
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

DREAMLEARNING: DATA COMPRESSION ASSISTED MA-
CHINE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite rapid advancements, machine learning, particularly deep learning, is hindered by
the need for large amounts of labeled data to learn meaningful patterns without overfitting
and immense demands for computation and storage, which motivate research into archi-
tectures that can achieve good performance with fewer resources. This paper introduces
dreaMLearning, a novel framework that enables learning from compressed data without
decompression, built upon Entropy-based Generalized Deduplication (EntroGeDe), an
entropy-driven lossless compression method that consolidates information into a compact
set of representative samples. dreaMLearning accommodates a wide range of data types,
tasks, and model architectures. Extensive experiments on regression and classification tasks
with tabular and image data demonstrate that dreaMLearning accelerates training by up
to 10×, reduces peak memory usage of training data by 10×, and cuts storage by 37%, with
a minimal impact on model performance. These advancements enhance diverse ML appli-
cations, including distributed and federated learning, and tinyML on resource-constrained
edge devices, unlocking new possibilities for efficient and scalable learning.

1 INTRODUCTION

Runtime speedup

Accuracy

Storage efficiency

Memory efficiency

dreaMLearning
GRAD-MATCH
GLISTER
DQ
TDDS
InfoBatch

Figure 1: Performance benefits of dreaMLearning vs. coreset selection (CS) baselines, averaged over
experimental results of CIFAR-10/100 and ImageNet-1k at a 10% subset. dreaMLearning outperforms
existing CS methods across all four key metrics, with pronounced gains in storage and memory efficiency
enabled by direct training on compressed data (no full decompression or additional subset selection).

Scaling machine learning (ML) systems to handle larger datasets and more complex model architectures places
increasing demands on computational system resources, e.g., storage, memory, and processing power Shen
et al. (2024); Menghani (2023); Zhou et al. (2022); Nguyen et al. (2021). Training high-performance models

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

typically requires extensive and diverse datasets, but storing and accessing such data repeatedly is costly,
especially in resource-constrained settings such as edge devices, federated learning.

Methods such as dataset distillation Wang et al. (2018); Cazenavette et al. (2022) and coreset selection Sener
& Savarese (2018); Sinha et al. (2020); Coleman et al.; Toneva et al. (2019); Paul et al. (2021); Mirzasoleiman
et al. (2020); Killamsetty et al. (2021a;b); Zhang et al. (2024); Qin et al. (2023) trade-off accuracy for
training speed-ups by carrying out the training on a smaller number of samples, e.g., a carefully chosen
subset of the data for coreset selection or a synthetically crafted dataset in distillation. However, they often rely
on computationally intensive optimization and assume full dataset access during both the selection/distillation
and, in many cases, the training process. These added computational costs also affect the overall speed-up
possible with these techniques. Finally, these methods tend to be tightly coupled to the model and the task.

Classical lossless data compression can be used to reduce the footprint of the dataset when stored, but require
decompression and loading of the uncompressed dataset into memory for the training process, including
coreset selection or dataset distillation, if applied. Lossy compression methods are available, but trade-off
storage space for accuracy and may generate unintended results Underwood et al. (2024). In the case of
images, the accuracy-compression trade-off has been shown to be non-linear, dependent on the ML task,
model and data Zhao et al. (2020).

This raises a fundamental question: can we develop a task- and model-independent ML system that can reduce
storage costs, provide high memory efficiency during the data selection/distillation process, maintain high
accuracy, and result in an overall runtime speed-up during training?

Storage RAM

00000101
01000111
01101101
00011111
01000111
00000011
01111111

76543210
1
2
3
4
5
6
7

bit
idx

Original data samples

00000101
01101101
01111111

76543210
1
3
7

bit
idx

Selected coreset00000101
01000111
01101101
00011111
01000111
00000011
01111111

76543210
1
2
3
4
5
6
7

bit
idx

Original data samples

coreset selectdecompresscompress

RAM

(a) Conventional data-efficient ML pipeline.

retrieve

Storage

00000101
01000111
01101101
00011111
01000111
00000011
01111111

76543210
1
2
3
4
5
6
7

bit
idx

Original data samples

compress

RAM

Regression

Classification

(b) dreaMLearning framework.
Figure 2: A comparison between the existing pipeline and the proposed
dreaMLearning framework. dreaMLearning saves storage, memory,
and runtime by enabling training directly on compressed data without
decompression or subset selection.

We propose dreaMLearning, a
general-purpose framework that
enables direct training on com-
pressed data without decompres-
sion, streamlining from storage
to training Fig. 1 summarizes its
benefits based on our experimen-
tal results. The framework is
built upon Generalized Dedupli-
cation (GeDe) Vestergaard et al.
(2019), a lossless, random-access
compression method. As illustrated
in Fig. 2, conventional pipelines
typically require decompressing the
data followed by (iterative) core-
set selection through computation-
ally intensive optimization proce-
dures. In contrast, dreaMLearn-
ing directly produces training-ready
compressed datasets that retain the
essential characteristics required for effective learning. By removing the need for decompression or subset
selection, our approach substantially reduces storage requirements, memory footprint, and runtime overhead.
Fig.3 demonstrates the effectiveness of dreaMLearning using a simple linear regression example with gra-
dient descent, a fundamental ML algorithm. Fig. 3a shows that, under a uniform per-step cost, training on
45 compressed samples converges faster than full-batch gradient descent on the 1,000-sample dataset. It
also more closely tracks the full-batch gradient than mini-batch gradient descent (batch size 45), thereby
reducing oscillations and accelerating convergence. As shown in Fig. 3b, the compressed samples capture the
underlying distribution, including outliers, preserving characteristics required for robust learning.

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

This paper shows that the dreaMLearning framework can be implemented with different degrees of complexity
and adapt to required data characteristics and performance demands. For example, simpler data sets and
problems can rely on a fixed selection of samples, while more complex data sets may introduce lightweight
random sampling approaches, and even frequency-domain transformations to improve compressibility for stor-
age in some cases while maintaining memory and accuracy gains. This flexible design allows dreaMLearning
to support diverse data modalities, model architectures, and learning tasks.

2.0 1.5 1.0 0.5 0.0 0.5
0

5.0

5.5

6.0

6.5

7.0

7.5

8.0

1

Mini-batch GD (bs=45) with 1000 original samples
Batch GD with 1000 original samples
Batch GD with 45 compressed samples
Initial point
Optimal solution

(a) Convergence contour of GD.

3 2 1 0 1 2 3
X

80

60

40

20

0

20

40

60

80

y

Original data
Compressed data
Closed-form solution
Batch GD with 45 compressed samples

(b) Compressed and original data.
Figure 3: Linear regression with gradient descent (GD).

This work makes the following contributions.
First, we introduce dreaMLearning, a unified
framework that enables training directly on
compressed data, eliminating the need for de-
compression or subset selection. Second, we
propose EntroGeDe, an entropy-based exten-
sion of Generalized Deduplication that jointly
optimizes information retention and compres-
sion efficiency, two traditionally conflicting
objectives in prior GeDe methods. Third,
through extensive experiments on tabular and
image datasets, we show that dreaMLearning
significantly improves training speed, mem-
ory usage, and storage efficiency, while maintaining competitive accuracy.

2 BACKGROUND AND RELATED WORK

This section reviews foundational techniques that underpin our approach, focusing on two key areas: data
compression via GeDe and coreset selection for efficient model training. We first describe GeDe, which
enables lossless compression with efficient random access, and discuss recent extensions to various data types
and analytical tasks. Next, we survey coreset selection methods, and highlight their limitations in scalability
and computational overhead. Finally, we introduce our proposed method, dreaMLearning, which unifies these
two techniques to enable efficient model training directly on compressed data.

2.1 GENERALIZED DEDUPLICATION

00000101

01000111

01101101

00011111

01000111

00000011

01111111

76543210
1

2

3

4

5

6

7

bit
idx

0101

0111

0011

2

4
1

0000

1000

1101

0011

1000

0000

1111

0

1

0

1

1

2

1

Data chunks Bases Counts IDsDeviations
Uncompressed data Compressed data

7210 6543

Figure 4: An example of GeDe
applied to 8-bit data chunks.

Deduplication Quinlan & Dorward (2002); Meyer & Bolosky (2012) com-
presses data by replacing identical data chunks with pointers to their first
occurrence. GeDe extends this technique to encompass similar, albeit
non-identical data chunks. As illustrated in Figure 4, GeDe splits data
chunks into frequently appearing parts, bases, and high-variance parts,
deviations, and deduplicates bases and stores deviations unchanged along-
side pointers to corresponding bases to enable lossless decompression.
Unlike many other lossless compression algorithms, GeDe also supports
efficient random access Vestergaard et al. (2020).

The key question that determines GeDe compression performance is how and where to split data chunks into
bases and deviations. In general, allocating more data to the base (i.e., the collections of all bases) improves
compression since more data is deduplicated, but can also increase the number of unique bases, which reduces
compression Hurst et al. (2022). Various heuristic methods have been proposed for allocating data between
base and deviation. One early approach pre-computes inter-bit correlations and uses the maximum correlation
for each bit to select bits for allocation to the base Vestergaard et al. (2020). A recent variant, GreedyGD Hurst
et al. (2024), uses a greedy search algorithm to iteratively minimize the number of new bases created by

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

enlarging the base. GreedyGD also introduces data pre-processing that significantly improves compression
using GeDe; it has been further refined for floating-point data Taurone et al. (2023). GeDe has also been
applied to image compression, where it performs particularly well Rask & Lucani (2024).

As it enables efficient random access, GeDe also facilitates analytics directly on compressed data without
decompression Hurst et al. (2021). Moreover, accessing only the bases elements suffices for approximate
analytics, accelerating tasks. For instance, one may perform highly accurate k-means clustering on GeDe-
compressed data much faster and with lower memory usage than with uncompressed data Hurst et al. (2021;
2022). Similar results have also been achieved for anomaly detection Taurone et al. (2024), while allocating
additional bits to the base improves performance Hurst et al. (2022).

2.2 CORESET SELECTION

Coreset selection (CS) identifies subsets of data that retain the essential learning characteristics of the
full dataset. Several strategies have been proposed, including geometry-based methods Sener & Savarese
(2018); Sinha et al. (2020), uncertainty-based methods Coleman et al., and error/loss-based methods Toneva
et al. (2019); Paul et al. (2021). The state-of-the-art rests on gradient-based methods Mirzasoleiman et al.
(2020); Killamsetty et al. (2021a;b), which leverage gradients computed during training to select data
points aligned with the model’s optimization dynamics. CRAIG Mirzasoleiman et al. (2020) and GRAD-
MATCH Killamsetty et al. (2021a) iteratively select subsets whose gradients match those of the full data,
leading to comparable training dynamics. GLISTER Killamsetty et al. (2021b) formulates subset selection as
a bi-level optimization problem, maximizing validation performance rather than minimizing training loss.
Still, these approaches are computationally intensive, as they require multiple rounds of gradient computation
and optimization, and become particularly burdensome on large-scale datasets or complex models with costly
gradient evaluations. InfoBatch Qin et al. (2023) introduces an unbiased dynamic data pruning strategy that
accelerates training by adaptively discarding redundant samples without explicit gradient matching. However,
its validation is limited to settings where at least 30% of the training data is retained, and its applicability in
more aggressive data reduction regimes remains unclear.

A complementary line of work fixes the subset to avoid update overhead. TDDS Zhang et al. (2024) ranks
samples based on their contribution to training, combining temporal consistency with gradient-based metrics.
Nevertheless, TDDS requires training on the full data upfront. Dataset Quantization (DQ) Zhou et al. (2023)
clusters data points and forms a coreset by representatives from each cluster guided by submodular maximiza-
tion Iyer et al. (2021) to effectively reduce data size while preserving essential information. Nevertheless, a
fixed subset may not always optimize model performance.

Contrariwise to these methods, dreaMLearning integrates lossless data compression into coreset construction
into a pipeline to enable scalable and effective model training from compact data representations. It employs
entropy-based generalized deduplication (EntroGeDe) to extract a compact set of aggregate representations
from clusters of similar data points, which form condensed rather than raw samples, thereby capturing
rich statistics. The extracted coreset is training-ready without decompression or selection. Selection and
compression are entropy-driven, offering a trade-off between compression power and learning utility.

3 ENTROPY BASED GENERALIZED DEDUPLICATION

In existing GeDe-based compression methods Vestergaard et al. (2020); Hurst et al. (2022; 2024); Taurone
et al. (2023); Rask & Lucani (2024); Hurst et al. (2021); Taurone et al. (2024), the base can be accessed
directly without decompression. Combined with some (small) meta-data generated during the compression
process, e.g., the number of times each base is used, these bases can serve as an interesting summary of the
original data that support approximate, yet very accurate analytics, e.g., Hurst et al. (2022; 2024). Selecting
base bits for GeDe typically balances two conflicting objectives: compression efficiency and analytics utility.

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

Algorithm 1 Entropy-based Generalized Deduplication

Require: Dataset D with n data points; analytics bit count
β; plateau threshold τ

Ensure: Compressed dataset D′ consisting of selected base
bit positions B∗

pos, bases B, deviations ∆ with base IDs,
and condensed sample weights w

1: Preprocess and convert D to binary format; let lt ←
total number of bits per data point

2: Compute entropy H(pi) for each bit position pi in D
3: // Clustering phase (prioritizing high-entropy bits)
4: Consider MSBs of all d columns first; if β > d, proceed

to next MSBs
5: Sort bit positions in decreasing order of entropy
6: Select top β bit positions for clustering
7: Cluster data points based on matching values at selected

bit positions
8: Compute cluster centroids as condensed samples; record

cluster sizes as weights w
9: // Compression phase (prioritizing low-entropy bits)

10: Initialize base bit positions Bpos ← constant positions (v
bits), set number of bases nb ← 1, base length lb ← v,
deviation length ld ← lt − lb, plateau counter c← 0

11: Compute initial size S∗ using Equation 1
12: Sort remaining bit positions by increasing entropy
13: for each position pi in sorted list do
14: Add pi to Bpos
15: Update bases B at Bpos
16: Update nb ← |B|, lb ← lb + 1, ld ← ld − 1
17: Compute compressed size S
18: if S < S∗ then
19: S∗ ← S, B∗

pos ← Bpos
20: c← 0
21: else
22: c← c+ 1
23: if c ≥ τ or nb = n then
24: break
25: end if
26: end if
27: end for
28: return D′: B∗

pos, B, ∆ with base IDs, and weights w

If the selected bits that form the bases gener-
ate a lot of duplicates of the bases for each
sample, i.e., few unique bases compared to the
number of samples in the dataset, this results
in a high compression. However, a given bit
selection also affects the quality of meaningful
analytics in two ways. First, a larger number
of bases results in a richer summary for the
data, while potentially reducing compression
efficiency. Second, if bits from say a given
dimension corresponds to the most significant
bits for the value of the data, then the ana-
lytic calculation is likely to be more accurate
compared to choosing the least significant bits.
For analytics calculations, existing methods
assume deviation bits to be zero (Hurst et al.,
2021; 2022; 2024).

In contrast to past methods, EntroGeDe lever-
ages entropy per bit position to guide both clus-
tering and compression processes, as outlined
in Algorithm 1. This entropy-guided selection
allows EntroGeDe to balance information re-
tention and data deduplication. Additionally,
we compute the average deviation per base to
improve accuracy compared to previous zero-
filling strategies.

Intrinsic clustering process We prepro-
cess the dataset using the GreedyGeDe
method (Hurst et al., 2021), converting it to
binary format and calculating the entropy of
each bit position. For each of the d columns,
we select the most significant non-constant bits
(MSBs), rank them by decreasing entropy, and
choose the top β bits, proceeding to the next
MSBs if β > d until β is reached. Using
these β bits, we cluster the n data points into
m clusters (m ≪ n) based on their unique
bit combinations. The centroid of each clus-
ter serves as a condensed sample, weighted by
the cluster size. These samples are appended
to the original dataset for further compression,
with minimal impact on the compression ratio
due to m ≪ n. In storage-constrained envi-
ronments, we store only the β bit positions,
generating representative samples on demand.

Compression considerations To maximize duplicate patterns, we select base bits in order of increasing
entropy, prioritizing low-entropy bits shared across data points. We initialize with constant bit positions Bpos

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

of size v, setting the number of bases nb = 1, base bit length lb = v, deviation bit length ld = lt − lb, where
lt is the total bit count, and plateau counter c = 0. Each deviation’s base ID uses ⌈log2(nb)⌉ bits, and each
condensed sample’s weight uses ⌈log2(n)⌉ bits. The initial best compressed size S∗ is:

S = nblb + (n+m)(⌈log2(nb)⌉+ ld) +m⌈log2(n)⌉+ Sparams, (1)

where nblb denotes the size of the bases. (n+m)(⌈log2(nb)⌉+ ld) represents the size of deviations, including
deviation bits and base IDs. m⌈log2(n)⌉ accounts for the weights’ size. Sparams, the size of compression
parameters, is typically negligible. Non-constant bit positions are sorted by increasing entropy. Each position
pi is added to Bpos, updating nb based with the number of unique bases at Bpos, incrementing lb by 1, and
decrementing ld by 1. The compressed size S is recomputed using Equation 1. If S is less than the current
best size S∗, we update S∗ and Bpos and reset c to 0. Otherwise, c is incremented by 1. The process terminates
when c reaches the threshold τ or nb = n, indicating no further compression. The hyperparameter τ balances
compression efficiency and computational cost. Upon completion, the bases, base IDs, and deviations for the
optimal compression are stored.

4 DIRECT LEARNING ON COMPRESSED DATA

DreaMLearning operates on bit-level data across domains, independently of specific tasks or model architec-
tures. To demonstrate this versatility, we illustrate direct learning on compressed data through with two tasks:
regression on tabular data and classification on image data.

4.1 REGRESSION WITH TABULAR DATASETS

4.1.1 COMPRESSION

Given a tabular dataset {(xi, yi)}ni=1 with features xi ∈ Rd and targets yi ∈ R, we apply the EntroGeDe
algorithm (Algorithm 1) for compression. This yields m condensed samples (xc

j , y
c
j) with weights wj , where

m≪ n. Each sample summarizes a cluster of original data points, preserving essential patterns for learning.
Given EntroGeDe’s fine-grained random access property, these weighted samples can be directly used for
model training without full decompression, offering both computational efficiency and data fidelity.

4.1.2 LEARNING

Linear regression estimates a parameter vector θ ∈ Rd to model the relationship between inputs and targets
via ŷi = xT

i θ. The mean squared error (MSE) loss is defined as:

J(θ) =
1

2n

n∑
i=1

(
xT
i θ − yi

)2
. (2)

The optimal parameters, θ∗, minimize this loss function, typically achieved through gradient descent (GD),
which iteratively updates the parameters in the direction of the negative gradient, as

θt+1 = θt −
α

n

n∑
i=1

∇θJ(θt) = θt −
α

n

n∑
i=1

(
xT
i θt − yi

)
xi, (3)

where α is the learning rate, and∇θJ(θt) is the gradient of the loss function with respect to the parameters θ
at iteration t. To support learning on compressed data, we adapt this process using the m weighted condensed
samples from EntroGeDe. The weighted loss becomes:

Jc(θ) =
1

2n

m∑
j=1

wj

(
xc
j
Tθ − ycj

)2

, (4)

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

with the corresponding update rule:

θt+1 = θt −
α

n

m∑
j=1

wj

(
xc
j
Tθt − ycj

)
xc
j . (5)

This formulation enables efficient training directly on EntroGeDe compressed data, significantly reducing
computational overhead while preserving the underlying structure and predictive power of the original data.

4.2 CLASSIFICATION WITH COMPRESSED IMAGE DATASETS

Direct learning from compressed images is harder than tabular regression due to high dimensionality and
inherent variability. The key issues are: (i) condensed samples may not capture full dataset diversity; (ii)
limited inter-sample similarity reduces deduplication/compression efficacy. We address this by (a) randomly
sampling images for training and (b) applying a frequency-domain transform to improve compressibility.

4.2.1 COMPRESSION

As shown in Section 5, randomly sampled subsets achieve performance comparable to state-of-the-art coreset
selection methods with substantially lower computational cost. To leverage this efficiency, we adopt a
simplified EntroGeDe approach that omits clustering and focuses exclusively on compression. Consequently,
m = 0 in Equation 1, as no condensed samples are generated.

We adopt class-wise compression to reduce computational overhead and exploit intra-class similarities,
achieving better compression ratios than cross-class approaches. We apply the Discrete Cosine Transform
(DCT) to shift images from the spatial to the frequency domain. This provides two key advantages: (1)
concentration of energy in fewer coefficients, enhancing compressibility, and (2) revealing latent similarities
not apparent in the spatial domain. The transformation introduces negligible data loss, limited to minor
rounding errors with no significant impact on ML/DL performance. Each RGB image is first converted to the
YCbCr color space (without subsampling), then DCT is applied independently to each channel. EntroGeDe is
then used to compress the transformed data, significantly improving compression efficiency.

4.2.2 LEARNING

During training, a random subset of compressed images is retrieved directly from storage, avoiding full dataset
decompression. This low-cost access allows subsets to be updated each epoch, maintaining exposure to diverse
data throughout training. For DCT-compressed datasets, each retrieved image is first inverse-transformed to
the spatial domain and then converted back to RGB. Training follows standard procedures without the need
of modifying the loss function or other components.

4.3 ADVANTAGES OF DREAMLEARNING

The dreaMLearning framework, which integrates compression and learning, offers several advantages over
traditional methods. First, it reduces storage requirements through effective compression. Second, it
minimizes memory usage by loading only necessary image subsets into RAM. Third, it accelerates training
due to the smaller dataset size. Fourth, it eliminates the need for full dataset decompression, streamlining the
pipeline. These advantages come with minimal impact on model performance, as demonstrated in Section 5.

5 EXPERIMENTS

This section evaluates dreaMLearning’s performance across multiple datasets and models, benchmarking it
against state-of-the-art methods. We assess MSE/accuracy, total training time, peak RAM, and storage.

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

0% 20% 40% 60% 80% 100%
Fraction of training data (m/n)

100%

102%

104%

106%

108%

No
rm

al
ize

d
te

st
 M

SE

Compressed dataset MSE
Full dataset MSE
Compressed dataset CR

45%

50%

55%

60%

65%

70%

75%

80%

85%

No
rm

al
ize

d
st

or
ag

e

(a) Data fraction vs. MSE & storage.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Training time (seconds)

1

2

3

4

5

Te
st

 M
SE

Full dataset (n=16512, CR=1)
Compressed dataset (m=92, CR=0.44)

(b) Training time vs. MSE.
Figure 5: Linear regression on California Housing.

Baselines For regression, we com-
pare dreaMLearning to full train-
ing. For classification, we evalu-
ate against GRAD-MATCH Killam-
setty et al. (2021a), GLISTER Kil-
lamsetty et al. (2021b), DQ Zhou
et al. (2023), TDDS Zhang et al.
(2024), InfoBatch Qin et al. (2023),
plus full-data and random sam-
pling. Following original protocols,
GRAD-MATCH/GLISTER update
every 20 epochs; DQ/TDDS use
fixed subsets. InfoBatch prunes dy-
namically under the same training budget. dreaMLearning and random sampling update each epoch.

Datasets and models We evaluate on California Housing Pace & Barry (1997), CIFAR-10/100 Krizhevsky
et al. (2009), and ImageNet-1K Deng et al. (2009), using linear regression (gradient descent) for California
Housing and ResNet-18 for the others. California Housing: 20,640 samples (8 features, 1 target), split 80%
train / 20% test. CIFAR-10/100: 50,000 32× 32 color training images and 10,000 test images; 10 and 100
classes, respectively. ImageNet-1K: 1,281,167 training and 50,000 validation images across 1,000 classes.

Table 1: CIFAR-10 and CIFAR-100 results across subset sizes.
CIFAR-10 CIFAR-100

5% 10% 20% 5% 10% 20%

Method Acc. Time Acc. Time Acc. Time Storage Acc. Time Acc. Time Acc. Time Storage

Full 95.2 100% 95.2 100% 95.2 100% 100% 78.2 100% 78.2 100% 78.2 100% 100%

Random 88.6 5.6% 90.2 10.7% 93.6 20.5% 100% 65.2 5.6% 69.9 10.9% 74.2 20.4% 100%
GRAD-MATCH 83.9 14.9% 89.2 28.7% 92.5 61.5% 100% 46.8 14.9% 61.3 21.7% 68.9 40.0% 100%
GLISTER 75.6 10.8% 88.7 19.1% 92.0 35.3% 100% 40.3 10.8% 58.3 18.8% 68.9 36.2% 100%
DQ 67.0 15.0% 78.7 20.2% 86.7 29.9% 100% 20.4 15.0% 36.6 25.9% 55.0 37.5% 100%
TDDS 73.8 97.0% 85.2 103.6% 90.8 119.2% 100% 32.7 97.0% 51.9 106.3% 62.9 117.7% 100%
InfoBatch 62.5 5.7% 70.6 10.4% 73.6 19.4% 100% 33.5 5.1% 56.7 10.3% 59.9 20.3% 100%

dreaMLearning 88.9 5.6% 90.2 10.6% 93.7 20.5% 80% 65.4 5.6% 69.6 10.9% 74.2 20.6% 73%

Training settings For regression, training on compressed data uses condensed samples with associated
weights stored in the compressed representation. We train linear regression with batch gradient descent
(learning rate 0.001) until convergence on an Apple M3 Pro (18 GB RAM), averaging results over 10 runs.
For classification, CIFAR-10/100 use ResNet-18 for 200 epochs (batch size 128, SGD optimizer, cosine
learning-rate decay, initial learning rate 0.05, weight decay 5× 10−4, momentum 0.9). Training runs on an
NVIDIA Tesla P100 GPU, with results averaged over 5 runs. ImageNet-1K uses ResNet-18 for 90 epochs
(batch size 256, SGD optimizer, step learning rate decays with step size 30 and gamma 0.1, initial learning
rate 0.1, weight decay 10−4, momentum 0.9). Training runs on an NVIDIA GeForce RTX 4090. Due to
computational cost, experiments are run once.

Metrics We report test MSE/accuracy, total training time, peak RAM usage of training data, and storage.
Except the test MSE/accuracy, all metrics are normalized to the full-data training baseline (set to 1).

Regression results Figure 5a shows the MSE of linear regression on the California Housing dataset across
varying fractions of condensed data and their storage requirements. Using condensed data equivalent to 5%
of the training set, dreaMLearning achieves performance comparable to the full dataset while requiring less

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

than 50% of the storage. Figure 5b demonstrates that dreaMLearning, with 92 condensed samples (0.6% of
training data, 44% storage), yields an MSE only 4% higher than the full dataset. Its entropy-based clustering
in EntroGeDe accelerates convergence by efficiently compressing information into fewer samples.

Classification results Table 1 summarizes CIFAR-10/100 performance across 5%, 10%, and 20% subset
budgets. dreaMLearning achieves the best or tied-best accuracy among subset methods while maintaining
near-linear scaling in time with the budget. On CIFAR-10, dreaMLearning achieves 88.9% / 90.2% / 93.7%
accuracy with 5% / 10% / 20% budgets, respectively, nearly matching full-data performance (95.2%) at just
10%. On CIFAR-100, it attains 65.4% / 69.6% / 74.2% accuracy with 5% / 10% / 20% budgets, outperforming
all baselines at each budget except for a marginal difference with Random at 10% (+0.3%). Compared to
GRAD-MATCH and GLISTER, dreaMLearning delivers higher accuracy at every budget with much lower
time (e.g., 5.6% vs 14.9% at 5% on both datasets). Fixed-subset methods (DQ, TDDS) incur large accuracy
losses, and while InfoBatch is slightly faster at some budgets (e.g., 10.4% vs 10.6% time on CIFAR-10 at
10%), it suffers substantial accuracy drops (70.6% vs 90.2% on CIFAR-10; 56.7% vs 69.6% on CIFAR-100
at 10%). dreaMLearning lowers storage to 80% (CIFAR-10) and 73% (CIFAR-100), and constrains peak data
RAM to the subset size by streaming and materializing only needed compressed items instead of first loading
the entire dataset as baselines do. This eliminates transient full-dataset memory overhead and enables scaling
to larger regimes. Overall, dreaMLearning consistently provides the best accuracy-time trade-off across all
budgets, while also reducing storage and ensuring memory usage scales proportionally with the subset size.

Table 2: ImageNet-1K 10% results.
Method Acc. Time Storage

Full 69.1 100% 100%

Random 59.7 10.0% 100%
InfoBatch 56.1 10.0% 100%

dreaMLearning 59.9 10.0% 63%

On ImageNet-1k, prior work identifies InfoBatch as the strongest
scalable subset baseline Qin et al. (2023). Accordingly, we bench-
mark dreaMLearning against InfoBatch, random sampling, and full-
data training. Under a 10% subset size, results are summarized in
Table 2. dreaMLearning matches the fastest baseline in training time
while attaining the highest subset accuracy (59.9% vs. 59.7% for
Random and 56.1% for InfoBatch) and reduces storage to 63% of the
full dataset. Due to the dataset’s large size, data must be streamed
from disk, and peak data RAM is identical across methods and determined solely by batch size and image
dimensions. dreaMLearning can further reduce disk I/O by caching most shared bases in memory so that only
per-image deviations while training. Future work will quantify these I/O savings and refine cache policies.

6 CONCLUSION AND FUTURE WORK

We introduce dreaMLearning, a unified framework that seamlessly integrates entropy-based generalized
deduplication (EntroGeDe) with machine learning, enabling efficient training directly on compressed data
without decompression. Our approach leverages EntroGeDe to produce condensed, weighted samples for
regression tasks on tabular data, while incorporating lightweight random sampling and frequency-domain
transformations for classification on high-dimensional image datasets. Extensive evaluations on datasets such
as California Housing, CIFAR-10/100, ImageNet-1K demonstrate substantial gains in training speed, memory
efficiency, and storage requirements, all while maintaining competitive accuracy. These advancements
position dreaMLearning as a promising solution for scalable and efficient learning, particularly in distributed,
federated, and edge computing environments. However, the current scope of dreaMLearning is limited to
tabular and image data, leaving its performance on other modalities, such as time series, text, or graphs,
unexplored. The effectiveness of EntroGeDe hinges data-specific redundancy patterns, which may be
compromised by temporal dependencies in time series data or the sparse structures in textual data. To address
these constraints, future work will extend dreaMLearning to diverse data modalities, integrate adaptive
compression strategies, and further investigate its applications in resource-constrained settings to enhance its
robustness and versatility.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

REFERENCES

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Dataset distillation
by matching training trajectories. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4750–4759, 2022.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at http://www.csie.
ntu.edu.tw/~cjlin/libsvm.

Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy Liang,
Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep learning. In
International Conference on Learning Representations.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee,
2009.

Aaron Hurst, Qi Zhang, Daniel E. Lucani, and Ira Assent. Direct analytics of generalized deduplication
compressed IoT data. In IEEE Global Communications Conference (GLOBECOM), 2021. doi: 10.1109/
GLOBECOM46510.2021.9685589.

Aaron Hurst, Daniel E Lucani, Ira Assent, and Qi Zhang. Glean: Generalized deduplication enabled
approximate edge analytics. IEEE Internet of Things Journal, 10(5):4006–4020, 2022.

Aaron Hurst, Daniel E Lucani, and Qi Zhang. GreedyGD: Enhanced generalized deduplication for direct
analytics in IoT. IEEE Transactions on Industrial Informatics, 20(4):6954–6962, 2024.

Rishabh Iyer, Ninad Khargoankar, Jeff Bilmes, and Himanshu Asanani. Submodular combinatorial infor-
mation measures with applications in machine learning. In Algorithmic Learning Theory, pp. 722–754.
PMLR, 2021.

Krishnateja Killamsetty, Sivasubramanian Durga, Ganesh Ramakrishnan, Abir De, and Rishabh Iyer. Grad-
match: Gradient matching based data subset selection for efficient deep model training. In International
Conference on Machine Learning, pp. 5464–5474. PMLR, 2021a.

Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer. Glister: General-
ization based data subset selection for efficient and robust learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pp. 8110–8118, 2021b.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Gaurav Menghani. Efficient deep learning: A survey on making deep learning models smaller, faster, and
better. ACM Computing Surveys, 55(12):1–37, 2023.

Dutch T Meyer and William J Bolosky. A study of practical deduplication. ACM Transactions on Storage
(ToS), 7(4):1–20, 2012.

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of machine
learning models. In International Conference on Machine Learning, pp. 6950–6960. PMLR, 2020.

Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with infinitely wide
convolutional networks. Advances in Neural Information Processing Systems, 34:5186–5198, 2021.

R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Probability Letters, 33(3):
291–297, 1997.

10

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
important examples early in training. Advances in neural information processing systems, 34:20596–20607,
2021.

Ziheng Qin, Kai Wang, Zangwei Zheng, Jianyang Gu, Xiangyu Peng, Zhaopan Xu, Daquan Zhou, Lei Shang,
Baigui Sun, Xuansong Xie, et al. Infobatch: Lossless training speed up by unbiased dynamic data pruning.
arXiv preprint arXiv:2303.04947, 2023.

Sean Quinlan and Sean Dorward. Venti: A new approach to archival data storage. In Conference on file and
storage technologies (FAST 02), 2002.

Christian D. Rask and Daniel E. Lucani. Rage for the machine: Image compression with low-cost random
access for embedded applications. In IEEE International Conference on Image Processing (ICIP), pp.
1987–1993, 2024. doi: 10.1109/ICIP51287.2024.10647293.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set approach. In
International Conference on Learning Representations, 2018.

Li Shen, Yan Sun, Zhiyuan Yu, Liang Ding, Xinmei Tian, and Dacheng Tao. On efficient training of
large-scale deep learning models. ACM Computing Surveys, 57(3):1–36, 2024.

Samarth Sinha, Han Zhang, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle, and Augustus Odena. Small-
gan: Speeding up gan training using core-sets. In International Conference on Machine Learning, pp.
9005–9015. PMLR, 2020.

Francesco Taurone, Daniel E. Lucani, Marcell Fehér, and Qi Zhang. Change a bit to save bytes: Compression
for floating point time-series data. In IEEE International Conference on Communications, pp. 3756–3761,
2023. doi: 10.1109/ICC45041.2023.10279204.

Francesco Taurone, Jonas Dorsch, Daniel Lucani, and Qi Zhang. triaGeD: using compression for anomaly
detection. In Data Compression Conference (DCC), pp. 588–588, 2024. doi: 10.1109/DCC58796.2024.
00105.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and
Geoffrey J Gordon. An empirical study of example forgetting during deep neural network learning. In
International Conference on Learning Representations, 2019.

Robert Underwood, Jon C Calhoun, Sheng Di, and Franck Cappello. Understanding the effectiveness of lossy
compression in machine learning training sets. arXiv preprint arXiv:2403.15953, 2024.

Rasmus Vestergaard, Qi Zhang, and Daniel E. Lucani. Generalized deduplication: Bounds, convergence,
and asymptotic properties. In IEEE Global Communications Conference (GLOBECOM), 2019. doi:
10.1109/globecom38437.2019.9014012.

Rasmus Vestergaard, Daniel E. Lucani, and Qi Zhang. A randomly accessible lossless compression scheme
for time-series data. In IEEE INFOCOM, 2020. doi: 10.1109/infocom41043.2020.9155450.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv preprint
arXiv:1811.10959, 2018.

I-Cheng Yeh and Che-hui Lien. The comparisons of data mining techniques for the predictive accuracy of
probability of default of credit card clients. Expert systems with applications, 36(2):2473–2480, 2009.

Xin Zhang, Jiawei Du, Yunsong Li, Weiying Xie, and Joey Tianyi Zhou. Spanning training progress: Temporal
dual-depth scoring (tdds) for enhanced dataset pruning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 26223–26232, 2024.

11

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Xiaobo Zhao, Minoo Hosseinzadeh, Nathaniel Hudson, Hana Khamfroush, and Daniel E Lucani. Improving
the accuracy-latency trade-off of edge-cloud computation offloading for deep learning services. In 2020
IEEE Globecom Workshops (GC Wkshps, pp. 1–6. IEEE, 2020.

Daquan Zhou, Kai Wang, Jianyang Gu, Xiangyu Peng, Dongze Lian, Yifan Zhang, Yang You, and Jiashi Feng.
Dataset quantization. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
17205–17216, 2023.

Yongchao Zhou, Ehsan Nezhadarya, and Jimmy Ba. Dataset distillation using neural feature regression.
Advances in Neural Information Processing Systems, 35:9813–9827, 2022.

APPENDIX

The appendix aims to provide additional details for dreaMLearning focusing on an expanded performance
evaluation on the highlighted datasets and problems of the main paper, implications on other key problems
(e.g., linear regression, logistic regression) looking at issues of complexity and overall performance, as well
as providing a motivation behind the use of the EntroGeDe scheme. Some discussions rely on additional,
suitable datasets for the specific problems considered.

A CLASSIFICATION WITH DIFFERENT DATA FRACTIONS

In the following, we present detailed results derived from experiments conducted on 1%, 5%, 10% and 20%
fractions of CIFAR10/100 to highlight the effects of this selection on the accuracy and training time.

Figures 6 and 7 present results on CIFAR-10 and CIFAR-100, respectively. Tables 3 and 4 summarize the
details. We analyze dreaMLearning alongside GRAD-MATCH, GLISTER, DQ, TDDS, and InfoBatch. DQ
reports no 1% result on CIFAR-100 because its pipeline partitions the training set into 10 bins (5,000 samples
per bin, 50 per class), making a 1% per-class selection infeasible. Moreover, DQ consistently underperforms
in both accuracy and time relative to the other methods. For example, dreaMLearning reaches∼40% accuracy
at 1% of the data, whereas DQ achieves ∼20% even at 5%. InfoBatch likewise omits the 1% setting, as this
subset size is not supported by its protocol/implementation.

Accuracy vs. fraction of data Tables 3 and 4 report accuracy across 1%, 5%, 10%, and 20% budgets
for CIFAR-10/100. On CIFAR-10, dreaMLearning attains 71.0%/88.9%/90.2%/93.7% at 1%/5%/10%/20%,
respectively, outperforming GRAD-MATCH and GLISTER at all budgets and matching Random at 10%
while exceeding it at 5% and 20%. InfoBatch trails substantially at the same budgets (e.g., 70.6% at 10%,
73.6% at 20%). On CIFAR-100, dreaMLearning reaches 38.7%/65.4%/69.6%/74.2%, leading all baselines at
1%, 5%, and 20%; at 10% it is within 0.3 percentage points of Random (69.9%). These results show that
dreaMLearning consistently provides the strongest accuracy among subset methods across budgets, especially
on the more challenging CIFAR-100.

Accuracy vs. time Training time scales near-linearly with budget for dreaMLearning and Random, while
subset-selection baselines incur large overheads. On CIFAR-10 at 10%, dreaMLearning trains in 596 s,
comparable to Random (601 s) and slightly above InfoBatch (584 s), but with much higher accuracy than
InfoBatch (90.2% vs 70.6%). At 5% and 20%, the pattern holds (315/1158 s for dreaMLearning vs 314/1154
s for Random and 324/1094 s for InfoBatch). GRAD-MATCH and GLISTER require substantially more time
(e.g., 1617 s and 1076 s at 10%). On CIFAR-100, dreaMLearning remains competitive in time (1%: 89 s; 5%:
313 s; 10%: 597 s; 20%: 1159 s), close to Random (88/312/612/1151 s) and InfoBatch (—/290/581/1146 s),
while offering state-of-the-art accuracy among subset methods at most budgets. TDDS consistently exceeds
full-data training time even at 10–20% subsets.

12

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

1% 5% 10% 20%
Fraction of training data

30

40

50

60

70

80

90

100

Te
st

 a
cc

ur
ac

y
(%

)

Full
Random
GRAD-MATCH
GLISTER
DQ
TDDS
InfoBatch
dreaMLearning

(a)

102 103 104

Time (seconds)
30

40

50

60

70

80

90

100

Te
st

 a
cc

ur
ac

y
(%

)

Full
Random
GRAD-MATCH
GLISTER
DQ
TDDS
InfoBatch
dreaMLearning

(b)

Figure 6: Training ResNet18 model on 1%, 5%, 10% and 20% of CIFAR10 dataset. In (a), we show the
fraction of data used vs. accuracy. In (b), we show the time vs. accuracy.

1% 5% 10% 20%
Fraction of training data

0

10

20

30

40

50

60

70

80

Te
st

 a
cc

ur
ac

y
(%

)

Full
Random
GRAD-MATCH
GLISTER
DQ
TDDS
InfoBatch
dreaMLearning

(a)

102 103

Time (seconds)
0

10

20

30

40

50

60

70

80
Te

st
 a

cc
ur

ac
y

(%
)

Full
Random
GRAD-MATCH
GLISTER
DQ
TDDS
InfoBatch
dreaMLearning

(b)

Figure 7: Training ResNet18 model on 1%, 5%, 10% and 20% of CIFAR100 dataset. In (a), we show the
fraction of data used vs. accuracy. In (b), we show the time vs. accuracy.

B THE EFFECTIVENESS OF ENTROPY BASED GEDE

In GeDe-based compression methods, selecting base bits is crucial for performance, as it determines how
data is split into bases and deviations for compression. The proposed EntroGeDe method selects base bits
based on their entropy, which measures information content at each bit position. The entropy is calculated as:

H(X) = −pi log2 pi − (1− pi) log2(1− pi), (6)

where pi is the probability of a bit being 1 at the i-th position. High-entropy bits, with balanced 0s and 1s,
indicate high information content and are prioritized for analytics. Conversely, low-entropy bits, with skewed
distributions, contain more redundancy and are selected for compression. EntroGeDe leverages high-entropy

13

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

Table 3: CIFAR10: Accuracy (%) and Time (seconds) for different data fractions

Method 1% 5% 10% 20%

Acc. Time Acc. Time Acc. Time Acc. Time

Full 95.2± 0.16 5640± 14.2 95.2± 0.16 5640± 14.2 95.2± 0.16 5640± 14.2 95.2± 0.16 5640± 14.2

Random 69.3± 1.71 89± 0.4 88.6± 0.42 314± 0.3 90.2± 0.22 601± 0.2 93.6± 0.12 1154± 3.0
GRAD-MATCH 55.5± 1.52 399± 5.5 83.9± 0.38 838± 6.7 89.2± 0.30 1617± 66.4 92.5± 0.15 3468± 12.2
GLISTER 36.9± 2.34 272± 2.6 75.6± 0.77 607± 7.2 88.7± 0.59 1076± 30.6 92.0± 0.10 1991± 93.7
DQ 40.3± 1.03 621± 5.6 67.0± 1.63 844± 3.1 78.7± 0.64 1139± 20.5 86.7± 0.58 1688± 4.3
TDDS 38.4± 0.91 5275± 52.4 73.8± 0.66 5471± 24.3 85.2± 0.08 5844± 58.5 90.8± 0.23 6720± 178.3
InfoBatch N/A N/A 62.5± 6.79 324± 0.8 70.6± 5.83 584± 1.6 73.6± 1.33 1094± 2.1
dreaMLearning 71.0± 0.69 90± 2.5 88.9± 0.27 315± 0.7 90.2± 0.34 596± 4.6 93.7± 0.09 1158± 2.7

Table 4: CIFAR100: Accuracy (%) and Time (seconds) for different data fractions

Method 1% 5% 10% 20%

Acc. Time Acc. Time Acc. Time Acc. Time

Full 78.2± 0.19 5640± 21.6 78.2± 0.19 5640± 21.6 78.2± 0.19 5640± 21.6 78.2± 0.19 5640± 21.6

Random 38.4± 0.62 88± 0.2 65.2± 0.32 312± 0.7 69.9± 0.26 612± 0.9 74.2± 0.26 1151± 3.4
GRAD-MATCH 17.5± 0.25 403± 3.8 46.8± 0.75 756± 8.2 61.3± 0.33 1224± 14.3 68.9± 0.28 2254± 39.8
GLISTER 3.7± 1.35 268± 1.9 40.3± 0.51 665± 27.7 58.3± 0.68 1063± 7.9 68.9± 0.36 2041± 74.1
DQ N/A N/A 20.4± 0.64 1212± 11.3 36.6± 0.71 1460± 19.9 55.0± 0.46 2113± 4.8
TDDS 12.3± 0.33 5462± 28.4 32.7± 0.43 5692± 39.8 51.9± 0.12 5998± 32.4 62.9± 0.22 6640± 19.0
InfoBatch N/A N/A 33.5± 8.44 290± 0.7 56.7± 3.82 581± 3.5 59.9± 1.06 1146± 7.7
dreaMLearning 38.7± 0.43 89± 0.1 65.4± 0.27 313± 0.5 69.6± 0.39 597± 2.5 74.2± 0.22 1159± 0.8

bits to generate the condensed samples, and low-entropy bits for effective compression (deduplication). The
approach is relatively simple compared to previous GeDe methods, e.g., GreedyGD, due to its ability to
manage much larger dimensions in the data than previous schemes.

We validate effectiveness of EntroGeDe using the California Housing dataset Pace & Barry (1997), comparing
high- and low-entropy bit selections on linear regression MSE and storage. Figure 8 shows that high-entropy
bit selection significantly reduces MSE, confirming superior information retention. Figure 9 demonstrates
that low-entropy bit selection substantially lowers storage needs, validating its compression efficiency.
Therefore, EntroGeDe was designed to effectively combine high- and low-entropy bit selection to optimize
both information retention and compression, providing an improved accuracy-compression trade-off inherent
in existing GeDe methods.

C COMPLEXITY REDUCTION ANALYSIS OF DREAMLEARNING

Training on compressed data substantially reduces complexity compared to using the full dataset, owing to
fewer samples. The complexity reduction of dreaMLearning for linear regression and classification tasks is
analyzed below under various considerations.

C.1 LINEAR REGRESSION TASKS

Consider a dataset of n samples, where each sample is represented as a feature vector xi ∈ Rd and a target
value yi ∈ R. Linear regression estimates a parameter vector θ ∈ Rd to model the relationship between
inputs and targets via ŷi = xT

i θ. In dreaMLearning, we employ m(m≪ n) compressed samples, denoted
xc
j and ycj . These samples are generated by EntroGeDe, with associated weights wj reflecting the number of

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

0% 2% 5% 8% 10% 13% 15% 18%
Fraction of training data (m/n)

100%

110%

120%

130%

140%

150%

160%

170%

180%

No
rm

al
ize

d
te

st
 M

SE

High entropy bit selection
Low entropy bit selection

Figure 8: Compressed data fraction vs. MSE.

0% 2% 5% 8% 10% 13% 15% 18%
Fraction of training data (m/n)

40%

50%

60%

70%

80%

90%

100%

No
rm

al
ize

d
st

or
ag

e

High entropy bit selection
Low entropy bit selection

Figure 9: Compressed data fraction vs. storage.

original samples condensed into each compressed sample. The optimal θ minimizes the error between targets
and predicted values, typically using the mean squared error (MSE) loss function, defined as:

J(θ) =
1

2n

n∑
i=1

(
xT
i θ − yi

)2
. (7)

C.1.1 GRADIENT DESCENT

Gradient descent iteratively updates model parameters to minimize the MSE loss function. The update rule is

θt+1 = θt −
α

n

n∑
i=1

(
xT
i θt − yi

)
xi, (8)

where θt is the parameter vector at iteration t, α is the learning rate. This incurs O(nd) time complexity per
iteration, as gradients are computed for all n samples, yielding O(knd) for k iterations.

In dreaMLearning, the update rule for compressed samples becomes

θc
t+1 = θc

t −
α

n

m∑
j=1

wj

(
xc
j
Tθt − ycj

)
xc
j . (9)

This requires O(md) time complexity per iteration, as gradients are computed for only m samples. Although
the weight wj introduce minor overhead, the computational structure remains unchanged. Thus, dreaMLearn-
ing reduces time complexity from O(knd) to O(kmd), a significant improvement when m ≪ n. Despite
potentially more iterations, the smaller sample size substantially lowers overall time complexity.

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

C.1.2 OPTIMAL SOLUTION

Alternatively, linear regression has a closed form solution, which directly computes optimal parameters as

∇θJ(θ) = 0

⇒ 1

2n
∇θ ∥Xθ − y∥22 = 0

⇒ XTXθ −XTy = 0

⇒ θ∗ =
(
XTX

)−1
XTy.

(10)

This exact solution requires no hyperparameter tuning but is computationally intensive for large or high-
dimensional datasets, where we consider n to be the number of samples, and d the dimensionality of the
dataset. The time complexity is driven by the matrix multiplication step XTX, which is O(nd2), and
inversion step

(
XTX

)−1
, which is O(d3). The time complexity is then O(nd2 + d3). Using dreaMLearning

with m≪ n compressed samples, the problem can be reduced to an approximate calculation of the form

∇θJc(θ) = 0

⇒ 1

2n
∇θ

∥∥∥w 1
2 (Xcθ − yc)

∥∥∥2
2
= 0

⇒ XT
c wXcθ −XT

c wyc = 0

⇒ θ∗
c =

(
XT

c wXc

)−1
XT

c wyc,

(11)

where w is a diagonal matrix with weights wj . The additional complexity from weights is negligible as w
is a m×m matrix. The time complexity reduces to O(md2 + d3), significantly lower when m≪ n. This
reduction enables dreaMLearning to make the calculation feasible for larger datasets, substantially saving
time and computational resources. The trade-off incurred is accuracy, as θ∗

c ≈ θ∗.

Consider an example of California housing dataset shown in Figure 5a. The original training set has
n = 16, 512 samples and d = 8 features. Using dreaMLearning, we can reduce the dataset to m = 92
samples, which is only 0.6% of the original dataset. The time complexity reduction by dreaMLearning is
approximately 165× for the optimal solution. By gradient descent, the MSE from dreaMLearning is 4%
higher than that of the original dataset, and a similar difference is reasonably expected for the optimal solution.

C.2 CLASSIFICATION TASKS

For classification tasks, computational complexity varies with model architecture. Therefore, we consider
the per-sample complexity of a model, denoted as O(C), which is the cost of a forward and backward
pass. The per-epoch complexity is O(nC), where n is the number of training samples. Using compressed
data with m samples (m≪ n), the per-epoch complexity reduces to O(mC). Consequently, total training
complexity decreases from O(EnC) to O(E′mC), where E and E′ are the epochs needed for convergence
on the original and compressed datasets, respectively. Typically, E′ ≈ E, reducing the computational cost by
approximately n/m. This significant reduction enhances training speed and lowers memory usage, making
dreaMLearning highly efficient for large-scale classification with deep neural networks, as evidenced by our
experimental results with ResNet18.

D LOGISTIC REGRESSION

We evaluate dreaMLearning for logistic regression on the Default of Credit Card Yeh & Lien (2009) and
IJCNN1 datasets Chang & Lin (2011). The Default of Credit Card dataset comprises 30,000 samples with 23

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

features, split 80% for training and 20% for testing. The IJCNN1 dataset includes 49,990 training and 91,701
test samples, each with 22 features. Similar to linear regression tasks, we apply EntroGeDe to compress n
training data points to m condensed ones with weights w. The logistic regression model is trained using
weighted gradient descent on these samples. Figure 10 presents the results for both datasets considering the
accuracy achieved (higher is better) and compression rate (lower is better). The test accuracy and storage
requirement of compressed data are normalized relative to those of the full dataset. dreaMLearning achieves
performance comparable to full-dataset training with significantly fewer samples. For the Default of Credit
Card dataset, using 33% of the data yields a 9% accuracy loss with a 75% storage footprint reduction (i.e.,
compression rate is roughly 0.25), while 55% of the data achieves equivalent accuracy with a 70% reduction.
For IJCNN1, 1% of the data attains 90% of full-training accuracy with an 80% storage reduction, and 50% of
the data matches full-training accuracy with a 70% reduction. These results demonstrated that dreaMLearning
enables substantial data and storage reduction for logistic regression, while maintaining accuracy close to that
of full-data training.

0% 20% 40% 60% 80% 100%
Fraction of training data (m/n)

82%

85%

88%

90%

92%

95%

98%

100%

No
rm

al
ize

d
te

st
 a

cc
ur

ac
y

Compressed dataset accuracy
Full dataset accuracy
Compressed dataset CR

20%

23%

25%

28%

30%

33%

35%

No
rm

al
ize

d
st

or
ag

e

(a) Default of credit card dataset.

0% 20% 40% 60% 80% 100%
Fraction of training data (m/n)

90%

92%

94%

96%

98%

100%

No
rm

al
ize

d
te

st
 a

cc
ur

ac
y

Compressed dataset accuracy
Full dataset accuracy
Compressed dataset CR

20%

23%

25%

28%

30%

33%

35%

No
rm

al
ize

d
st

or
ag

e

(b) Ijcnn1 dataset.

Figure 10: Comparison of full and compressed data for logistic regression tasks.

17

	Introduction
	Background and related work
	Generalized deduplication
	Coreset selection

	Entropy based generalized deduplication
	Direct learning on compressed data
	Regression with tabular datasets
	Compression
	Learning

	Classification with compressed image datasets
	Compression
	Learning

	Advantages of dreaMLearning

	Experiments
	Conclusion and future work
	Classification with different data fractions
	The effectiveness of entropy based GeDe
	Complexity reduction analysis of dreaMLearning
	Linear regression tasks
	Gradient descent
	Optimal Solution

	Classification tasks

	Logistic regression

