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ABSTRACT

In several practical applications of federated learning (FL), the clients are highly
heterogeneous in terms of both their data and compute resources, and therefore
enforcing the same model architecture for each client is very limiting. The need
for uncertainty quantification is also often particularly amplified for clients that
have limited local data. This paper presents a unified FL framework based on
training customized local Bayesian models that can simultaneously address both
these constraints. A Bayesian framework provides a natural way of incorporating
supervision in the form of prior distributions. We use priors in the functional
(output) space of the networks to facilitate collaboration across heterogeneous
clients via an unlabelled auxiliary dataset. We further present a differentially
private version of the algorithm along with formal differential privacy guarantees
that apply to general settings without any assumptions on the learning algorithm.
Experiments on standard FL datasets demonstrate that our approach outperforms
strong baselines in both homogeneous and heterogeneous settings and under strict
privacy constraints, while also providing characterizations of model uncertainties.

1 INTRODUCTION

The vast majority of research on Federated Learning (FL) takes an optimization perspective i.e.,
focus on designing suitable optimization objectives or provide methods for efficiently solving such
objectives. However, there are several critical applications where other issues such as obtaining good
estimates of the uncertainty in an outcome, or data privacy constraints, are equally pressing. For
example, in certain healthcare applications, patient data is private and uncertainty around prediction
of health outcomes is required to manage risks. Similarly, for several applications in legal, finance,
mission critical IoT systems (Victor et al., 2022), etc., both the privacy and confidence guarantees are
important for decision making.

Since Bayesian learning methods are known for their ability to generalize under limited data, and can
generally provide well-calibrated outputs (Wilson et al., 2016; Achituve et al., 2021a;b), it makes
them suitable for solving the challenges mentioned above. A straightforward Bayesian FL method
would perform the following steps - each client does local posterior inference to obtain a distribution
over weight parameters and then communicates the local posteriors to the server, the server receives
the local posteriors from the clients and aggregates them to obtain a global posterior distribution
which is then broadcast to the clients for the next round of training. However, this entire learning
procedure is highly resource and communication-intensive. For a very simple example, solving an
m-dimensional federated least squares estimation, this method will require O(m3) computation on
all the clients and server sites (Al-Shedivat et al., 2021). This cost is much more as opposed to the
standard FL which is generally O(m). How could the Bayesian methods be then used for FL settings
without paying such high costs? Also, since clients can have varied degrees of computing resources,
constraining each client to train identical models would be limiting. Then, how to aggregate the local
posteriors when the clients are training personal models and the model weights across clients are not
identical, becomes the next important question. We try to address these questions by proposing a
framework that allows all clients to train their own personal Bayesian models (with varying model
complexities), but still enables collaboration across clients by instilling information from the peer
collaboration in the form of priors. This is achieved by using the functional space to indirectly
determine priors on weights, as opposed to them being specified in the weight space as in traditional
Bayesian methods.
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In addition, maintaining client data privacy is an important concern in FL. While attacks on neural
networks that can recover training data from the models by either directly analyzing model parameters
or indirectly by analyzing the model outputs are well known (Fredrikson et al., 2015; Papernot et al.,
2017), even in federated learning settings, when the data is restricted to the local client sites, it has
been shown that FL methods are not immune to data leaks (Fowl et al., 2021; Wen et al., 2022;
Fowl et al., 2023). Therefore, to guarantee the privacy of the local client data, we apply a formal
well-known standard of differential privacy (Dwork & Roth, 2014). We use a carefully designed
noise mechanism for data sharing that allows us to provide a privacy bound on the entire procedure.

In this work, we propose a novel unified FL framework that can simultaneously address challenges
arising due to limited data per client and heterogeneous compute resources across clients, together with
the need for privacy guarantees and providing calibrated predictions. To the best of our knowledge,
no previous work has jointly addressed all these learning issues in the FL context. Our positive results
substantially increase the scope of FL for critical real-world applications.

Our key contributions are summarized as follows :

1. We propose a novel computation and communication efficient method for personalized
federated learning based on Bayesian inference. In this method, collaboration across clients
is achieved through a novel way of assigning prior distributions over the model parameters
via the output space. We call this method Federated Bayesian Neural Networks (FedBNN).

2. We present a non-trivial extension of our method that can work with heterogeneous settings
where clients are not forced to train models of identical architectures. This provides more
flexibility to the clients when the compute resources across clients are not identical or clients
have existing pre-trained solutions.

3. We provide a formal differential privacy guarantee for our method that applies to general
settings irrespective of the client’s learning algorithm and show that the method is able to
learn effectively even under strict privacy guarantees.

4. We evaluate our method on several datasets and show that it outperforms the baselines
by a significant margin, particularly in data and model heterogeneous settings, making it
particularly more useful for FL applications where a high degree of heterogeneity is naturally
present.

2 RELATED WORK

This section provides an overview of the most relevant prior work in the fields of federated learning,
Bayesian FL, and Differential Privacy in FL.

Federated Learning In the early 2000s, privacy preserving distributed data mining referred to
training distributed machine learning models (Kargupta & Park, 2000; Gan et al., 2017; Aggarwal &
Yu, 2008), like distributed clustering (Merugu & Ghosh, Nov, 2003; 2005), distributed PCA (Kargupta
et al., 2001), distributed SVMs (Yu et al., 2006) etc. Federated Learning was introduced as the FedAvg
algorithm in the seminal work by (McMahan et al., 2017b). Since then many different modifications
have been proposed that tackle specific challenges. FedPD (Zhang et al., 2021), FedSplit (Pathak &
Wainwright, 2020), and FedDyn (Acar et al., 2021) proposed methods for finding better fixed-point
solutions to the FL optimization problem. (Lin et al., 2020; Yurochkin et al., 2019; Wang et al.,
2020; Singh & Jaggi, 2020; Chen & Chao, 2021) show that point-wise aggregate of the local client
models does not produce a good global model and propose alternate aggregation mechanisms to
achieve collaboration. FedDF (Lin et al., 2020) and (Li & Wang, 2019; Ozkara et al., 2021) achieve
personalised FL solutions through collaboration by performing knowledge distillation on local client
models. Personalised FL has been approached in many other ways like meta-learning (Fallah et al.,
2020; Beaussart et al., 2021; Jiang et al., 2019; Khodak et al., 2019), multi-task learning (Smith et al.,
2017a; Li et al., 2021; Smith et al., 2017b), by clustering the clients (Sattler et al., 2021b; Ghosh
et al., 2020) and others (Collins et al., 2021; Li et al., 2020a; Yu et al., 2020; Shamsian et al., 2021),
(Wang et al., 2023; Makhija et al., 2022), (Chen et al., 2022) uses Bayesian view based analysis to
obtain a better trade-off between personal and global models. The personalised FL methods focus on
improving the performance in the presence of statistical data heterogeneity across clients, but they do
not work well when the size of dataset on the clients is limited.
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Bayesian Federated Learning The Bayesian approaches for federated learning can be broadly
divided into two categories - methods using Bayesian inference for local learning at each client
and methods that achieve collaboration via Bayesian mechanisms. Amongst the methods that use
Bayesian approach for achieving collaboration across clients, FedBE (Chen & Chao, 2021) uses
Bayesian mechanism to aggregate the locally trained neural networks to obtain a Bayesian ensemble
at the server. (Bhatt et al., 2022) suggests using knowledge distillation and MCMC based method for
training a global model. (Dai et al., 2020) on the other hand suggests the use of Bayesian Optimization
and Thompson Sampling to obtain the solution to the global optimization problem. PFNM (Yurochkin
et al., 2019) uses a Beta-Bernoullli process to obtain a global model from the local models but is only
applicable to fully-connected networks, FedMA (Wang et al., 2020) extends PFNM for other types
of networks. Recently, (Ozer et al., 2022) did an empirical study on various ways of aggregating
variational Bayesian neural networks and their effects. On the other hand, FedPA (Al-Shedivat
et al., 2021) was the first to use local Bayesian inference and suggested that the global posterior
distribution of weights could be obtained by multiplying local posteriors and proposed an approximate
and efficient way of computing local and global posteriors by using Laplace approximations with
complexity that is linear in number of model parameters. This method focuses on obtaining a global
solution and is less suited for the statistical heterogeneity present across clients (Cao et al., 2023),
and therefore we focus more on the methods that build personalized solutions for clients. Among
such methods, pFedGP (Achituve et al., 2021b) is a Gaussian Process-based estimation method
where the kernel in these GPs is defined on the output of a neural network and is called Deep
Kernel Learning. pFedGP works by collaboratively training a single deep kernel for all clients but
using personalized GPs for prediction. The collaboration across clients while learning the global
kernel is done as in FedAvg. FedLoc (Yin et al., 2020) also uses GP in FL but for regression tasks.
pFedBayes (Zhang et al., 2022) uses variational inference for local posterior inference on Bayesian
Neural Networks(BNNs) where the loss at each client is a combination of the data likelihood term
and distance to the prior where prior distribution is replaced by the global distribution. The global
distribution is obtained by aggregating the local prior distributions. FOLA (Liu et al., 2021) proposed
using Laplace Approximation for posterior inference at both the server side and the client side.
(Ozkara et al., 2023) and (Kotelevskii et al., 2022) also proposed methods that assume a hierarchical
Bayesian model on the parameters but their main assumption is that the local parameters are obtained
from the same distribution thus making them useful only in homogeneous settings. None of the
methods described above explicitly handle heterogeneous settings. Moreover, for these methods
choosing an appropriate prior distribution over the local model parameters is a challenge (Cao et al.,
2023). These issues led us to use functional space priors instead. Such priors have been studied in
limited centralized settings (Tran et al., 2022; Sun et al., 2019; Flam-Shepherd, 2017) but not in FL
settings.

Differential Privacy in FL Since decentralized learning does not guarantee that the data will remain
private, it is important that a formal rigorous guarantee be given on the data that is leaked by the
algorithm. Seminal works in DP propose using a Gaussian noise mechanism by adding Gaussian
noise to the intermediate results and achieving a bound on the algorithm by using composition
results (Dwork & Roth, 2014; Mironov, 2017; Kairouz et al., 2015). For FL, (Geyer et al., 2017)
and (McMahan et al., 2017a) independently proposed DP-FedSGD and DP-FedAvg algorithms which
enhance FedAvg by adding Gaussian noise to the local client updates. Several other works focus on
analyzing the privacy-utility trade-off in DP in FL setting (Ghazi et al., 2019; Girgis et al., 2021;
Balle et al., 2019; Triastcyn & Faltings, 2019; Li et al., 2020b). Recently, (Hu et al., 2020) proposed
a DP-based solution for personalized FL which only works for linear models. And then (Noble et al.,
2022) enhanced it for general models and heterogeneous data in FL. These methods, however, mostly
focus on privacy guarantees while solving the FL optimization problem. They don’t apply to general
Bayesian settings or when substantial heterogeneity is encountered.

3 PROPOSED METHODOLOGY

We propose a novel method for Bayesian FL that enables privacy preserving personalised learning
on clients under heterogeneous settings. The local training is done in a model agnostic way but
collaboration amongst clients is enabled by passing information as the prior. And to achieve privacy,
like most private algorithms, we use Gaussian mechanism to carefully add noise to the information
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sent outside a client. This method also produces well calibrated outputs. In this section, we first
describe the problem statement and then go over the proposed solution.

3.1 PROBLEM DESCRIPTION

Consider an FL setting with N clients where each client i has local dataset X i of size ni drawn
from the local data distribution Di. The goal of a personalised federated learning procedure is to
obtain optimal weights for each client’s local model, Wi, using data X =

⋃N
j=1 X j without actually

accessing the data outside of each client, i.e., no other client can access any data in X i except the ith
client itself but the clients could transfer knowledge via collaboration. In a personalised Bayesian
learning procedure, the modified goal would be to learn distribution over local weights, IP(Wi|X )

from X =
⋃N
j=1 X j while still maintaining the client data privacy. However, the learning procedure

faces challenges that are posed due to - system heterogeneity and statistical heterogeneity. System
heterogeneity refers to the variable amount of data and compute resources across clients, meaning,
i) the data resources on each client vary widely, i.e., nk >> nl for some clients k and l, and ii) the
compute across clients is non-identical due to which it is not possible to train models of uniform
architectures across clients, leading to non-identical weights, i.e., Wi ̸= Wj for different clients i
and j. Statistical heterogeneity implies that the data distribution across clients is non-IID.

3.2 FEDBNN METHODOLOGY

Here we propose an adaptive framework to learn personalised Bayesian Neural Network (BNN)
based models for each client that can work effectively even under the challenges described above.
The overall framework works iteratively in two steps - local optimization on the individual client to
obtain local posterior distribution over the model parameters, and a global collaboration step where
the output from each client is appropriately aggregated at the server and broadcast to all the clients
for the next rounds of training. Each of these two steps is described in detail below, and the detailed
algorithm is given in the Appendix B.

Local Setting Let each client in the network be training a personalised Bayesian NN, which for the
client i is denoted by Φi and is parameterised by weights Wi. As commonly used in the literature,
we assume that the individual weights of the BNN are Normally distributed and satisfy mean-field
decomposition, i.e., wi,α ∼ N (µi,α, σ

2
i,α) for α ∈ [1, . . . , |Wi|] where µi,α is the mean of the

gaussian distribution for the parameter α on the ith client and σ2
i,α is the variance of the gaussian for

the same parameter. To guarantee that σi,α takes non-negative values for all clients i and all parameters
α, we use a technique commonly used in inference procedures (Blundell et al., 2015), wherein each
σi,α is replaced by another parameter ρi,α during the training, such that σi,α = log(1 + exp(ρi,α)).

3.2.1 GLOBAL COLLABORATION

We attain collaboration amongst clients under a mild assumption of availability of a general publicly
accessible unlabelled dataset at the server. We call this dataset as Alignment Dataset (AD). This
dataset is used for providing peer supervision to the clients by helping clients distill knowledge from
other clients without sharing the model weight distributions. While in heterogeneous settings non-
identical architecture models across clients mean no direct way of aggregation and prior specification,
even in homogeneous settings aggregating the weight distributions and specifying priors in the weight
space is prone to errors due to reasons like non-alignment of weights across clients, insufficient
understanding of the weight space, etc. Thus, for the purpose of collaboration, we move away from
the weight-space to the function-space of the networks. Specifically, in each global communication
round, the server shares the AD with all the clients. The clients do a forward pass on AD to obtain the
output Φi(AD). The local output of the ith client is approximated by doing Monte Carlo sampling
and drawing K weight samples, W(j)

i : j ∈ [1,K], from its local posterior distribution IP(Wi|X ).
An aggregate of the obtained logits for these K weight samples under the client’s own personal BNN

model, Φi(), is reported, i.e. Φi(AD) =
1

K

∑K
j=1 Φi(AD;W(j)

i ). The obtained output for AD on

each client is then sent back to server which forms an aggregated representation, denoted by Φ̄(AD),
by doing a weighted aggregation of all clients’ outputs, i.e., Φ̄(X) =

∑N
j=1 wjΦj(X). The weights
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w’s used in the aggregation could represent the strength of that particular client in terms of its data
or compute resources, i.e., clients with high compute (or data) resources receive more weight as
compared to clients with lower amount of resources. The obtained Φ̄(AD) is then uploaded to all the
clients for use in the next round of local training. More details about the Alignment Dataset (AD) are
included in the Appendix E.

3.2.2 LOCAL OPTIMIZATION ON CLIENTS

Prior Specification The Bayesian framework provides a natural way of incorporating supervision
in the form of priors. Conventional methods in Bayesian deep learning provide priors over model
parameters. However, the relationship between the model parameters and the outputs is complex
and the priors in model’s weight-space do not directly capture the desired functional properties.
Also, since the number of parameters in a neural network is large, most prior specifications tend
to take a simplistic form like an isotropic Gaussian, to make inference feasible. Thus, learning by
specifying prior distributions over weights does not always help incorporate prior knowledge in the
learning process. In this work, we consider a way of specifying priors in the functional space by first
optimising the Bayesian neural networks over the prior parameters for a fixed number of steps to
achieve a desired functional output. While being more intuitive, these priors also help in instilling the
prior external knowledge during the training of the neural networks.

Local Optimization For the local optimization, the individual clients learn IP(Wi|X i) via variational
inference. A variational learning algorithm, tries to find optimal parameters θ∗ of a parameterized
distribution q(Wi|θ) among a family of distributions denoted by Q such that the distance between
q(Wi|θ∗) and the true posterior IP(Wi|X i) is minimized. In our setting, we set the family of
distributions, Q, to be containing distributions of the form wi,α ∼ N (µi,α, σ

2
i,α) for each parameter

wi,α for α ∈ [1, . . . , |Wi|]. Let p(Wi;ψ) represent the prior function over the weights Wi and is
parameterized by ψ, then the optimization problem for local variational inference is given by :

θ∗i = argmin
θ:q(Wi|θ)∈Q

KL[q(Wi|θ)||IP(Wi|X i)] (1)

= argmin
θ:q(Wi|θ)∈Q

KL[q(Wi|θ)||p(Wi;ψ)]− Eq(Wi|θ)[logIP(X i|Wi)]. (2)

For inference in Bayesian neural networks, we use Bayes by Backprop (Blundell et al., 2015) method
to solve the variational inference optimization problem formulated above.

At the beginning of each local optimization procedure (in each global communication round a specific
client is selected), we use the global information obtained from the server Φ̄(AD) to intialize the prior
for the BNN. Specifically, at the beginning of each local training round, the selected clients first tune
their priors to minimize the distance between the local output, Φi(AD;Wi) and the aggregated output
obtained from the server, Φ̄(AD). Since the aggregated output represents the collective knowledge
of all the clients and may not be strictly precise for the local model optimization, we consider this
aggregated output as “noisy" and correct it before using for optimization. Specifically, we generate
Φcorrected
i as a convex combination of the global output and the local output for a tunable parameter γ.

For the ith client,

Φcorrected
i = γΦ̄(AD) + (1− γ)Φi(AD;Wi). (3)

The prior optimization steps then optimize the distance between Φcorrected
i and Φi(AD;Wi) to train

the prior parameters ψ, with the aim of transferring the global knowledge encoded in Φcorrected
i to the

local model. Precisely,

ψ∗
i = argmin

ψ
d(Φcorrected

i ,Φi(AD;Wi)). (4)

When the outputs Φ(X;W) are logits, we use cross-entropy or the negative log-likelihood loss as the
distance measure. The optimization involves training the client’s personal BNN Φi to only learn the
parameters of the prior distribution denoted by ψ. This way of initializing the BNN prior enables
translating the functional properties, as captured by Φi(AD;Wi), to weight-space distributions. The
optimal prior parameters are then kept fixed while training the BNN over the local dataset. The local
optimization procedure now works to find the best q(Wi|θ) fixing the prior distribution through the
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following optimization problem :
θ∗i = argmin

θ:q(Wi|θ)∈Q
KL[q(Wi|θ)||p(Wi;ψ

∗
i )]− Eq(Wi|θ)[logIP(X i|Wi)]. (5)

3.2.3 ACHIEVING DIFFERENTIAL PRIVACY

In this method, we measure the privacy loss at each client. To control the release of information
from the clients, we add a carefully designed Gaussian mechanism wherein we add Gaussian noise
to the Φi(AD) that is being shared by each client. Specifically, each client i uploads Φi(AD)DP =
Φi(AD) +N (0, σ2

g) to the server and then the server aggregates Φi(AD)DP across clients to obtain
and broadcast Φ̄(AD)DP which is used by the clients in their next round of local optimization. The
variance of the noise depends on the required privacy guarantee.

4 PRIVACY ANALYSIS

Since our algorithm does not specifically share model weights outside of the clients but shares the
client models’ output on a public dataset, it might seem intuitive that the algorithm is private but
knowing that privacy is lost in unexpected ways, we present a formal Differential Privacy based
guarantee on the algorithm. Our analysis in this section focuses on providing record-level DP
guarantee over the entire dataset X . This analysis quantifies the level of privacy achieved towards any
third party and an honest-but-curious server. In this section we first define DP and then present our
analysis. Additional definitions and the results used in the proof are mentioned in the Appendix C.
Definition 4.1 ((ϵ, δ)- Differential Privacy). A randomized algorithm M is (ϵ, δ)-DP if for any two
neighboring datasets D and D′ that differ in at most one data point, the output of the algorithm M
on D and D′ is bounded as

IP[M(D) ∈ S] ≤ eϵIP[M(D′) ∈ S] + δ, ∀S ⊆ Range(M).

Due to the lack of space, definitions of zero-concentrated differential privacy (zCDP), L2 Sensitivity
of an algorithm, and results corresponding to Gaussian Mechanism, Sequential Composition and
Parallel Composition of privacy are given in Appendix C. Building on top of these results, we now
state the privacy budget of our algorithm.
Theorem 4.2 (Privacy Budget). The proposed algorithm is (ϵ, δ)-differentially private, if the total
privacy budget per global communication round per query is set to

ρ =
ϵ2

4EKlog 1
δ

for E number of global communication rounds and K number of queries to the algorithm per round.

Proof. After using Gaussian mechanism on each client and adding noise to each coordinate of
Φi(AD), the local mechanism at each client becomes ρ-zCDP for ρ = ∆2

2σ2 . Since each client outputs
the logit representation for each input, i.e., the normalized output of the clients, ∆2 ≤ 2. Suppose in
each global communication round we make K queries to each client, then by sequential composi-
tion C.2, we get EKρ, for E number of global communication rounds. By parallel composition C.3,
the total privacy loss for all N clients is the maximum of the loss on each client and therefore remains

EKρ. Relating it to the (ϵ, δ)-DP from C.1, we get ρ =
ϵ2

4EKlog 1
δ

for any δ > 0.

Our analysis does not assume any specifics of how each client is trained and is therefore applicable
in more general settings. However, we present a pessimistic analysis by providing a worst-case
analytical bound. This is because we assume that a change in single data point may entirely change
the output of the algorithm and upper bound the L2 sensitivity ∆2 ≤ 2, and also, since the public
dataset remains common throughout the rounds, the actual privacy loss due to querying on the
public dataset will not typically add up linearly. Yet the above analysis shows that we have several
knobs to control to achieve the desired privacy-utility trade off - balancing the number of global
communication rounds with local epochs, reducing the number of queries, and the standard noise
scale. By appropriately tuning these controls we are able to achieve good performance with a single
digit ϵ (≈ 9.98) privacy guarantee and δ = 10−4.
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5 EXPERIMENTS

In this section, we present an experimental evaluation of our method and compare it with different
baselines under diverse homogeneous and heterogeneous client settings. Specifically, we experiment
with three types of heterogeneity - i) heterogeneity in data resources (amount of data), ii) heterogeneity
in compute resources, and iii) statistical heterogeneity (non-IID data distribution across clients). We
also discuss the change in performance of our method when the degree and type of heterogeneity
changes. Due to the space constraint, additional experiments on varying the size and distribution of
the AD, privacy-utility trade-off and showing calibrated outputs are included in the Appendix E, G
and D respectively.

5.1 EXPERIMENTAL DETAILS

Datasets We choose three different datasets commonly used in prior federated learning works from
the popular FL benchmark, LEAF (Caldas et al., 2019) including MNIST, CIFAR-10 and CIFAR-100.
MNIST contains 10 different classes corresponding to the 10 digits with 50,000 28×28 black and
white train images and 10,000 images for validation. CIFAR-10 and CIFAR-100 contain 50,000
train and 10,000 test-colored images for 10 classes and 100 classes respectively. The choice of these
datasets is primarily motivated by their use in the baseline methods.

Simulation Details We simulate three different types of heterogeneous settings - corresponding to
heterogeneity in compute resources, data resources and the statistical data distribution. Before starting
the training process, we create N different clients with different compute resources by randomly
selecting a fraction of clients that represent clients with smaller compute. Since these clients do not
have large memory and compute capacity, we assume that these clients train smaller-size BNNs as
opposed to the other high-capacity clients that train larger VGG-based models. In particular, the
small BNNs were constructed to have either 2 or 3 convolution layers, each followed by a ReLU
and 2 fully-connected layers at the end, and a VGG9-based architecture was used for larger BNNs.
The number of parameters in smaller networks is around 50K and that in larger networks is around
3M. Since the baselines only operate with identical model architectures across clients, we use the
larger VGG9-based models on the baselines for a fair comparison. We include the results of our
method in both homogeneous compute settings (similar to baselines) as well as in heterogeneous
compute settings wherein we assume that 30% of the total clients have smaller compute and are
training smaller-sized models.

Next, we also vary the data resources across clients and test the methods under 3 different data
settings - small, medium and full. The small setting corresponds to each client having only 50 training
data instances per class, for the medium and full settings each client has 100 data instances and 2500
data instances per class respectively for training. We simulate statistical heterogeneity by creating
non-IID data partitions across clients. We work in a rather strict non-IID setting by assuming clients
have access to data of disjoint classes. For each client a fraction of instance classes is sampled and
then instances corresponding to the selected classes are divided amongst the specific clients. For
the included experiments, we set number of clients N = 20 and divide the instances on clients such
that each client has access to only 5 of the 10 classes for MNIST and CIFAR-10, and 20 out of 100
classes for CIFAR-100.

Training parameters and Evaluation We run all the algorithms for 200 global communication
rounds and report the accuracy on the test dataset at the end of the 200th round. The number of local
epochs is set to 20 and the size of AD is kept as 2000. Each client is allowed to train its personal model
for a fixed number of epochs, which is kept to 50 in experiments, before entering the collaboration
phase. The hyper-parameters of the training procedure are tuned on a set-aside validation set. At the
beginning of each global communication round, for optimizing the prior parameters at each client
according to Equation 4, we use an Adam optimizer with learning rate=0.0001 and run the prior
optimization procedure for 100 steps. Then with the optimized prior we train the local BNN using
Bayes-by-Backprop, with Adam optimizer, learning rate = 0.001 and batch size = 128. The noise
effect γ is selected after fine-tuning and kept to be 0.7. For these experiments, the aggregation weight
wj for each client j used to compute Φ̄(X) is set to 1/N . All the models are trained on a 4 GPU
machine with GeForce RTX 3090 GPUs and 24GB per GPU memory. For evaluation, we report
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Table 1: Test accuracy comparsion with baselines in non-IID settings.

Method
MNIST CIFAR10 CIFAR100

(small) (medium) (full) (small) (medium) (full) (small) (medium) (full)

(Non-Bayesian)
Local Training 88.7 ± 1.2 90.1 ± 1.0 91.9 ± 1.1 53.9 ± 2.1 59.5 ± 1.8 70.8 ± 1.4 28.8 ± 1.8 32.7 ± 1.9 43.5 ± 1.6
FedAvg 88.2 ± 0.5 90.15 ± 1.2 92.23 ± 1.1 43.14 ± 1.2 56.27 ± 1.8 78.17 ± 1.2 27.3 ± 1.9 32.81 ± 1.6 36.3 ± 0.2
FedProx 86.9 ± 0.8 89.91 ± 0.7 93.1 ± 0.4 44.27 ± 1.2 58.93 ± 0.9 79.19 ± 0.6 28.6 ± 2.7 34.31 ± 1.4 37.8 ± 0.9
pFedME 91.95 ± 2.1 93.39 ± 1.2 95.62 ± 0.5 48.46 ± 1.5 64.57 ± 2.1 75.11 ± 1.2 32.4 ± 2.2 36.3 ± 2.0 41.8 ± 1.7
KD based collaboration 89.1 ± 0.4 92.5 ± 0.2 93.2 ± 0.3 33.9 ± 1.3 53.2 ± 1.5 69.8 ± 1.0 26.1 ± 2.0 35.2 ± 1.2 42.7 ± 0.8

(Bayesian with Homogeneous Architectures)
pFedGP 86.15 ± 1.3 90.59 ± 1.7 94.92 ± 0.3 45.62 ± 2.2 56.24 ± 1.8 72.89 ± 0.7 47.06 ± 1.3 53.1 ± 1.2 54.54 ± 0.2
pFedBayes 94.0 ± 0.2 94.6 ± 0.1 95.5 ± 0.3 58.7 ± 1.1 64.6 ± 0.8 78.3 ± 0.5 39.51 ± 1.8 41.43 ± 0.4 47.67 ± 1.1
FOLA 91.74 ± 1.0 92.87 ± 0.8 95.12 ± 0.6 43.29 ± 0.9 45.94 ± 0.7 67.98 ± 0.5 33.42 ± 1.3 48.8 ± 2.1 43.2 ± 1.6

Ours (Homo) 94.9 ± 1.0 95.72 ± 0.8 96.21 ± 0.3 70.6 ± 1.1 72.3 ± 0.6 79.7 ± 0.3 49.65 ± 1.4 55.4 ± 0.8 57.3 ± 0.8
Ours (Hetero) 93.1 ± 1.1 94.4 ± 0.2 95.9 ± 0.2 68.17 ± 2.0 71.73 ± 1.3 78.7 ± 0.7 47.5 ± 1.4 49.10 ± 1.1 51.1 ± 0.7
Ours (Hetero-DP) 89.82 ± 2.3 90.21 ± 1.6 91.43 ± 1.4 60.4 ± 1.1 68.13 ± 1.2 74.3 ± 1.6 43.7 ± 2.3 44.5 ± 1.7 47.0 ± 1.5

(DP-Baseline)
DP-FedAvg 80.1 ± 1.7 85.2 ± 1.8 86.2 ± 1.7 35.17 ± 0.8 50.22 ± 1.1 74.6 ± 1.2 26.5 ± 0.3 30.7 ± 1.4 32.4 ± 0.6

the classification accuracy obtained by running the trained models on test datasets from the MNIST,
CIFAR10 and CIFAR100 datasets.

Baselines We compare our method against the standard non-Bayesian FL algorithms and Bayesian-FL
methods that build personalized models for clients. We also show results of differentially private
FedAvg algorithm under similar privacy guarantee (per round ϵ < 0.1) to provide perspective on
the privacy. The FL baselines include - i) FedAvg, the de-facto FL learning algorithm that trains a
global model, ii) FedProx, an enhancement of the FedAvg algorithm in the presence of statistical
heterogeneity across clients giving a global model, iii) pFedME, which uses personalized models on
each client using Monreau envelopes in loss. The Bayesian baselines include - i) pFedGP, a Gaussian
process based approach that trains common deep kernels across clients and personal tree-based GPs
for classification, ii) pFedBayes, which uses a variational inference-based approach for personalized
FL by training personal models which are close to the aggregated global models, iii) FOLA, bayesian
method using Gaussian product for model aggregation. And lastly, the DP baseline includes - i)
DP-FedAvg, the FedAvg algorithm with gradient clipping and noise addition to the gradient at each
client. For all the experiments, the hyper-parameters were obtained by tuning on a held-out validation
dataset. We used our own implementation of the pFedBayes algorithm since the source code was not
publicly available.

5.2 RESULTS

The performance of our method and the baselines under the non-IID data setting are reported in Table 1.
Under the non-IID setting, we report the results corresponding to different dataset sizes on each client.
To recall, in the small, medium, and full settings, each client has access to 50, 100, and 2500 training
data points per class respectively. We observe that our method with homogeneous architectures across
clients outperforms all other baselines. Moreover, when we consider the performance of our method
under a heterogeneous setting by considering 30% of the total clients to be small capacity, it is evident
that our method is better than the higher capacity homogeneous baselines for more complex tasks like
in CIFAR-10 and CIFAR-100. On average, our method achieves about 6% performance improvement
over the baselines in the small and medium data settings. Figure 1 compares the performance of our
method with the highest-performing baselines under model, data and statistical types of heterogeneity.
Since our method can work with heterogeneous clients, we see that just by the proposed collaboration
and having higher capacity clients in the FL ecosystem, the lower capacity clients are able to gain
about 10% increase in their performance. Also, the performance degradation of our method with
a change in the number of clients with limited data resources is more graceful as compared to the
baselines. In an additional experiment intended to compare the performance of the baseline methods
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(a) (b) (c)

Figure 1: Performance comparison of our method with baselines under different types and varying
degree of heterogeneity for CIFAR-10 dataset with 20 clients. Figure (a) is for heterogeneity in
compute capacity across clients under non-IID data setting, figure (b) for compute heterogeneity
under IID setting, and figure (c) for heterogeneity in data resources. When a fraction of clients in
the setting have low computing resources, the baselines being homogeneous can only train smaller
models on all the clients as shown by constant performance. The results show that our method is
more tolerant to both model heterogeneity and data heterogeneity across clients.

with additional data, we trained the priors for baseline methods’ encoders using the unlabeled data,
AD, before starting their own prescribed FL procedure. We observed that the performance of the
baseline methods does not change on doing this because the FL procedure that they incorporate
forgets all the prior existing local knowledge at the client side. A similar result was also reported
in (Sattler et al., 2021a).

The superior performance of our method could be attributed to the effective collaboration achieved
via the proposed framework, wherein in each communication round, instead of aggregating clients’
weight distributions and using these aggregated weights for initialization at each client, we achieve
collaboration by first distilling peer knowledge in the form of the aggregated output on the AD,
Φ̄(AD), and then ensuring that this knowledge is successfully transferred to each client by specifying
priors in the functional-space of the client model. Furthermore, the parameter in Equation 3 allows
the clients the flexibility to choose the amount of global knowledge that needs to be incorporated
providing flexibility on the degree of personalization.

6 DISCUSSION

We propose a novel method for personalized Bayesian learning in heterogeneous federated learning
settings and demonstrate that our method is able to outperform the baselines under different types of
heterogeneous situations, while also providing a privacy guarantee and calibrated responses. The
experiments show that the method is particularly useful for clients with lower data and lower compute
resources as they can benefit the most by the presence of other, more powerful clients in the ecosystem.
While our method assumes the availability of a small, unlabelled auxiliary dataset at the server, it is
typically a very mild requirement as such data can often be obtained from several open sources on
the web. And with the recent advances in the generative AI and it’s use for generating training data,
it would be interesting to see if these methods can be used to readily provide application-specific
alignment datasets in the future work. The privacy analysis on the method provides an intuitive
and a rigorous guarantee with various tunable knobs that can be adjusted to achieve the desired
privacy-utility trade-off. While the application explored in the proposed work consists of image
related tasks, both the proposed framework and the privacy analysis is generic and independent of
specific training algorithms, i.e., it provides a way for personalized FL for general tasks, therefore
resulting in its wide applicability in various applications across data modalities. The recent use of
transformer based Bayesian methods Zheng et al. (2023); Maged & Xie (2022); Tian et al. (2023)
in varied applications also provides more evidence on the applicability of the proposed framework
for settings where much larger neural networks are required. One limitation that originates from the
Bayesian nature, and is common to all applications of Bayesian learning, is that the exact inference
of the posterior distributions is infeasible and therefore variational approximation has been used for
inference of the posterior distributions.
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Supplement for “A Bayesian Approach for Personalized
Federated Learning in Heterogeneous Settings”

In this supplementary material, we first go over the preliminaries of Bayesian learning methods,
followed by the pseudo-code of the algorithm used for training our framework. Then, we provide
definitions and results used in the privacy analysis of our method. We show model calibration metrics
and present results demonstrating our method is well-calibrated. We also discuss the details about the
alignment dataset, AD, its affect on the performance and the communication and computation cost of
the procedure.

A BAYESIAN LEARNING

Consider a learning setting where we are trying to train a neural network on a dataset X . The aim of
this setting is thus to obtain the set of weights, denoted by W , for the corresponding neural network
that best fits the data. We could also view a neural network as a model that outputs IP(y|x,W) which
is the distribution of the label y for a given data point x under the weights W , for classification
this would be the output of the softmax function. Now, the weights of the network can be learnt by
Maximum Likelihood Estimation (MLE) for a given set of datapoints X = (xi, yi)

n
i=1 by solving the

following optimization problem.

WMLE = argmax
W

∑
i

logP (yi|xi,W)

This optimization could be solved by gradient descent based methods and obtains a point estimate of
the weight vector, denoted by WMLE .

The Bayesian learning methods, on the other hand, obtain a posterior distribution on the weights
given the training data, IP(W|X ) as opposed to the point estimates. The predictions for any new data
point, x, are then obtained by taking expectation of the prediction under the posterior distribution,
y = Ew∼IP(W|X )[IP(y|x,w)]. Exact inference of the posterior distribution, however, is intractable
for neural networks. Variational inference is a traditional approximation method used to obtain an
approximation of the posterior weight distribution, and it has also been shown to work for neural
networks (Hinton & van Camp, 1993). Specifically, variational inference tries to learn a simpler
parameterized distribution q(w|θ) from a family of distributions Q by optimizing the parameters θ
such that the new distribution q(w|θ∗) obtained for the optimal value of θ is close to the true posterior
distribution IP(W|X ). Precisely, the optimization problem looks like

θ∗ = argmin
θ:q(W|θ)∈Q

KL[q(W|θ)||IP(W|X )] (6)

= argmin
θ:q(W|θ)∈Q

∫
q(W|θ)log

q(W|θ)
IP(W)IP(X|W)

(7)

= argmin
θ:q(W|θ)∈Q

KL[q(W|θ)||p(W;ψ)]− Eq(W|θ)[logIP(X|W)] (8)

where p(W;ψ) signifies the prior distribution over weights W parameterized by ψ. The prior
distribution is typically used to encode any previously available information about the weights of
the network. The above given objective is the same objective as in Equation 1 that is used for local
training in our method.

B ALGORITHM

The pseudo-code of the algorithm used in the FedBNN method is included in the Algorithm 1. The
Algorithm 1 works in the setting when there is a server connected to N clients with each client
i having local dataset X i of size ni drawn from the local data distribution Di, and the server has
an auxilliary unlabelled dataset called AD. The output of the algorithm is the set of personalized
models Φi parameterized by Wi for each client i. All Wi’s, instead of being point estimates, are
determined by a posterior distribution IP(Wi|.) which is learnt from the data via variational inference.

16



As mentioned in the Section 3.2, the learning procedure first optimizes the prior parameters by
minimizing Equation 4 and then learns the posterior parameters keeping the prior fixed by minimizing
Equation 5.

Algorithm 1 FedBNN Algorithm
Input: number of clients N , number of global communication rounds T , number of local epochs
E, weight vector [w1, w2, . . . wN ], noise parameter γ
Output: Personalised BNNs {Φi|i ∈ [1, N ]}, parameterized by Wi ∼ IP(Wi|X )
Server Side -
X = AD
for t = 1 to T do

Select a subset of clients Nt

for each selected client i ∈ Nt do
Φi(X) = LocalTraining(t, Φ̄(X)(t−1),X)

end for
Φ̄(X)(t) =

∑N
j=1 wjΦj(X)

end for
Return Φ1(T ),Φ2(T ) . . .ΦN (T )

LocalTraining(t, Φ̄(X)(t−1),X)
Run inference on X to obtain Φi(X)
Generate Φcorrected

i (X) = γΦ̄(X)(t−1) + (1− γ)Φi(X)
for each prior epoch do

Minimize CrossEntropy(Φcorrected
i (X), Φ̄(X)(t−1)) to obtain prior parameters ψ of the BNN Φi

end for
for each local epoch do

Minimize KL[q(Wi|θ)||p(Wi;ψ
∗)] − Eq(Wi|θ)[logIP(X i|Wi)] over {θ : q(Wi|θ) ∈ Q} to

obtain θ∗
end for
IP(Wi|X ) ≈ q(Wi|θ∗)
Obtain K Monte-carlo samples W(j)

i : j ∈ [1,K] from IP(Wi|X )

Compute Φi(X) =
1

K

∑K
j=1 Φi(X;W(j)

i )

Return Φi(X)

C PRIVACY ANALYSIS

Some known results on differential privacy that are used to determine the privacy loss of our algorithm
are given in this section.

A generalization of differential privacy is concentrated differential privacy(CDP). And an alternative
form of concentrated differential privacy called zero-concentrated differential privacy(zCDP) was
proposed to enable tighter privacy analysis (Bun & Steinke, 2016). We will also use the zCDP notion
of privacy for our analysis. The relationship between standard DP and zCDP is shown below.
Proposition C.1 ((ϵ, δ)-DP and ρ-zCDP). For a randomized algorithm M to satisfy (ϵ, δ)-DP, it is
sufficient for it to satisfy ϵ2

4log 1
δ

-zCDP. And a randomized algorithm M that satisfies ρ-zCDP, also

satisfies (ϵ′, δ)-DP where ϵ′ = ρ+
√
4ρlog 1

δ .

As opposed to the notion of DP, the zCDP definition provides tighter bounds for the total privacy loss
under compositions, allowing better choice of the noise parameters. The privacy loss under the serial
composition and parallel composition incurred under the definition of zCDP was proved by (Yu et al.,
2019) and is recalled below.
Proposition C.2 (Sequential Composition). Consider two randomized mechanisms, M1 and M2, if
M1 is ρ1-zCDP and M2 is ρ2-zCDP, then their sequesntial composition given by (M1(),M2()) is
(ρ1 + ρ2)-zCDP.
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Proposition C.3 (Parallel Composition). Let a mechanism M consists of a sequence of k adaptive
mechanisms, (M1,M2, . . .Mk) working on a randomized partition of the D = (D1, D2, . . . Dk),
such that each mechanism Mi is ρi-zCDP and Mt :

∏t−1
j=1 Oj × Dt → Ot, then M(D) =

(M1(D1),M2(D1), . . .Mk(Dk)) is maxi ρi-zCDP.

After computing the total privacy loss by an algorithm using the tools described above, we can
determine the variance of the noise parameter σ for a set privacy budget. The relationship of the noise
variance to privacy has been shown in prior works by (Dwork & Roth, 2014; Yu et al., 2019) and is
given below.
Definition C.4 (L2 Sensitivity). For any two neighboring datasets, D and D′ that differ in at most
one data point, L2 sensitivity of a mechanism M is given by maximum change in the L2 norm of the
output of M on these two neighboring datasets

∆2(M) = sup
D,D′

||M(D)−M(D′)||2.

Proposition C.5 (Gaussian Mechanism). Consider a mechanism M with L2 sensitivity ∆, if on a
query q, the output of M is given as M(x) = q(x) +N (0, σ2), then M is ∆2

2σ2 -zCDP.

D CALIBRATION

Model calibration is a way to determine how well the model’s predicted probability estimates the
model’s true likelihood for that prediction. Well-calibrated models are much more important when
the model decision is used in critical applications like health, legal etc. because in those cases
managing risks and taking calculated actions require a confidence guarantee as well. Visual tools
such as reliability diagrams are often used to determine if a model is calibrated or not. In a reliability
diagram, model’s accuracy on the samples is plotted against the confidence. A perfectly calibrated
model results in an identity relationship. Other numerical metrics that could be used to measure
model calibration include Expected Calibration Error (ECE) and Maximum Calibration Error (MCE).
ECE measures the expected difference between model confidence and model accuracy whereas MCE
measures the maximum deviation between the accuracy and the confidence. The definitions and
empirical formulas used for calculating ECE and MCE are as given below.

ECE = EP̂ [IP(Ŷ = Y |P̂ = p)− p],

MCE = max
p∈[0,1]

|IP(Ŷ = Y |P̂ = p)− p|.

Empirically,

ECE =

M∑
i=1

|Bi|
n

|accuracy(Bi)− confidence(Bi)|,

MCE = max
i∈[1,M ]

|accuracy(Bi)− confidence(Bi)|,

where Bi is a bin with set of indices whose prediction confidence according to the model falls into
the range

(
i−1
M , i

M

)
. Figure 2 shows the reliability diagram along with the ECE and MCE scores for

our method measured on MNIST and CIFAR-10 dataset in the non-IID data setting.

E ALIGNMENT DATASET (AD)

In FedBNN, the alignment dataset (AD) is used to achieve collaboration across clients. Since the only
assumption on AD is for it to be of the same domain as the target application, there is no practical
constraint on obtaining the AD in real-world settings. In many cases it could be obtained from web,
for example images from common datasets in Huggingface, texts from Wikipedia, Reddit etc. The
use of AD is not different from how several other methods use an additional dataset for augmentation.
The effect of size of AD on the performance of models is demonstrated in Figure 3 for CIFAR-10
dataset in the small data and non-IID setting. In that figure, we observe that when the size of AD is
small the performance of the model is low but as the size of AD increases the performance increases
up to a point and becomes constant afterwards. The number of data points in AD that are required to
achieve good improvement in the model performance is small and practical.
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(a) Dataset: CIFAR-10, ECE: 0.070, MCE: 0.134 (b) Dataset: MNIST, ECE: 0.032, MCE: 0.156

Figure 2: Reliability diagrams and scores showing model calibration. Figure (a) is for the results
corresponding to the CIFAR-10 dataset and Figure (b) for MNIST dataset.

Figure 3: Ablation study comparing the affect of AD size on the performance. The included results
are for CIFAR-10 dataset in the small data setting with non-IID partitions and heterogeneous clients.

We also vary the distribution of the AD being used and test the final performance of the models and
report it in Table 2. We run these experiments on 20 clients for CIFAR-10 dataset where each client
had access to only 5 of the 10 classes and each client belonged to the medium data setting. For the
first experiment, we use a held-out dataset from the CIFAR-10 data as AD but vary the composition of
the dataset by changing the distribution of the classes present in the AD, for example, CIFAR10(10)
is composed of all 10 classes present in the CIFAR-10 dataset but CIFAR10(2) is composed of only 2
out of the 10 classes present in the AD and likewise. We also test the performance of our method
when a significantly different dataset SVHN consisting of the colored house number images is used.
Table 2 suggests that the performance of the method even with different datasets as AD always
improves and that the gain between local training and the proposed procedure is better highlighted in
the heterogeneous architecture settings, since there local client capacities and model architectures
differ significantly and clients are able to utilize the peer knowledge to learn better models locally.
We observed that even for different and dissimilar data distributions in AD, it is possible to obtain a
value for the parameter γ such that the final performance of the local client model with collaboration
is better than the model independently trained locally on the client. The parameter γ controls the
amount of global knowledge to be incorporated on each client and helps in regularization of the client
models which enables them to generalize better and perform better on the test data.
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Table 2: Effect of varying distribution of AD on the clients’ performance for the non-IID seeting with
CIFAR-10 dataset and 20 clients where each client has data for the 5 different classes.

Architecture Setting Local Training CIFAR10(10) CIFAR10(8) CIFAR10(5) CIFAR10(2) SVHN

Homogeneous Architectures 64.3± 0.36 72.7 ± 0.15 69.7 ± 0.28 68.8 ± 0.97 67.2 ± 1.5 70.1 ± 0.18
Heterogeneous Architectures 61.2± 0.17 71.6 ± 0.93 68.4 ± 0.80 68.8 ± 1.4 68.1 ± 1.9 69.3 ± 0.8

F COMMUNICATION AND COMPUTATION EFFICIENCY

Communication Cost In FedBNN, each global communication round requires that the server sends
the alignment dataset to all the clients and the clients upload the outputs of their respective models on
the common dataset AD. Since AD is a publicly available dataset, AD could be transmitted to the
clients by specifying the source and the indices, and does not really needs to be communicated across
the channel. The client output on AD, on the other hand, depends on the number of instances in AD,
let’s call it K, therefore, the total communication cost in each round of our method is O(K). As
shown in Figure 3, having K = 2000 gives a good performance. The communication cost between
the clients and the server, thus, is also invariant of the number of model parameters which tends to
run in millions. This allows our method to be much more communication efficient as compared to the
conventional FL algorithms that transmit model parameters in each communication round, making it
practically more useful.

Computation Cost Similarly, the computation cost of a FL procedure involves the costs incurred
in local training at the individual clients and the cost of aggregation at the server, both of which are
discussed below.

• Server-side computation cost The server side computation cost arises from the need to
aggregate knowledge obtained from individual clients. In the state-of-the-art bayesian FL
algorithms, the server aggregates posterior distributions for each weight parameter in the
neural network obtained from various clients. The number of such weight parameters
typically run in millions. In our method we do not aggregate the parameter distributions but
achieve collaboration by aggregating the client outputs on the AD (with size 2000), thus
the server side computation cost in our method is many orders of magnitude lower than the
conventional methods and does not depend on the number of model parameters. This makes
our method much more efficient and scalable than existing federated bayesian solutions.

• Client-side computation cost The client-side computation cost is mostly determined by
the cost of training a Bayesian Neural Network at the client side, which in turn depends on
the type of inference procedure used for obtaining the posterior distribution over weights
for each parameter of the neural network. In the proposed work, the method used for
inference is Bayes by Backprop which uses the gradient computations similar to backpropa-
gation(BP) algorithm to obtain the posterior distributions where the posterior distributions
are characterized by the mean and standard deviation. A re-parameterization trick is used
to compute the mean and std of the distributions from the backpropagated gradients. Thus
the cost for obtaining the posterior distributions is similar to the cost of backpropagation.
Moreover, since the method only uses gradient updates, the optimizations used for SGD like
asynchronous SGD etc. could be readily used for obtaining the posteriors. An unrelated but
similar algorithm in (Hernández-Lobato & Adams, 2015) does probabilistic backpropagation
to train BNNs and shows that the average run time of probabilistic BP is not higher than that
of BP.

To summarize, the communication cost and the server-side computation cost of the proposed method
is orders of magnitude lower than that of the other Bayesian baseline methods. On the other hand, the
client-side computation cost is determined by the inference procedure used to obtain the posterior
distributions and for which Bayes by Backprop provides an efficient mechanism. Several works
in the recent past have discussed the use of related Bayesian inference based methods for training
uncertainty-aware transformers (Zheng et al., 2023; Tian et al., 2023; Maged & Xie, 2022) proving
that Bayesian methods are not limited to use in simpler models. And therefore, our framework can
also be extended to apply in settings where much larger neural networks are required.
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Table 3: Performance comparison as a function of the privacy guarantee.

Privacy (ϵ) per round Test Accuracy

≈ 1 75.5 %
≈ 0.1 71.3 %
≈ 0.01 68.6 %
≈ 0.001 62.2 %
≈ 0.0001 59.6 %

Table 4: Test accuracy comparison with more number of clients (500) in the setting.

Method Test Accuracy

pFedGP 53.2 ± 0.4
pFedBayes 52.9 ± 0.8
Ours(Homo) 56.1 ± 0.3
Ours(Hetero) 54.7 ± 1.0

G ADDITIONAL EXPERIMENTS

Privacy vs Performance Since the amount of noise required to be added to the client’s outputs
via the Gaussian Mechanism is directly proportional to the guaranteed privacy, we test the affect of
the privacy guarantee on the performance of the proposed framework by comparing the performance
of the method with varying ϵ and δ = 10−4. The results are reported in Table 3. We observe that,
as expected, when we reduce the amount of privacy loss in each iteration by adding more noise to
the clients’ outputs going to the server, the performance of the method drops. However the drop in
performance in all the cases is not drastic as the clients can tune the level of personalization or global
knowledge required by appropriately setting the parameter γ in Equation 3.

More clients To test the performance of the proposed method when a large number of clients are
involved in the setup, we did additional experiments with 500 clients and non-IID setting with 5
classes per client in the medium data setting on the CIFAR-10 dataset where in each communication
round only 10% of the clients are selected for participation and γ = 0.7. The obtained results at
the end of 200th communication round are reported in Table 4. We observe that the homogeneous
version of our method is better than the baselines by a significant margin and the heterogeneous
version is slightly better than the baselines.
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