
Optimized Text Embedding Models and Benchmarks
for Amharic Passage Retrieval

Anonymous ACL submission

Abstract

Recent work has introduced several fam-001
ilies of neural retrieval approaches that002
use transformer-based pre-trained language003
models to improve multilingual and cross-004
lingual retrieval. Their effectiveness for low-005
resource, morphologically rich languages such006
as Amharic remains underexplored and often007
limited due to data scarcity and suboptimal to-008
kenization. We address this gap by introducing009
Amharic-specific dense retrieval models based010
on pre-trained Amharic BERT and RoBERTa011
architectures. Our proposed RoBERTa-Base-012
Amharic-Embed (with a modest 110M pa-013
rameters) outperforms the strongest multilin-014
gual model, Arctic Embed 2.0 (568M parame-015
ters), with a 5.01% relative improvement in016
MRR@10 and a 3.34% gain in Recall@10.017
Even more compact variants that we introduce,018
such as RoBERTa-Medium-Amharic-Embed019
(with just 42M parameters), remain competi-020
tive despite being 14x smaller. We benchmark021
our proposed models against sparse and dense022
retrieval approaches to systematically evalu-023
ate retrieval performance in Amharic. We re-024
veal fundamental challenges in low-resource025
settings, underscoring the need for language-026
specific adaptation. Our work demonstrates027
the importance of optimizing retrieval models028
for morphologically complex languages and029
establishes a strong foundation for future re-030
search. To facilitate further advancements in031
low-resource information retrieval, we release032
our dataset, codebase, and trained models at033
our public repository.034

1 Introduction035

As a foundational task in natural language pro-036

cessing (NLP), document retrieval plays a cru-037

cial role in applications such as open-domain038

question answering (Chen et al., 2017) and fact-039

checking (Thorne et al., 2018). Traditional re-040

trieval systems use lexical similarity techniques041

like TF-IDF and BM25 (Robertson and Walker,042

1997; Robertson and Zaragoza, 2009), efficiently 043

match queries to documents using lexical similarity 044

but struggle with vocabulary mismatch and seman- 045

tic ambiguity, limiting their generalizability to syn- 046

onyms and paraphrases. These challenges are par- 047

ticularly pronounced in morphologically rich lan- 048

guages, where high inflectional variability and com- 049

plex morphology complicate exact-match retrieval. 050

Suboptimal tokenization in multilingual models 051

further exacerbates these issues, leading to over- 052

segmentation and inefficient subword representa- 053

tions (Rust et al., 2021). As a result, word-based 054

indexing methods fail to capture non-concatenative 055

morphology, affixation, and orthographic varia- 056

tions, degrading retrieval effectiveness. To address 057

these limitations, retrieval models must move be- 058

yond lexical overlap and incorporate robust seman- 059

tic representations. 060

Neural retrieval models. Neural retrieval mod- 061

els have significantly advanced document rank- 062

ing by using transformer-based pre-trained lan- 063

guage models, achieving state-of-the-art perfor- 064

mance in question-answering benchmarks such 065

as MS MARCO (Campos et al., 2016) and Nat- 066

ural Questions (Kwiatkowski et al., 2019). These 067

models fall into three main categories (Yates et al., 068

2021): (i) learned sparse retrieval (e.g., SPLADE, 069

Formal et al., 2021a), which enhances queries 070

and documents with context-aware term expan- 071

sions; (ii) dense retrieval (e.g., DPR, Karpukhin 072

et al., 2020), which maps text into dense vector 073

spaces for efficient retrieval, employing a dual-en- 074

coder architecture that encodes queries and docu- 075

ments separately, a design that limits their effec- 076

tiveness for fine-grained relevance modeling; and 077

(iii) cross-encoders (e.g., Nogueira and Cho, 2019; 078

Nogueira et al., 2019), which address this limitation 079

by jointly encoding query-document pairs, captur- 080

ing richer contextual interactions, with a computa- 081

tional overhead that restricts their use to re-ranking 082

candidate documents (Humeau et al., 2020). As an 083
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alternative, late-interaction models (e.g., ColBERT,084

Khattab and Zaharia, 2020), introduce token-level085

interactions and strike a balance between the effi-086

ciency of dense retrieval and the expressiveness of087

cross-encoders.088

A newer paradigm, generative information re-089

trieval (Tay et al., 2022; Metzler et al., 2021) uses090

pre-trained encoder-decoder models to consolidate091

indexing, retrieval, and ranking into a single gener-092

ative framework. While promising, it lags behind093

dense retrieval in handling large-scale datasets and094

dynamic updates, requiring further study of its scal-095

ability and effectiveness (Pradeep et al., 2023).096

Research gap. Despite these advances, neural re-097

trieval remains understudied for morphologically098

complex, low-resource languages like Amharic.099

Most retrieval models are optimized for high-100

resource languages, with prior studies focusing101

on transfer learning from these languages (Zeng102

et al., 2023). Despite advancements in multilin-103

gual embedding models (Wang et al., 2024; Yu104

et al., 2024), these approaches remain inadequate105

for morphologically rich languages due to subopti-106

mal tokenization, poor subword segmentation, and107

weak cross-lingual transfer (Üstün et al., 2019).108

Section 2 further explores the importance of ad-109

dressing this gap in information retrieval research.110

Our contribution. To fill the gap identified above,111

we focus on Amharic and introduce Amharic-112

optimized retrieval models and benchmarks, con-113

tributing in the following key areas: (i) Amharic114

text embeddings: we develop dense retrieval mod-115

els for Amharic, leveraging Amharic BERT and116

RoBERTa as base models, improving passage rank-117

ing accuracy for morphologically complex text.118

(ii) The first systematic benchmark for Amharic:119

we evaluate both sparse and dense retrieval mod-120

els on Amharic, establishing retrieval performance121

baselines. (iii) A language-specific vs. multilingual122

analysis: we demonstrate that Amharic-optimized123

models outperform general-purpose multilingual124

embeddings, validating the need for linguistic spe-125

cialization. (iv) A public benchmark dataset: we126

adapt the Amharic News dataset into an MS MAR-127

CO-style passage ranking corpus, enabling further128

reproducible research here.129

2 Motivation130

Recent studies highlight systemic shortcomings in131

low-resource language technologies, leading to re-132

trieval failures, biased outputs, and exposure to133

harmful content (Shen et al., 2024; Nigatu and 134

Raji, 2024). For example, Nigatu and Raji (2024) 135

find that Amharic-speaking YouTube users fre- 136

quently encounter policy-violating content due to 137

retrieval systems misinterpreting benign queries. 138

These errors stem from foundational limitations in 139

information retrieval (IR) systems, which are opti- 140

mized for high-resource languages like English and 141

struggle with morphologically complex languages 142

like Amharic. The consequences extend beyond 143

search engines: Sewunetie et al. (2024) demon- 144

strate that retrieval failures in machine translation 145

propagate gender bias, defaulting Amharic occu- 146

pational terms to male forms even when the con- 147

text is gender-neutral. Such errors reflect broader 148

research gaps in NLP, where systems dispropor- 149

tionately prioritize high-resource languages, exac- 150

erbating inequities for underrepresented linguistic 151

communities (Shen et al., 2024). 152

Amharic, Ethiopia’s official language and the 153

second most spoken Semitic language (Gezmu 154

et al., 2018), presents unique challenges for IR. 155

Its root-based templatic morphology allows a sin- 156

gle root to generate multiple derived forms. These 157

morphological variations, combined with the Ge’ez 158

script (an Abugida with 33 base characters and com- 159

plex syllable formations), make it structurally dis- 160

tinct from Indo-European and other well-resourced 161

languages, rendering conventional retrieval models 162

ineffective. Addressing these challenges requires 163

Amharic-specific embedding models tailored for 164

passage retrieval. While recent efforts (Belay et al., 165

2021; Azime et al., 2024b) have advanced Amharic 166

NLP, their primary focus is not on retrieval opti- 167

mization. Our work directly addresses this gap by 168

optimizing retrieval methods to better accommo- 169

date Amharic’s structural complexities, ultimately 170

improving access to reliable and unbiased informa- 171

tion in low-resource linguistic contexts. 172

3 Related Work 173

Retrieval systems commonly adopt a two-stage 174

pipeline to optimize efficiency and effectiveness: 175

(i) First-stage retrieval efficiently retrieves candi- 176

date documents using lightweight methods such as 177

sparse or dense retrieval. (ii) Re-ranking refines 178

the ranking with more computationally intensive 179

models, such as cross-encoders. 180

Sparse retrieval. Sparse retrieval is fundamental 181

in IR, with BM25 known for its efficiency, inter- 182

pretability, and cross-domain robustness (Robert- 183
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son and Zaragoza, 2009). It struggles with vo-184

cabulary mismatch and morphological variability,185

which are particularly problematic in morphologi-186

cally rich languages like Amharic. Learned sparse187

retrieval (LSR) methods (Formal et al., 2021b,a)188

mitigate these issues by dynamically weighting189

and expanding terms, enhancing relevance while190

maintaining interpretability (Dai and Callan, 2020).191

LSR is constrained in low-resource settings due to192

limited annotated data, unseen dialectal diversity,193

and morphological complexity (e.g., Amharic’s194

templatic morphology), which requires specialized195

subword tokenization or morphological analyzers196

that are often unavailable.197

Dense retrieval. Dense retrieval encodes queries198

and documents into a shared semantic space for ef-199

ficient approximate nearest neighbor search (John-200

son et al., 2019; Karpukhin et al., 2020; Xiong et al.,201

2021). While it mitigates lexical mismatches, its202

effectiveness in low-resource languages is limited203

by the need for large-scale labeled data. Multi-204

lingual base models such as mBERT (Pires et al.,205

2019), XLM-R (Conneau et al., 2020), and African206

language-specific models like SERENGETI (Ade-207

bara et al., 2023) and AfriBERTa (Ogueji et al.,208

2021) partially address data scarcity through cross-209

lingual pre-training. But their effectiveness in mor-210

phologically complex languages, such as Amharic,211

has not been thoroughly investigated.212

Recent advances in unsupervised contrastive213

learning, such as Contriever (Izacard et al., 2022),214

have shown strong zero-shot and multilingual re-215

trieval performance, particularly in cross-lingual216

transfer and retrieval without labeled data. But217

their effectiveness in morphologically complex lan-218

guages like Amharic remains unexplored, as exist-219

ing evaluations do not account for challenges posed220

by root-based and templatic morphologies.221

Beyond data scarcity, retrieval performance is222

further constrained by morphological complexity223

and tokenization challenges. Amharic’s templatic224

morphology often causes standard subword tok-225

enizers to over-segment words into non-morphemic226

units, leading to fragmented representations that ob-227

scure semantic relationships. Broader research on228

multilingual tokenization quality (Rust et al., 2021)229

suggests that excessive segmentation in morpho-230

logically rich languages introduces noise into sub-231

word representations, thus degrading performance232

in downstream tasks.233

Despite recent advances in multilingual dense re-234

trieval, state-of-the-art models,1 such as Arctic Em- 235

bed 2.0 (Yu et al., 2024) and Multilingual E5 Text 236

Embeddings (Wang et al., 2024), continue to strug- 237

gle with highly inflected languages. These mod- 238

els often produce suboptimal tokenization, frag- 239

mented subword representations, and inefficient 240

embeddings, ultimately limiting their retrieval ef- 241

fectiveness. Our empirical findings in Section 6.3 242

illustrate the extent to which tokenization errors 243

impact retrieval performance in Amharic. 244

Bridging the gap in Amharic IR. Retrieval sys- 245

tems are primarily optimized for high-resource lan- 246

guages, exacerbating performance disparities in 247

low-resource settings like Amharic (Nigatu and 248

Raji, 2024). Prior research in Amharic IR has ex- 249

plored pre-trained embeddings (Word2Vec, fast- 250

Text, AmRoBERTa, Belay et al., 2021), morpholog- 251

ical tools (e.g., annotation frameworks, WordNet- 252

based query expansion, Yeshambel et al., 2021), 253

and cross-lingual transfer via multilingual mod- 254

els (AfriBERTa, Azime et al., 2024a). Systematic 255

evaluations of both sparse and dense retrieval ar- 256

chitectures remain absent, making principled com- 257

parisons difficult and leaving the effectiveness of 258

different retrieval paradigms in Amharic IR largely 259

unexamined. 260

Yeshambel et al. (2020) introduce 2AIRTC, 261

a TREC-style test collection for standardized 262

Amharic IR evaluation, but it lacks baseline re- 263

trieval benchmarks and complete relevance judg- 264

ments, making recall-based assessments unreliable. 265

To ensure robust evaluation, we conduct our main 266

experiments on the Amharic News Text Classifica- 267

tion Dataset (AMNEWS) (Azime and Mohammed, 268

2021), formatted in the MSMARCO passage re- 269

trieval style (see Section 5). A detailed analysis 270

of 2AIRTC, its limitations, and our evaluations on 271

this dataset is presented in Appendix A. 272

Our work addresses these gaps by introducing 273

Amharic-specific optimizations (Section 4.2), in- 274

cluding the use of stronger and more compact 275

encoder base models to train embedding models 276

that better accommodate Amharic’s morpholog- 277

ical complexity, along with contrastive training. 278

Additionally, we train a late-interaction Amharic- 279

specific ColBERT model and benchmark Amharic 280

passage retrieval across both sparse and dense archi- 281

tectures. This enables rigorous and well-founded 282

comparisons across retrieval paradigms. 283

1https://huggingface.co/spaces/mteb/
leaderboard
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4 Methodology284

In this section, we outline our approach to Amharic285

dense retrieval. We first review dense retrieval286

models and ColBERT, which underpin our retrieval287

framework. We then introduce our Amharic embed-288

ding models, detailing their architecture, training289

setup, and optimization strategy.290

4.1 Preliminaries291

Dense retrieval models292

Dense retrieval maps queries and passages into293

a shared vector space using transformer-based294

encoders (Karpukhin et al., 2020). Given a295

query q and a set of candidate passages P =296

{p1, p2, ..., pN}, a dense retrieval model maps each297

input to a fixed-length vector representation using298

a transformer-based encoder Enc(·):299

qenc = EncQ(q), penc = EncP (p) (1)300

The relevance of a passage p to a query q is then301

determined using cosine similarity or dot prod-302

uct, computed as f(q, p) = sim(qenc, penc), where303

sim(·, ·) denotes similarity in the shared embedding304

space.305

ColBERT: Late interaction retrieval306

ColBERT (Khattab and Zaharia, 2020) improves307

query-document interactions by preserving token-308

level embeddings:309

qenc = [h1q , h
2
q , . . . , h

m
q ], penc = [h1p, h

2
p, . . . , h

n
p ] (2)310

where hiq and hjp represent contextualized token311

embeddings from the query and passage encoders,312

respectively. Relevance is computed via maximum313

similarity pooling across token embeddings:314

f(q, p) =
m∑
i=1

max
j∈{1,...,n}

sim(hiq, h
j
p) (3)315

This enables fine-grained matching while maintain-316

ing efficiency.317

4.2 Amharic Text Embedding Models318

We design three transformer-based dense retrieval319

models for Amharic, each with a distinct parameter320

size and a common context length of 512 to opti-321

mize the trade-off between retrieval effectiveness322

and computational efficiency.323

(1) RoBERTa-Base-AM-Embed (110M param- 324

eters): A 12-layer transformer with a hid- 325

den dimension of 768, built upon the XLM- 326

RoBERTa architecture (Conneau et al., 2020). 327

This model leverages deep contextualized rep- 328

resentations while remaining compatible with 329

standard retrieval pipelines. 330

(2) RoBERTa-Medium-AM-Embed (42M pa- 331

rameters): A more compact variant employing 332

an 8-layer transformer with a hidden dimen- 333

sion of 512, optimized for efficiency without 334

significant performance degradation. 335

(3) BERT-Medium-AM-Embed (40M parame- 336

ters): The most compact model among our 337

proposed models, based on the BERT archi- 338

tecture (Devlin et al., 2019), featuring 8 layers 339

with a hidden dimension of 512. This configu- 340

ration is designed for latency-sensitive retrieval 341

scenarios. 342

Embedding vector generation: For passage rep- 343

resentation, we employ the following transforma- 344

tions to the last hidden states of the pre-trained base 345

models: (i) Mean Pooling: Aggregates the last hid- 346

den state into a fixed-length vector representation: 347

h = 1
T

∑T
t=1 ht where ht represents token embed- 348

dings, and T is the sequence length. (ii) L2 Nor- 349

malization: Constrains embeddings to unit sphere 350

for cosine similarity computation: hnorm = h
||h||2 . 351

Training setup. All models are initialized from 352

Amharic pre-trained checkpoints (Amharic BERT 353

and RoBERTa) and fine-tuned using contrastive 354

learning with in-batch negatives on a corpus of 355

30K Amharic query-passage pairs. Training is con- 356

ducted for four epochs using the AdamW opti- 357

mizer (lr=5e-5) and a cosine learning rate decay 358

schedule. Model performance is evaluated using 359

Mean Reciprocal Rank (MRR), Normalized Dis- 360

counted Cumulative Gain (NDCG), and Recall@K 361

on Amharic passages. For further implementation 362

details, refer to Section 5.2. 363

Multiple negatives ranking loss (MNRL). Fol- 364

lowing (Reimers and Gurevych, 2019), we opti- 365

mize model parameters using in-batch negative 366

sampling. Given a q, positive passage p+ and hard 367

negatives N , the loss function L is formulated as: 368

− log exp(f(q,p+))
exp(f(q,p+))+

∑
p−∈N exp(f(q,p−))

, (4) 369

This objective maximizes the relative margin be- 370

tween positive and negative passages in the embed- 371

ding space. 372
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5 Experimental Setup373

5.1 Training Data374

For our experiments, we utilize the Amharic News375

Text Classification Dataset (AMNEWS) (Azime376

and Mohammed, 2021), which originally com-377

prises 50,706 Amharic news articles categorized378

into six domains: Local News, Sport, Politics, Inter-379

national News, Business, and Entertainment. The380

article bodies serve as retrieval passages, while381

headlines function as queries, simulating real-382

world search scenarios. Since the dataset lacks383

explicit relevance judgments, we adopt a weak su-384

pervision approach, assuming each article to be385

relevant to its corresponding headline. To ensure386

data quality, we preprocess the dataset by remov-387

ing duplicates using MD5 hashing. To align with388

standard IR benchmarks, we reformat it into an389

MS MARCO-style passage retrieval dataset. Af-390

ter preprocessing, this results in a dataset of 30K391

query-passage pairs, which we then split into train-392

ing and test sets, reserving 10% for evaluation. The393

split is stratified by category to ensure balanced394

representation across all six news domains.395

5.2 Implementation Details396

Amharic embedding models. The embedding397

models were trained on a single A100 40GB GPU398

for 4 epochs using the Sentence Transformer399

Trainer from the Sentence Transformers Python400

library.2 We used a learning rate of 5e-5, a batch401

size of 128, a cosine learning rate scheduler, and402

the multiple negatives ranking loss for optimiza-403

tion.404

Sparse retrieval baselines. For BM25-based re-405

trieval, we utilize LlamaIndex’s BM25Retriever,3406

Dense retrieval baseline. We implemented Col-407

BERT using its official repository,4 adapting it408

for Amharic with RoBERTa-Medium-Amharic, an409

Amharic encoder-based model. The model was410

trained with a learning rate of 3e-5 and a batch411

size of 32, using five negatives sampled from the412

top 100 BM25-ranked documents.413

Evaluation metrics. We evaluate retrieval effec-414

tiveness using established common metrics in IR,415

that capture ranking quality and relevance, includ-416

ing (i) MRR@k, which measures ranking effective-417

2https://pypi.org/project/
sentence-transformers/

3https://docs.llamaindex.ai/en/stable/
examples/retrievers/bm25_retriever/

4https://github.com/stanford-futuredata/
ColBERT

ness by averaging reciprocal ranks. (ii) NDCG@k, 418

which captures ranking quality with a logarithmic 419

discount factor. (iii) Recall@K, which measures 420

how often the relevant passage appears in the top 421

retrieved results. 422

6 Experimental Evaluation and Results 423

This section presents an empirical evaluation to 424

address the following research questions: 425

RQ1 In Amharic passage retrieval, how effectively 426

can language-specific embeddings enhance 427

ranking accuracy compared to general multi- 428

lingual models? (Section 6.1) 429

RQ2 How do different retrieval paradigms com- 430

pare in effectiveness, establishing a bench- 431

mark for Amharic passage retrieval? (Sec- 432

tion 6.2) 433

RQ3 How does tokenization quality impact re- 434

trieval effectiveness in Amharic dense re- 435

trieval models, particularly considering 436

subword segmentation challenges? (Sec- 437

tion 6.3)? 438

RQ4 To what extent does the base model’s size 439

influence the ranking performance of neural 440

retrieval models in low-resource Amharic 441

settings? (Section 6.4) 442

6.1 Multilingual vs. Amharic-Optimized 443

Embedding Models 444

This section examines how effectively language- 445

specific embedding models enhance ranking ac- 446

curacy compared to general multilingual models 447

in Amharic passage retrieval. To address this, 448

Amharic-optimized models are evaluated against 449

state-of-the-art multilingual embeddings, using 450

standard retrieval metrics. As shown in Table 1, 451

Amharic-specific models consistently outperform 452

multilingual models across all metrics. The best- 453

performing multilingual model, Snowflake-Arctic- 454

Embed (568M parameters), achieves an MRR@10 455

of 0.719, while RoBERTa-Base-Amharic-Embed 456

(110M parameters) surpasses it with an MRR@10 457

of 0.755, a 5.0% relative improvement. While 458

larger multilingual models may alleviate some tok- 459

enization inefficiencies by learning richer subword 460

representations, this does not necessarily translate 461

to outperforming well-optimized language-specific 462

models. Similarly, in Recall@10, the highest- 463

scoring multilingual model reaches 0.868, whereas 464

RoBERTa-Base-Amharic-Embed achieves 0.897, 465

marking a 3.3% gain in top-ranked retrieval ac- 466
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curacy. Beyond accuracy improvements, parame-467

ter efficiency provides further insight into the ad-468

vantage of language-specific models. RoBERTa-469

Medium-Amharic-Embed (42M parameters) re-470

mains competitive, achieving 0.707 MRR@10 and471

0.861 Recall@10, despite being 14x smaller than472

Snowflake-Arctic-Embed. This suggests that scal-473

ing multilingual models does not necessarily trans-474

late to better performance in low-resource settings.475

RoBERTa-Base-Amharic-Embed, at 110M param-476

eters, outperforms all multilingual baselines while477

being 5x smaller than the strongest competitor, re-478

inforcing the importance of language-specific fine-479

tuning over brute-force scaling. These findings480

highlight the inefficiency of general multilingual481

models in Amharic retrieval and the significant482

gains from adapting models specifically for the483

language. Even with fewer parameters, Amharic-484

optimized models achieve comparable or superior485

results, confirming that language-specific adapta-486

tion is both effective and computationally efficient.487

6.2 Sparse vs. Dense Retrieval Performance488

This section evaluates how term-based and dense489

retrieval models compare in effectiveness, estab-490

lishing a benchmark for Amharic passage retrieval.491

As shown in Table 2, BM25 achieves competitive492

performance (0.657 MRR@10, 0.774 Recall@10),493

confirming its value as a baseline. However, dense494

retrieval methods demonstrate substantial improve-495

ments, particularly in ranking effectiveness.496

Among the dense retrieval models, the ColBERT-497

AM model (which uses RoBERTa-Medium-498

Amharic as its backbone) enhances retrieval quality,499

achieving 0.754 MRR@10 and 0.858 Recall@10,500

effectively outperforming BM25 by leveraging501

late interaction mechanisms. The RoBERTa-Base-502

Amharic-embed model achieves the best perfor-503

mance, reaching 0.755 MRR@10 and 0.897 Re-504

call@10, surpassing both BM25 and ColBERT.505

The advantage is even more pronounced in Re-506

call@100, where RoBERTa achieves 0.971 an507

11.5% improvement over BM25 demonstrating508

its ability to retrieve relevant documents in large509

candidate pools. While BM25 remains competi-510

tive, dense retrieval models provide better ranking511

accuracy, particularly in retrieving the most rele-512

vant documents at top positions. The gains from513

RoBERTa-Base-Amharic-embed suggest that bi-514

encoder models, when trained on Amharic-specific515

data, can outperform both term-based and late in-516

teraction retrieval methods. These findings empha-517

size the value of language-specific pretraining, as 518

both dense models leverage Amharic-optimized 519

architectures, with RoBERTa’s bi-encoder design 520

offering the best balance of precision and recall. 521

6.3 Tokenization Quality and Retrieval 522

Performance 523

This section examines the impact of tokenization 524

quality on retrieval performance in Amharic dense 525

retrieval models, focusing on subword fertility, the 526

average number of tokens per word (Pietra et al., 527

1997). Figure 1 compares subword fertility across 528

models, highlighting its effect on retrieval accuracy. 529

This analysis is conducted using a subset of 10k 530

articles from the Amharic news dataset. 531

Higher subword fertility increases computational 532

costs and degrades retrieval accuracy due to ex- 533

cessive segmentation disrupting word represen- 534

tations (Ali et al., 2024). Table 1 reflects this: 535

gte-modernbert-base, with the highest fertility 536

(13.80), exhibits the weakest retrieval performance 537

(MRR@10 = 0.019). This supports the hypothesis 538

that over-segmentation undermines semantic coher- 539

ence, aligning with prior findings (Alajrami et al., 540

2023). In contrast, Amharic-optimized models, 541

such as RoBERTa-Base-Amharic-Embed, achieve 542

lower fertility (1.46) and superior retrieval results 543

(MRR@10 = 0.755). Similar patterns emerge 544

across other Amharic-specific models (RoBERTa- 545

Medium-Amharic-Embed, MRR@10 = 0.707; 546

BERT-Medium-Amharic-Embed, MRR@10 = 547

0.657), reinforcing the benefits of Amharic-specific 548

optimizations in capturing the language’s morpho- 549

logical complexity for improved retrieval perfor- 550

mance. 551

Among multilingual models, snowflake-arctic- 552

embed-l-v2.0 demonstrates the highest retrieval 553

performance (MRR@10 = 0.719) despite hav- 554

ing the same subword fertility (2.35), as 555

gte-multilingual-base and multilingual-e5-large- 556

instruct. This suggests that while larger model 557

size (e.g., 568M parameters in Snowflake-Arctic- 558

Embed) can help mitigate some inefficiencies in 559

multilingual tokenization strategies, it does not 560

fully compensate for the advantages of language- 561

specific adaptation, as evidenced by the superior 562

performance of Amharic-optimized models. In con- 563

trast, gte-modernbert-base, which exhibits signifi- 564

cantly higher fertility, performs poorly, highlight- 565

ing the negative impact of excessive segmentation 566

on retrieval. Similarly, gte-multilingual-base and 567

multilingual-e5-large-instruct, both with moderate 568
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Recall

Model Params MRR@10 NDCG@10 @10 @50 @100
M

ul
til

in
gu

al
m

od
el

s gte-modernbert-base 149M 0.019 0.022 0.030 0.054 0.065
gte-multilingual-base 305M 0.649 0.684 0.794 0.876 0.904
multilingual-e5-large-instruct 560M 0.713 0.747 0.853 0.924 0.946
snowflake-arctic-embed-l-v2.0 568M 0.719 0.755 0.868 0.941 0.957

O
ur

s BERT-Medium-Amharic-embed 40M 0.657 0.696 0.817 0.916 0.945
RoBERTa-Medium-Amharic-embed 42M 0.707 0.744 0.861 0.941 0.963
RoBERTa-Base-Amharic-embed 110M 0.755† 0.790† 0.897† 0.957† 0.971†

Table 1: Performance comparison on the Amharic News dataset between Amharic-optimized and multilingual
dense retrieval models, all based on a bi-encoder architecture. The models snowflake-arctic-embed-l-v2.0 and
multilingual-e5-large-instruct (Hugging Face model names) originate from Arctic Embed 2.0 (Yu et al., 2024) and
Multilingual E5 Text Embeddings (Wang et al., 2024), respectively. The best-performing results are highlighted in
bold. Statistically significant improvements (p < 0.05) over the strongest baseline are marked with †, determined
using a paired t-test.

Recall

Type Model MRR@10 NDCG@10 @10 @50 @100

Sparse retrieval BM25-AM 0.657 0.682 0.774 0.847 0.871
Dense retrieval ColBERT-AM 0.754 0.777 0.858 0.917 0.931
Dense retrieval RoBERTa-Base-Amharic-embed 0.755 0.790† 0.897† 0.957† 0.971†

Table 2: Performance of retrieval models on the Amharic News dataset. ColBERT-AM uses RoBERTa-Medium-
Amharic as its backbone model. The best results are highlighted in bold, and statistically significant improvements
(p < 0.05) over the strongest baseline are marked with †, determined using a paired t-test.

fertility (2.35), achieve better retrieval performance569

than gte-modernbert-base but fall slightly behind570

snowflake-arctic-embed-l-v2.0, reinforcing the hy-571

pothesis that larger model size may mitigate some572

inefficiencies of multilingual tokenization strate-573

gies. However, they still fall short of Amharic-574

specific models, reinforcing the importance of low575

subword fertility for improving retrieval efficiency.576

Furthermore, Amharic-specific models consistently577

outperform their multilingual counterparts, validat-578

ing the importance of linguistic specialization in579

embedding design. These results align with prior580

research (Toraman et al., 2023; Ali et al., 2024),581

emphasizing the critical role of tokenization strate-582

gies, particularly for morphologically complex lan-583

guages, in enhancing computational efficiency and584

ultimately improving downstream retrieval perfor-585

mance.586

6.4 Base Model Size vs. Efficiency in Amharic587

Neural Retrieval588

Table 1 presents the influence of base model589

size on retrieval performance in low-resource590

Amharic settings. We evaluate ColBERT’s effec-591

tiveness using three Amharic base models, BERT-592
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Figure 1: Average subword fertility across embedding
models. Lower fertility preserves word integrity, while
higher fertility may lead to excessive segmentation, af-
fecting retrieval performance.

Medium-Amharic, RoBERTa-Medium-Amharic, 593

and RoBERTa-Base-Amharic on a 50k articles. 594

While the embedding model derived from 595

RoBERTa-Base-Amharic, referred to as RoBERTa- 596

Base-Amharic-Embed, achieves the highest stan- 597

dalone dense retrieval performance (shown in Ta- 598

ble 1) (MRR@10: 0.755, Recall@10: 0.897), in- 599

tegrating the base RoBERTa-Base-Amharic model 600

into ColBERT shows a different trend. As shown 601

in Table 3, RoBERTa-Medium-Amharic (42M) 602

outperforms the larger RoBERTa-Base-Amharic 603

(110M) within ColBERT (MRR@10: 0.754 vs. 604

0.736). This suggests that increased model size 605
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Base model Params MRR@10 NDCG@10

BERT-Med-Amh 40M 0.748 0.771
RoB-Med-Amh 42M 0.754 0.777
RoB-Base-Amh 110M 0.736 0.760

Table 3: Retrieval performance of ColBERT with dif-
ferent Amharic base models on the Amharic news
dataset. BERT-Med-Am refers to BERT-Medium-
Amharic-embed, RoB-Med-Am to RoBERTa-Medium-
Amharic-embed, and RoB-Base-Amh to RoBERTa-
Base-Amharic-embed. The best result in each column
is in bold.

does not always enhance performance in architec-606

tures focused on token-wise interactions. A possi-607

ble explanation is that the higher parameter count608

of RoBERTa-Base-Amharic (110M) risks overfit-609

ting on moderate-sized datasets, limiting its gener-610

alization in ColBERT’s token-level retrieval frame-611

work. Conversely, RoBERTa-Medium-Amharic612

balances specificity and generalization more ef-613

fectively, aligning better with ColBERT’s fine-614

grained token representation needs. These find-615

ings highlight a critical trade-off: larger base mod-616

els offer advantages in standalone dense retrieval617

but may not consistently improve performance in618

token-level interaction architectures like ColBERT.619

In low-resource Amharic settings, RoBERTa-620

Medium-Amharic emerges as the optimal choice,621

achieving strong performance (MRR@10: 0.754)622

with greater efficiency (42M parameters). These623

results emphasize that model scaling does not uni-624

versally improve performance; architectures rely-625

ing on fine-grained token interactions may benefit626

more from parameter-efficient base models in low-627

resource scenarios.628

6.5 Key Issues in Amharic Passage Retrieval629

Performance630

Table 1 demonstrates that Amharic-optimized mod-631

els, such as RoBERTa-Base-Amharic-Embed, out-632

perform multilingual models in Amharic passage633

retrieval. However, several persistent challenges634

highlight the inherent difficulties in processing635

Amharic text. (i) One major issue is morphologi-636

cal complexity. While optimized tokenization im-637

proves performance over multilingual models, over638

segmentation particularly in compound or inflected639

words disrupts semantic coherence, impairing re-640

trieval accuracy. This issue, common in morpho-641

logically rich languages, leads to fragmented word642

representations that hinder effective passage re-643

trieval. Although our language specific fine-tuning644

mitigates some effects, it does not fully resolve 645

tokenization inconsistencies. (ii) Another key chal- 646

lenge is the size of the pretraining corpus. The 647

Amharic-optimized models were trained on a rel- 648

atively small dataset of 300 million tokens, sig- 649

nificantly fewer than the billions of tokens avail- 650

able for high-resource languages like English. This 651

data scarcity restricts the models’ ability to gener- 652

alize, making it difficult to match the performance 653

of models trained on larger datasets. As a result, 654

RoBERTa-Base-Amharic-Embed, despite outper- 655

forming multilingual models, struggles with rare 656

or out-of-context terms, particularly in retrieval 657

tasks. (iii) The AMNEWS dataset, used in this 658

study, lacks human-labeled relevance judgments, 659

introducing noise into model evaluation. The as- 660

sumption that headlines accurately reflect article 661

relevance, while practical, does not fully capture 662

the nuances of document relevance. This limita- 663

tion affects the reliability of performance metrics. 664

Additionally, the dataset’s relatively small size re- 665

stricts the generalizability of findings to larger and 666

more diverse Amharic text collections. These chal- 667

lenges, further discussed in the Limitations sec- 668

tion (Section 8), underscore fundamental issues in 669

Amharic passage retrieval and the limitations of 670

our approach. 671

7 Conclusion 672

We have introduced Amharic-optimized dense re- 673

trieval models and established the first systematic 674

benchmark for Amharic passage retrieval. Our find- 675

ings show that language-specific embeddings out- 676

perform multilingual baselines, highlighting the ne- 677

cessity of linguistic adaptation for morphologically 678

complex languages. We also demonstrated that to- 679

kenization quality significantly impacts retrieval 680

performance, with over-segmentation degrading 681

accuracy. 682

These results expose the limitations of exist- 683

ing multilingual retrieval systems and reinforce 684

the need for models tailored to low-resource lan- 685

guages. Despite these advancements, our study is 686

constrained by reliance on a single dataset (AM- 687

NEWS) and the absence of standardized relevance 688

judgments, limiting broader generalizability. 689

Future research should enhance morphological 690

tokenization, extend retrieval to document-level 691

search and question-answering, and explore do- 692

main adaptation to further advance Amharic IR. 693
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8 Limitations694

While our study establishes strong benchmarks for695

Amharic passage retrieval, several limitations must696

be acknowledged.697

Dataset and evaluation constraints. Our exper-698

iments rely on the Amharic News Text Classifi-699

cation Dataset (AMNEWS), which lacks explicit700

human-labeled relevance judgments. The weak701

supervision approach assumes that each article is702

relevant to its corresponding headline, which may703

introduce noise in retrieval evaluation. Addition-704

ally, our dataset size is limited, restricting general-705

izability to larger or more diverse collections.706

Pre-training data limitations. The Amharic base707

models used in this study were pre-trained on 300708

million tokens, primarily sourced from webpages,709

news, and tweets. This is significantly smaller com-710

pared to the data used to train encoder models for711

high-resource languages, such as English BERT712

(3.3 billion tokens) and RoBERTa (over 30 billion713

tokens). The relatively small pre-training corpus714

may constrain the models’ ability to generalize and715

perform on par with retrieval models derived from716

base models that were trained on larger-scale cor-717

pora.718

Domain generalization. Our models are trained719

and evaluated on news articles, which may not fully720

generalize to other domains such as legal, medical,721

or conversational retrieval. Their effectiveness out-722

side the news domain remains untested and may723

require further adaptation.724

Tokenization and morphological complexity.725

Amharic is a morphologically rich language, which726

poses challenges for subword tokenization. While727

our study highlights these challenges, it does728

not propose direct mitigation strategies beyond729

language-specific fine-tuning. Tokenization incon-730

sistencies can lead to over-segmentation, poten-731

tially affecting retrieval accuracy.732

These limitations highlight key areas for future733

research, including expanding training data, incor-734

porating human-labeled relevance judgments, im-735

proving tokenization strategies, and broadening lin-736

guistic coverage.737

9 Ethical Considerations738

Our study focuses on improving Amharic passage739

retrieval. While our models demonstrate strong per-740

formance improvements, we acknowledge poten-741

tial ethical concerns related to data biases, fairness,742

and responsible deployment.743

Use of publicly available dataset. We use the 744

Amharic News Text Classification Dataset (AM- 745

NEWS) (Azime and Mohammed, 2021) and the 746

2AIRTC dataset (Yeshambel et al., 2020), both 747

publicly available and published. AMNEWS com- 748

prises news articles from various sources, while 749

2AIRTC is a TREC-like IR dataset with news arti- 750

cles, topics, and relevance judgments. As no addi- 751

tional data collection was performed, we adhere to 752

ethical guidelines by using only openly accessible 753

and documented resources. 754

Base model and pretraining data. The base mod- 755

els used to create our embedding models were pre- 756

trained on 300 million tokens from publicly avail- 757

able Amharic text, including webpages, news, and 758

tweets. As we did not perform this pre-training our- 759

selves, we rely on prior work for the base model’s 760

data collection and training details. 761

Bias and fairness considerations. Like many 762

datasets sourced from online news content, AM- 763

NEWS may contain inherent biases related to re- 764

porting styles, topic framing, and regional repre- 765

sentation. Retrieval models trained on this dataset 766

may inherit and reflect these biases, particularly for 767

politically or socially sensitive topics. While our 768

study does not explicitly mitigate bias, we recog- 769

nize this as an important challenge and encourage 770

future work on fairness-aware retrieval and debias- 771

ing strategies. 772

Algorithmic challenges in low-resource lan- 773

guages. Amharic is a low-resource, morphologi- 774

cally rich language, making it susceptible to algo- 775

rithmic disparities due to data sparsity and tokeniza- 776

tion challenges. While we highlight these issues, 777

our approach does not introduce direct mitigation 778

techniques beyond language-specific fine-tuning. 779

Future work should explore improved tokenization 780

and linguistic adaptation methods to enhance re- 781

trieval fairness. 782

Responsible deployment and transparency. We 783

follow ACL’s ethical guidelines and emphasize 784

that Amharic retrieval models should be deployed 785

with caution, especially in sensitive applications. 786

We strongly encourage transparent reporting of re- 787

trieval biases and responsible use of our models 788

and dataset. 789
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Appendix 1078

A 2AIRTC: Amharic Adhoc Information 1079

Retrieval Test Collection 1080

A notable contribution for Amharic Information 1081

Retrieval (IR) is 2AIRTC, the first Amharic Ad- 1082

hoc Information Retrieval Test Collection (Yesham- 1083

bel et al., 2020). Developed following TREC- 1084

style evaluation methodologies, 2AIRTC consists 1085

of 12,583 manually judged documents and 240 1086

search topics, serving as a structured benchmark 1087

for Amharic IR research. While this resource fa- 1088

cilitates standardized evaluation, it exhibits several 1089

critical limitations that hinder its effectiveness as a 1090

retrieval benchmark. 1091

Limitations of 2AIRTC. (i) Inconsistencies in Rel- 1092

evance Judgments: A major drawback of 2AIRTC 1093

is the inconsistency in relevance annotations, where 1094

numerous semantically relevant documents are not 1095

labeled as relevant. This misalignment between 1096

manual judgments and retrieval model outputs dis- 1097

proportionately affects embedding-based models, 1098

which frequently retrieve relevant yet unjudged 1099

documents. As a result, recall-based evaluation 1100

metrics become unreliable, potentially leading to 1101

misleading conclusions regarding retrieval effec- 1102

tiveness. (ii) Lack of Standardized Baseline Bench- 1103

marks: The absence of established baseline re- 1104

trieval benchmarks in 2AIRTC makes systematic 1105

comparison across different retrieval architectures 1106

challenging. Without well-defined baseline per- 1107

formances, assessing improvements over existing 1108

methods remains difficult. 1109

B Performance Comparison of 1110

Amharic-Optimized and Multilingual 1111

Dense Retrieval Models on 2AIRTC 1112

Despite the limitations of 2AIRTC, it remains, to 1113

the best of our knowledge, the only publicly avail- 1114

able test collection for Amharic Adhoc Informa- 1115

tion Retrieval. Therefore, we evaluate multilingual 1116

and Amharic-specific dense retrieval models on 1117

this benchmark to analyze their generalization abil- 1118

ity. Specifically, we assess how well these models 1119

retrieve relevant documents when applied to a dif- 1120

ferent dataset than they were trained on, without 1121

additional fine-tuning on 2AIRTC. 1122

C Result Analysis 1123

Table 4 presents a comparative evaluation of multi- 1124

lingual and Amharic-specific dense retrieval mod- 1125
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els on the 2AIRTC dataset. The results are incon-1126

sistent with our findings and unreliable due to the1127

aforementioned reasons.1128

C.1 Multilingual vs. Amharic-Specific Models1129

Multilingual models exhibit the highest retrieval1130

effectiveness, with multilingual-e5-large-instruct1131

achieving the best NDCG@100 (0.808) and Re-1132

call@200 (0.911). However, despite having signifi-1133

cantly fewer parameters, Amharic-specific models1134

demonstrate competitive performance. RoBERTa-1135

Base-Amharic-embed (NEW 45k) achieves an1136

NDCG@100 of 0.771 and Recall@200 of 0.903,1137

narrowing the performance gap with the best multi-1138

lingual model. While multilingual models maintain1139

an advantage, the relatively small margin suggests1140

that language-specific adaptations can effectively1141

compensate for model size disparities, highlight-1142

ing the efficiency of domain adaptation in retrieval1143

tasks.1144

This trend contrasts with our findings on the1145

Amharic News dataset, where Amharic-specific1146

models outperformed multilingual ones. The dis-1147

crepancy suggests that 2AIRTC’s domain charac-1148

teristics and annotation inconsistencies may intro-1149

duce systematic retrieval bias, influencing evalua-1150

tion outcomes and limiting the reliability of cross-1151

benchmark comparisons.1152

C.2 Impact of Model Size1153

Unlike typical trends in dense retrieval, larger1154

models do not consistently yield better perfor-1155

mance on 2AIRTC. snowflake-arctic-embed-l-v2.01156

(568M) underperforms relative to multilingual-e5-1157

large-instruct (560M) and gte-multilingual-base1158

(305M), reinforcing that pretraining data composi-1159

tion and model architecture can outweigh param-1160

eter count in determining retrieval effectiveness.1161

Among Amharic-specific models, smaller archi-1162

tectures such as BERT-Medium-Amharic-embed1163

(40M) perform below RoBERTa-Base-Amharic-1164

embed (110M) but remain competitive relative to1165

their scale.1166

However, given the known inconsistencies in1167

2AIRTC’s annotations and domain-specific biases,1168

these results should be interpreted with caution, as1169

dataset-specific factors may influence model rank-1170

ings and obscure broader retrieval trends.1171

C.3 Inconsistencies in 2AIRTC Evaluation1172

The results on 2AIRTC differ from trends observed1173

in the Amharic News dataset, where Amharic-1174

specific models consistently outperformed multilin- 1175

gual ones. This discrepancy raises concerns about 1176

the dataset’s reliability. The limited 240 topics con- 1177

strain generalization, while incomplete relevance 1178

labels distort recall-based metrics. Dense mod- 1179

els, which retrieve documents based on semantic 1180

similarity rather than lexical overlap, may suffer 1181

disproportionately from missing relevance annota- 1182

tions. 1183

D Future Directions for Amharic 1184

Retrieval Evaluation 1185

While this study evaluates dense retrieval models 1186

in both multilingual and Amharic-specific settings, 1187

the limitations of 2AIRTC, that is, its small dataset 1188

size (240 topics) and inconsistencies in relevance 1189

annotations undermine the reliability of these eval- 1190

uations. The limited number of queries restricts 1191

the generalizability of results, while incomplete 1192

relevance labels distort performance metrics, par- 1193

ticularly for embedding-based retrieval models. 1194

To enhance Amharic retrieval evaluation, future 1195

work should focus on: 1196

• Expanding and refining 2AIRTC through more 1197

comprehensive and iterative relevance assess- 1198

ments, potentially leveraging crowdsourcing or 1199

semi-automated annotation to improve coverage 1200

and consistency. 1201

• Investigating morphology-aware retrieval 1202

techniques to better handle Amharic’s complex 1203

word formation processes and rich morphology. 1204

• Exploring query expansion and pseudo- 1205

relevance feedback to mitigate vocabulary mis- 1206

matches and enhance document retrieval effec- 1207

tiveness. 1208

• Benchmarking retrieval models across multi- 1209

ple Amharic datasets to provide a more robust 1210

assessment of generalization and model effective- 1211

ness. 1212
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Recall

Model Params MRR@100 NDCG@100 @100 @200

Multilingual Models

gte-modernbert-base 149M 0.046 0.017 0.021 0.033
gte-multilingual-base 305M 0.879 0.749 0.790 0.865
multilingual-e5-large-instruct 560M 0.905 0.808 0.853 0.911
snowflake-arctic-embed-l-v2.0 568M 0.876 0.781 0.830 0.897

Ours

BERT-Medium-Amharic-embed 40M 0.806 0.664 0.723 0.829
RoBERTa-Medium-Amharic-embed 42M 0.875 0.744 0.796 0.880
RoBERTa-Base-Amharic-embed 110M 0.864 0.753 0.816 0.892
RoBERTa-Base-Amharic-embed (NEW 45k) 110M 0.886 0.771 0.827 0.903
snowflake-arctic-embed-l-v2.0-finetuned-amharic 568M 0.760 0.740 0.800 0.868

Table 4: Performance comparison of Amharic-optimized and multilingual dense retrieval models, all based on
a bi-encoder architecture, evaluated on the 2AIRTC dataset. The models snowflake-arctic-embed-l-v2.0 and
multilingual-e5-large-instruct (Hugging Face model names) originate from Arctic Embed 2.0 (Yu et al., 2024) and
Multilingual E5 Text Embeddings (Wang et al., 2024), respectively. The model snowflake-arctic-embed-l-v2.0-
finetuned-amharic is a fine-tuned version of Snowflake-Arctic-Embed-v2.0 using the news dataset (30k articles and
headlines). The best-performing results are highlighted in bold.
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