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ABSTRACT
Recent advancements in Latent Diffusion Models (LDMs) have pro-
pelled them to the forefront of various generative tasks. However,
their iterative sampling process poses a significant computational
burden, resulting in slow generation speeds and limiting their ap-
plication in text-to-audio generation deployment. In this work, we
introduce AudioLCM, a novel consistency-based model tailored for
efficient and high-quality text-to-audio generation. Unlike prior
approaches that address noise removal through iterative processes,
AudioLCM integrates Consistency Models (CMs) into the genera-
tion process, facilitating rapid inference through a mapping from
any point at any time step to the trajectory’s initial point. To over-
come the convergence issue inherent in LDMs with reduced sample
iterations, we propose the Guided Latent Consistency Distillation
with a multi-step Ordinary Differential Equation (ODE) solver. This
innovation shortens the time schedule from thousands to dozens
of steps while maintaining sample quality, thereby achieving fast
convergence and high-quality generation. Furthermore, to optimize
the performance of transformer-based neural network architec-
tures, we integrate the advanced techniques pioneered by LLaMA
into the foundational framework of transformers. This architecture
supports stable and efficient training, ensuring robust performance
in text-to-audio synthesis. Experimental results on text-to-audio
generation and text-to-music synthesis tasks demonstrate that Au-
dioLCM needs only 2 iterations to synthesize high-fidelity audios,
while it maintains sample quality competitive with state-of-the-art
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models using hundreds of steps. AudioLCM enables a sampling
speed of 333x faster than real-time on a single NVIDIA 4090Ti GPU,
making generative models practically applicable to text-to-audio
generation deployment. Our extensive preliminary analysis shows
that each design in AudioLCM is effective. 1 2
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1 INTRODUCTION
Text-to-audio generation (TTA) [13, 20, 23] is a subfield of gener-
ative tasks that produces natural and precise audio from textual
prompts. TTA has a wide range of applications, including sound
effects creation, musical compositions, and synthesized speech. It
is used in various domains, such as film post-production, video
game development, and audio manipulation. Previous iterations
of neural TTA models have been primarily categorized into two
main types: language models [21, 29] and diffusion models [7, 12].

1Audio samples are available at https://AudioLCM.github.io/.
2Code is Available at https://github.com/Text-to-Audio/AudioLCM

https://doi.org/10.1145/3664647.3681072
https://doi.org/10.1145/3664647.3681072
https://AudioLCM.github.io/.
https://github.com/Text-to-Audio/AudioLCM


MM’24, October 28 - November 1, 2024, Melbourne, Australia. Huadai Liu et al.

(1) Language models encode raw waveform data into discrete rep-
resentations and employ autoregressive language models to predict
audio tokens based on textual input features. (2)Diffusion models:
This category involves generating audio representations, such as
discrete codes [50] or mel-spectrograms [13], from textual prompts
using diffusion models. These representations are then converted
into audio waveforms using separately trained vocoders. Although
bothmethods have demonstrated the ability to produce high-quality
audio samples, they are often limited by high computational costs,
which can make it difficult to achieve both quality and efficiency in
audio generation.

Diffusion models [9, 16, 41], particularly Latent Diffusion mod-
els (LDMs) [33, 34], have yielded unprecedented breakthroughs
across various fields including image synthesis [32, 34, 35], video
generation [11, 39], and audio synthesis [17, 24, 54]. A key feature
of diffusion models is their iterative sampling mechanism, which
progressively refines random initial vectors, thereby mitigating
noise and enhancing sample quality iteratively. This iterative refine-
ment process facilitates a flexible trade-off between computational
resources and sample quality; typically, allocating additional com-
pute for more iterations results in the generation of higher-quality
samples. However, the generation procedure of diffusion models
typically requires more computational costs for sample generation,
causing slow inference and limited real-time applications.

To alleviate this computational bottleneck, advanced numerical
solvers [27, 53] of Stochastic Differential Equations (SDE) or Ordi-
nary Differential Equations (ODE) substantially reduce the required
Number of Function Evaluations (NFE), further improvements are
challenging due to the intrinsic discretization error present in all
differential equation solvers. Recent endeavors have focused on
enhancing sample efficiency through distillation models. These
models [30, 31, 36] aim to distill the knowledge from a pre-trained
diffusion model into compact architectures capable of conduct-
ing inference with minimal computational overhead. For instance,
Meng et al. [31] proposed a two-stage distillation approach aimed
at improving the sample efficiency of classifier-free guided models.
However, this approach presents several challenges: (1) Compu-
tational Intensity: As estimated by Liu et al. [26], the distillation
process entails significant computational resources, necessitating
at least 45 A100 GPU days for training 2-step student models. (2)
Error Accumulation: The two-stage guided distillation process may
inadvertently introduce accumulated errors, thereby compromising
the performance of the distilled models, resulting in suboptimal
results.

In this work, we propose AudioLCM, a consistency model based
method tailored for efficient and high-quality text-to-audio gen-
eration; 1) To avoid significant degradation of perceptual quality
when reducing reverse iterations, AudioLCM integrates Consis-
tency Models (CMs) [40] into the generation process, facilitating
rapid inference through a mapping from any point at any time step
to the trajectory’s initial point; 2) To overcome the convergence
issue inherent in LDMs with reduced sample iterations and acceler-
ate the convergence speed, AudioLCM reduces the data variance in
the target side via One-stage Guided Consistency Distillation with
multi-step Ordinary Differential Equation (ODE) solver. Specifically,
We can sample 𝒙𝑡+𝑘 from the transition density of the SDE, and

then compute �̂�𝜙 using 𝑘 (𝑘 > 1) discretization step of the numerical
ODE solver. We also include the Classifier-free Guidance (CFG) [10]
into the process of distillation and sampling to improve the audio
quality.

Moreover, as a monochromatic image, the mel-spectrogram
lacks spatial translation invariance. The vertical axis of the mel-
spectrogram corresponds to the frequency domain, implying that
mel-spectrogram patches at different vertical positions can convey
completely different information and should not be treated equiva-
lently. In addition, the use of a 2D convolution layer and a spatial
transformer-stacked U-Net architecture limits the model’s ability
to generate audio of variable length. Prior research [12] in TTA has
demonstrated the effectiveness of addressing this issue. To enhance
the performance of transformer-based neural network architectures,
we integrate advanced techniques developed by LLaMA [45] into
the foundational framework of transformers. The LLaMA method-
ology, characterized by its causal transformer architecture tailored
for large language models, holds promise for enhancing the capa-
bilities of transformer backbones. By seamlessly integrating these
methodologies, AudioLCM aims to unlock heightened performance
levels and facilitate a more stable training process.

Experimental results from text-to-audio generation and text-
to-music synthesis tasks demonstrate that AudioLCM achieves
high-fidelity audio synthesis in only 2 iterations, while maintaining
sample quality comparable to state-of-the-art models that require
hundreds of steps. In addition, AudioLCM achieves a sampling
rate 333 times faster than real-time on a single NVIDIA 4090Ti
GPU, making generative models practical for text-to-speech ap-
plications. Our comprehensive preliminary analysis demonstrates
the effectiveness of each component within AudioLCM. The main
contributions of this study are summarized below:

• We propose AudioLCM, a novel consistency-based model
for efficient and high-quality text-to-audio generation. Un-
like prior approaches that address noise removal through
iterative processes, AudioLCM maps from any point at any
time step to the trajectory’s initial point. To overcome the
convergence issue inherent in LDMs with reduced sample
iterations, AudioLCM proposes the One-stage Guided Latent
Consistency Distillation with a multi-step ODE solver, short-
ening the time schedule from thousands to dozens of steps
while maintaining sample quality.
• AudioLCM enhances transformer-based neural network ar-
chitectures by integrating advanced techniques pioneered
by LLaMA. These techniques, renowned for their tailored
causal transformer architecture, promise to deliver improved
performance and training stability.
• Experimental results demonstrate that AudioLCM can syn-
thesize high-fidelity audio samples with only 2 iterations,
while maintaining sample quality that is competitive with
state-of-the-art models that employ hundreds of steps. This
makes generative models practically applicable for text-to-
audio generation deployment.

2 PRELIMINARIES
In this section, we briefly introduce the theory of Diffusion models
and consistency models.
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2.1 Diffusion Models
Diffusion models [14, 42], also known as score-based generative
models, are designed to generate data by iteratively perturbing data
with Gaussian noise and subsequently generating samples from
the perturbed data using a reverse denoising process. Let 𝑝𝑑𝑎𝑡𝑎 (𝑥)
denote the original data distribution. Continuous-time diffusion
models [15, 18, 43] conduct the forward process using a stochastic
differential equation (SDE):

𝑑𝑥𝑡 = 𝒇 (𝑥𝑡 , 𝑡)𝑑𝑡 + 𝒈(𝑡)𝑑𝒘𝑡 , 𝑡 ∈ [0,𝑇 ] . (1)

where 𝒇 () and 𝒈 represent the drift and diffusion coefficients, re-
spectively, while𝒘𝑡 denotes the standard Brownian motion.

By considering the existence of an ordinary differential equation
(ODE), also called the Proability Flow ODE (PF-ODE):

𝑑𝑥𝑡

𝑑𝑡
= 𝒇 (𝑥𝑡 , 𝑡) −

1
2
𝒈(𝑡)2∇𝑥 𝑙𝑜𝑔𝑝𝑡 (𝑥𝑡 ). (2)

where ∇𝑙𝑜𝑔𝑝𝑡 (𝑥) is the score function of 𝑝𝑡 (𝑥).
We train the noise prediction model 𝜖𝜃 (𝑥𝑡 , 𝑡) to approximate

the score function, enabling us to derive the following empirical
PF-ODE:

𝑑𝑥𝑡

𝑑𝑡
= 𝒇 (𝑥𝑡 , 𝑡) +

𝒈(𝑡)2
2𝜎𝑡

𝜖𝜃 (𝑥𝑡 , 𝑡), 𝑥𝑇 ∈ N (0, 𝜎2𝑰 ) (3)

2.2 Consistency Models
Consistency models [40] (CMs) represent a novel class of models
facilitating few-step or even one-step generation. The fundamental
principle underlying consistency models is the establishment of a
mapping capable of connecting any point at any given timestep
to the starting point of a trajectory. This mapping is encapsulated
by the consistency function, denoted as 𝒇 : (𝒙𝑡 , 𝑡) → 𝒙𝜖 , where 𝑥𝑡
represents a predetermined trajectory of the PF-ODE and 𝜖 is a
predefined small positive value. A distinctive feature of the consis-
tency function is its self-consistency property, where points on the
same trajectory converge to the same starting point. This property
is expressed mathematically as follows:

𝒇 (𝒙𝑡 , 𝑡) = 𝒇 (𝒙𝑡 ′ , 𝑡 ′),∀𝑡, 𝑡′ ∈ [𝜖,𝑇 ] . (4)

The objective of a consistency model 𝒇𝜃 is to estimate the consis-
tency function 𝒇 from data, thereby enforcing the self-consistency
property. For any consistency function, it holds that 𝒇 (𝒙𝜖 , 𝜖) = 𝒙𝜖 ,
termed as the boundary condition. To satisfy this boundary condi-
tion, the consistency model 𝒇𝜃 is parameterized as follows:

𝒇𝜃 = 𝑐𝑠𝑘𝑖𝑝 (𝑡)𝒙 + 𝑐𝑜𝑢𝑡 (𝑡)𝑭𝜃 (𝒙, 𝑡), (5)

where 𝑐𝑠𝑘𝑖𝑝 (𝑡) and 𝑐𝑜𝑢𝑡 (𝑡) are differentiable functions, with 𝑐𝑠𝑘𝑖𝑝 (𝜖) =
1 and 𝑐𝑜𝑢𝑡 (𝜖) = 0. Additionally, 𝑭𝜃 (·, ·) represents a deep neural
network. Consistency models can be trained either by consistency
distillation or from scratch.

In the former scenario, consistency models distill insights from
pre-trained diffusion models into a target neural network tailored
for sampling. Given a data point 𝒙 , an accurate estimation of 𝒙𝑡𝑛
from 𝒙𝑡𝑛+1 is achieved by executing a single discretization step
using a numerical ODE solver. Mathematically, this is expressed as:

�̂�
𝜙
𝑡𝑛

:= 𝒙𝑡𝑛+1 + (𝑡𝑛 − 𝑡𝑛+1)Φ(𝒙𝑡𝑛+1 , 𝑡𝑛+1;𝜙), (6)

where Φ(·, ·;𝜙) signifies a one-step ODE solver applied to the empir-
ical PF-ODE. Afterward, the objective is to minimize discrepancies
within the pair (�̂�𝜙𝑡𝑛 , 𝒙𝑡𝑛+1 ) by 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝑑𝑖𝑠𝑡𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛𝑙𝑜𝑠𝑠 defined
as:

L(𝜃, 𝜃− ;Φ) = E𝒙,𝑡 [𝑑 (𝒇𝜃 (𝒙𝑡𝑛+1 , 𝑡𝑛+1),𝒇𝜃− (�̂�
𝜙
𝑡𝑛
, 𝑡𝑛))] . (7)

where �̂�
𝜙
𝑡𝑛

corresponds to Equation 6, 𝜃− represents a running
average of past 𝜃 values during the optimization process, and 𝑑 (·, ·)
denotes a metric function used to quantify the distance between
the pair.

3 AUDIOLCM
This section presents our proposed AudioLCM, a few-step and one-
step consistency model for high-fidelity text-to-audio generation.
The framework of the proposed method is shown in Figure 1. We
begin by outlining the motivation behind each design choice in
AudioLCM. Next, we detail the process of selecting a diffusion
teacher model and performing Guided Consistency Distillation
from it. We then discuss the model architecture and training loss
used in AudioLCM, followed by a discussion of the training and
inference algorithms.

3.1 Motivation
Diffusionmodels havemade significant progress in various domains
such as audio and image generation. However, several challenges
hinder their industrial deployment: 1) The iterative nature of the
prevailing latent diffusion text-to-audio models requires a consid-
erable amount of computational resources for sample generation,
resulting in slow inference times and limited real-time applicabil-
ity. This limitation is a barrier to the practical use of these models
in real-world scenarios. 2) Diffusion models typically train noise
prediction models using extended time-step schedules. For exam-
ple, models such as AudioLDM employ a time-step schedule of
length 1,000, resulting in slower convergence rates and increased
computational requirements.

Recently, Consistency Models [40] have emerged as a novel gen-
erative approach to support few-step and even one-step generation.
Unlike previous methods that rely on iterative processes for noise
removal, AudioLCM integrates consistency models (CMs) into the
generation process. This integration enables rapid inference by
mapping any point at any time step to the starting point of the tra-
jectory. To address the convergence challenges inherent in Latent
Diffusion Models [34] (LDMs) with reduced sample iterations, we
introduce Guided Consistency Distillation with a multi-step ODE
solver. This approach significantly reduces the schedule from thou-
sands to tens of steps while maintaining sample quality, resulting
in faster convergence and high-quality generation. Furthermore, to
improve the performance of transformer-based neural network ar-
chitectures, we integrate advanced techniques pioneered by LLaMA
into the basic framework of transformers.

In conclusion, AudioLCM leverages a consistency model in the
audio latent space to achieve rapid convergence and generation
while ensuring sample quality. This approach is suitable for inter-
active, real-world applications.
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Figure 1: An illustration of AudioLCM. AudioLCM propose the Guided Consistency Distillation with 𝑘-step ODE solver. 𝒄 is the
text embedding and 𝜔 is the classifier-free guidance scale.

3.2 Teacher model
In this subsection, we describe the teacher model we select. As a
blossoming class of generative models, many text-to-audio genera-
tion systems apply latent diffusion models to generate high-quality
audio. However, the teacher model is supposed to achieve fast and
high-quality text-to-audio generation, and thus the distilled student
could inherit its powerful capability. As such, we choose the Make-
An-Audio 2 [12] and modify its feed-forward transformer [47] with
our enhanced transformer-based Backbone while keeping other
designs as our teacher model to strike a proper balance between
perceptual quality and sampling speed.

EnhancedTransformer-based Backbone. Previous research [12]
on TTA synthesis treated the mel-spectrogram as a single-channel
image, similar to text-to-image synthesis, but the mel-spectrogram
lacks spatial translation invariance due to its representation of the
frequency domain. Consequently, patches at different heights carry
distinct meanings and should not be treated equally. Furthermore,
the use of a 2D-convolution layer and spatial transformer-stacked
U-Net architecture limits the model’s ability to generate variable-
length audio. According to the practice of Make-An-Audio 2, they
use a modified audio VAE that uses a 1D-convolution-based model
and a feed-forward Transformer-based diffusion denoiser backbone.
Inspired by the success achieved by LLaMA [45], we integrate the
advanced techniques pioneered by LLaMA into the foundational
framework of feed-forward transformers. We draw the main im-
provement with the original architecture:

• Pre-normalization: We use the RMSNorm normalizing
function [52] and normalize the input of each transformer
layer for the training stability.
• Rotary Embeddings: We replace the absolute positional
embeddings with rotary positional embeddings [44] (RoPE)
at each layer of transformer.

• SwiGLU Activation: We remove the SiLU function, and
instead add the SwiGLU activation function [38] to improve
the performance.

3.3 Guided Consistency Distillation
Given the audio latent space established by the teacher model,
aimed at mitigating computational overhead and enhancing perfor-
mance, we proceed to redefine the PF-ODE governing the reverse
diffusion process, denoted as Equation 3:

𝑑𝑧𝑡

𝑑𝑡
= 𝒇 (𝑧𝑡 , 𝑡) +

𝒈(𝑡)2
2𝜎𝑡

𝜖𝜃 (𝑧𝑡 , 𝒄, 𝑡), 𝑧𝑇 ∈ N (0, 𝜎2𝑰 ) (8)

To preserve the property of self-consistency, we introduce the
consistency function 𝒇𝜃 : (𝒛𝑡 , 𝒄, 𝑡) → 𝒛0, which maps points from
any trajectory of the PF-ODE to the origin of the trajectory. We then
parameterize the consistency function using the noise prediction
model 𝜖𝜃 to satisfy the boundary condition:

𝒇𝜃 (𝒛, 𝒄, 𝑡) = 𝑐𝑠𝑘𝑖𝑝 (𝑡)𝒛 + 𝑐𝑜𝑢𝑡 (𝑡) (
𝒛 − 𝜎𝑡𝜖𝜃 (𝒛, 𝒄, 𝑡)

𝛼𝑡
). (9)

where 𝑐𝑠𝑘𝑖𝑝 (0) = 1, 𝑐𝑜𝑢𝑡 (0) = 0, 𝛼𝑡 and 𝜎𝑡 specify the noise sched-
ule, and 𝜖𝜃 (𝒛, 𝒄, 𝑡) is a noise prediction model initialized with the
parameters of the teacher model.

To adapt to the discrete-time schedule in the teacher model, we
utilize DDIM as the ODE solver Ψ(𝒛𝑡 , 𝑡, 𝒄) to obtain an accurate
estimate of 𝒛𝑡𝑛 from 𝒛𝑡𝑛+1 . Note that we only use the solver in
training, not in inference. Then we estimate the evolution of the
PF-ODE from 𝑡𝑛+1 → 𝑡𝑛 using one-step ODE solver:

�̂�Ψ𝑡𝑛 − 𝒛𝑡𝑛+1 =
∫ 𝑡𝑛

𝑡𝑛+1
(𝒇 (𝒛𝑡 , 𝑡) +

𝑔2 (𝑡)
2𝜎𝑡

𝜖𝜃 (𝒛𝑡 , 𝒄, 𝑡))𝑑𝑡 . (10)

Finally, we calculate the consistency distillation loss to optimize
the AudioLCM model:

L𝐶𝐷 (𝜃, 𝜃− ;Ψ) = E𝒛,𝒄,𝑡 [𝑑 (𝒇𝜃 (𝒛𝑡𝑛+1 , 𝒄, 𝑡𝑛+1),𝒇𝜃− (�̂�Ψ𝑡𝑛 , 𝒄, 𝑡𝑛))] . (11)
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Classifier-free Guidance (CFG). The effectiveness of classifier-
free guidance has been demonstrated in the synthesis of high-
quality text-aligned audio [10]. To facilitate one-stage guided dis-
tillation, we integrate CFG into the distillation process using an
extended PF-ODE. Specifically, we replace the noise prediction
model 𝜖𝜃 (𝒛, 𝒄, 𝑡) with 𝜖𝜃 (𝒛, 𝜔, 𝒄, 𝑡), which incorporates the learn-
able guidance scale embedding 𝜔 . Consequently, we introduce an
extended consistency function 𝒇𝜃 : (𝒛𝑡 ,𝒘, 𝒄, 𝑡) → 𝒛0:

𝒇𝜃 (𝒛,𝒘, 𝒄, 𝑡) = 𝑐𝑠𝑘𝑖𝑝 (𝑡)𝒛 + 𝑐𝑜𝑢𝑡 (𝑡) (
𝒛 − 𝜎𝑡𝜖𝜃 (𝒛,𝒘, 𝒄, 𝑡)

𝛼𝑡
). (12)

Similarly, the consistency loss remains the same as Equation 11,
with the only difference of consistency function.

3.4 Accelerating Distillation with Multi-step
ODE solver

Latent diffusion models typically train noise prediction models with
a long time-step schedule to achieve high-quality generation results.
The formula of the teacher model has the same problem, which
needs to sample across all 1,000 timesteps. However, the extended
time steps are highly time-consuming and computer-consuming for
applying the guided consistency distillation. Consistency models
conduct one-step ODE solvers to estimate 𝒛𝑡𝑛 from 𝒛𝑡𝑛+1 , while
they are close to each other and incurring a small consistency loss.
To achieve fast convergence while preserving generation quality,
we introduce multi-step ODE solvers to considerably shorten the
length of time schedule (from thousands to dozens).

Instead of ensuring consistency between adjacent time steps
𝑡𝑛+1 → 𝑡𝑛 , we perform a k-step discretization step of the ODE solver
to obtain 𝒛𝑡𝑛 from 𝒛𝑡𝑛+𝑘 . The small 𝑘 step leads to slow convergence
while very large 𝑘 may incur large approximation errors of the ODE
solvers. Therefore, it is critical to choose a proper 𝑘 which achieves
fast convergence while preserving the sample quality. Results in
Section 4.2 show the effect of different 𝑘 values and reveal that the
multi-step ODE solvers are crucial in accelerating the distillation
process. Specifically, �̂�Ψ𝑡𝑛 is an estimate of 𝒛𝑡𝑛 using numerical multi-
step ODE solvers:

�̂�Ψ𝑡𝑛−𝒛𝑡𝑛+𝑘 = (1+𝜔)Ψ(𝒛𝑡𝑛+𝑘 , 𝑡𝑛+𝑘 , 𝑡𝑛, 𝒄)−𝜔Ψ(𝒛𝑡𝑛+𝑘 , 𝑡𝑛+𝑘 , 𝑡𝑛, ∅) (13)

Themodification of the consistency distillation loss in Equation 9
ensures consistency from 𝑡𝑛+𝑘 to 𝑡𝑛 .

L𝐶𝐷 (𝜃, 𝜃− ;Ψ) = E𝒛,𝒄,𝑡 [𝑑 (𝒇𝜃 (𝒛𝑡𝑛+𝑘 , 𝒄, 𝜔, 𝑡𝑛+𝑘 ),𝒇𝜃− ( ˆ𝒛𝑡𝑛Ψ𝑡𝑛 , 𝒄, 𝜔, 𝑡𝑛))] .
(14)

3.5 Training and Inference Procedures
The training and sampling algorithms of AudioLCM have been
outlined in Algorithm 1 and Algorithm 2, respectively.

Training. All consistency models are initialized with their cor-
responding pre-trained diffusion models. To ensure a more robust
model fit, we employ the Huber loss L𝜂 as the distance function in
Equation 15:

𝐿𝜂 (𝑦, 𝑓 (𝑥)) =
{
1
2 (𝑦 − 𝑓 (𝑥))2, if |𝑦 − 𝑓 (𝑥) | ≤ 𝜂

𝜂 ( |𝑦 − 𝑓 (𝑥) | − 1
2𝜂), otherwise

(15)

where 𝜂 is a hyperparameter used to regulate the sensitivity of the
loss function to outliers.

Algorithm 1Guided Consistency Distillation with Multi-Step ODE
Solver
1: Input: dataset D, initial model parameter 𝜃 from teacher

model, learning rate 𝜑 , ODE solver Ψ(·, ·, ·, ·), distance func-
tion 𝑑 (·, ·), EMA rate 𝜇, noise schedule 𝛼 (𝑡),𝜎 (𝑡), guid-
ance scale [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥 ], multi-step value 𝑘 , and encoder
𝐸 (·) Encoding training data into latent space: D𝑧 =

(𝒛, 𝒄) |𝒛 = 𝐸 (𝒙), (𝒙, 𝒄) ∈ D
2: 𝜃− ← 𝜃

3: repeat
4: Sample (𝒛, 𝒄) ∼ D𝑧 , 𝑛 ∼ U(1, 𝑁 −𝑘) and𝑤 ∼ [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥 ]

5: Sample 𝒛𝑡𝑛+𝑘 ∼ N(𝛼 (𝑡𝑛+𝑘𝒛;𝜎2 (𝑡𝑛+𝑘 )I)
6: �̂�Ψ𝑡𝑛 ← 𝒛𝑡𝑛+𝑘 + (1 + 𝜔)Ψ(𝒛𝑡𝑛+𝑘 , 𝑡𝑛+𝑘 , 𝑡𝑛, 𝒄) −

𝜔Ψ(𝒛𝑡𝑛+𝑘 , 𝑡𝑛+𝑘 , 𝑡𝑛, ∅)
7: L(𝜃, 𝜃− ;Ψ) ← 𝑑 (𝒇𝜃 (𝒛𝑡𝑛+𝑘 , 𝒄, 𝜔, 𝑡𝑛+𝑘 ),𝒇𝜃− ( ˆ𝒛𝑡𝑛Ψ𝑡𝑛 , 𝒄, 𝜔, 𝑡𝑛))
8: 𝜃 ← 𝜃 − 𝜑∇L(𝜃, 𝜃−)
9: 𝜃− ← stopgrad(𝜇𝜃− + (1 − 𝜇)𝜃 )
10: until AudioLCM converged

Inference. During inference, AudioLCM generates samples by
first sampling from the initial distribution �̂�𝑇 ∼ N(0,𝑇 2𝑰 ) and
then evaluating the consistency model for 𝒛 = 𝒇𝜃 (�̂�𝑇 , 𝜔, 𝒄,𝑇 ). The
LCM models can be evaluated with either a single forward pass or
multiple passes, alternating denoising and noise injection steps to
enhance sample quality. As outlined in Algorithm 2, this multi-step
sampling approach offers the flexibility to balance computational
resources with sample quality. Ultimately, the generated audio
latents 𝒛 are transformed into mel-spectrograms and subsequently
used to generate waveforms using a pre-trained vocoder.

Algorithm 2 Multi-step Consistency Sampling
1: Input: AudioLCM 𝒇𝜃 , Sequence of timesteps 𝜏1 > 𝜏2 > · ·
· > 𝜏𝑁−1, text condition 𝒄 , Guidance Scale 𝜔 , Noise Schedule
𝛼 (𝑡), 𝜎 (𝑡), VAE Decoder 𝐷 (·), and Vocoder 𝑉 (·).

2: Sample 𝒛𝑇 ∼ N(0, 𝑰 )
3: 𝒛 ← 𝒇𝜃 (�̂�𝑇 , 𝜔, 𝒄,𝑇 )
4: for 𝑛 = 1 to 𝑁 − 1 do
5: �̂�𝜏𝑛 = N(𝛼 (𝜏𝑛)𝒛;𝜎2 (𝜏𝑛)𝑰 )
6: 𝒛 ← 𝒇𝜃 (�̂�𝜏𝑛 , 𝜔, 𝒄, 𝜏𝑛)
7: end for
8: return 𝑉 (𝐷 (𝒛))

4 EXPERIMENTS
4.1 Experimental setup

Dataset. For text-to-sound generation, we use a diverse com-
bination of datasets to train our teacher model, while the Audio-
Caps dataset [19] is specifically utilized for training our AudioLCM
model. For text-to-music generation, we exclusively employ the
LP-Musicaps dataset for both teacher and AudioLCM training en-
deavors. More details about dataset can be found in Appendix A.
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(a) Preliminary Analyses on Multi-Step ODE Solver. (b) Preliminary Analyses on Classifier-free Guidance.

Figure 2: In subfigure (a), we assess the correlation between the audio quality and the estimate interval 𝑘 of ODE solver across
the test set. In subfigure (b), we delves into the examination of how different scales of classifier-free guidance contribute to the
overall performance of FAD.

Model configurations. Our teacher model is originally trained
with 𝜖-prediction, we utilize its pre-trained VAE, a continuous 1D-
convolution-based network. This VAE is used to compress the mel-
spectrogram into a 20-channel latent representationwith a temporal
axis downsampling rate of 2. Training AudioLCM involves 15,000
iterations on an NVIDIA 4090Ti GPU, with a batch size of 8 per
GPU. We use the AdamW optimizer with a learning rate of 9.6e-5
and an exponential moving average (EMA) rate of 𝜇 = 0.95. For the
ODE solver, we use the DDIM solver with a multi-step parameter
𝑘 = 20. The control scale range is defined as [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥 ] = [4, 12].
Our choice for the vocoder is BigVGAN [22], which is known for its
universal applicability to different scenarios. We train the vocoder
on the AudioSet dataset to ensure robust performance. More details
on the model configuration can be found in Appendix B.

EvaluationMetrics. Ourmodels conduct a comprehensive eval-
uation [5] using both objective and subjective metrics to measure
audio quality, text-audio alignment fidelity, and inference speed.
Objective assessment includes Kullback-Leibler (KL) divergence,
Frechet audio distance (FAD), and CLAP score to quantify audio
quality. The Real-time Factor (RTF) is also introduced to measure
the system’s efficiency in generating audio for real-time applica-
tions. RTF is the ratio between the total time taken by the audio
system to synthesize an audio sample and the duration of the audio.
In terms of subjective evaluation, we conduct crowd-sourced human
assessments employing the Mean Opinion Score (MOS) to evaluate
both audio quality (MOS-Q) and text-audio alignment faithfulness
(MOS-F). Detailed information regarding the evaluation procedure
can be accessed in Appendix C.2.

4.2 Preliminary Analyses
We conduct a comparative analysis of the ODE Solver with varying
estimate step 𝑘 and explore the impact of the guidance scale 𝜔

in LCM. To assess the Multi-step ODE schedule, we evaluate the
convergence speed and identify the optimal performance among
different 𝑘 values using training iterations and Frechet audio dis-
tance (FAD). In analyzing classifier-free guidance, we examine the
sample quality across different inference steps using the guidance
scale and FAD.

Multi-step ODE solver. The results are shown in Figure 2(a).
Several observations emerge from these results: 1) Compared to
the one-step ODE solver (k=1), the multi-step ODE solver exhibits
significantly faster convergence, underscoring the effectiveness
of using multiple steps in accelerating convergence speed. 2) In-
creasing the k value from 1 to 20 results in faster convergence and
improved performance. However, using a larger step size, such as k
= 50, may lead to suboptimal results. Therefore, we choose k = 20
to strike a balance between sample quality and convergence speed.

Classifier-free Guidance. The results are summarized and pre-
sented in Figure 2(b). Here are our main observations: 1) As ex-
pected, larger inference steps show superior performance compared
to smaller steps of the same size, highlighting the effectiveness
of multi-step sampling in improving sample quality. 2) The per-
formance of the Classifier-Free Guidance (CFG) model peaks at
a certain value. Specifically, increasing the scale from 1 to 5 sig-
nificantly enhances audio quality. However, increasing the scale
further to 9 results in a gradual decline in performance. Therefore,
we opt for a scale of 5 as a guideline. 3) The performance disparities
among inference steps of 2, 4, and 8 are minimal, indicating the
effectiveness of LCM in the 2-8 step range. However, a significant
performance gap is evident in one-step inference, suggesting areas
for potential improvement.

4.3 Performance on Text-to-Audio Generation
We conduct a comparative analysis of the quality of generated audio
samples and inference latency across various systems, including GT
(i.e., ground-truth audio), AudioGen, Make-An-Audio, AudioLDM-
L, TANGO, Make-An-Audio 2, ConsistencyTTA, and AudioLDM 2,
utilizing the published models as per the respective paper and the
same inference steps of 100 for a fair comparison. The evaluations
are conducted using the AudioCaps test set and then calculate
the objective and subjective metrics. The results are compiled and
presented in Table 1. From these findings, we draw the following
conclusion:

Audio Quality In terms of audio quality, our proposed system,
AudioLCM, demonstrates outstanding performance, particularly
when configured with 4 inference steps. With a Fréchet Audio Dis-
tance (FAD) of 1.56 and Kullback-Leibler Divergence (KL) of 1.30,
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Model NFE Objective Metrics Subjective Metrics
FAD (↓) KL (↓) CLAP (↑) RTF (↓) MOS-Q(↑) MOS-F(↑)

GT / / / 0.670 / 86.65 84.23

AudioGen-Large / 1.74 1.43 0.601 1.890 / /
Make-An-Audio 100 2.45 1.59 0.616 0.280 70.32 66.24
AudioLDM 200 4.40 2.01 0.610 1.543 64.21 60.96
Tango 200 1.87 1.37 0.650 1.821 74.35 72.86
AudioLDM 2 100 1.90 1.48 0.622 1.250 / /
AudioLDM 2-Large 100 1.75 1.33 0.652 2.070 75.86 73.75
Make-An-Audio 2 100 1.80 1.32 0.645 0.170 75.31 73.44
ConsistencyTTA 2 2.65 18.76 0.618 0.004 73.26 70.22

Teacher 100 1.56 1.30 0.655 0.190 78.67 76.19
AudioLCM 2 1.67 1.37 0.617 0.003 77.39 75.02

Table 1: The audio quality and sampling speed comparisons. The evaluation is conducted on a server with 1 NVIDIA 4090Ti
GPU and batch size 1. NFE (number of function evaluations) measures the computational cost, which refers to the total number
of times the denoiser function is evaluated during the generation process.

AudioLCM demonstrates minimal spectral and distributional dis-
crepancies between the generated audio and ground truth. Even
with only 2 inference steps, AudioLCMmaintains competitive audio
quality, showcasing its efficacy in generating high-fidelity audio
samples. Although the CLAP score of 0.617 for AudioLCM is slightly
lower than the state-of-the-art model’s score of 0.652, it still indi-
cates excellent text-audio alignments. Human evaluation results
further confirm the superiority of AudioLCM, with MOS-Q and
MOS-F scores of 77.39 and 75.02, respectively, surpassing Audi-
oLDM 2-Large in subjective assessment. These findings suggest
a preference among evaluators for the naturalness and faithful-
ness of audio synthesized by our model over baseline approaches.
Sampling Speed AudioLCM boasts an efficient sampling process,

Figure 3: We evaluate the relationship between the inference
latency and sample quality measured by FAD.

requiring only 2 iterations to synthesize high-fidelity audio sam-
ples, which translates to a remarkable speed of 333x times faster
than real-time on a single NVIDIA 4090Ti GPU. This significant re-
duction in inference time positions AudioLCM as a leading solution,
substantially outperforming dominant diffusion-based models.

In order to deepen our understanding of the correlation between
inference latency and audio quality, we visualize the performance
metrics, particularly focusing on FAD, concerning Make-An-Audio
2, TANGO, and AudioLDM 2. Our analysis, depicted in Figure 3,

reveals several key insights: 1) Diffusion-based models exhibit con-
siderable performance degradation as inference time is shortened
(i.e., the number of sampling steps is halved). In contrast, AudioLCM
demonstrates minimal degradation until the RTF drops to 0.0015
(i.e., one-step inference), highlighting its robustness in achieving
high-quality audio generation even with few inference steps. 2)
Among the compared models, Make-An-Audio 2 demonstrates su-
perior performance under low latency conditions, underscoring its
suitability as a teacher model for knowledge distillation purposes.
The distilled student models can inherit the powerful capabilities of
Make-An-Audio 2, thereby enhancing overall model performance. 3)
After approximately 10 steps, the trade-off between sample quality
and inference speed inherent in consistency models becomes less
apparent. This phenomenon arises due to the accumulation of dis-
crete errors throughout the multi-step sampling process, leading to
deviations of the generated audios from the target distribution.We
defer the resolution of this challenge to future investigations and
refinements.

Zero-shot Evaluation To further investigate the generalization
performance of the models, we additionally test the performance of
the models on the Clotho-evaluation dataset in the zero-shot setting.
As illustrated in Table 2, AudioLCM with 4 sampling steps has
significantly better results than AudioLDM 2-Large and Make-An-
Audio 2 in IS and FAD, attributing to the scalability in terms of data
usage. Furthermore, our 2 steps model continues to demonstrate
competitive performance with baselines.

Model NFE FAD↓ KL↓ IS↑ RTF ↓

TANGO 200 3.61 2.59 6.77 0.93
AudioLDM 2-Large 100 3.40 2.55 7.51 2.12
Make-An-Audio 2 100 2.23 2.52 8.5 0.18

Teacher 100 2.19 2.49 10.14 0.20
AudioLCM 2 2.34 2.58 9.56 0.0006

Table 2: Zero-shot generation results.We comparewithMake-
An-Audio 2, AudioLDM 2-Large, and Tango on Clotho-eval
datasets. Inception score(IS) is used to evaluate both the qual-
ity and diversity of generated audio.



MM’24, October 28 - November 1, 2024, Melbourne, Australia. Huadai Liu et al.

Model NFE Objective Metrics Subjective Metrics
FAD (↓) KL (↓) CLAP (↑) RTF (↓) MOS-Q(↑) MOS-F(↑)

GroundTruth / / / 0.46 / 88.42 90.34
Riffusion / 13.31 2.10 0.19 0.40 76.11 77.35
Mousai / 7.50 / / / / /
Melody / 5.41 / / / / /
MusicLM / 4.00 / / / / /
MusicGen / 4.50 1.41 0.42 1.28 80.74 83.70
MusicLDM 200 5.20 1.47 0.40 1.40 80.51 82.35
AudioLDM 2 200 3.81 1.22 0.43 2.20 82.24 84.35

Teacher 100 3.72 1.20 0.42 0.180 83.76 86.12
AudioLCM 2 3.92 1.24 0.40 0.003 82.29 84.44

Table 3: The comparison between AudioLCM and baseline models on the MusicCaps Evaluation set. We borrow the results of
Mousai, Melody, MusicLM from the MusicGen [4].

4.4 Text-to-Music Generation
In this section, we conduct a comparative analysis of the audio sam-
ples generated by AudioLCM against a range of established Music
Generation systems. These include: 1) GT, the ground-truth audio;
2) MusicGen [4]; 3) MusicLM [1]; 4) Mousai [37]; 5) Riffusion [6]; 6)
MusicLDM [3]; 7) AudioLDM 2 [25]. The results are presented in Ta-
ble 3, and we have the following observations: 1) In terms of audio
quality, our teacher model consistently outperforms all diffusion-
based methods and language models across a spectrum of both
objective and subjective metrics. Furthermore, AudioLCM demon-
strates competitive performance even when compared to diffusion
models that require a significantly greater number of iterations,
while also surpassing auto-regressive models. This underscores
AudioLCM’s effectiveness in producing high-quality music sam-
ples, establishing it as a highly capable model in the realm of audio
synthesis. 2) In terms of sampling speed, AudioLCM stands out
for its exceptional efficiency. It requires a mere 2 iterations to pro-
duce high-fidelity music samples, illustrating its potent capability
to strike an optimal balance between the quality of the samples and
the time required for inference. This efficiency is not just incremen-
tal but rather monumental when compared to the inference times
of its contemporaries.

5 RELATEDWORKS
5.1 Text-to-audio Generation
Text-to-Audio Generation is an emerging task that has witnessed
notable advancements in recent years. For instance, Diffsound [49]
leverages a pre-trained VQ-VAE [46] on mel-spectrograms to en-
code audio into discrete codes, subsequently utilized by a diffusion
model for audio synthesis. AudioGen [20] frames text-to-audio
generation as a conditional language modeling task, while Make-
An-Audio [13], AudioLDM 2 [23], and TANGO [8] are all founded
on the Latent Diffusion Model (LDM), which significantly enhances
sample quality. However, a notable drawback of diffusion models
lies in their iterative sampling process, leading to slow inference
and restricting real-world applications. Unlike the diffusion model
mentioned above, AudioLCM introduces a novel consistency-based
models to support few-step and even one-step inference without
sacrificing sample quality.

5.2 Consistency Models (CMs)
Consistency Models (CMs) [40] have emerged as a promising ap-
proach for efficient sampling without compromising quality. They
leverage consistency mapping to enable fast one-step generation,
as demonstrated in various tasks such as image generation [28],
video generation [48], and audio synthesis [2, 51]. For example, Luo
et al. [28] propose the latent consistency models demonstrates the
potential of CMs to generate higher-resolution images. And Bai
et al. [2] apply the consistency model into text-to-sound generation.
However, their potential in high-quality text-to-audio generation
has not been fully explored. In this study, we incorporate CMs into
the text-to-sound and text-to-music generation tasks to uncover
their capabilities.

6 CONCLUSION
Latent Diffusion Models (LDMs) have made significant strides in
generative tasks but are hindered by slow generation due to their
iterative sampling process. In this work, we introduced AudioLCM,
a latent consistency model tailored for efficient and high-quality
text-to-audio generation. Unlike prior approaches that addressed
noise removal through iterative processes, AudioLCM integrated
Consistency Models into the generation process, facilitating rapid
inference through a mapping from any point at any time step to
the trajectory’s initial point. To overcome the convergence issue
inherent in LDMs with reduced sample iterations, we proposed
the Guided Latent Consistency Distillation with a multi-step ODE,
which shortened the time schedule from thousands to dozens of
steps while maintaining sample quality. Furthermore, we incorpo-
rated the methodologies of LLaMA and Diffusion transformer to
enhance the performance and support variable-length generation.
This architecture supported stable and efficient training, ensur-
ing robust performance in text-to-audio synthesis. Experimental
results on text-to-audio generation and text-to-speech synthesis
tasks demonstrated that AudioLCM required only 2 iterations to
synthesize high-fidelity audios, while maintaining sample quality
competitive with state-of-the-art models using hundreds of steps.
AudioLCM enabled a sampling speed of 333x faster than real-time
on a single NVIDIA 4090Ti GPU, making generative models practi-
cally applicable to text-to-audio generation deployment. Our exten-
sive preliminary analysis showed that each design in AudioLCM
was effective.
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