
Representing Complex Shapes with Conceptual Spaces 

Lucas Bechberger1[0000-0002-1962-1777] and Margit Scheibel2 

1 Institute of Cognitive Science, Osnabrück University, lbechberger@uos.de 
2 Institute for Language and Information Science, Heinrich Heine University Düsseldorf, 

scheibel@uni-duesseldorf.de 

1 Motivation 

Shape representations play a central role in our interaction with the world [1]. Never-

theless, we have only a vague understanding of how shape knowledge is represented. 

In this paper, we use the framework of conceptual spaces [2] as a modeling tool for 

representing complex shapes. In this framework, each object is represented as a point 

in the conceptual space whose coordinates represent the object specific values of the 

employed quality dimensions. The geometric distance between two points represents 

the similarity between two objects (the smaller the distance, the more similar the ob-

jects). Higher-order concepts can be identified as convex, non-overlapping regions. 

Our study aims at discovering structural characteristics of a shape space that can 

explain human perception and categorizations of complex shapes. This can contribute 

to new insights and a deeper understanding of perceptual processes but also allows for 

constructive uses, e.g. in the context of cognitive AI.  

Based on human similarity ratings for pictures of common objects, shape spaces of 

varying dimensionality were constructed and validated by considering how well the 

similarities are reflected in the distances. Moreover, the conceptual regions for example 

categories were analyzed. In a second analysis step, we tested whether primitive shape 

features are detectable as quality dimensions in the shape spaces. The analysis scripts 

used in our study are available at https://github.com/lbechberger/LearningPsychologi-

calSpaces. 

2 Conceptual Spaces for Shapes 

Our set of test shapes included 60 standardized black-and-white line drawings of 

common objects (6 visually similar and 6 visually dissimilar categories with 5 objects 

each). A web-based survey (n subj = 62) was conducted to obtain 15 shape similarity 

ratings for all pairwise combinations of the images. Image pairs were presented in iso-

lation on the screen (in random order). The shape similarity had to be judged on a Likert 

scale ranging from 1 (totally dissimilar) to 5 (very similar). Results of a control study 

verified that the shape similarity ratings differed significantly from semantic similarity 

ratings (Spearman correlation of rS = 0.44). Moreover, the mean category internal shape 

similarity was significantly higher for visually similar categories (M = 4.18) than visu-

ally dissimilar categories (M = 2.56), while the mean internal semantic similarity did 

not differ significantly. For the data analysis, the shape similarity ratings were 

https://github.com/lbechberger/LearningPsychologicalSpaces
https://github.com/lbechberger/LearningPsychologicalSpaces


2 

  
       Fig. 1. Results of our analyses of the shape spaces. 

 

aggregated into a global matrix of dissimilarities by taking the mean over the individual 

responses and by inverting the scale. 

We used the SMACOF algorithm [3] for performing MDS on the dissimilarity ma-

trix. The SMACOF algorithm uses an iterative process of matrix multiplications to min-

imize the differences between pairwise distances in the space and the pairwise dissim-

ilarities from the ratings. Figure 1a shows the Kendall correlation of distances and dis-

similarities as a function of the number of dimensions. Conceptual spaces with 2 to 5 

dimensions seem to be good candidates for representing complex shapes. A one-dimen-

sional space is insufficient, and from 5 dimensions onwards the correlation’s improve-

ment stagnated. In a control analysis, we used the distances between the raw pixels of 

differently downscaled versions of the images. The pixel-based distances reached only 

a Kendall correlation of 0.35 to the dissimilarities. This indicates that raw pixel infor-

mation is not sufficient for representing complex shapes. 

Visually similar categories like birds are expected to be represented as convex, non-

overlapping regions in the shape space because all category members have a common 

global shape structure which is category distinctive. For visually dissimilar categories, 

this does not hold. We constructed a convex hull for each of the categories and counted 

the number of intruder objects from other categories. Figure 1b shows the results as a 

function of the number of dimensions, including the expected number of intruders for 

randomly chosen points as a comparison. Similar categories seem to be represented as 

convex regions in all spaces considered as potential candidates (2- to 5-dimensional 

spaces), i.e. as higher-order shape concepts. 

3 Quality Dimensions of Shape Spaces 

The framework of conceptual spaces assumes that dimensions represent meaningful 

qualities in which two objects can be judged to be similar or different. When modeling 

cognitive structures, these quality dimensions should correspond to phenomenal (psy-

chological) dimensions. Inspired by findings from perceptual psychology (e.g., [4]), we 

tested whether primitive shape features which are considered to be relevant in early 

visual processing qualify for dimensions of shape spaces. We considered three shape 

primitives, namely line shape (LINES), global shape structure (FORM), and orientation 

(ORIENTATION). 
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A web-based survey (n subj = 27) was conducted to obtain 9 ratings for each primi-

tive feature for each test shape. Feature judgments had to be given on a continuous scale 

with labeled endpoints (LINES: absolutely straight to strongly curved, FORM: elon-

gated to blob-like, ORIENTATION: horizontal via diagonal to vertical). Images were 

presented in groups of four on the screen (in random order). Subjects had to arrange the 

images on the scale such that the final positions reflect their values. Feature values were 

aggregated per object by using the median. The 15 objects with the highest and the 

lowest values were used as positive and negative examples for the respective feature. 

The solutions provided by MDS are invariant under rotation. Thus, the axes of the 

coordinate system of MDS-generated spaces do not necessarily coincide with interpret-

able features. We therefore trained a linear support vector machine to separate positive 

from negative examples for each feature. The normal vector of the separating hyper-

plane can be interpreted as a direction representing the respective feature [5]. Figure 1c 

shows the quality of the separations (measured with Cohen’s kappa) as a function of 

the number of dimensions. The results suggest that the tested primitive shape features 

are good candidates for quality dimensions of shape spaces, especially the features 

FORM and ORIENTATION which were found quite early. From 3-dimensional spaces 

onwards, high-quality directions were found for all three primitive shape features. 

4 Conclusion 

The conceptual spaces approach seems to be promising for modeling human represen-

tation of complex shapes. Conceptual spaces with 2 to 5 dimensions were identified as 

adequate for representing shape perceptions. Moreover, convexity as criterion for con-

cept formation was observed for example categories. The primitive features FORM, 

ORIENTATION and LINES were identified as good candidates for quality dimensions.  

In order to understand the structure of shape spaces even better, additional primitive 

features should be investigated. Moreover, the explanatory use of the spaces we ob-

tained through MDS is limited to our fixed set of test shapes. In future work, we aim to 

train an artificial neural network on mapping novel images to points in the shape space 

(cf. [6]) to expand the use and allow for predictions about generalizations. 
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