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ABSTRACT

Do large language models (LLMs) anticipate when they will answer correctly?
To study this, we extract activations after a question is read but before any tokens
are generated, and train linear probes to predict whether the model’s forthcoming
answer will be correct. Across three open-source model families ranging from
7 to 70 billion parameters, projections on this “in-advance correctness direction”
trained on generic trivia questions predict success in distribution and on diverse
out-of-distribution knowledge datasets, indicating a deeper signal than dataset-
specific spurious features, and outperforming black-box baselines and verbalised
predicted confidence. Predictive power saturates in intermediate layers and, notably,
generalisation falters on questions requiring mathematical reasoning. Moreover,
for models responding “I don’t know”, doing so strongly correlates with the
probe score, indicating that the same direction also captures confidence. By
complementing previous results on truthfulness and other behaviours obtained
with probes and sparse auto-encoders, our work contributes essential findings to
elucidate LLM internals.

1 INTRODUCTION

Large language models (LLMs) internally encode information beyond what is immediately observable
in their output (Burns et al., 2022; Azaria & Mitchell, 2023; Marks & Tegmark, 2023; Burger
et al., 2024; Kudo et al., 2024; Goldowsky-Dill et al., 2025; Ferrando et al., 2025). Studies have
demonstrated that hidden activations can reveal statement truthfulness (Burns et al., 2022; Azaria
& Mitchell, 2023; Marks & Tegmark, 2023; Burger et al., 2024), deception (Goldowsky-Dill et al.,
2025) and hallucination (Ferrando et al., 2025), which have become ever more critical as LLMs are
deployed in increasingly complex, high-stakes real-world applications.

In this work, we investigate the complementary scientific question of whether an LLM’s residual
stream activations—captured immediately after it processes a query—contain a latent signal that
predicts if its eventual output will be correct. Instead of using the generated answer or token
probabilities, we train a linear probe on the hidden state before the answer is produced to distinguish
questions the model will answer correctly from those it will not, capturing its internal prediction
of correctness. In particular, we are interested in studying if the signal we identify indicates future
performance without relying on dataset-specific spurious features, rather than optimising predictive
power for specific deployment scenarios.

Empirically, our approach identifies the activation-space vector linking the average residual stream
activations for correctly answered questions to those for incorrectly answered ones (similar to Burger
et al., 2024’s method for statement truthfulness). We test our approach on state-of-the-art open-source
LLMs spanning three families and ranging from 7 to 70 billion parameters, and we find that:

• For all models, in-distribution performance saturates at the middle layers.
• The probe trained using TriviaQA (Joshi et al., 2017), a dataset of questions on various

topics, generalises to domain-specific knowledge datasets more effectively than baseline
methods based on self-confidence or model-independent features of the input. However, all
methods struggle to generalise to the GSM8K (Cobbe et al., 2021) mathematical reasoning
dataset, illuminating how predicting self-correctness is challenging for questions requiring
deeper reasoning.
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Figure 1: Proposed methodology to find the in-advance correctness direction. (A) Residual stream
activations for all model layers are extracted at the last token of the question, prior to sampling. (B)
Model answers are generated and evaluated against the ground truth. (C) The direction which mostly
discriminates activations related to correct and incorrect answers is identified (the first two principal
components at a specific layer are visualised). (D) The most discriminative layer is chosen. (E) The
final correctness classifier is trained on the identified layer, and its out-of-distribution performance is
assessed.

• Using the TriviaQA dataset, larger models require fewer training samples to learn a high-
quality probe–however, 2560 samples are enough to saturate performance on almost all test
datasets.

• Considering all datasets, the in-advance correctness signal is strongest for the largest model
we test (Llama 3.3 70B, (Touvron et al., 2023)).

• For models that answer “I don’t know” without being explicitly prompted, doing so correlates
with the question’s position along the in-advance correctness direction, which therefore also
represents a “confidence” direction.

Overall, our analysis advances our understanding of what is encoded in LLM internals and provides
an early indicator of performance that is grounded in the model’s internal dynamics and thus
complements existing uncertainty quantification techniques (Shorinwa et al., 2024). Our codebase is
accessible at https://anonymous.4open.science/r/no-answer-needed.

2 RELATED WORK

By avoiding generation from the model, our approach contrasts with self-confidence estimation
methods (Shorinwa et al., 2024) that consider token-level output logits (Fadeeva et al., 2024), train
additional modules to predict uncertainty (Kadavath et al., 2022), measure “semantic similarity” of
multiple model generations (Kuhn et al., 2023), or ask models to verbalise their uncertainty (Lin
et al., 2022; Kapoor et al., 2024). Notably, there is no consensus on the performance of these
methods (Kapoor et al., 2024), which were shown to be brittle to shortcuts (Heindrich et al., 2025)
and to yield inconsistent results across different methods (Pawitan & Holmes, 2024). Importantly,
our probe is applicable to free-form answers, while not all the above approaches are. By avoiding
model generation, our approach comes close to techniques training correctness predictors using
model-independent features of the input (“assessors”, Hernández-Orallo et al., 2022; Zhou et al.,
2024; Pacchiardi et al., 2025), but differs from those in leveraging internal representations. On the
other side, in contrast to our in-advance prediction of correctness, aforementioned works using model
internals mostly focused on truthfulness of complete statements (Azaria & Mitchell, 2023; Burns
et al., 2022; Marks & Tegmark, 2023; Burger et al., 2024; Bao et al., 2025) or other properties such
as questions answerability (Heindrich et al., 2025), deception (Yang et al., 2024; Goldowsky-Dill
et al., 2025; Parrack et al., 2025), and when in a chain of thought internals predict the answer the
model will eventually produce (Kudo et al., 2024).

2

https://anonymous.4open.science/r/no-answer-needed


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

The closest works to ours are Kadavath et al. (2022), which tested a similar probe to older proprietary
models, but did not release any code to replicate or adapt their method, and Ferrando et al. (2025),
which identified the latents of pre-trained Sparse Auto-Encoders (SAEs, Bricken et al., 2023) that
best distinguish questions answered correctly from those answered incorrectly in small Gemma
models (Team et al., 2024). As in these works, our work has the scientific goal of obtaining a better
understanding of model internals, rather than optimizing for predictive power (which can be increased
by combining internal embeddings with other features, as done in Kamath et al., 2020). Detailed
discussion of the above and other related works can be found in Appendix A.

3 METHOD

3.1 PROBLEM FORMULATION

Let M be a LLM that, given an input prompt x, produces residual stream activations (after the final
prompt token) {h(l) ∈ Rd} at each layer l = 1, . . . , L. For that prompt, M can be used to produce
(by autoregressive sampling) an output answer y. We define the correctness function Correct(x, y) as
a binary indicator of whether the answer is correct. Our objective is to learn a classifier fw (where w
indicates the classifier weights) that predicts the correctness label1 from an intermediate activation
h(l)(x), i.e.,

fw
(
h(l)(x)

)
≈ 1{Correct(x,M(x))} .

3.2 LEARNING A LATENT CORRECTNESS DIRECTION

Taking inspiration from Burger et al. (2024), we train a simple linear probe on fixed neural activations
from a single layer obtained at the final prompt token. In particular, we partition the activations into
two groups according to correctness. We summarize each class by the average activation vector over
all examples in that class—one centroid for the incorrect outputs, µfalse, and one for the correct outputs,
µtrue. Then, we define the correctness direction as the difference of the centroids: w = µtrue − µfalse.

For a given activation vector h, we then compute its correctness score by subtracting the mean of the
centroids µ = 1

2 (µfalse + µtrue) and projecting it on the normalized direction:

score(h) =
(h− µ)⊤w

∥w∥
.

This score quantifies the alignment between the activation and the vector associated with correct-
ness. Importantly, we do not apply a sigmoid to transform this score into a probability, nor use a
threshold to assign class labels, although doing so is possible and straightforward. Instead, we assess
the discriminative power of this direction by computing the Area Under the Receiver Operating
Characteristic curve (AUROC), which is invariant under monotonic transformations of the scores and
independent of any particular threshold since it measures performance across all possible cut-offs.

Therefore, our method does not produce a probabilistic classifier by default. It simply identifies a
linear axis w in activation space that optimally separates correct from incorrect outputs, and uses the
projections onto this axis to evaluate their separability.

4 EXPERIMENTS AND RESULTS

4.1 SETUP

For each dataset–model pair, we collect a dataset of activations and correctness by prompting the
model on every question x, extracting activations h(l)(x) (for layer l) at the question’s final token,
sampling the answer y (temperature 0), and recording its correctness (0 or 1) against the gold answer.
We then learn the direction as described in Section 3.2. To conduct the experiments, we used GPU

1If LLM answer generation is done with non-zero temperature, the correctness label inherently possesses
non-zero aleatoric uncertainty (randomness). Thus, the classifier cannot perfectly predict the label, but it can
approximate the random correctness label as accurately as possible, thereby reducing the epistemic uncertainty.
In our experiments (Section 4), we set temperature to zero, so this consideration does not apply.

3
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Table 1: Details of the datasets employed in our work.

Dataset N. samples Source Example
TriviaQA (Joshi et al., 2017) 60K Public (subset) What is the collective name of the four holy books

of the Hindu religion?

Cities 10K Custom (public data) In which country is the city of Hungerford located?

Notable People 16K Custom (public data) What year was Thabo Mbeki (politician from South
Africa) born?

Medals 9K Custom (public data) Which country won gold in Gymnastics Men’s
Team All-Around in the 1948 Summer Olympics?

Math operations 6K Custom What is 5 plus 2?

GSM8K (Cobbe et al., 2021) 8K Public Natalia sold clips to 48 of her friends in April, and
then she sold half as many clips in May. How many
clips did Natalia sell altogether in April and May?

resources on RunPod, employing approximately 60 hours of NVIDIA A100 time for evaluating the
larger models, and around 100 hours of NVIDIA A40 time for the smaller models. We notice how
most of the computational effort was spent in collecting the models’ activations: our probe’s training
is a one-shot learning of a d-dimensional parameter vector on 10 k cached activations, and it takes
less than three minutes on CPU; applying the probe involves a linear project, which is light-weight
relatively to generation from a model.

4.1.1 DATASETS

We choose datasets where the performance of the considered models is in the mid range, so that
enough samples are available for each of the two classes to accurately estimate the mean. Moreover,
we avoid multiple-choice formats to prevent chance-correct answers from biasing our results. Instead,
every dataset uses open-ended questions. Although some answer sets (e.g., countries or years) are
bounded, they’re broad enough that the impact of random guessing is effectively negligible.

Therefore, we select two publicly available datasets and generate a few synthetic datasets (see Table 1).
In particular, we derive our largest and most diverse dataset from a subset of TriviaQA (Joshi et al.,
2017), which encompasses trivia-style questions covering a wide range of topics. To complement
this, we construct three datasets from public tables to evaluate the in-advance correctness directions
in specific factual-knowledge domains2.The first 3 asks which country a city belongs to; the second 4

requests to provide a notable person’s birth year; and the third5 queries which country won the gold
medal in a specified sport at a particular edition of the Olympic Games. In addition, we construct
our own dataset of arithmetic problems and employ GSM8K (Cobbe et al., 2021), a benchmark for
mathematical reasoning.

4.1.2 LANGUAGE MODELS

We conduct our experiments on open state-of-the-art large language models (Table 2) varying in both
training regimen and scale. We use three-shot prompting to mitigate answer formatting errors (exact
prompts6 in Appendix B.8). The performance for each model on each dataset can be found in Table 5
in Appendix B.1. Although we use a reasoning-trained model (Deepseek R1 Distill Qwen 32B), we
do not employ reasoning-specific prompting and treat that identically to the other models.

2This is because we could not find existing datasets that simultaneously offered (i) free-form answers, (ii) a
narrow topical scope that lets us measure cross-domain transfer, and (iii) fully automatic grading. Our Cities,
Notable People and Medals datasets satisfy all three. Although small (6 k–16 k samples) they stress the probe
with questions that differ markedly from TriviaQA’s trivia style.

3Generated from the Geonames dataset from OpenDataSoft, licensed under CC BY 4.0.
4Generated from the A Brief History of Human Time dataset from SciencesPo, licensed under CC-BY-SA.
5Generated from the Olympic History dataset on Kaggle, licensed under CC0 1.0.
6Exploratory investigation found the specific few-shot examples to not significantly affect performance.
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Table 2: Large Language Models used in our work, number of transformer layers and layer achieving
the best in-distribution AUC for the direction learned on TriviaQA (Section 4.2). The first layer is 0.

Model N. layers Best layer
Llama 3.1 8B 32 14
Llama 3.3 70B Instruct 80 76
Qwen 2.5 7B Instruct 28 22
DeepSeek R1 Distill Qwen 32B 64 44
Mistral 7B Instruct v0.3 32 16
Ministral 8B Instruct 2410 36 18

4.1.3 BASELINES

To establish a point of reference to evaluate our approach, we consider two baseline approaches.

Verbalized confidence. We prompt each model to output a confidence score (0–100%) indicating its
likelihood of answering each question correctly. The exact prompt can be found in Appendix B.8.

Assessors. We train LLM-specific binary classifiers using question text embeddings as model-
independent inputs and the corresponding evaluated model answers as labels. These black-box
assessors (Hernández-Orallo et al., 2022) predict an LLM’s performance on unseen questions
based on the question’s embedded features. Following Pacchiardi et al. (2024), we use OpenAI’s
openai_text-embedding-3-largemodel to obtain 3,072-dimensional question embeddings,
and we explore logistic regression and gradient boosted decision trees (Chen & Guestrin, 2016) to
establish linear and non-linear baseline assessors, respectively.

4.2 IDENTIFYING THE MOST DISCRIMINATIVE LAYER

For each LLM, we first identify the layer that most effectively discriminates between questions the
model answers correctly and those it answers incorrectly, with the approach in Section 3.2. We
perform this evaluation on TriviaQA because it offers a diverse array of questions across multiple
domains and complexity levels, which mitigates the risk of discovering an activation direction tied to
features merely correlated with model success rather than the model’s internal correctness prediction.
The remaining datasets are kept held-out for further evaluation. Appendix B.7 contains similar
experiments with all other datasets.

Thus, we dedicate a subset of 10,000 samples from TriviaQA exclusively to this step. We collect
activation samples every 2 layers for small (<10B parameters) models and every 4 for larger (>10B
parameters) models. On this data, for each model and layer, we perform 3-fold cross-validation and
train the model described in Section 3.2. Figure 2 presents the average AUROC over folds, and
Table 2 lists the resulting optimal layers. We observe that the early layers generally perform poorly
and performance saturates around the midpoint, with the optimal layer typically lying between the
midpoint and the final layer. This suggests the model’s understanding of its own answering ability
emerges progressively across layers, consistent with Ferrando et al. (2025) and Burger et al. (2024),
who also found representations in the middle layers to perform better for their task.

4.3 CORRECTNESS DIRECTION GENERALIZATION

4.3.1 TRAINING ON TRIVIAQA

After identifying each model’s most informative layer on TriviaQA (Section 4.2), we evaluate
whether the corresponding in-advance correctness direction generalises to other datasets. To do
so, we split each dataset (excluding the first 10,000 elements of TriviaQA, used for layer selection,
Section 4.2) into 5 folds, we train the correctness direction by iteratively considering 4 folds of
TriviaQA and evaluating on the remaining one (for in-distribution performance) and on one individual
fold for each of the out-of-distribution (OOD) datasets7. Similarly, we train the assessor baselines on

7This is done so that the results are comparable to the ones obtained by training the correctness direction
on the OOD dataset–which are too small for cross-validation to be applied–as discussed immediately below.

5
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Figure 2: TriviaQA AUROC (average over 3 folds) across layers. We collect activations every 2
layers for small (<10B parameters) models and every 4 layers for large (>10B parameters) models.

TriviaQA and test them on the other datasets (the confidence baseline instead requires no training set).
Table 3 reports the resulting average AUROC for each method: the correctness direction found on
TriviaQA demonstrates significantly stronger generalization to all other datasets, with the exception
of GSM8K, than the baseline methods (Section 4.1.3), despite being slightly outperformed by the
logistic regression assessor in distribution. The direction approach improves on the best baseline by
10–22 AUROC points on Notable People, 5–18 points on Cities and 28–39 points on Math-Operations.
On Medals, it remains the strongest method, but the margin contracts to 4–15 points, indicating that
the gain diminishes on this harder multi-hop task. These patterns suggest that recognising one’s
own competence scales with question difficulty and with model size: only the 70 B model shows a
sizeable advantage on Medals. In contrast, no method can skilfully predict any of the models’ success
on GSM8K well, confirming that the correctness signal does not transfer to arithmetic-reasoning
tasks and indicating a potential limitation of current models. In Table 6, the standard deviation over
the 5 folds for the learned direction is reported, showing that this is smaller than 0.035.

In Figure 5, we study how the performance of the direction approach depends on the number of
samples. Overall, good performances can be achieved with as little as 160 training samples, while
2560 are enough to approach the performance obtained with all 48,540 TriviaQA samples for all test
datasets and models except for Math Operations on LLama 3.1 8B. Interestingly, larger models seem
to need fewer training samples to approach the final accuracy, corroborating the intuition that larger
models may have a stronger correctness direction. This experiment also shows how the performance
for GSM8K plateaus, indicating that the low performance for this dataset is not due to lack of data.

The stronger in-distribution performance of the assessor baselines (compared to our direction ap-
proach) and the lower out-of-distribution performance can be explained by overfitting: in-distribution,
the assessor sees exactly the same embedding space it will be evaluated on and can exploit spurious
correlations that disappear after a domain shift; out-of-distribution, this hurts performance. Appendix
B.3 corroborates the story: a much more expressive XGBoost assessor attains an extra 3–5 AUROC
points in-distribution yet loses 4–7 points OOD—precisely the signature of over-fitting.

4.3.2 TRAINING ON OTHER DATASETS

Next, to understand if the generalization is due to training on TriviaQA or if it can be instead obtained
with any other dataset, we train and test the correctness direction on all dataset combinations, keeping
the same folds as described above. We report results for Mistral 7B Instruct and Llama 3.3 70B in
Figure 3 (other models in Appendix B.5). In some cases, the direction learned on the smaller specific
datasets (such as Cities and Notable People) transfers well to others, but this does not always happen;
at the same time, all datasets lead to decent in-distribution performance, with Medals being often
the lowest one (even considering the other models in Appendix B.5). In Appendix B.6, we further
report the cosine similarity between the directions learned on the different datasets, which shows
how the directions learned on the small datasets are mostly orthogonal, except for a few cases (Cities

Throughout training we always test on the held-out fold of the dataset whose AUROC we report, however, we
train the probe in two alternative ways: (i) on the four remaining folds of TriviaQA (to assess cross-domain
generalisation) or (ii) on the four folds of that same OOD dataset as an upper-bound. Hence, every cell of Table
3 compares methods on identical test questions, irrespective of training set.

6
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Table 3: AUROC for each dataset, model and method. All directions are trained on the TriviaQA
dataset on the optimal layer found in Section 4.2. Average AUROC over 5 folds is reported (Sec-
tion 4.3, variance reported in Table 6). For the assessors, we only report the best performing one
(logistic regression; all results in Appendix B.3).

Model Method Test dataset
TriviaQA N. people Cities Math ops. Medals GSM8K

Llama 3.1 8B
Assessor 0.852 0.630 0.663 0.528 0.623 0.558
Verb. conf. 0.502 0.499 0.500 0.623 0.500 0.540
Direction 0.804 0.722 0.732 0.858 0.680 0.534

Llama 3.3 70B
Instruct

Assessor 0.759 0.583 0.672 0.449 0.568 0.573
Verb. conf. 0.580 0.594 0.694 0.913 0.665 0.598
Direction 0.826 0.708 0.880 0.835 0.770 0.499

Qwen 2.5 7B
Instruct

Assessor 0.807 0.723 0.708 0.400 0.622 0.584
Verb. conf. 0.643 0.637 0.758 0.517 0.531 0.513
Direction 0.758 0.800 0.842 0.837 0.586 0.601

DeepSeek R1
Distill Qwen 32B

Assessor 0.790 0.709 0.663 0.337 0.601 0.576
Verb. conf. 0.619 0.605 0.577 0.499 0.563 0.503
Direction 0.735 0.825 0.879 0.847 0.638 0.552

Mistral 7B
Instruct v0.3

Assessor 0.846 0.673 0.710 0.493 0.638 0.559
Verb. conf. 0.570 0.625 0.705 0.617 0.558 0.525
Direction 0.796 0.760 0.880 0.782 0.645 0.579

Ministral 8B
Instruct 2410

Assessor 0.789 0.623 0.682 0.454 0.626 0.598
Verb. conf. 0.515 0.500 0.554 0.500 0.502 0.577
Direction 0.734 0.680 0.840 0.844 0.670 0.578
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Figure 3: AUROC scores on each dataset for the direction learned on each dataset individually, for
two selected models (others in Appendix B.5). Average AUROC over 5 folds is reported (Section 4.3).

and Notable People), which are also more aligned with the direction learned on TriviaQA. These
observations suggest that, for certain datasets, the learned direction captures dataset-specific cues
correlated with correctness rather than correctness itself. Over all models, moreover, the direction
learned from TriviaQA shows the strongest generalisation (except for GSM8K and Medals, as already
discussed above), likely because its diverse nature makes it less likely to contain exploitable dataset-
specific patterns. Further, comparing the models, we find that Llama 3.3 70B generalizes well across
the largest number of train–test dataset pairs, suggesting that this larger model has a more consistent
correctness direction.
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Figure 4: Distribution of values of activation projections on the correctness direction from TriviaQA,
grouped by produced answer (right, wrong,“I don’t know”), for a selection of models and datasets.

4.4 QUALITATIVE INVESTIGATION

Alongside our main experiments, we observe several behaviours and patterns that are not easily
quantifiable but nonetheless offer a valuable insight into the quality of the direction we find. In
particular, Section 4.5 shows how some models, despite being urged to give an answer in a specific
format, produced some form of abstention; these answers are located on the negative extreme of the
correctness direction, and suggests that our correctness-prediction direction also captures abstention.
Instead, Section 4.6 contains a manual investigation of correct and incorrect answers with the highest
positive and negative values of correctness scores, showing patterns which intuitively align with
confidence scores (e.g., wrong answers with high scores being near-misses where the model fails by
one or a few years).

4.5 LOCATION OF “I DON’T KNOW” RESPONSES

Some of the models we tested, despite being urged to give a specific answer format by our prompt,
produced answers of the form “I don’t know” (IDK) or similar to some questions. When training
the correctness direction, these were considered as incorrect answers. By visualizing (Figure 4)
the distribution of activation projections on the correctness direction at the optimal layer found in
Section 4.2, we see that the questions where the model answers IDK are consistently located more
at the negative extreme of the correctness direction than the questions where the model attempts an
answer but fails. This behaviour demonstrates that the overall internal state, causally upstream of the
model outputting "I don’t know" or attempt an answer, is strongly captured in the direction that we
find. This aligns with Ferrando et al. (2025)’s finding of “knowledge-awareness” directions causally
affecting answer refusal. Thus, our “correctness-prediction” direction could also be interpreted as a
confidence direction: the model will only say that it doesn’t know if its confidence on whether it can
answer the question is very low.

4.6 MANUAL INVESTIGATION OF EXTREME VALUES

Finally, we report in Table 4 the correct and incorrect answer with the highest positive and negative
values of correctness scores for Mistral 7B Instruct. The patterns we observe are intuitive: among
the incorrect answers with low confidence scores, we find IDK responses, which is consistent with
the behaviour discussed in Section 4.5. For wrong answers with high scores, we often see questions
for which the model fails by one or a few years, and the correct answers with the highest confidence
involve very well-known individuals, which aligns with the interpretation that we are finding a
confidence direction.

5 CONCLUSION

We have demonstrated that a latent correctness signal exists in the internal activations of large
language models, which can be effectively extracted using a linear probe. This signal reliably predicts
whether the model will generate a correct response for several knowledge datasets. The robustness
of this finding across various model architectures reinforces the idea that LLMs encode an internal
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Table 4: Questions of the Notable People dataset with the most extreme values on the correctness
direction trained on TriviaQA for Mistral 7B Instruct.

Person Answer (Correct)

Wrong
answers

Low
scores

Victoria (Royal Family from Germany) IDK (1840)
Yokozuna (wrestler from US) 1972 (1966)

High
scores

Kazimir Malevich (painter from Russia) 1961 (1962)
A. A. Milne (writer from United Kingdom) 1892 (1882)

Right
answers

Low
scores

Jim Carter (actor from United Kingdom) 1948 (1948)
David Keith (film-maker from US) 1954 (1954)

High
scores

Charles Darwin (biologist from United Kingdom) 1809 (1809)
Albert Einstein (physicist from Germany) 1879 (1879)

representation of their own confidence. Our work advances the understanding of model internals and
provides a foundation for developing safer and more reliable language systems.

Our contributions are fivefold: (1) we provide evidence that LLMs embed a latent correctness
signal mid-computation; (2) we show that a simple linear probe can extract this signal, yielding
generalisation across knowledge datasets; (3) we highlight the limits of this approach, suggesting
that deeper reasoning and arithmetic capabilities are not as easily captured in activations; (4) we find
a stronger signal for the largest model we test (Llama 3.3 70B), suggesting that larger models may
better predict their correctness (5) we demonstrate this direction aligns with abstention behaviour in
models that say “I don’t know,” supporting its interpretation as a latent confidence axis.

This work contributes to mechanistic interpretability by identifying a meaningful confidence direction
within LLM activations, corroborating recent works with sparse auto-encoders (Ferrando et al., 2025).
It also complements studies of truthfulness and hallucination, suggesting that models encode internal
notions of confidence—even before answer generation—and truthfulness that are both general and
accessible.

Our findings have relevance for both AI safety and practical deployment. As LLMs are increasingly
used in high-stakes settings, low-cost internal signals of impending failure offer a path toward safer,
more robust systems. The correctness direction could inform early stopping, fallback mechanisms, or
human-in-the-loop protocols, particularly where generating unreliable outputs is costly or dangerous.

6 LIMITATIONS

Correctness is represented as a binary label from a single sample. This ignores stochasticity of
answer generation and the existence of questions with ambiguous or nuanced answers that cannot
be captured by a single true/false label. Future work might involve generating multiple samples or
assigning real-valued correctness scores to obtain a more robust estimate of expected correctness.

Linear probes may underestimate predictive power. We used linear representations as a model can
more conceivably access them during answer generation, but higher-capacity non-linear classifiers
may yield greater predictive power.

Model diversity and scale. We evaluate on six open-source models from three families, up to 70B
parameters. While this spans a wide range, results may not fully generalize to proprietary models,
alternative architectures (e.g., mixture-of-experts), or future frontier systems. Only a single large
model (70B) was used due to compute limitations.

Layer selection is performed on a single dataset. We identify the most discriminative layer for
each model using a single large general dataset (TriviaQA). To ensure the generality of our findings,
we could repeat the layer choice on other large generalist dataset.
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7 REPRODUCIBILITY STATEMENT

We provide the codebase to fully reproduce our work at https://anonymous.4open.
science/r/no-answer-needed. The recorded activations for all our models will be made
available upon that paper’s acceptance (as their size prevents us from adding them to the anonymous
repository).
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A FURTHER RELATED WORK

A.1 UNCERTAINTY QUANTIFICATION AND CONFIDENCE ESTIMATION IN LLMS

Traditional uncertainty quantification approaches for deep learning models include looking at the
logits of a multi-class classification network (Guo et al., 2017) or training the model to embed a
form of uncertainty (such as Bayesian Neural Networks, (Jospin et al., 2022) or Dropout (Gal &
Ghahramani, 2016)). Some of these methods can be adapted to LLMs (Shorinwa et al., 2024), for
instance by considering token-level output logits (Kadavath et al., 2022; Fadeeva et al., 2024) or
training additional modules to predict uncertainty (Kadavath et al., 2022). In simple classification tasks
with single-token or multiple-choice answers, these probabilities often track the LLM’s confidence.
However, extending these methods to open-ended answers is non-trivial, as low-level probabilities
do not necessarily yield a clear answer-level confidence. To this end, methods based on "semantic
similarity" (Kuhn et al., 2023) were proposed, but these are costly as they require the generation of
multiple answers from the model. A more recent approach (Sam et al., 2025) asks a set of “elicitation
questions” after an answer is generated and uses the responses to predict its correctness; as for
semantic similarity approaches, this requires repeated model queries.

Alternatively, LLMs can be asked to explicitly verbalize their uncertainty, with or (rarely) without
reference to a specific answer. For instance, (Lin et al., 2022) and Kapoor et al. (2024) finetuned
LLMs to numerically report their belief in the correctness of an answer, while Kadavath et al. (2022)
showed that older Anthropic models can verbally quantify their uncertainty about answers to multiple-
choice questions and finetuned the models to predict the confidence of succeeding on a question
without reference to a specific answer, which performed satisfactorily but struggled with novel tasks.
Instead, Chaudhry et al. (2024) finetuned LLMs to emit linguistic expressions of uncertainty (e.g.,
“maybe”). Finally, arguing that absolute verbalised confidence estimation is poor, Shrivastava et al.
(2025) prompted LLMs to estimate whether they are more confident in their answers to one question
relative to another one, then aggregate many of these pairwise comparisons into confidence scores
using a ranking procedure, finding small gains in discriminative power.

Notably, there is no consensus on the performance of these methods (Kapoor et al., 2024), which
were shown to be brittle to shortcuts (Heindrich et al., 2025) and to yield inconsistent results across
different methods (Pawitan & Holmes, 2024). In contrast to the methods above, we directly leverage
previously trained LLM internals before an answer is generated, making our method applicable to
free-form answers and avoiding generation from the model. Further, while sampling-based confidence
estimators would typically need 10-20 candidate answers per query; our probe caches activations in
a single forward pass, then applies a cheap linear projection. Probe training is a one-shot learning
of a d-dimensional parameter vector on 10 k cached activations (<3 min on CPU); applying the
probe involves a linear project, which is drastically lighter-weight in deployment. While the method
assumes white-box access, it complements black-box sampling: practitioners can choose probes
when speed or token budget is paramount and revert to sampling when internals are unavailable.

A.2 ANTICIPATING LLM PERFORMANCE

Our approach aims to anticipate LLM’s performance based on its internals before an answer is
generated. Some works (Hernández-Orallo et al., 2022; Zhou et al., 2022; Schellaert et al., 2024;
Pacchiardi et al., 2024; 2025) attempted to predict LLM performance by training independent
score predictors (“assessors”) based on features of the input question obtained independently of the
considered LLM. This is motivated by the idea of “Predictable AI” (Zhou et al., 2024), which argues
that predicting the inputs on which an AI system will behave as expected is a necessary component
of safety. Our work can be seen as belonging to this research strand, with the key distinction of
leveraging model internals, which provide more information than model-independent features.

A few works leveraged internals to predict models’ ability to answer a question correctly, but no work
has investigated directly training linear probes only relying on internals. First, Kamath et al. (2020)
combined embeddings generated by a model prompted with a question with hand-crafted feature and
the (anticipative) confidence scores of the model, and trained non-linear models (such as XGBoost)
to predict correctness in advance of generating answers. In contrast, our approach uses only linear
probes on model internals to determine whether activations from correctly and incorrectly answered
questions are linearly separable. More recently, Ferrando et al. (2025) contains two experiments using

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

the latent representations of SAEs (pre-trained to reconstruct model representations in unsupervised
manner) on base Gemma2 2B and 9B and LLaMA 3.1 8B: in the first, they identified general
“knowledge-awareness” directions that predominantly activate on known entities but not on unknown
ones (and vice versa) and showed that steering the chat-fine-tuned version of the model using these
directions induces hallucination or refusal. This parallels our finding that the activations lie at an
extreme of the direction we identify when the model utters “I don’t know” (Section 4.5). In the
second experiment, closer to our setup, they posed questions to the chat model, excluded cases where
the model refuses to respond, and identified the SAE latent that has the highest difference in values
between when the model produces correct and incorrect answers (“uncertainty direction”), and found
good predictive power. Notably, this analysis was confined to Gemma2 models; by contrast, we
directly train simple linear directions across a broader range of models, scaling up to 70 billion
parameters. Nevertheless, Ferrando et al.’s approach and ours produce consistent evidence, thereby
reaffirming one another.

A.3 PROBING OTHER PROPERTIES WITH MODEL INTERNALS

Closely related to our work is the growing literature on using hidden activations to detect properties
of the model’s upcoming or generated outputs. Several papers (Burns et al., 2022; Azaria & Mitchell,
2023; Marks & Tegmark, 2023; Burger et al., 2024; Bao et al., 2025) showed that linear or shallow
probes on internal representations can detect whether a full statement (or question+answer) processed
by the model is true or false. Analogously to our findings, Bao et al. (2025) found that more capable
models have stronger representations, and that probes trained on atomic statements generalise to
more complex sentences. This is closely related to Concept Activation Vectors (Kim et al., 2018) in
explainable AI, which describe a model’s internal representations in terms of its sensitivity to user-
defined examples for a concept. Our approach chiefly differs from those mentioned above by relying
on the activations obtained in advance of the model generating an answer to a question. Experiments
in this setup where conducted (among other things) in Kadavath et al. (2022) for proprietary models.
Our work corroborates their promising results with evidence from newer open-source LLMs.

Other works extracted other information from internals. For instance, Heindrich et al. (2025) predicted
question answerability. Our work focuses on correctness, which encapsulates when a question is
possibly answerable but the model is incorrect. Kudo et al. (2024) studied internals across models’
chain of thought and analyse when they start predicting the answer the model eventually produces;
in contrast, we study whether the internals predict correctness of the answer. Goldowsky-Dill
et al. (2025) studied the detection of deception (a model deliberately misleading its interlocutor);
correctness is broader, and less dependent on the fragile role-play setting required to elicit such
deceptive behaviour. It is worth noting that Parrack et al. (2025) found white box probes to be
slightly better than black-box detection approaches. Relatedly, Yang et al. (2024) analyse how LLMs
internally separate truthful vs. lying scenarios (with the model instructed to lie) at different layers,
using dimensionality reduction and intervention experiments ("patching" activations from a lying
scenario into a truthful one). Instead, (Nguyen et al., 2025) show that linear probes can separate tasks
encountered during evaluations and deployment.

Finally, Lee et al. (2025) used activation steering to condition models to refuse harmful prompts;
our work focuses on correctness rather than harmfulness, which requires understanding one’s own
capabilities. In certain cases, we expect correctness to be a prerequisite to harmfulness, as incorrectly
answering a banal question may be harmful but correctly answering it may be completely safe.
Beaglehole et al. (2025) conducted a similar steering study, detecting semantic concepts using non-
linear feature learning and aggregating features across layers. In contrast, we show that correctness, a
particularly important semantic concept, can be captured using linear features in individual layers,
indicating that the concept is strongly present and can be easily accessed by the model.

B ADDITIONAL QUANTITATIVE RESULTS

B.1 LLM PERFORMANCE ON DATASETS

Table 5 reports performance of all models on each dataset with the prompts we used (Appendix B.8).
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Table 5: Model performance across tasks (%).

Model TriviaQA N. people Cities Math ops. Medals GSM8K

Llama 3.1 8B 85.6 93.4 67.4 77.5 46.0 13.3
Mistral 7B Instruct v0.3 83.6 84.7 45.8 73.9 42.8 10.7
Llama 3.3 70B Instruct 93.4 97.6 80.3 82.2 83.5 36.3
Qwen 2.5 7B Instruct 73.8 42.8 62.9 80.8 29.8 36.0
Ministral 8B Instruct 2410 79.9 67.4 73.0 74.2 40.5 14.8
DeepSeek R1 Distill Qwen 32B 59.9 50.8 60.3 82.0 33.0 44.3

B.2 EXTENDED INFORMATION ON THE DIRECTION APPROACH

Table 6 extends the results of the direction approach presented in Table 3.

Table 6: Mean and standard deviation AUROC of the 5 folds for the direction approach (Section 3.2)
for each dataset and model. All directions are trained on the TriviaQA dataset on the optimal layer
found in Section 4.2.

Model Test dataset
TriviaQA N. people Cities Math ops. Medals GSM8K

Llama 3.1 8B 0.804 ± 0.006 0.722 ± 0.010 0.732 ± 0.018 0.858 ± 0.027 0.680 ± 0.007 0.534 ± 0.022

Llama 3.3 70B 0.826 ± 0.006 0.708 ± 0.018 0.880 ± 0.014 0.835 ± 0.031 0.770 ± 0.022 0.499 ± 0.015

Qwen 2.5 7B 0.758 ± 0.006 0.800 ± 0.013 0.842 ± 0.008 0.837 ± 0.032 0.586 ± 0.014 0.601 ± 0.015

Deepseek R1 32B 0.735 ± 0.005 0.825 ± 0.008 0.879 ± 0.007 0.847 ± 0.035 0.638 ± 0.020 0.552 ± 0.012

Mistral 7B 0.796 ± 0.009 0.760 ± 0.016 0.880 ± 0.008 0.782 ± 0.033 0.645 ± 0.005 0.579 ± 0.016

Ministral 8B 0.734 ± 0.004 0.680 ± 0.007 0.840 ± 0.021 0.844 ± 0.020 0.670 ± 0.015 0.578 ± 0.013

B.3 ASSESSORS PERFORMANCE

For the gradient boosted decision tree assessors, we used XGBoost (Chen & Guestrin, 2016). The
number of trees were chosen individually for each model by performing 5-fold cross validation on
the same training subset of TriviaQA as in Section 4.3. The rest of XGBoost’s hyperparameters were
left as default.

Table 7: AUROC for logistic regression and Gradient Boosted Decision Tree (XGBoost) assessors.

Model Assessor Test dataset
TriviaQA N. people Cities Math ops. Medals GSM8K

Llama 3.1 8B
Log. regression 0.852 0.630 0.663 0.528 0.623 0.558
XGBoost (133 trees) 0.896 0.560 0.639 0.453 0.554 0.532

Llama 3.3 70B
Instruct

Log. regression 0.759 0.583 0.672 0.449 0.568 0.573
XGBoost (150 trees) 0.853 0.516 0.608 0.398 0.501 0.543

Qwen 2.5 7B
Instruct

Log. regression 0.807 0.723 0.708 0.400 0.622 0.584
XGBoost (47 trees) 0.847 0.619 0.624 0.506 0.580 0.546

DeepSeek R1
Distill Qwen 32B

Log. regression 0.790 0.709 0.663 0.337 0.601 0.576
XGBoost (51 trees) 0.834 0.608 0.609 0.458 0.547 0.541

Mistral 7B
Instruct v0.3

Log. regression 0.846 0.673 0.710 0.493 0.638 0.559
XGBoost (130 trees) 0.898 0.558 0.672 0.380 0.590 0.543

Ministral 8B
Instruct 2410

Log. regression 0.789 0.623 0.682 0.454 0.626 0.598
XGBoost (65 trees) 0.846 0.545 0.611 0.498 0.551 0.556
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B.4 HOW MUCH TRAINING DATA DO WE NEED TO LEARN THE CORRECTNESS DIRECTION?

Figure 5 shows performance for the correctness direction trained on TriviaQA for an increasing
number of training samples. Interestingly, Mathematical Operations has the highest data complexity,
likely due to the fact that arithmetic errors are heteregenous and need a large amount of averaging out
to cancel the variance of the activations.
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Figure 5: AUROC scores for each model and test dataset for different number of training samples
from TriviaQA, for our correctness direction approach. To reduce variance, 10 experiments were
performed for each number of training samples and the average AUROC is reported. Notice that the
x scale is logarithmic.
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B.5 HEATMAPS

Figure 6 and Figure 7 complement Figure 3 from the main text and reports AUROC mean and
standard deviation scores for each combination of model, train dataset and test dataset.
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Figure 6: AUROC scores on each dataset for the direction learned on each dataset individually for all
models. Average AUROC over 5 folds is reported (Section 4.3).
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Figure 7: Standard deviations of the values in Figure 6, computed over 5 folds.
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B.6 COSINE SIMILARITIES

Figure 8 reports cosine similarities between the directions learned on the different datasets, for all
models. Notice the cosine similarity ranges from -1 to +1, with 0 indicating orthogonality.
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Figure 8: Cosine similarities for directions trained with different datasets. Following the same method
as in Section 4.3, we average the directions over 5 folds and provide cosine similarities for these
averages.
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B.7 CORRECTNESS DIRECTION PERFORMANCE ACROSS LAYERS

Figure 9 shows the in-distribution performance of the direction trained on each dataset over the layers
of each considered model, complementing Figure 2.
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Figure 9: AUROC for each dataset, model and layer for the direction approach explained in Sec 3.2.
The direction is trained and tested on the same dataset (using cross-validation). We collect activations
every 2 layers for small (<10B parameters) models and every 4 layers for large (>10B parameters)
models. The best layer is chosen as in Section 4.2, and the first "good enough" layer is the first layer
that achieves 90% of the accuracy of the best layer in TriviaQA.
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B.8 PROMPTS

Below we report the prompts used for our evaluations.

Prompt for Cities dataset:

I am going to ask you a question about cities. End your sentence with {eos_token}.Here are
some examples of questions that might help you:
—
Question: In which country is the city of Barcelona located?
Answer: Spain{eos_token}
—
Question: In which country is the city of London located?
Answer: United Kingdom{eos_token}
—
Question: In which country is the city of Beijing located?
Answer: China{eos_token}
—
Question:{question}
Answer:

Prompt for Notable People dataset:

I am going to ask you what year a person was born. End your sentence with {eos_token}.Here
are some examples of questions that might help you:
—
Question: What year was Barack Obama (politician from US) born?
Answer: 1961{eos_token}
—
Question: What year was Vladimir Putin (politician from Russia) born?
Answer: 1952{eos_token}
—
Question: What year was Xi Jinping (politician from China) born?
Answer: 1953{eos_token}
—
Question:{question}
Answer:

Prompt for Medals dataset:

I am going to ask you a question about the Olympics. End your sentence with
{eos_token}.Here are some examples of questions that might help you:
—
Question: Which country won gold in Gymnastics Women’s Team All-Around in the 1928 Sum-
mer Olympics?
Answer: Netherlands{eos_token}
—
Question: Which country won gold in Hockey Women’s Hockey in the 2004 Summer Olympics?
Answer: Germany{eos_token}
—
Question: Which country won gold in Fencing Men’s Sabre, Individual in the 1964 Summer
Olympics?
Answer: Hungary{eos_token}
—
Question:{question}
Answer:

Prompt for TriviaQA dataset:
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I am going to ask you a question. Answer concisely. End your sentence with {eos_token}.Here
are some examples of questions that might help you:
—
Question: In which month are St David’s Day and St Patrick’s Day celebrated in the UK?
Answer: March{eos_token}
—
Question: What is the common English name of Mozart’s Serenade for Strings in d major?
Answer: A little night music{eos_token}
—
Question: In which US State do teams play baseball in the Cactus League?
Answer: Arizona{eos_token}
—
Question:{question}
Answer:

Prompt for Math Operations dataset:

I am going to ask you questions about maths. Answer with an integer value, without decimal
places. End your sentence with {eos_token}.Here are some examples of questions that might
help you:
—
Question: What is 604 minus 866?
Answer: -262{eos_token}
—
Question: What is 927 plus 855?
Answer: 1782{eos_token}
—
Question: What is 531 times 955?
Answer: 507105{eos_token}
—
Question:{question}
Answer:

Prompt for GSM8K dataset:

I am going to ask you a question that requires your answer in a boxed integer. End your sentence
with {eos_token}.Here are some examples of questions that might help you:
—
Question: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting.
How much did she earn?
Answer: $\boxed{10}${eos_token}
—
Question: Julie is reading a 120-page book. Yesterday, she was able to read 12 pages and today,
she read twice as many pages as yesterday. If she wants to read half of the remaining pages
tomorrow, how many pages should she read?
Answer: $\boxed{42}${eos_token}
—
Question: Mark has a garden with flowers. He planted plants of three different colors in it. Ten of
them are yellow, and there are 80% more of those in purple. There are only 25% as many green
flowers as there are yellow and purple flowers. How many flowers does Mark have in his garden?
Answer: $\boxed{35}${eos_token}
—
Question:{question}
Answer:

Prompt for the verbalized confidence experiment:
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I am going to ask you about your confidence to answer a question. The confidence indicates how
likely you think your answer will be true. Please respond with only a percentage and end with
{eos_token}, so your answer should be following the format
Answer: (percentage)%{eos_token}
How confident are you that you can answer correctly ‘{question}’? Answer:

C THE USE OF LARGE LANGUAGE MODELS IN THIS RESEARCH PAPER

Besides being the subject of the investigation, the authors acknowledge having used Large Language
Models in polishing the writing of some sections and for finding related works to be mentioned.
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