure 9: Compressed data fraction vs. storage.

original samples condensed into each compressed sample. The optimal 8 minimizes the error between targets
and predicted values, typically using the mean squared error (MSE) loss function, defined as:

n

1
JO) = 5= ([0 -u)". )
=1

C.1.1 GRADIENT DESCENT
Gradient descent iteratively updates model parameters to minimize the MSE loss function. The update rule is

n

0111 =0, — %Z (x] 6: — yi) i, (®)

=1

where 6, is the parameter vector at iteration ¢, « is the learning rate. This incurs O(nd) time complexity per
iteration, as gradients are computed for all n samples, yielding O(knd) for k iterations.

In dreaMLearning, the update rule for compressed samples becomes
c c o - cT c c
j=1

This requires O(md) time complexity per iteration, as gradients are computed for only m samples. Although
the weight w; introduce minor overhead, the computational structure remains unchanged. Thus, dreaMLearn-
ing reduces time complexity from O(knd) to O(kmd), a significant improvement when m < n. Despite
potentially more iterations, the smaller sample size substantially lowers overall time complexity.
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C.1.2 OPTIMAL SOLUTION

Alternatively, linear regression has a closed form solution, which directly computes optimal parameters as
VeJ(6) =0

1
= —V|IX0—y|;=0

2n (10)
= XTX6-X"y =0

= 0" = (X"X) " XTy.
This exact solution requires no hyperparameter tuning but is computationally intensive for large or high-

dimensional datasets, where we consider n to be the number of samples, and d the dimensionality of the
dataset. The time complexity is driven by the matrix multiplication step XX, which is O(nd?), and

inversion step (X*X) ~! which is O(d?). The time complexity is then O(nd? + d?). Using dreaMLearning
with m < n compressed samples, the problem can be reduced to an approximate calculation of the form
VeJ.(0) =0

2

=0
2 (11)
= X;FWXCO — X:fwyc =0

=0 = (X;FWXC)_1 X wy.,

1 1
= %Vg Hw (X0 —y.)

where w is a diagonal matrix with weights w;. The additional complexity from weights is negligible as w
is a m x m matrix. The time complexity reduces to O(md? + d*), significantly lower when m < n. This
reduction enables dreaMLearning to make the calculation feasible for larger datasets, substantially saving
time and computational resources. The trade-off incurred is accuracy, as 8} ~ 6*.

Consider an example of California housing dataset shown in Figure [5a] The original training set has
n = 16,512 samples and d = 8 features. Using dreaMLearning, we can reduce the dataset to m = 92
samples, which is only 0.6% of the original dataset. The time complexity reduction by dreaMLearning is
approximately 165X for the optimal solution. By gradient descent, the MSE from dreaMLearning is 4%
higher than that of the original dataset, and a similar difference is reasonably expected for the optimal solution.

C.2 CLASSIFICATION TASKS

For classification tasks, computational complexity varies with model architecture. Therefore, we consider
the per-sample complexity of a model, denoted as O(C'), which is the cost of a forward and backward
pass. The per-epoch complexity is O(nC'), where n is the number of training samples. Using compressed
data with m samples (m < n), the per-epoch complexity reduces to O(mC'). Consequently, total training
complexity decreases from O(EnC) to O(E'mC'), where E and E’ are the epochs needed for convergence
on the original and compressed datasets, respectively. Typically, E’ ~ FE, reducing the computational cost by
approximately n/m. This significant reduction enhances training speed and lowers memory usage, making
dreaMLearning highly efficient for large-scale classification with deep neural networks, as evidenced by our
experimental results with ResNet18.

D LOGISTIC REGRESSION

We evaluate dreaMLearning for logistic regression on the Default of Credit Card [Yeh & Lien|(2009) and
IJCNNI1 datasets |Chang & Lin|(2011). The Default of Credit Card dataset comprises 30,000 samples with 23
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features, split 80% for training and 20% for testing. The IICNN1 dataset includes 49,990 training and 91,701
test samples, each with 22 features. Similar to linear regression tasks, we apply EntroGeDe to compress n
training data points to m condensed ones with weights w. The logistic regression model is trained using
weighted gradient descent on these samples. Figure[I0] presents the results for both datasets considering the
accuracy achieved (higher is better) and compression rate (lower is better). The test accuracy and storage
requirement of compressed data are normalized relative to those of the full dataset. dreaMLearning achieves
performance comparable to full-dataset training with significantly fewer samples. For the Default of Credit
Card dataset, using 33% of the data yields a 9% accuracy loss with a 75% storage footprint reduction (i.e.,
compression rate is roughly 0.25), while 55% of the data achieves equivalent accuracy with a 70% reduction.
For IJCNN1, 1% of the data attains 90% of full-training accuracy with an 80% storage reduction, and 50% of
the data matches full-training accuracy with a 70% reduction. These results demonstrated that dreaMLearning
enables substantial data and storage reduction for logistic regression, while maintaining accuracy close to that
of full-data training.
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Figure 10: Comparison of full and compressed data for logistic regression tasks.
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