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Abstract

Neural collapse is a phenomenon observed during the terminal phase of

neural network training, characterized by the convergence of network acti-

vations, class means, and linear classifier weights to a simplex equiangular

tight frame (ETF), a configuration of vectors that maximizes mutual distance

within a subspace. This phenomenon has been linked to improved inter-

pretability, robustness, and generalization in neural networks. However,

its potential to guide neural network training and regularization remains

underexplored. Previous research has demonstrated that constraining the

final layer of a neural network to a simplex ETF can reduce the number of

trainable parameters without sacrificing model accuracy. Furthermore, deep

fully connected networks exhibit neural collapse not only in the final layer

but across all layers beyond a specific effective depth. Using these insights,

we propose two novel training approaches: Adaptive-ETF, a generalized

framework that enforces simplex ETF constraints on all layers beyond the

effective depth, and ETF-Transformer, which applies simplex ETF constraints

to the feedforward layers within transformer blocks. We show that these

approaches achieve training and testing performance comparable to those

of their baseline counterparts while significantly reducing the number of

learnable parameters.

1 Introduction

In the past decade, steady advances in machine learning have propelled deep neural networks

to achieve superhuman performance on a wide range of challenging tasks, including image

classification, speech recognition, and natural language processing. Despite these successes,

the intricate structure of deep neural networks often renders them opaque and difficult to

interpret, leading to their characterization as “black boxes." However, recent research has

revealed that neural networks can exhibit mathematically simple and elegant structures

during training. One such phenomenon, known as neural collapse, has garnered significant

attention for its implications in understanding and optimizing neural network behavior.

Neural collapse (NC) describes the convergence of learned features within a neural network

to highly structured geometric patterns during the training process. Specifically, NC is

characterized by alignment of features with their corresponding class means, convergence of

class means to linear classifier weights, and the arrangement of these means and weights as

a simplex equiangular tight frame (ETF), a configuration that maximizes pairwise distances

within a subspace. This phenomenon, first documented by Papyan et al. [4], occurs during
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the terminal phase of training (TPT), a stage where the network achieves zero training error,

and the loss function asymptotically approaches zero. Understanding the neural collapse

phenomenon holds promise for designing neural networks with improved interpretability,

robustness, and generalization capabilities.

Contribution Previous work has largely focused on exploring neural collapse from a

theoretical lens, focusing on its characterization and providing mathematical justifications

for its emergence. More recently, tscope of neural collapse has been expanded to include

intermediate outputs within neural networks, revealing connections to generalization bounds

[3]. Despite these advances, the practical implications of using simplex ETF during training,

particularly in relation to neural collapse, remain largely unexplored. In this work, we

address this gap by demonstrating the viability of employing intermediate-layer simplex

ETFs to reduce memory usage during training. Furthermore, we extend this approach to

transformer architectures, showing that while neural collapse is not directly observed in

the fully connected layers of transformer blocks, replacing these layers with simplex ETFs

leads to faster training with negligible impact on prediction accuracy. These contributions

underscore the potential of integrating neural collapse principles into practical training

frameworks for both fully connected and transformer-based architectures.

2 Background: Neural Collapse

The task is a multiclass classification problem. We consider a distribution P over samples

(x, y) ∈ X × YC where X ⊂ Rd
and YC = [C], and a deep neural network, which consists of

a feature learner (all previous layers) h(x) ∈ Rk
followed by a linear classifier of weights

W and bias b; we can therefore consider the entire network itself as g(x) = Wh(x) + b. The

regularized empirical objective function over i.i.d. observed dataset S using cross entropy

loss ℓ is expressed as

Lλ
S(gW ) :=

1

|S|
∑

(xi,yi)∈S

ℓ(gW (xi), yi) + λ∥W∥22.

There are four interconnected neural collapse conditions, stated below.[4]

2.1 (NC1) Variability collapse

The within-class variance of the features h go to zero, which means that all features collapse

to class means.

ΣW = Ei,c[(hi,c − µc)(hi,c − µc)
⊺] → 0

2.2 (NC2) Convergence to Simplex Equiangular Tight Frame (ETF)

Over training, the vectors of the class means (in matrix Ṁ ) converge to having equal length,

having the same angle between any pair of class means, and being maximally pairwise

distant from each other.

|∥µc − µG∥2−∥µc′ − µG∥2| → 0,〈
µc − µG

∥µc − µG∥2
,

µc′ − µG

∥µc′ − µG∥2

〉
→ C

C − 1
δc,c′ −

1

C − 1
∀c, c′

This is equivalent to the simplex equiangular tight frame (ETF) a well-studied structure in

mathematics. The simplex ETF is described by the columns of the matrix

Ṁ =

√
C

C − 1
P

(
IC − 1

C
⊮C⊮⊺

C

)
where P forms the first C columns of an identity matrix of size k. [7]
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2.3 (NC3) Convergence to self-duality

The class means and weights occupy dual vector spaces. In neural collapse, they converge to

each other up to a rescaling. ∥∥∥∥ W ⊺

∥W∥F
− Ṁ⊺

Ṁ∥F

∥∥∥∥ → 0

2.4 (NC4) Simplfication to nearest class center (NCC)

For any data point, the classifier converges to choosing the class has the nearest training

class mean in Euclidean distance.

argmax
c′

< wc′ , h > +bc′ → argmin
c′

∥h− µc′∥2

Because the NC4 metric is most relevant to neural network intermediates, and because the

equivalence of neural collapse conditions has been shown in [4], we use NCC accuracy to

measure the degree of neural collapse for our experiments.

3 Related work: Simplex ETF and Effective Depth

Effective Depth Galanti et. al. [3] defines the notion of effective depth L0 of a deep neural

network as the minimum depth at which a deep neural network achieves NCC separability

(NCC error ≤ ϵ). If the network does not achieve NCC separability, then L0 = L. The

minimal-depth hypothesis [3] states that there must exist some depth L0 ≥ 1 such that any

network with depth greater than L0 also achieves NCC separability. It follows that the NCC

accuracy of layer L must be greater than or equal to the NCC accuracy of layer L − 1 for

all layers L ≥ L0. Less strictly, ϵ-effective depth denotes the minimal depth of a network at

which the NCC error is less than or equal to ϵ. ϵ-effective depth is the metric we use when

evaluating effective depths of the neural networks in Section 4.

Simplex ETF for neural network training By NC2 and NC3, class means and linear

classifiers both converge to a simplex ETF. Recent work by Zhu et. al. [7] has shown that if a

network has exhibited neural collapse, then setting the final layer to be a simplex ETF allows

for reduced parameters in the network while maintaining the same degree of accuracy as

an otherwise equivalent model with a fully trainable final layer. This enables significantly

reduced training-time memory usage.

Combining Effective Depth and Simplex ETF In this paper, we propose a training scheme

that utilizes the simplex ETF framework for all layers past the ϵ-minimal depth of a given

neural network. It has been previously demonstrated that a network where L0 ≥ L with the

final layer fixed to a simplex ETF achieves the same accuracy as an unconstrained network

with the same architecture, using far less memory. Results from Galanti et. al. [3] show

that overparameterized neural networks achieve NCC separability in not only the last layer,

but in all layers between L0 and the last layer. It follows that we can further extend the

simplex ETF constraint to intermediate layers beyond the effective depth with no detriment

to training. This demonstrates not only a method of training that saves on memory usage

and number of learnable parameters, but also a link between NC2, NC3, and NC4 conditions

that extends beyond the final layer of the neural network.

4 Experiments

Training We use the standardized Fashion-MNIST image dataset [6]. We use a cross-

entropy loss function and train for 300 epochs with stochastic gradient decent, using weight

decay 5e-4, momentum 0.9, and a learning rate schedule with initial learning rate 0.01, with

decay factor 0.1 at epochs 60, 120, and 160. We use batch size 128 for all models.
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Fashion-MNIST # parameters Train Accuracy Test Accuracy

Baseline MLP 152586 98.02% 89.58%

Last layer ETF 151306 98.13% 89.44%

Last two layers ETF 134922 97.59% 89.20%

Last three layers ETF 118538 96.87% 88.50%

Adaptive ETF - 98.09% 89.38%

Table 1: Best training and validation accuracy attained from MLP models.

Fashion-MNIST # Parameters Train Accuracy Test Accuracy

Baseline ViT 9491978 93.91% 89.80%

Last layer ETF 9486858 93.89% 90.03%

Last layer + Last Block FC ETF 7389706 98.89% 90.06%

Last layer + Last 2 Blocks FC ETF 5292554 93.51% 89.97%

ETF-Transformer 3195402 93.23 % 89.78%

Table 2: Best training and validation accuracy attained from Vi-T model.

4.1 Intermediate Simplex ETF in Multilayered Perceptrons

We train and evaluate a 5-layer feedforward multi-layered perceptron with intermediate

layers of width 128, ReLU activation, and batch normalization on intermediate layers. Figure

1 shows the compares of training the neural network without ETF constraints (baseline) to

training the neural network while replacing the last 1, 2, and 3 layers with Simplex ETFs.

The baseline results indicate that the network has an effective depth L0 of 4. We observe

that setting all layers past L0 to simplex ETFs does not impact the train or test accuracy of

the network.

Indeed, as can be seen in Figure 1, setting final layers to ETFs does not affect the final

accuracy of the neural network, and the modified neural networks still have effective depths

of 4. However, the behavior of the intermediate layers under more constrained conditions

(last two or three layers ETF) differs from baseline. In addition to the final training and

validation accuracy being lowered (Table 1), the last fully-connected layer before ETF layers

exhibits lower NCC separability than other layers.

In both instances of over-constrained neural networks, the decrease in NCC separability is

marked by a noticeable “phase change"— the NCC accuracy starts off high but decreases

dramatically after the network accuracy improves past a certain point in training. This

change does not affect the NCC separability of earlier layers, nor does it significantly affect

train or test accuracy. Although this form of mode collapse is only observed in a heavily

constrained neural network, it may hint towards underlying dynamics in neural network

training that can affect feature representation and separability even in less constrained

models. This suggests that similar mechanisms of mode collapse might occur subtly in

standard networks, potentially impacting generalization and the interpretability of learned

representations. Understanding this phenomenon could lead to better network designs and

training strategies that preserve feature separability throughout the network layers.

Figure 1: Training progress on baseline MLP compared to replacing the final layer, final two

layers, and final three layers of the neural network with simplex ETFs.
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New training scheme: Adaptive ETF Using results from training ETF-constrained MLPs,

we observe that replaying layers beyond a fully-connected network’s effective depth with

simplex ETFs does not incur a penalty to train or test accuracy. This suggests a new

training strategy, Adaptive ETF, that can be employed to greatly reduce memory usage in

overparameterized neural networks. Given parameters ϵ, we fix a given layer of the neural

network to a simplex ETF if its NCC error falls under ϵ. Figure 2 demonstrates this technique

in use with ϵ = 0.1. We clearly see that the model achieves the same train accuracy, test

accuracy, and effective depth as a baseline network, demonstrating Adaptive ETF as a feasible

training technique.

Figure 2: Training progress on baseline network compared to replacing feedforward layers

with simplex ETFs beyond the effective depth.

4.2 Extension to Transformer Architectures: Introducing ETF-Transformer

Figure 3: Comparison of training progress on vision transformers with 1 block, 2 blocks, 3

blocks, and 4 blocks.

In the previous sections, we have demonstrated the efficacy of using simplex ETFs to

replace weights exhibiting neural collapse with fully-connected networks. However, many

real-world tasks make use of more complicated models, such as transformers. We seek to

translate as many of our insights as possible to these complicated models, even if the neural

collapse phenomenon has not been as well-documented in these contexts.

To this end, we repeat our experiments on a visual transformer (ViT) model [2]. Each

transformer block has 8 heads, an attention dimension of 64, and 2048 hidden units in the

fully connected layer. We will investigate the effect of constraining the fully-connected layers

in both the output and the transformer blocks to simplex ETFs.

As seen in Figure 3, the effective depth of the ViT model is always equal to one more than

the number of blocks. That is, the notion of effective depth in MLPs does not carry over

cleanly to transformers. NCC accuracy for intermediates after the residual connection is
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Figure 4: NCC for FC layers in transformer ETF architectures.

greater than for intermediates before the residual connection. This is consistent with the

idea that NCC separability is achieved as a result of optimization rather than specifics of

the neural network. However, it is important to note that the direct output of the FC layers

(before residual connection) in the transformer architecture likely plays a similar role to the

last non-ETF layer in the MLP network in Figure 1.

At the same time, experimental results show that constraining fully-connected layers to

simplex ETFs does not significantly impact performance: Table 2 and Figure 4 show the

accuracy and intermediate NCC results obtained on training a ViT model with 3 transformer

blocks, constraining first the final layer, then the final layer plus the transformer FC layers

in the last block, then the final layer plus the transformer FC layers in the last two blocks,

and finally setting all FC layers outside of multi-head self attention to ETFs. Because we

are able to set ETFs on all transformer blocks, we generalize this last training scheme as the

ETF-Transformer approach. We note that due to the expressivity of the non-MLP components

of the transformer model, the introduction of ETFs into ViT only slightly decrease the

training accuracy and do not affect generalization.

5 Conclusion and Future Work

In this paper, we demonstrate the feasibility of using equiangular tight frames in training

neural networks. Experiments show that when later layers (L ≥ L0) are fixed to ETF, the

network trains to the same accuracy as an unmodified network. This suggests a novel

training scheme, Adaptive ETF, in which layers of the neural network are set to simplex ETFs

once they achieve NCC separability. We demonstrate that Adaptive ETF achieves similar

performance to an unmodified neural network on the Fashion-MNIST dataset.

We also demonstrate the strengths and limitations of carrying over the notion of simplex

ETFs to transformers, using the ViT model. Even though neural collapse conditions are

not as prevalent as in MLPs, we observe that setting feedforward layers to simplex ETFs in

transformer blocks still results in a model that achieves similar accuracy to baseline,

This investigation opens up several new directions of research. First, the Adaptive-ETF

technique and ETF-Transformer architecture can be applied to larger classification datasets,

as well as datasets in different modalities such as natural language. Additionally, our

experiments demonstrate that NC2 and NC3 can also be applied to intermediate layers,

meaning that it is worthwile to revisit NCC-based generalization bounds [3] from the

perspective of NC2 or NC3. Finally, our work yielded unexpected results when fixing early

layers (L < L0) to simplex ETFs: the training accuracy decreased but the test accuracy

stayed the same. This suggests an interesting avenue of exploration for using simplex ETFs

in neural network regularization.
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