NO ANSWER NEEDED: PREDICTING LLM ANSWER ACCURACY FROM QUESTION-ONLY LINEAR PROBES

Anonymous authors

Paper under double-blind review

ABSTRACT

Do large language models (LLMs) anticipate when they will answer correctly? To study this, we extract activations *after* a question is read but *before* any tokens are generated, and train linear probes to predict whether the model's forthcoming answer will be correct. Across three open-source model families ranging from 7 to 70 billion parameters, projections on this "in-advance correctness direction" trained on generic trivia questions predict success in distribution and on diverse out-of-distribution knowledge datasets, indicating a deeper signal than dataset-specific spurious features, and outperforming black-box baselines and verbalised predicted confidence. Predictive power saturates in intermediate layers and, notably, generalisation falters on questions requiring mathematical reasoning. Moreover, for models responding "I don't know", doing so strongly correlates with the probe score, indicating that the same direction also captures confidence. By complementing previous results on truthfulness and other behaviours obtained with probes and sparse auto-encoders, our work contributes essential findings to elucidate LLM internals.

1 Introduction

Large language models (LLMs) internally encode information beyond what is immediately observable in their output (Burns et al., 2022; Azaria & Mitchell, 2023; Marks & Tegmark, 2023; Burger et al., 2024; Kudo et al., 2024; Goldowsky-Dill et al., 2025; Ferrando et al., 2025). Studies have demonstrated that hidden activations can reveal statement truthfulness (Burns et al., 2022; Azaria & Mitchell, 2023; Marks & Tegmark, 2023; Burger et al., 2024), deception (Goldowsky-Dill et al., 2025) and hallucination (Ferrando et al., 2025), which have become ever more critical as LLMs are deployed in increasingly complex, high-stakes real-world applications.

In this work, we investigate the complementary scientific question of whether an LLM's residual stream activations—captured immediately after it processes a query—contain a latent signal that predicts if its eventual output will be correct. Instead of using the generated answer or token probabilities, we train a linear probe on the hidden state *before the answer is produced* to distinguish questions the model will answer correctly from those it will not, capturing its internal prediction of correctness. In particular, we are interested in studying if the signal we identify indicates future performance without relying on dataset-specific spurious features, rather than optimising predictive power for specific deployment scenarios.

Empirically, our approach identifies the activation-space vector linking the average residual stream activations for correctly answered questions to those for incorrectly answered ones (similar to Burger et al., 2024's method for statement truthfulness). We test our approach on state-of-the-art open-source LLMs spanning three families and ranging from 7 to 70 billion parameters, and we find that:

- For all models, in-distribution performance saturates at the middle layers.
- The probe trained using TriviaQA (Joshi et al., 2017), a dataset of questions on various topics, generalises to domain-specific knowledge datasets more effectively than baseline methods based on self-confidence or model-independent features of the input. However, all methods struggle to generalise to the GSM8K (Cobbe et al., 2021) mathematical reasoning dataset, illuminating how predicting self-correctness is challenging for questions requiring deeper reasoning.

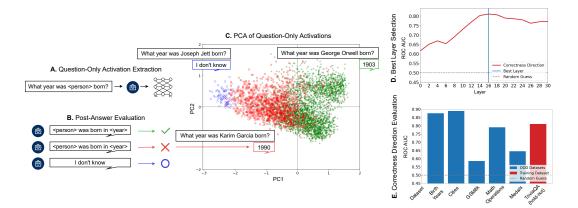


Figure 1: Proposed methodology to find the in-advance correctness direction. (A) Residual stream activations for all model layers are extracted at the last token of the question, prior to sampling. (B) Model answers are generated and evaluated against the ground truth. (C) The direction which mostly discriminates activations related to correct and incorrect answers is identified (the first two principal components at a specific layer are visualised). (D) The most discriminative layer is chosen. (E) The final correctness classifier is trained on the identified layer, and its out-of-distribution performance is assessed.

- Using the TriviaQA dataset, larger models require fewer training samples to learn a high-quality probe-however, 2560 samples are enough to saturate performance on almost all test datasets.
- Considering all datasets, the in-advance correctness signal is strongest for the largest model we test (Llama 3.3 70B, (Touvron et al., 2023)).
- For models that answer "I don't know" without being explicitly prompted, doing so correlates with the question's position along the in-advance correctness direction, which therefore also represents a "confidence" direction.

Overall, our analysis advances our understanding of what is encoded in LLM internals and provides an early indicator of performance that is grounded in the model's internal dynamics and thus complements existing uncertainty quantification techniques (Shorinwa et al., 2024). Our codebase is accessible at https://anonymous.4open.science/r/no-answer-needed.

2 RELATED WORK

By avoiding generation from the model, our approach contrasts with self-confidence estimation methods (Shorinwa et al., 2024) that consider token-level output logits (Fadeeva et al., 2024), train additional modules to predict uncertainty (Kadavath et al., 2022), measure "semantic similarity" of multiple model generations (Kuhn et al., 2023), or ask models to verbalise their uncertainty (Lin et al., 2022; Kapoor et al., 2024). Notably, there is no consensus on the performance of these methods (Kapoor et al., 2024), which were shown to be brittle to shortcuts (Heindrich et al., 2025) and to yield inconsistent results across different methods (Pawitan & Holmes, 2024). Importantly, our probe is applicable to free-form answers, while not all the above approaches are. By avoiding model generation, our approach comes close to techniques training correctness predictors using model-independent features of the input ("assessors", Hernández-Orallo et al., 2022; Zhou et al., 2024; Pacchiardi et al., 2025), but differs from those in leveraging internal representations. On the other side, in contrast to our in-advance prediction of correctness, aforementioned works using model internals mostly focused on truthfulness of complete statements (Azaria & Mitchell, 2023; Burns et al., 2022; Marks & Tegmark, 2023; Burger et al., 2024; Bao et al., 2025) or other properties such as questions answerability (Heindrich et al., 2025), deception (Yang et al., 2024; Goldowsky-Dill et al., 2025; Parrack et al., 2025), and when in a chain of thought internals predict the answer the model will eventually produce (Kudo et al., 2024).

The closest works to ours are Kadavath et al. (2022), which tested a similar probe to older proprietary models, but did not release any code to replicate or adapt their method, and Ferrando et al. (2025), which identified the latents of pre-trained Sparse Auto-Encoders (SAEs, Bricken et al., 2023) that best distinguish questions answered correctly from those answered incorrectly in small Gemma models (Team et al., 2024). As in these works, our work has the scientific goal of obtaining a better understanding of model internals, rather than optimizing for predictive power (which can be increased by combining internal embeddings with other features, as done in Kamath et al., 2020). Detailed discussion of the above and other related works can be found in Appendix A.

3 Method

3.1 PROBLEM FORMULATION

Let M be a LLM that, given an input prompt x, produces residual stream activations (after the final prompt token) $\{h^{(l)} \in \mathbb{R}^d\}$ at each layer $l=1,\ldots,L$. For that prompt, M can be used to produce (by autoregressive sampling) an output answer y. We define the correctness function $\operatorname{Correct}(x,y)$ as a binary indicator of whether the answer is correct. Our objective is to learn a classifier f_w (where w indicates the classifier weights) that predicts the correctness label from an intermediate activation $h^{(l)}(x)$, i.e.,

$$f_w(h^{(l)}(x)) \approx \mathbf{1}\{\operatorname{Correct}(x, M(x))\}$$
.

3.2 Learning a Latent Correctness Direction

Taking inspiration from Burger et al. (2024), we train a simple linear probe on fixed neural activations from a single layer obtained at the final prompt token. In particular, we partition the activations into two groups according to correctness. We summarize each class by the average activation vector over all examples in that class—one centroid for the incorrect outputs, μ_{false} , and one for the correct outputs, μ_{true} . Then, we define the correctness direction as the difference of the centroids: $w = \mu_{\text{true}} - \mu_{\text{false}}$.

For a given activation vector h, we then compute its correctness score by subtracting the mean of the centroids $\mu = \frac{1}{2} \left(\mu_{\text{false}} + \mu_{\text{true}} \right)$ and projecting it on the normalized direction:

$$score(h) = \frac{(h - \mu)^{\top} w}{\|w\|}.$$

This score quantifies the alignment between the activation and the vector associated with correctness. Importantly, we do not apply a sigmoid to transform this score into a probability, nor use a threshold to assign class labels, although doing so is possible and straightforward. Instead, we assess the discriminative power of this direction by computing the Area Under the Receiver Operating Characteristic curve (AUROC), which is invariant under monotonic transformations of the scores and independent of any particular threshold since it measures performance across all possible cut-offs.

Therefore, our method does not produce a probabilistic classifier by default. It simply identifies a linear axis w in activation space that optimally separates correct from incorrect outputs, and uses the projections onto this axis to evaluate their separability.

4 EXPERIMENTS AND RESULTS

4.1 SETUP

For each dataset—model pair, we collect a dataset of activations and correctness by prompting the model on every question x, extracting activations $h^{(l)}(x)$ (for layer l) at the question's final token, sampling the answer y (temperature 0), and recording its correctness (0 or 1) against the gold answer. We then learn the direction as described in Section 3.2. To conduct the experiments, we used GPU

¹If LLM answer generation is done with non-zero temperature, the correctness label inherently possesses non-zero aleatoric uncertainty (randomness). Thus, the classifier cannot perfectly predict the label, but it can approximate the random correctness label as accurately as possible, thereby reducing the epistemic uncertainty. In our experiments (Section 4), we set temperature to zero, so this consideration does not apply.

162 163

Table 1: Details of the datasets employed in our work.

172 173 174

175 176 177

178

179

180

181 182

183 185

191

197

198

208 209

210 211

212 213 214

215

Dataset N. samples Source Example TriviaQA (Joshi et al., 2017) 60K Public (subset) What is the collective name of the four holy books of the Hindu religion? 10K Custom (public data) In which country is the city of Hungerford located? Notable People 16K Custom (public data) What year was Thabo Mbeki (politician from South Africa) born? 9K Medals Which country won gold in Gymnastics Men's Custom (public data) Team All-Around in the 1948 Summer Olympics? Math operations 6K Custom What is 5 plus 2? GSM8K (Cobbe et al., 2021) 8K Public Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?

resources on RunPod, employing approximately 60 hours of NVIDIA A100 time for evaluating the larger models, and around 100 hours of NVIDIA A40 time for the smaller models. We notice how most of the computational effort was spent in collecting the models' activations: our probe's training is a one-shot learning of a d-dimensional parameter vector on 10 k cached activations, and it takes less than three minutes on CPU; applying the probe involves a linear project, which is light-weight relatively to generation from a model.

4.1.1 DATASETS

We choose datasets where the performance of the considered models is in the mid range, so that enough samples are available for each of the two classes to accurately estimate the mean. Moreover, we avoid multiple-choice formats to prevent chance-correct answers from biasing our results. Instead, every dataset uses open-ended questions. Although some answer sets (e.g., countries or years) are bounded, they're broad enough that the impact of random guessing is effectively negligible.

Therefore, we select two publicly available datasets and generate a few synthetic datasets (see Table 1). In particular, we derive our largest and most diverse dataset from a subset of TriviaQA (Joshi et al., 2017), which encompasses trivia-style questions covering a wide range of topics. To complement this, we construct three datasets from public tables to evaluate the in-advance correctness directions in specific factual-knowledge domains². The first ³ asks which country a city belongs to; the second ⁴ requests to provide a notable person's birth year; and the third⁵ queries which country won the gold medal in a specified sport at a particular edition of the Olympic Games. In addition, we construct our own dataset of arithmetic problems and employ GSM8K (Cobbe et al., 2021), a benchmark for mathematical reasoning.

4.1.2 LANGUAGE MODELS

We conduct our experiments on open state-of-the-art large language models (Table 2) varying in both training regimen and scale. We use three-shot prompting to mitigate answer formatting errors (exact prompts⁶ in Appendix B.8). The performance for each model on each dataset can be found in Table 5 in Appendix B.1. Although we use a reasoning-trained model (Deepseek R1 Distill Owen 32B), we do not employ reasoning-specific prompting and treat that identically to the other models.

²This is because we could not find existing datasets that simultaneously offered (i) free-form answers, (ii) a narrow topical scope that lets us measure cross-domain transfer, and (iii) fully automatic grading. Our Cities, Notable People and Medals datasets satisfy all three. Although small (6 k-16 k samples) they stress the probe with questions that differ markedly from TriviaQA's trivia style.

³Generated from the Geonames dataset from OpenDataSoft, licensed under CC BY 4.0.

⁴Generated from the A Brief History of Human Time dataset from SciencesPo, licensed under CC-BY-SA.

⁵Generated from the Olympic History dataset on Kaggle, licensed under CC0 1.0.

⁶Exploratory investigation found the specific few-shot examples to not significantly affect performance.

Table 2: Large Language Models used in our work, number of transformer layers and layer achieving the best in-distribution AUC for the direction learned on TriviaQA (Section 4.2). The first layer is 0.

Model	N. layers	Best layer
Llama 3.1 8B	32	14
Llama 3.3 70B Instruct	80	76
Qwen 2.5 7B Instruct	28	22
DeepSeek R1 Distill Qwen 32B	64	44
Mistral 7B Instruct v0.3	32	16
Ministral 8B Instruct 2410	36	18

4.1.3 BASELINES

To establish a point of reference to evaluate our approach, we consider two baseline approaches.

Verbalized confidence. We prompt each model to output a confidence score (0–100%) indicating its likelihood of answering each question correctly. The exact prompt can be found in Appendix B.8.

Assessors. We train LLM-specific binary classifiers using question text embeddings as model-independent inputs and the corresponding evaluated model answers as labels. These black-box assessors (Hernández-Orallo et al., 2022) predict an LLM's performance on unseen questions based on the question's embedded features. Following Pacchiardi et al. (2024), we use OpenAI's openai_text-embedding-3-large model to obtain 3,072-dimensional question embeddings, and we explore logistic regression and gradient boosted decision trees (Chen & Guestrin, 2016) to establish linear and non-linear baseline assessors, respectively.

4.2 Identifying the most discriminative layer

For each LLM, we first identify the layer that most effectively discriminates between questions the model answers correctly and those it answers incorrectly, with the approach in Section 3.2. We perform this evaluation on TriviaQA because it offers a diverse array of questions across multiple domains and complexity levels, which mitigates the risk of discovering an activation direction tied to features merely correlated with model success rather than the model's internal correctness prediction. The remaining datasets are kept held-out for further evaluation. Appendix B.7 contains similar experiments with all other datasets.

Thus, we dedicate a subset of 10,000 samples from TriviaQA exclusively to this step. We collect activation samples every 2 layers for small (<10B parameters) models and every 4 for larger (>10B parameters) models. On this data, for each model and layer, we perform 3-fold cross-validation and train the model described in Section 3.2. Figure 2 presents the average AUROC over folds, and Table 2 lists the resulting optimal layers. We observe that the early layers generally perform poorly and performance saturates around the midpoint, with the optimal layer typically lying between the midpoint and the final layer. This suggests the model's understanding of its own answering ability emerges progressively across layers, consistent with Ferrando et al. (2025) and Burger et al. (2024), who also found representations in the middle layers to perform better for their task.

4.3 Correctness direction generalization

4.3.1 TRAINING ON TRIVIAQA

After identifying each model's most informative layer on TriviaQA (Section 4.2), we evaluate whether the corresponding in-advance correctness direction generalises to other datasets. To do so, we split each dataset (excluding the first 10,000 elements of TriviaQA, used for layer selection, Section 4.2) into 5 folds, we train the correctness direction by iteratively considering 4 folds of TriviaQA and evaluating on the remaining one (for in-distribution performance) and on one individual fold for each of the out-of-distribution (OOD) datasets⁷. Similarly, we train the assessor baselines on

⁷This is done so that the results are comparable to the ones obtained by training the correctness direction on the OOD dataset—which are too small for cross-validation to be applied—as discussed immediately below.

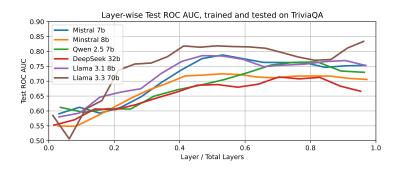


Figure 2: TriviaQA AUROC (average over 3 folds) across layers. We collect activations every 2 layers for small (<10B parameters) models and every 4 layers for large (>10B parameters) models.

TriviaQA and test them on the other datasets (the confidence baseline instead requires no training set). Table 3 reports the resulting average AUROC for each method: the correctness direction found on TriviaQA demonstrates significantly stronger generalization to all other datasets, with the exception of GSM8K, than the baseline methods (Section 4.1.3), despite being slightly outperformed by the logistic regression assessor in distribution. The direction approach improves on the best baseline by 10–22 AUROC points on Notable People, 5–18 points on Cities and 28–39 points on Math-Operations. On Medals, it remains the strongest method, but the margin contracts to 4–15 points, indicating that the gain diminishes on this harder multi-hop task. These patterns suggest that recognising one's own competence scales with question difficulty and with model size: only the 70 B model shows a sizeable advantage on Medals. In contrast, no method can skilfully predict any of the models' success on GSM8K well, confirming that the correctness signal does not transfer to arithmetic-reasoning tasks and indicating a potential limitation of current models. In Table 6, the standard deviation over the 5 folds for the learned direction is reported, showing that this is smaller than 0.035.

In Figure 5, we study how the performance of the direction approach depends on the number of samples. Overall, good performances can be achieved with as little as 160 training samples, while 2560 are enough to approach the performance obtained with all 48,540 TriviaQA samples for all test datasets and models except for Math Operations on LLama 3.1 8B. Interestingly, larger models seem to need fewer training samples to approach the final accuracy, corroborating the intuition that larger models may have a stronger correctness direction. This experiment also shows how the performance for GSM8K plateaus, indicating that the low performance for this dataset is not due to lack of data.

The stronger in-distribution performance of the assessor baselines (compared to our direction approach) and the lower out-of-distribution performance can be explained by overfitting: in-distribution, the assessor sees exactly the same embedding space it will be evaluated on and can exploit spurious correlations that disappear after a domain shift; out-of-distribution, this hurts performance. Appendix B.3 corroborates the story: a much more expressive XGBoost assessor attains an extra 3–5 AUROC points in-distribution yet loses 4–7 points OOD—precisely the signature of over-fitting.

4.3.2 Training on other datasets

Next, to understand if the generalization is due to training on TriviaQA or if it can be instead obtained with any other dataset, we train and test the correctness direction on all dataset combinations, keeping the same folds as described above. We report results for Mistral 7B Instruct and Llama 3.3 70B in Figure 3 (other models in Appendix B.5). In some cases, the direction learned on the smaller specific datasets (such as Cities and Notable People) transfers well to others, but this does not always happen; at the same time, all datasets lead to decent in-distribution performance, with Medals being often the lowest one (even considering the other models in Appendix B.5). In Appendix B.6, we further report the cosine similarity between the directions learned on the different datasets, which shows how the directions learned on the small datasets are mostly orthogonal, except for a few cases (Cities

Throughout training we always test on the held-out fold of the dataset whose AUROC we report, however, we train the probe in two alternative ways: (i) on the four remaining folds of TriviaQA (to assess cross-domain generalisation) or (ii) on the four folds of that same OOD dataset as an upper-bound. Hence, every cell of Table 3 compares methods on identical test questions, irrespective of training set.

Table 3: AUROC for each dataset, model and method. All directions are trained on the TriviaQA dataset on the optimal layer found in Section 4.2. Average AUROC over 5 folds is reported (Section 4.3, variance reported in Table 6). For the assessors, we only report the best performing one (logistic regression; all results in Appendix B.3).

Madal	Mathad	Test dataset						
Model	Method	TriviaQA	N. people	Cities	Math ops.	Medals	GSM8K	
	Assessor	0.852	0.630	0.663	0.528	0.623	0.558	
Llama 3.1 8B	Verb. conf.	0.502	0.499	0.500	0.623	0.500	0.540	
	Direction	0.804	0.722	0.732	0.858	0.680	0.534	
1.1 2.2.70D	Assessor	0.759	0.583	0.672	0.449	0.568	0.573	
Llama 3.3 70B	Verb. conf.	0.580	0.594	0.694	0.913	0.665	0.598	
Instruct	Direction	0.826	0.708	0.880	0.835	0.770	0.499	
	Assessor	0.807	0.723	0.708	0.400	0.622	0.584	
Qwen 2.5 7B	Verb. conf.	0.643	0.637	0.758	0.517	0.531	0.513	
Instruct	Direction	0.758	0.800	0.842	0.837	0.586	0.601	
DeepSeek R1 Distill Qwen 32B	Assessor	0.790	0.709	0.663	0.337	0.601	0.576	
	Verb. conf.	0.619	0.605	0.577	0.499	0.563	0.503	
	Direction	0.735	0.825	0.879	0.847	0.638	0.552	
Mistral 7B Instruct v0.3	Assessor	0.846	0.673	0.710	0.493	0.638	0.559	
	Verb. conf.	0.570	0.625	0.705	0.617	0.558	0.525	
	Direction	0.796	0.760	0.880	0.782	0.645	0.579	
Ministral 8B Instruct 2410	Assessor	0.789	0.623	0.682	0.454	0.626	0.598	
	Verb. conf.	0.515	0.500	0.554	0.500	0.502	0.577	
	Direction	0.734	0.680	0.840	0.844	0.670	0.578	

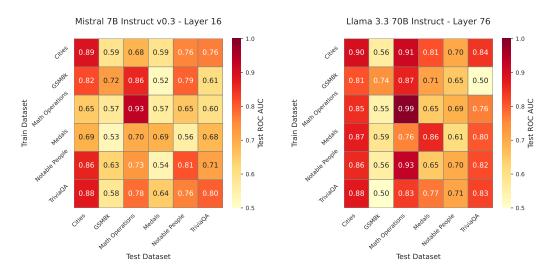
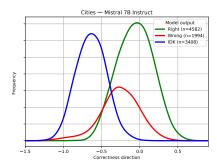


Figure 3: AUROC scores on each dataset for the direction learned on each dataset individually, for two selected models (others in Appendix B.5). Average AUROC over 5 folds is reported (Section 4.3).

and Notable People), which are also more aligned with the direction learned on TriviaQA. These observations suggest that, for certain datasets, the learned direction captures dataset-specific cues correlated with correctness rather than correctness itself. Over all models, moreover, the direction learned from TriviaQA shows the strongest generalisation (except for GSM8K and Medals, as already discussed above), likely because its diverse nature makes it less likely to contain exploitable dataset-specific patterns. Further, comparing the models, we find that Llama 3.3 70B generalizes well across the largest number of train–test dataset pairs, suggesting that this larger model has a more consistent correctness direction.



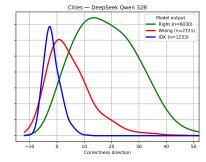


Figure 4: Distribution of values of activation projections on the correctness direction from TriviaQA, grouped by produced answer (right, wrong, "I don't know"), for a selection of models and datasets.

4.4 QUALITATIVE INVESTIGATION

Alongside our main experiments, we observe several behaviours and patterns that are not easily quantifiable but nonetheless offer a valuable insight into the quality of the direction we find. In particular, Section 4.5 shows how some models, despite being urged to give an answer in a specific format, produced some form of abstention; these answers are located on the negative extreme of the correctness direction, and suggests that our correctness-prediction direction also captures abstention. Instead, Section 4.6 contains a manual investigation of correct and incorrect answers with the highest positive and negative values of correctness scores, showing patterns which intuitively align with confidence scores (e.g., wrong answers with high scores being near-misses where the model fails by one or a few years).

4.5 LOCATION OF "I DON'T KNOW" RESPONSES

Some of the models we tested, despite being urged to give a specific answer format by our prompt, produced answers of the form "I don't know" (IDK) or similar to some questions. When training the correctness direction, these were considered as incorrect answers. By visualizing (Figure 4) the distribution of activation projections on the correctness direction at the optimal layer found in Section 4.2, we see that the questions where the model answers IDK are consistently located more at the negative extreme of the correctness direction than the questions where the model attempts an answer but fails. This behaviour demonstrates that the overall internal state, causally upstream of the model outputting "I don't know" or attempt an answer, is strongly captured in the direction that we find. This aligns with Ferrando et al. (2025)'s finding of "knowledge-awareness" directions causally affecting answer refusal. Thus, our "correctness-prediction" direction could also be interpreted as a confidence direction: the model will only say that it doesn't know if its confidence on whether it can answer the question is very low.

4.6 Manual investigation of extreme values

Finally, we report in Table 4 the correct and incorrect answer with the highest positive and negative values of correctness scores for Mistral 7B Instruct. The patterns we observe are intuitive: among the incorrect answers with low confidence scores, we find IDK responses, which is consistent with the behaviour discussed in Section 4.5. For wrong answers with high scores, we often see questions for which the model fails by one or a few years, and the correct answers with the highest confidence involve very well-known individuals, which aligns with the interpretation that we are finding a confidence direction.

5 CONCLUSION

We have demonstrated that a latent correctness signal exists in the internal activations of large language models, which can be effectively extracted using a linear probe. This signal reliably predicts whether the model will generate a correct response for several knowledge datasets. The robustness of this finding across various model architectures reinforces the idea that LLMs encode an internal

Table 4: Questions of the Notable People dataset with the most extreme values on the correctness direction trained on TriviaQA for Mistral 7B Instruct.

		Person	Answer (Correct)
	Low scores	Victoria (Royal Family from Germany) Yokozuna (wrestler from US)	IDK (1840) 1972 (1966)
Wrong	High scores	Kazimir Malevich (painter from Russia) A. A. Milne (writer from United Kingdom)	1961 (1962) 1892 (1882)
	Low scores	Jim Carter (actor from United Kingdom) David Keith (film-maker from US)	1948 (1948) 1954 (1954)
Right answers	High scores	Charles Darwin (biologist from United Kingdom) Albert Einstein (physicist from Germany)	1809 (1809) 1879 (1879)

representation of their own confidence. Our work advances the understanding of model internals and provides a foundation for developing safer and more reliable language systems.

Our contributions are fivefold: (1) we provide evidence that LLMs embed a latent correctness signal mid-computation; (2) we show that a simple linear probe can extract this signal, yielding generalisation across knowledge datasets; (3) we highlight the limits of this approach, suggesting that deeper reasoning and arithmetic capabilities are not as easily captured in activations; (4) we find a stronger signal for the largest model we test (Llama 3.3 70B), suggesting that larger models may better predict their correctness (5) we demonstrate this direction aligns with abstention behaviour in models that say "I don't know," supporting its interpretation as a latent confidence axis.

This work contributes to mechanistic interpretability by identifying a meaningful confidence direction within LLM activations, corroborating recent works with sparse auto-encoders (Ferrando et al., 2025). It also complements studies of truthfulness and hallucination, suggesting that models encode internal notions of confidence—even before answer generation—and truthfulness that are both general and accessible.

Our findings have relevance for both AI safety and practical deployment. As LLMs are increasingly used in high-stakes settings, low-cost internal signals of impending failure offer a path toward safer, more robust systems. The correctness direction could inform early stopping, fallback mechanisms, or human-in-the-loop protocols, particularly where generating unreliable outputs is costly or dangerous.

6 Limitations

Correctness is represented as a binary label from a single sample. This ignores stochasticity of answer generation and the existence of questions with ambiguous or nuanced answers that cannot be captured by a single true/false label. Future work might involve generating multiple samples or assigning real-valued correctness scores to obtain a more robust estimate of expected correctness.

Linear probes may underestimate predictive power. We used linear representations as a model can more conceivably access them during answer generation, but higher-capacity non-linear classifiers may yield greater predictive power.

Model diversity and scale. We evaluate on six open-source models from three families, up to 70B parameters. While this spans a wide range, results may not fully generalize to proprietary models, alternative architectures (e.g., mixture-of-experts), or future frontier systems. Only a single large model (70B) was used due to compute limitations.

Layer selection is performed on a single dataset. We identify the most discriminative layer for each model using a single large general dataset (TriviaQA). To ensure the generality of our findings, we could repeat the layer choice on other large generalist dataset.

7 REPRODUCIBILITY STATEMENT

We provide the codebase to fully reproduce our work at https://anonymous.4open.science/r/no-answer-needed. The recorded activations for all our models will be made available upon that paper's acceptance (as their size prevents us from adding them to the anonymous repository).

REFERENCES

- Amos Azaria and Tom Mitchell. The internal state of an LLM knows when it's lying. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 967–976, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.68. URL https://aclanthology.org/2023.findings-emnlp.68/.
- Yuntai Bao, Xuhong Zhang, Tianyu Du, Xinkui Zhao, Zhengwen Feng, Hao Peng, and Jianwei Yin. Probing the geometry of truth: Consistency and generalization of truth directions in llms across logical transformations and question answering tasks. *arXiv* preprint arXiv:2506.00823, 2025.
- Daniel Beaglehole, Adityanarayanan Radhakrishnan, Enric Boix-Adserà, and Mikhail Belkin. Aggregate and conquer: detecting and steering llm concepts by combining nonlinear predictors over multiple layers. *arXiv preprint arXiv:2502.03708*, 2025.
- Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary learning. *Transformer Circuits Thread*, 2023. https://transformer-circuits.pub/2023/monosemantic-features/index.html.
- Lennart Burger, Fred A Hamprecht, and Boaz Nadler. Truth is universal: Robust detection of lies in llms. *Advances in Neural Information Processing Systems*, 37:138393–138431, 2024.
- Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in language models without supervision. *arXiv preprint arXiv:2212.03827*, 2022.
- Arslan Chaudhry, Sridhar Thiagarajan, and Dilan Gorur. Finetuning language models to emit linguistic expressions of uncertainty. *arXiv preprint arXiv:2409.12180*, 2024.
- Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining*, pp. 785–794, 2016.
- Karl Cobbe, Vineet Kosaraju, Mo Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math word problems. *ArXiv*, abs/2110.14168, 2021. URL https://api.semanticscholar.org/CorpusID:239998651.
- Ekaterina Fadeeva, Aleksandr Rubashevskii, Artem Shelmanov, Sergey Petrakov, Haonan Li, Hamdy Mubarak, Evgenii Tsymbalov, Gleb Kuzmin, Alexander Panchenko, Timothy Baldwin, Preslav Nakov, and Maxim Panov. Fact-checking the output of large language models via token-level uncertainty quantification. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 9367–9385, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.558. URL https://aclanthology.org/2024.findings-acl.558/.
- Javier Ferrando, Oscar Balcells Obeso, Senthooran Rajamanoharan, and Neel Nanda. Do i know this entity? knowledge awareness and hallucinations in language models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=WCRQFlji2q.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In *international conference on machine learning*, pp. 1050–1059. PMLR, 2016.

- Nicholas Goldowsky-Dill, Bilal Chughtai, Stefan Heimersheim, and Marius Hobbhahn. Detecting strategic deception using linear probes. *arXiv preprint arXiv:2502.03407*, 2025.
- Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks. In *International conference on machine learning*, pp. 1321–1330. PMLR, 2017.
- Lovis Heindrich, Philip Torr, Fazl Barez, and Veronika Thost. Do sparse autoencoders generalize? A case study of answerability. *arXiv preprint arXiv:2502.19964*, 2025.
- José Hernández-Orallo, Wout Schellaert, and Fernando Martínez-Plumed. Training on the test set: Mapping the system-problem space in AI. In *Proceedings of the AAAI conference on artificial intelligence*, volume 36, pp. 12256–12261, 2022.
- Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan (eds.), *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1601–1611, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1147. URL https://aclanthology.org/P17-1147/.
- Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mohammed Bennamoun. Hands-on bayesian neural networks—a tutorial for deep learning users. *IEEE Computational Intelligence Magazine*, 17(2):29–48, 2022.
- Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, Scott Johnston, Sheer El Showk, Andy Jones, Nelson Elhage, Tristan Hume, Anna Chen, Yuntao Bai, Sam Bowman, Stanislav Fort, Deep Ganguli, Danny Hernandez, Josh Jacobson, Jackson Kernion, Shauna Kravec, Liane Lovitt, Kamal Ndousse, Catherine Olsson, Sam Ringer, Dario Amodei, Tom Brown, Jack Clark, Nicholas Joseph, Ben Mann, Sam McCandlish, Chris Olah, and Jared Kaplan. Language models (mostly) know what they know. *CoRR*, abs/2207.05221, 2022. URL https://doi.org/10.48550/arxiv.2207.05221.
- Amita Kamath, Robin Jia, and Percy Liang. Selective question answering under domain shift. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pp. 5684–5696, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.503. URL https://aclanthology.org/2020.acl-main.503/.
- Sanyam Kapoor, Nate Gruver, Manley Roberts, Katherine M. Collins, Arka Pal, Umang Bhatt, Adrian Weller, Samuel Dooley, Micah Goldblum, and Andrew Gordon Wilson. Large language models must be taught to know what they don't know. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=QzvWyggrYB.
- Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al. Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav). In *International conference on machine learning*, pp. 2668–2677. PMLR, 2018.
- Keito Kudo, Yoichi Aoki, Tatsuki Kuribayashi, Shusaku Sone, Masaya Taniguchi, Ana Brassard, Keisuke Sakaguchi, and Kentaro Inui. Think-to-talk or talk-to-think? when llms come up with an answer in multi-step reasoning. *ArXiv*, abs/2412.01113, 2024. URL https://api.semanticscholar.org/CorpusID:274436653.
- Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for uncertainty estimation in natural language generation. *arXiv preprint arXiv:2302.09664*, 2023.

Bruce W. Lee, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Erik Miehling, Pierre Dognin, Manish Nagireddy, and Amit Dhurandhar. Programming refusal with conditional activation steering. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=Oi47wc10sm.

Stephanie Lin, Jacob Hilton, and Owain Evans. Teaching models to express their uncertainty in words. *Transactions on Machine Learning Research*, 2022. ISSN 2835-8856. URL https://openreview.net/forum?id=8s8K2UZGTZ.

- Samuel Marks and Max Tegmark. The geometry of truth: Emergent linear structure in large language model representations of true/false datasets. *ArXiv*, abs/2310.06824, 2023. URL https://api.semanticscholar.org/CorpusID:263831277.
- Jord Nguyen, Khiem Hoang, Carlo Leonardo Attubato, and Felix Hofstätter. Probing evaluation awareness of language models. *arXiv preprint arXiv:2507.01786*, 2025.
- Lorenzo Pacchiardi, Lucy G. Cheke, and José Hernández-Orallo. 100 instances is all you need: predicting the success of a new LLM on unseen data by testing on a few instances, 2024. URL https://arxiv.org/abs/2409.03563.
- Lorenzo Pacchiardi, Konstantinos Voudouris, Ben Slater, Fernando Martínez-Plumed, José Hernández-Orallo, Lexin Zhou, and Wout Schellaert. PredictaBoard: Benchmarking LLM score predictability, 2025. URL https://arxiv.org/abs/2502.14445.
- Avi Parrack, Carlo Leonardo Attubato, and Stefan Heimersheim. Benchmarking deception probes via black-to-white performance boosts. *arXiv preprint arXiv:2507.12691*, 2025.
- Yudi Pawitan and Chris Holmes. Confidence in the reasoning of large language models. *arXiv* preprint arXiv:2412.15296, 2024.
- Dylan Sam, Marc Finzi, and J. Zico Kolter. Predicting the performance of black-box llms through self-queries, 2025. URL https://arxiv.org/abs/2501.01558.
- Wout Schellaert, Fernando Martínez-Plumed, and José Hernández-Orallo. Analysing the predictability of language model performance. ACM Transactions on Intelligent Systems and Technology, 2024.
- Ola Shorinwa, Zhiting Mei, Justin Lidard, Allen Z Ren, and Anirudha Majumdar. A survey on uncertainty quantification of large language models: Taxonomy, open research challenges, and future directions. *arXiv preprint arXiv:2412.05563*, 2024.
- Vaishnavi Shrivastava, Ananya Kumar, and Percy Liang. Language models prefer what they know: Relative confidence estimation via confidence preferences. *arXiv preprint arXiv:2502.01126*, 2025.
- Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Ferret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar, Charline Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin, Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur, Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison, Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, Antonia Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar, Chris Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Weinberger, Dimple Vijaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma Wang, Eric Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin, Gary Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucińska, Harleen Batra, Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost van Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mohamed, Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia, Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago, Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel Reid, Manvinder Singh, Mark Iverson, Martin Görner, Mat Velloso, Mateo Wirth, Matt Davidow,

 Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moynihan, Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao, Nenshad Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil Botarda, Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culliton, Pradeep Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni, Rishabh Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin, Sébastien M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ronstrom, Susan Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee Doshi, Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley, Wei Wei, Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan Wei, Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dragan, Slav Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy, Robert Dadashi, and Alek Andreev. Gemma 2: Improving open language models at a practical size, 2024. URL https://arxiv.org/abs/2408.00118.

- Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.
- Wannan Yang, Chen Sun, and Gyorgy Buzsaki. INTERPRETABILITY OF LLM DECEPTION: UNIVERSAL MOTIF. In *Neurips Safe Generative AI Workshop 2024*, 2024. URL https://openreview.net/forum?id=DRWCDFsb2e.
- Lexin Zhou, Fernando Martínez-Plumed, José Hernández-Orallo, Cèsar Ferri, and Wout Schellaert. Reject before you run: Small assessors anticipate big language models. In *EBeM@ IJCAI*, 2022.
- Lexin Zhou, Pablo A. Moreno-Casares, Fernando Martínez-Plumed, John Burden, Ryan Burnell, Lucy Cheke, Cèsar Ferri, Alexandru Marcoci, Behzad Mehrbakhsh, Yael Moros-Daval, Seán Ó hÉigeartaigh, Danaja Rutar, Wout Schellaert, Konstantinos Voudouris, and José Hernández-Orallo. Predictable artificial intelligence, 2024. URL https://arxiv.org/abs/2310.06167.

A FURTHER RELATED WORK

A.1 Uncertainty Quantification and Confidence Estimation in LLMs

Traditional uncertainty quantification approaches for deep learning models include looking at the logits of a multi-class classification network (Guo et al., 2017) or training the model to embed a form of uncertainty (such as Bayesian Neural Networks, (Jospin et al., 2022) or Dropout (Gal & Ghahramani, 2016)). Some of these methods can be adapted to LLMs (Shorinwa et al., 2024), for instance by considering token-level output logits (Kadavath et al., 2022; Fadeeva et al., 2024) or training additional modules to predict uncertainty (Kadavath et al., 2022). In simple classification tasks with single-token or multiple-choice answers, these probabilities often track the LLM's confidence. However, extending these methods to open-ended answers is non-trivial, as low-level probabilities do not necessarily yield a clear answer-level confidence. To this end, methods based on "semantic similarity" (Kuhn et al., 2023) were proposed, but these are costly as they require the generation of multiple answers from the model. A more recent approach (Sam et al., 2025) asks a set of "elicitation questions" after an answer is generated and uses the responses to predict its correctness; as for semantic similarity approaches, this requires repeated model queries.

Alternatively, LLMs can be asked to explicitly verbalize their uncertainty, with or (rarely) without reference to a specific answer. For instance, (Lin et al., 2022) and Kapoor et al. (2024) finetuned LLMs to numerically report their belief in the correctness of an answer, while Kadavath et al. (2022) showed that older Anthropic models can verbally quantify their uncertainty about answers to multiple-choice questions and finetuned the models to predict the confidence of succeeding on a question without reference to a specific answer, which performed satisfactorily but struggled with novel tasks. Instead, Chaudhry et al. (2024) finetuned LLMs to emit linguistic expressions of uncertainty (e.g., "maybe"). Finally, arguing that absolute verbalised confidence estimation is poor, Shrivastava et al. (2025) prompted LLMs to estimate whether they are more confident in their answers to one question relative to another one, then aggregate many of these pairwise comparisons into confidence scores using a ranking procedure, finding small gains in discriminative power.

Notably, there is no consensus on the performance of these methods (Kapoor et al., 2024), which were shown to be brittle to shortcuts (Heindrich et al., 2025) and to yield inconsistent results across different methods (Pawitan & Holmes, 2024). In contrast to the methods above, we directly leverage previously trained LLM internals *before an answer is generated*, making our method applicable to free-form answers and avoiding generation from the model. Further, while sampling-based confidence estimators would typically need 10-20 candidate answers per query; our probe caches activations in a single forward pass, then applies a cheap linear projection. Probe training is a one-shot learning of a *d*-dimensional parameter vector on 10 k cached activations (<3 min on CPU); applying the probe involves a linear project, which is drastically lighter-weight in deployment. While the method assumes white-box access, it complements black-box sampling: practitioners can choose probes when speed or token budget is paramount and revert to sampling when internals are unavailable.

A.2 ANTICIPATING LLM PERFORMANCE

Our approach aims to anticipate LLM's performance based on its internals before an answer is generated. Some works (Hernández-Orallo et al., 2022; Zhou et al., 2022; Schellaert et al., 2024; Pacchiardi et al., 2024; 2025) attempted to predict LLM performance by training independent score predictors ("assessors") based on features of the input question obtained independently of the considered LLM. This is motivated by the idea of "Predictable AI" (Zhou et al., 2024), which argues that predicting the inputs on which an AI system will behave as expected is a necessary component of safety. Our work can be seen as belonging to this research strand, with the key distinction of leveraging model internals, which provide more information than model-independent features.

A few works leveraged internals to predict models' ability to answer a question correctly, but no work has investigated directly training linear probes only relying on internals. First, Kamath et al. (2020) combined embeddings generated by a model prompted with a question with hand-crafted feature and the (anticipative) confidence scores of the model, and trained non-linear models (such as XGBoost) to predict correctness in advance of generating answers. In contrast, our approach uses only linear probes on model internals to determine whether activations from correctly and incorrectly answered questions are linearly separable. More recently, Ferrando et al. (2025) contains two experiments using

the latent representations of SAEs (pre-trained to reconstruct model representations in unsupervised manner) on base Gemma2 2B and 9B and LLaMA 3.1 8B: in the first, they identified general "knowledge-awareness" directions that predominantly activate on known entities but not on unknown ones (and vice versa) and showed that steering the chat-fine-tuned version of the model using these directions induces hallucination or refusal. This parallels our finding that the activations lie at an extreme of the direction we identify when the model utters "I don't know" (Section 4.5). In the second experiment, closer to our setup, they posed questions to the chat model, excluded cases where the model refuses to respond, and identified the SAE latent that has the highest difference in values between when the model produces correct and incorrect answers ("uncertainty direction"), and found good predictive power. Notably, this analysis was confined to Gemma2 models; by contrast, we directly train simple linear directions across a broader range of models, scaling up to 70 billion parameters. Nevertheless, Ferrando et al.'s approach and ours produce consistent evidence, thereby reaffirming one another.

A.3 Probing other properties with Model Internals

Closely related to our work is the growing literature on using hidden activations to detect properties of the model's upcoming or generated outputs. Several papers (Burns et al., 2022; Azaria & Mitchell, 2023; Marks & Tegmark, 2023; Burger et al., 2024; Bao et al., 2025) showed that linear or shallow probes on internal representations can detect whether a full statement (or question+answer) processed by the model is true or false. Analogously to our findings, Bao et al. (2025) found that more capable models have stronger representations, and that probes trained on atomic statements generalise to more complex sentences. This is closely related to Concept Activation Vectors (Kim et al., 2018) in explainable AI, which describe a model's internal representations in terms of its sensitivity to user-defined examples for a concept. Our approach chiefly differs from those mentioned above by relying on the activations obtained *in advance* of the model generating an answer to a question. Experiments in this setup where conducted (among other things) in Kadavath et al. (2022) for proprietary models. Our work corroborates their promising results with evidence from newer open-source LLMs.

Other works extracted other information from internals. For instance, Heindrich et al. (2025) predicted question answerability. Our work focuses on correctness, which encapsulates when a question is possibly answerable but the model is incorrect. Kudo et al. (2024) studied internals across models' chain of thought and analyse when they start predicting the answer the model eventually produces; in contrast, we study whether the internals predict *correctness* of the answer. Goldowsky-Dill et al. (2025) studied the detection of deception (a model deliberately misleading its interlocutor); correctness is broader, and less dependent on the fragile role-play setting required to elicit such deceptive behaviour. It is worth noting that Parrack et al. (2025) found white box probes to be slightly better than black-box detection approaches. Relatedly, Yang et al. (2024) analyse how LLMs internally separate truthful vs. lying scenarios (with the model instructed to lie) at different layers, using dimensionality reduction and intervention experiments ("patching" activations from a lying scenario into a truthful one). Instead, (Nguyen et al., 2025) show that linear probes can separate tasks encountered during evaluations and deployment.

Finally, Lee et al. (2025) used activation steering to condition models to refuse harmful prompts; our work focuses on correctness rather than harmfulness, which requires understanding one's own capabilities. In certain cases, we expect correctness to be a prerequisite to harmfulness, as incorrectly answering a banal question may be harmful but correctly answering it may be completely safe. Beaglehole et al. (2025) conducted a similar steering study, detecting semantic concepts using nonlinear feature learning and aggregating features across layers. In contrast, we show that correctness, a particularly important semantic concept, can be captured using linear features in individual layers, indicating that the concept is strongly present and can be easily accessed by the model.

B ADDITIONAL QUANTITATIVE RESULTS

B.1 LLM PERFORMANCE ON DATASETS

Table 5 reports performance of all models on each dataset with the prompts we used (Appendix B.8).

Table 5: Model performance across tasks (%).

Model	TriviaQA	N. people	Cities	Math ops.	Medals	GSM8K
Llama 3.1 8B	85.6	93.4	67.4	77.5	46.0	13.3
Mistral 7B Instruct v0.3	83.6	84.7	45.8	73.9	42.8	10.7
Llama 3.3 70B Instruct	93.4	97.6	80.3	82.2	83.5	36.3
Qwen 2.5 7B Instruct	73.8	42.8	62.9	80.8	29.8	36.0
Ministral 8B Instruct 2410	79.9	67.4	73.0	74.2	40.5	14.8
DeepSeek R1 Distill Qwen 32B	59.9	50.8	60.3	82.0	33.0	44.3

B.2 EXTENDED INFORMATION ON THE DIRECTION APPROACH

Table 6 extends the results of the direction approach presented in Table 3.

Table 6: Mean and standard deviation AUROC of the 5 folds for the direction approach (Section 3.2) for each dataset and model. All directions are trained on the TriviaQA dataset on the optimal layer found in Section 4.2.

	Test dataset							
Model	TriviaQA	N. people	Cities	Math ops.	Medals	GSM8K		
Llama 3.1 8B	0.804 ± 0.006	0.722 ± 0.010	0.732 ± 0.018	0.858 ± 0.027	0.680 ± 0.007	0.534 ± 0.022		
Llama 3.3 70B	0.826 ± 0.006	0.708 ± 0.018	0.880 ± 0.014	0.835 ± 0.031	0.770 ± 0.022	0.499 ± 0.015		
Qwen 2.5 7B	0.758 ± 0.006	0.800 ± 0.013	0.842 ± 0.008	0.837 ± 0.032	0.586 ± 0.014	0.601 ± 0.015		
Deepseek R1 32B	0.735 ± 0.005	0.825 ± 0.008	0.879 ± 0.007	0.847 ± 0.035	0.638 ± 0.020	0.552 ± 0.012		
Mistral 7B	0.796 ± 0.009	0.760 ± 0.016	0.880 ± 0.008	0.782 ± 0.033	0.645 ± 0.005	0.579 ± 0.016		
Ministral 8B	0.734 ± 0.004	0.680 ± 0.007	0.840 ± 0.021	0.844 ± 0.020	0.670 ± 0.015	0.578 ± 0.013		

B.3 ASSESSORS PERFORMANCE

For the gradient boosted decision tree assessors, we used XGBoost (Chen & Guestrin, 2016). The number of trees were chosen individually for each model by performing 5-fold cross validation on the same training subset of TriviaQA as in Section 4.3. The rest of XGBoost's hyperparameters were left as default.

Table 7: AUROC for logistic regression and Gradient Boosted Decision Tree (XGBoost) assessors.

Model	Assessor	TriviaQA	N. people	Test of Cities	lataset Math ops.	Medals	GSM8K
Llama 3.1 8B	Log. regression	0.852	0.630	0.663	0.528	0.623	0.558
	XGBoost (133 trees)	0.896	0.560	0.639	0.453	0.554	0.532
Llama 3.3 70B	Log. regression	0.759	0.583	0.672	0.449	0.568	0.573
Instruct	XGBoost (150 trees)	0.853	0.516	0.608	0.398	0.501	0.543
Qwen 2.5 7B	Log. regression	0.807	0.723	0.708	0.400	0.622	0.584
Instruct	XGBoost (47 trees)	0.847	0.619	0.624	0.506	0.580	0.546
DeepSeek R1	Log. regression	0.790	0.709	0.663	0.337	0.601	0.576
Distill Qwen 32B	XGBoost (51 trees)	0.834	0.608	0.609	0.458	0.547	0.541
Mistral 7B	Log. regression	0.846	0.673	0.710	0.493	0.638	0.559
Instruct v0.3	XGBoost (130 trees)	0.898	0.558	0.672	0.380	0.590	0.543
Ministral 8B	Log. regression	0.789	0.623	0.682	0.454	0.626	0.598
Instruct 2410	XGBoost (65 trees)	0.846	0.545	0.611	0.498	0.551	0.556

B.4 HOW MUCH TRAINING DATA DO WE NEED TO LEARN THE CORRECTNESS DIRECTION?

Figure 5 shows performance for the correctness direction trained on TriviaQA for an increasing number of training samples. Interestingly, Mathematical Operations has the highest data complexity, likely due to the fact that arithmetic errors are heteregenous and need a large amount of averaging out to cancel the variance of the activations.

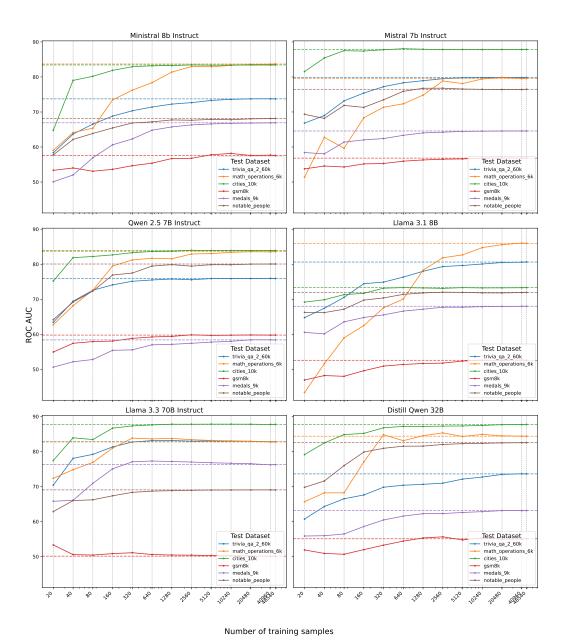


Figure 5: AUROC scores for each model and test dataset for different number of training samples

from TriviaQA, for our correctness direction approach. To reduce variance, 10 experiments were performed for each number of training samples and the average AUROC is reported. Notice that the x scale is logarithmic.

B.5 HEATMAPS

Figure 6 and Figure 7 complement Figure 3 from the main text and reports AUROC mean and standard deviation scores for each combination of model, train dataset and test dataset.

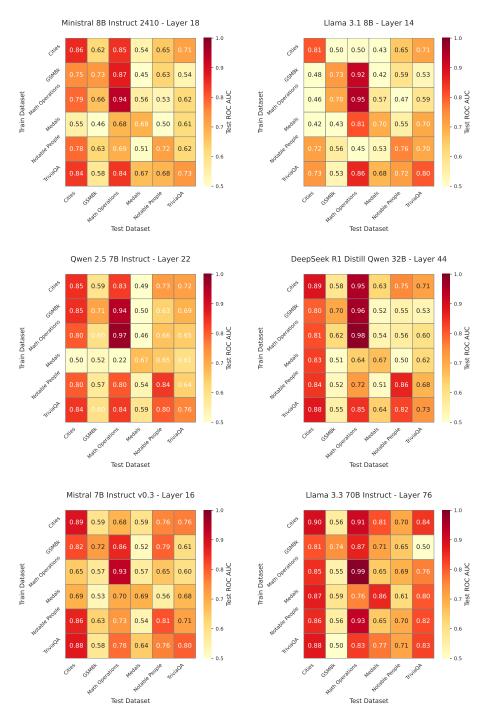


Figure 6: AUROC scores on each dataset for the direction learned on each dataset individually for all models. Average AUROC over 5 folds is reported (Section 4.3).

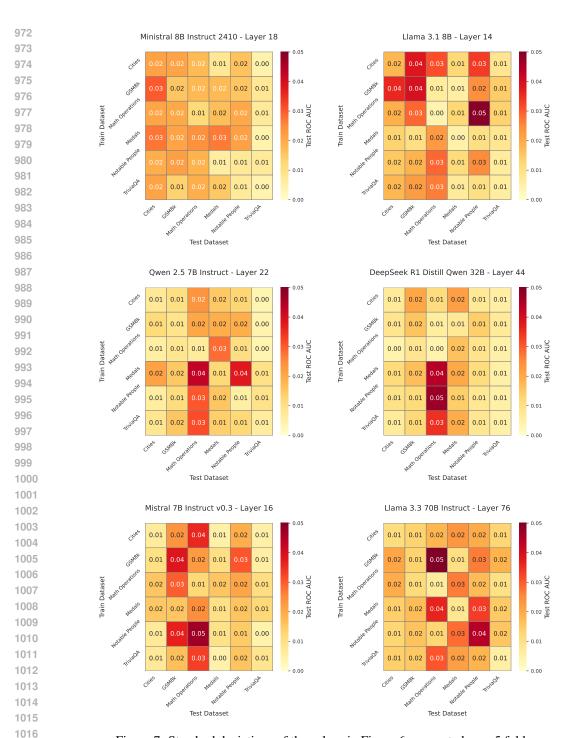


Figure 7: Standard deviations of the values in Figure 6, computed over 5 folds.

B.6 COSINE SIMILARITIES

Figure 8 reports cosine similarities between the directions learned on the different datasets, for all models. Notice the cosine similarity ranges from -1 to +1, with 0 indicating orthogonality.

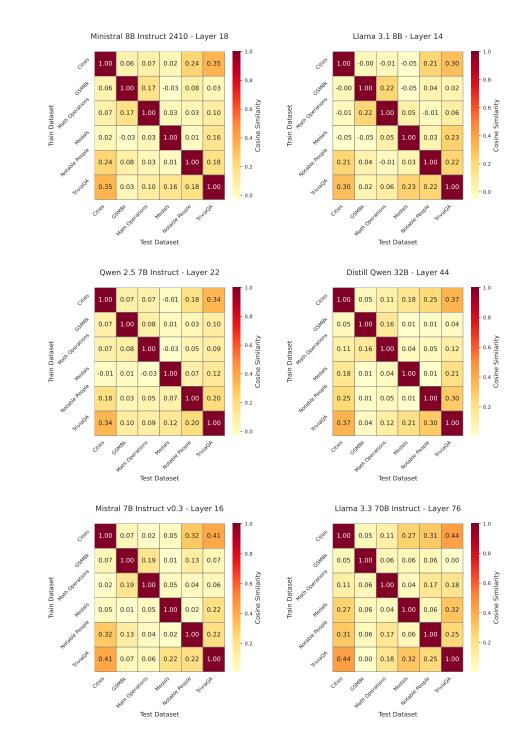


Figure 8: Cosine similarities for directions trained with different datasets. Following the same method as in Section 4.3, we average the directions over 5 folds and provide cosine similarities for these averages.

B.7 CORRECTNESS DIRECTION PERFORMANCE ACROSS LAYERS

Figure 9 shows the in-distribution performance of the direction trained on each dataset over the layers of each considered model, complementing Figure 2.

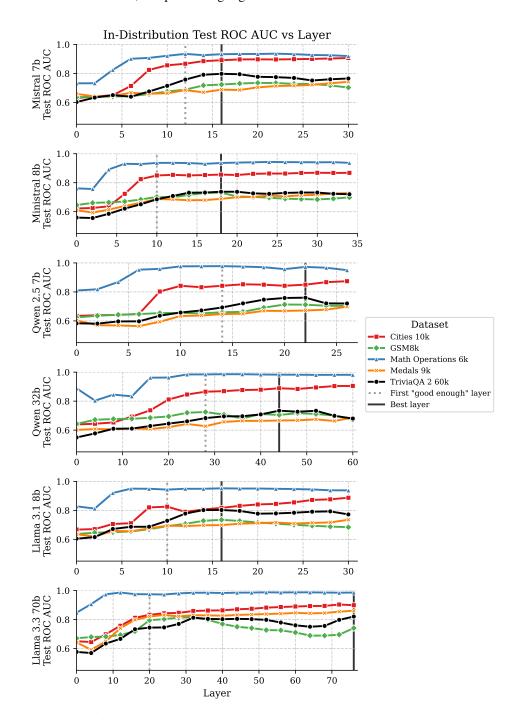


Figure 9: AUROC for each dataset, model and layer for the direction approach explained in Sec 3.2. The direction is trained and tested on the same dataset (using cross-validation). We collect activations every 2 layers for small (<10B parameters) models and every 4 layers for large (>10B parameters) models. The best layer is chosen as in Section 4.2, and the first "good enough" layer is the first layer that achieves 90% of the accuracy of the best layer in TriviaQA.

```
1134
        B.8 PROMPTS
1135
1136
        Below we report the prompts used for our evaluations.
1137
        Prompt for Cities dataset:
1138
1139
         I am going to ask you a question about cities. End your sentence with {eos_token}. Here are
1140
         some examples of questions that might help you:
1141
1142
         Question: In which country is the city of Barcelona located?
1143
         Answer: Spain { eos_token }
1144
1145
         Question: In which country is the city of London located?
1146
         Answer: United Kingdom { eos_token }
1147
         Question: In which country is the city of Beijing located?
1148
         Answer: China {eos_token}
1149
1150
         Question: {question}
         Answer:
1152
1153
        Prompt for Notable People dataset:
1154
1155
         I am going to ask you what year a person was born. End your sentence with {eos token}. Here
1156
         are some examples of questions that might help you:
1157
1158
         Question: What year was Barack Obama (politician from US) born?
1159
         Answer: 1961 (eos_token)
1160
         Question: What year was Vladimir Putin (politician from Russia) born?
1161
         Answer: 1952 {eos_token}
1162
1163
         Question: What year was Xi Jinping (politician from China) born?
1164
         Answer: 1953 {eos_token}
1165
1166
         Question: {question}
1167
         Answer:
1168
1169
        Prompt for Medals dataset:
1170
1171
         I am going to ask you a question about the Olympics.
                                                                         End your sentence with
1172
         {eos_token}. Here are some examples of questions that might help you:
1173
         Question: Which country won gold in Gymnastics Women's Team All-Around in the 1928 Sum-
1174
         mer Olympics?
1175
         Answer: Netherlands { eos_token }
1176
1177
         Question: Which country won gold in Hockey Women's Hockey in the 2004 Summer Olympics?
1178
         Answer: Germany { eos_token }
1179
1180
         Question: Which country won gold in Fencing Men's Sabre, Individual in the 1964 Summer
1181
         Olympics?
1182
         Answer: Hungary { eos_token }
1183
         Question: {question}
1184
         Answer:
1185
1186
```

Prompt for TriviaQA dataset:

```
1188
         I am going to ask you a question. Answer concisely. End your sentence with {eos_token}. Here
1189
         are some examples of questions that might help you:
1190
1191
         Question: In which month are St David's Day and St Patrick's Day celebrated in the UK?
1192
         Answer: March{eos_token}
1193
1194
         Question: What is the common English name of Mozart's Serenade for Strings in d major?
1195
         Answer: A little night music { eos_token }
1196
         Question: In which US State do teams play baseball in the Cactus League?
1197
         Answer: Arizona{eos_token}
1198
1199
         Question: {question}
         Answer:
1201
1202
        Prompt for Math Operations dataset:
1203
1204
         I am going to ask you questions about maths. Answer with an integer value, without decimal
1205
         places. End your sentence with {eos_token}. Here are some examples of questions that might
1206
         help you:
1207
1208
         Question: What is 604 minus 866?
1209
         Answer: -262 { eos_token }
1210
1211
         Question: What is 927 plus 855?
1212
         Answer: 1782 { eos_token }
1213
         Question: What is 531 times 955?
1214
         Answer: 507105 (eos_token)
1215
1216
         Question: {question}
1217
         Answer:
1218
1219
        Prompt for GSM8K dataset:
1220
1221
1222
         I am going to ask you a question that requires your answer in a boxed integer. End your sentence
         with {eos_token}. Here are some examples of questions that might help you:
1223
1224
         Question: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting.
1225
         How much did she earn?
1226
         Answer: $\boxed{10}${eos_token}
1227
1228
         Question: Julie is reading a 120-page book. Yesterday, she was able to read 12 pages and today,
1229
         she read twice as many pages as yesterday. If she wants to read half of the remaining pages
1230
         tomorrow, how many pages should she read?
1231
         Answer: $\boxed{42}${eos_token}
1232
         Question: Mark has a garden with flowers. He planted plants of three different colors in it. Ten of
1233
         them are yellow, and there are 80% more of those in purple. There are only 25% as many green
1234
         flowers as there are yellow and purple flowers. How many flowers does Mark have in his garden?
         Answer: $\boxed{35}${eos_token}
1236
1237
         Question: {question}
         Answer:
1239
```

Prompt for the verbalized confidence experiment:

1240

I am going to ask you about your confidence to answer a question. The confidence indicates how likely you think your answer will be true. Please respond with only a percentage and end with $\{eos_token\}$, so your answer should be following the format

Answer: (percentage)% { eos_token }

How confident are you that you can answer correctly '{question}'? Answer:

C THE USE OF LARGE LANGUAGE MODELS IN THIS RESEARCH PAPER

Besides being the subject of the investigation, the authors acknowledge having used Large Language Models in polishing the writing of some sections and for finding related works to be mentioned.