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ABSTRACT

Most offline reinforcement learning (RL) algorithms return a target policy maximiz-
ing a trade-off between (1) the expected performance gain over the behavior policy
that collected the dataset, and (2) the risk stemming from the out-of-distribution-
ness of the induced state-action occupancy. It follows that the performance of the
target policy is strongly related to the performance of the behavior policy and, thus,
the trajectory return distribution of the dataset. We show that in mixed datasets
consisting of mostly low-return trajectories and minor high-return trajectories, state-
of-the-art offline RL algorithms are overly restrained by low-return trajectories and
fail to exploit high-performing trajectories to the fullest. To overcome this issue, we
show that, in deterministic MDPs with stochastic initial states, the dataset sampling
can be re-weighted to induce an artificial dataset whose behavior policy has a higher
return. This re-weighted sampling strategy may be combined with any offline RL
algorithm. We further analyze that the opportunity for performance improvement
over the behavior policy correlates with the positive-sided variance of the returns
of the trajectories in the dataset. We empirically show that while CQL, IQL, and
TD3+BC achieve only a part of this potential policy improvement, these same al-
gorithms combined with our reweighted sampling strategy fully exploit the dataset.
Furthermore, we empirically demonstrate that, despite its theoretical limitation, the
approach may still be efficient in stochastic environments. The code is available at
https://github.com/Improbable—-AI/harness—-offline-rl.

1 INTRODUCTION

Offline reinforcement learning (RL) currently receives great attention because it allows one to
optimize RL policies from logged data without direct interaction with the environment. This makes
the RL training process safer and cheaper since collecting interaction data is high-risk, expensive,
and time-consuming in the real world (e.g., robotics, and health care). Unfortunately, several papers
have shown that near optimality of the offline RL task is intractable sample-efficiency-wise (Xiao
et al., 2022; Chen & Jiang, 2019; Foster et al., 2022).

In contrast to near optimality, policy improvement over the behavior policy is an objective that
is approximately realizable since the behavior policy may efficiently be cloned with supervised
learning (Urbancic, 1994; Torabi et al., 2018). Thus, most practical offline RL algorithms incorporate
a component ensuring, either formally or intuitively, that the returned policy improves over the
behavior policy: pessimistic algorithms make sure that a lower bound on the target policy (i.e., a
policy learned by offline RL algorithms) value improves over the value of the behavior policy (Petrik
et al., 2016; Kumar et al., 2020b; Buckman et al., 2020), conservative algorithms regularize their
policy search with respect to the behavior policy (Thomas, 2015; Laroche et al., 2019; Fujimoto
et al., 2019), and one-step algorithms prevent the target policy value from propagating through
bootstrapping (Brandfonbrener et al., 2021). These algorithms use the behavior policy as a stepping
stone. As a consequence, their performance guarantees highly depend on the performance of the
behavior policy.

*Work done while at Microsoft Research Montreal.
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Due to the dependency on behavior policy performance, these offline RL algorithms are susceptible
to the return distribution of the trajectories in the dataset collected by a behavior policy. To illustrate
this dependency, we will say that these algorithms are anchored to the behavior policy. Anchoring
in a near-optimal dataset (i.e., expert) favors the performance of an algorithm, while anchoring
in a low-performing dataset (e.g., novice) may hinder the target policy’s performance. In realistic
scenarios, offline RL datasets might consist mostly of low-performing trajectories with few minor high-
performing trajectories collected by a mixture of behavior policies, since curating high-performing
trajectories is costly. It is thus desirable to avoid anchoring on low-performing behavior policies and
exploit high-performing ones in mixed datasets. However, we show that state-of-the-art offline RL
algorithms fail to exploit high-performing trajectories to their fullest. We analyze that the potential
for policy improvement over the behavior policy is correlated with the positive-sided variance (PSV)
of the trajectory returns in the dataset and advance that when the return PSV is high, the algorithmic
anchoring may be limiting the performance of the returned policy.

In order to provide a better algorithmic anchoring, we propose to alter the behavior policy without
collecting additional data. We start by proving that re-weighting the dataset during the training
of an offline RL algorithm is equivalent to performing this training with another behavior policy.
Furthermore, under the assumption that the environment is deterministic, by giving larger weights
to high-return trajectories, we can control the implicit behavior policy to be high performing and
therefore grant a cold start performance boost to the offline RL algorithm. While determinism is
a strong assumption that we prove to be necessary with a minimal failure example, we show that
the guarantees still hold when the initial state is stochastic by re-weighting with, instead of the
trajectory return, a trajectory return advantage: G(7;) — V#(s; ), where G(7;) is the return obtained
for trajectory i, V#(s; o) is the expected return of following the behavior policy y from the initial
state s; o. Furthermore, we empirically observe that our strategy allows performance gains over their
uniform sampling counterparts even in stochastic environments. We also note that determinism is
required by several state-of-the-art offline RL algorithms (Schmidhuber, 2019; Srivastava et al., 2019;
Kumar et al., 2019b; Chen et al., 2021; Furuta et al., 2021; Brandfonbrener et al., 2022).

Under the guidance of theoretical analysis, our principal contribution is two simple weighted sampling
strategies: Return-weighting (RW) and Advantage-weighting (AW). RW and AW re-weight
trajectories using the Boltzmann distribution of trajectory returns and advantages, respectively. Our
weighted sampling strategies are agnostic to the underlying offline RL algorithms and thus can be a
drop-in replacement in any off-the-shelf offline RL algorithms, essentially at no extra computational
cost. We evaluate our sampling strategies on three state-of-the-art offline RL algorithms, CQL, IQL,
and TD3+BC (Kumar et al., 2020b; Kostrikov et al., 2022; Fujimoto & Gu, 2021), as well as behavior
cloning, over 62 datasets in D4RL benchmarks (Fu et al., 2020). The experimental results reported
in statistically robust metrics (Agarwal et al., 2021) demonstrate that both our sampling strategies
significantly boost the performance of all considered offline RL algorithms in challenging mixed
datasets with sparse rewarding trajectories, and perform at least on par with them on regular datasets
with evenly distributed return distributions.

2 PRELIMINARIES

We consider reinforcement learning (RL) problem in a Markov decision process (MDP) characterized
by atuple (S, A, R, P, pg), where S and A denote state and action spaces, respectively, R : S X A —
R is a reward function, P : S x A — Ag is a state transition dynamics, and pg : Ag is an initial
state distribution, where Ay denotes a simplex over set X. An MDP starts from an initial state
S0 ~ po. At each timestep ¢, an agent perceives the state s;, takes an action a; ~ 7(.|s;) where
m: S — A4 is the agent’s policy, receives a reward r; = R(s;, a;), and transitions to a next state
St+1 ~ P(s¢+1|8t,a¢). The performance of a policy 7 is measured by the expected return J(7)
starting from initial states sg ~ pg shown as follows:

ZR(st,at)

t=0

J(m)=E 80 ~ po,ar ~ w(.|8t), St41 ~ P(.|st,ar)| (D
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Given a dataset D collected by a behavior policy p : S — A 4, offline RL algorithms aim to learn a
target policy 7 such that J(7) > J(u) from a dataset D shown as follows:

D:{ 00050 Ti0y " " Si T, Si,ONp()? a/i,tN:u’('|si,t)a }7 2

(si0 010,70, 8i,7,) Tig = R(sip, i), Sigr1 ~ P([sie, i) @

where 7; = (84,0, @i 0,70, - - Si,1,+1) denotes trajectory ¢ in D, (%, ) denotes timestep ¢ in episode
1, and T; denotes the length of 7;. Note that i can be a mixture of multiple policies. For brevity, we
omit the episode index ¢ in the subscript of state and actions, unless necessary. Generically, offline
RL algorithms learn 7 based on actor-critic methods that train a Q-value function @ : S x A — R
and 7 in parallel. The Q-value Q(s, a) predicts the expected return of taking action « at state s and
following 7 later; m maximizes the expected Q-value over D. @) and 7 are trained through alternating
between policy evaluation (Equation 3) and policy improvement (Equation 4) steps shown below:

Q argéninE[ (rt + VEa mn(sisr) [Q(St41,0")] — Q(st7at))2 ‘ Uni(D)] 3)
T argmaXE[Q(st, a) ‘ Uni(D),a ~ 7(.|s¢) ], 4)

where E[ - | Uni(D)] denotes an expectation over uniform sampling of transitions.

3 PROBLEM FORMULATION

Most offline RL algorithms are anchored to the behavior policy. This is beneficial when the dataset
behavior policy is high-performing while detrimental when the behavior policy is low-performing.
We consider mixed datasets consisting of mostly low-performing trajectories and a handful of high-
performing trajectories. In such datasets, it is possible to exploit the rare high-performing trajectories,
yet the anchoring restrains these algorithms from making sizable policy improvements over the
behavior policy of the mixed dataset. We formally define the return positive-sided variance (RPSV)
of a dataset in Section 3.1 and illustrate why the performance of offline RL algorithms could be
limited on high-RPSV datasets in Section 3.2.

3.1 POSITIVE-SIDED VARIANCE

Formally, we are concerned with a dataset D := {79, 71, - - - Tv—_1 } potentially collected by various be-
havior policies { o, pt1, - - - tv—1 } and constituted of empirical returns {G(79), G(11), - - G(7n-1)},
where 7; is generated by p;, N is the number of trajectories, 7; denotes the length of 7;, and
G(r) = Zthgl r;.¢. To study the distribution of return, we equip ourselves with a statistical quantity:
the positive-sided variance (PSV) of a random variable X:

Definition 1 (Positive-sided variance). The positive-sided variance (PSV) of a random variable X is
the second-order moment of the positive component of X — E[X]:

Vi[X] =E [(X —E[X])2| with =, =max{z,0}. (5)

The return PSV (RPSV) of D aims at capturing the positive dispersion of the distribution of the
trajectory returns. An interesting question to ask is: what distribution leads to high RPSV? We
simplify sampling trajectories collected by a novice and an expert as sampling from a Bernoulli
distribution 5, and suppose that the novice policy always yields a O return, while the expert always
yields a 1 return. Figure 1a visualizes V [B(p)] = p(1 — p)?, which is the Bernoulli distribution’s
PSV as a function of its parameter p, where p is the probability of choosing an expert trajectory. We
see that maximal PSV is achieved for p = % Both p = 0 (pure novice) and p = 1 (pure expert)
leads to a zero PSV. This observation indicates that mixed datasets tend to have higher RPSV than a
dataset collected by a single policy. We present the return distribution of datasets at varying RPSV in
Figure 1. Low-RPSV datasets have their highest returns that remain close to the mean return, which
limits the opportunity for policy improvement. In contrast, the return distribution of high-RPSV
datasets disperses away from the mean toward the positive end.
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Figure 1: (a) Bernoulli distribution PSV: V, [B(p)] = p(1 — p)?. (b-¢) The return distribution of
datasets with (b) low and (c) high return positive-sided variance (RPSV) (Section 3.1) , where RPSV
measures the positive contributions in the variance of trajectory returns in a dataset and G denotes
the average episodic returns (dashed line) of the dataset. Intuitively, a high RPSV implies some
trajectories have far higher returns than the average.

3.2 OFFLINE RL FAILS TO UTILIZE DATA IN HIGH-RPSV DATASETS

High-RPSV datasets (Figure 1c) have a handful of high-return trajectories, yet the anchoring of
offline RL algorithms on behavior policy inhibits offline RL from utilizing these high-return data
to their fullest. Predominating low-return trajectories in a high-RPSV dataset restrain offline RL
algorithms from learning a non-trivial policy close to the best trajectories in D due to these algorithms’
pessimistic and/or conservative nature. High RPSV implies that the average episodic return is far
from the best return in D (see Figure 1c). The average episodic return reflects the performance J (1)
(formally justified in Section 4.1) of the behavior policy p that collected D, where p is mixture of

{po, 41, - - ppn—1} (Section 3.1).

Pessimistic algorithms (Petrik et al., 2016; Kumar et al., 2020b; Buckman et al., 2020) strive to
guarantee the algorithm returns a 7 such that J(m) > J(u), but this guarantee is loose when
J(u) is low. Conservative algorithms (Laroche et al., 2019; Fujimoto et al., 2019; Fujimoto &
Gu, 2021; Kumar et al., 2019a) restrict 7 to behave closely to p to prevent exploiting poorly
estimated Q-values on out-of-distribution state-action pairs in actor-critic updates (i.e., (s¢11,a’) ¢ D
in Equation 3), hence restricting J(7) from deviating too much from J(u). Similarly, one-step
algorithms (Brandfonbrener et al., 2021; Kostrikov et al., 2022) that perform only a single step of
policy improvement return a target policy subject to constraints that enforces 7 to be close to u
(Peters & Schaal, 2007; Peng et al., 2019). As a consequence, offline RL algorithms are restrained by
J () and fail to utilize high-return data far from J(u) in high-RPSV datasets.

On the contrary, in low-RPSV datasets (Figure 1b), pessimistic, conservative, and one-step algorithms
do not have this severe under-utilization issue since the return distribution concentrates around or
below the average episodic return, and there are very few to no better trajectories to exploit. We
will show, in Section 5.2, that no sampling strategy makes offline RL algorithms perform better in
extremely low-RPSV datasets, while in high-RPSV datasets, our methods (Sections 4.2 and 4.3)
outperform typical uniform sampling substantially.

4 METHOD

Section 3 explains why behavior policy anchoring prevents offline RL algorithms from exploiting
high-RPSV datasets to their fullest. To overcome this issue, the question that needs to be answered is:
can we improve the performance of the behavior policy without collecting additional data? To do so,
we propose to implicitly alter it through a re-weighting of the transitions in the dataset. Indeed, we
show that weighted sampling can emulate sampling transitions with a different behavior policy. We
analyze the connection between weighted sampling and performance of the implicit behavior policy
in Section 4.1, and then present two weighted sampling strategies in Sections 4.2 and 4.3.

4.1 ANALYSIS

We start by showing how re-weighting the transitions in a dataset emulates sampling transitions
generated by an implicit mixture behavior policy different from the one that collected the dataset. It
is implicit because the policy is defined by the weights of transitions in the dataset. As suggested
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in Peng et al. (2019), sampling transitions from D defined in Section 3 is equivalent to sampling

state-action pairs from a weighted joint state-action occupancy: dyy (s, a) = va 01 widy, (s)pi(als),
where w; is the weight of trajectory ¢ (each 7; is collected by p;), W = {wp, - -wy_1}, and
d,, (s) denotes the unnormalized state occupancy measure (Laroche et al., 2022) in the rollout
of u;. Tweaking weighting W effectively alters dyy and thus the transition distribution during
sampling. As Peng et al. (2019) suggested, a weighting V also induces a weighted behavior policy:

uw(als) = % Uniform sampling w; = 47, Vw; € W is equivalent to sampling from

the joint state-action occupancy of the original mixture behavior policy u that collected D. To obtain
a well-defined sampling distribution over transitions, we need to convert these trajectory weights w;
to transitions sample weights w; ¢, Vt € [[0 T, —1]:

—1T;—-1
. w; .

Thus, we formulate our goal as finding W = {w;}icpo,n—1] € An such that J(uw) > J(u),

where Ay denotes the simplex of size N. Naturally, we can write J(uw) = vag w;J (p;). The
remaining question is then to estimate J(u;). The episodic return G(7;) can be treated as a sample
of J(u;). As a result, we can concentrate J(uyy) near the weighted sum of returns with a direct
application of Hoeffding’s inequality (Serfling, 1974):

62
> €:| S 2eXp ﬁ (7)
=0

where G+ = Gyax — Gy is the return interval amplitude (see Hoeffding’s inequality). For complete-
ness, the soundness of the method is proved for any policy and MDP with discount factor (Sutton &
Barto, 2018) less than 1 in Appendix A.1. Equation 7 tells us that we have a consistent estimator for
J(uw) as long as too much mass has not been assigned to a small set of trajectories.

P [|Iw) = 25 wiG(m)

Since our goal is to obtain a behavior policy with a higher performance, we would like to give high
weights w; to high performance p;. However, it is worth noting that setting w; as a function of G,
could induce a bias in the estimator of J(uy) due to the stochasticity in the trajectory generation,
stemming from pg, P, and/or p;. In that case, Equation 7 concentration bound would not be valid
anymore. To demonstrate and illustrate the bias, we provide a counterexample in Appendix A.3.
The following section addresses this issue by making the strong assumption of determinism of the
environment, and applying a trick to remove the stochasticity from the behavior policy p;. Section
4.3 then relaxes the requirement for pg to be deterministic by using the return advantage instead of
the absolute return.

4.2 RETURN-WEIGHTING

In this section, we are making the strong assumption that the MDP is deterministic (i.e., the transition
dynamics P and the initial state distribution py is a Dirac delta distribution). This assumption allows
us to obtain that G(7;) = J (1), where p; is the deterministic policy taking the actions in trajectory
7;'. Since the performance of the target policy is anchored on the performance of a behavior policy,
we find a weighting distribution W to maximize J(uw):

N-1

WnéaAXN . w;G(13), (8)
1=0
where w; corresponds to the unnormalized weight assigned to each transition in episode i. However,
the resulting solution is trivially assigning all the weights to the transitions in episode 7; with
maximum return. This trivial solution would indeed be optimal in the deterministic setting we
consider but would fail otherwise. To prevent this from happening, we classically incorporate entropy
regularization and turn Equation 8 into:

7 z_ 21 19 9
WnéaAXN;w Ti osz og w; 9)

!The formalization of j; is provided in Appendix A.1
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where o € R™ is a temperature parameter that controls the strength of regularization. « interpolates
the solution from a delta distribution (o« — 0) to an uniform distribution (o« — o0). As the optimal
solution to Equation 9 is a Boltzmann distribution of G(7;), the resulting weighting distribution W is:
exp G(1;)/a
i = .
Zq—i ep €XP G(TZ)/a

(10)

The temperature parameter o (Equations 10 and 11) is a fixed hyperparameter. As the choice of « is

dependent on the scale of episodic returns, which varies across environments, we normalize G(7;)
G(7i)—min; G(7;)

max; G(7;)—min; G(7;)"

using a max-min normalization: G(7;) <

4.3 ADVANTAGE-WEIGHTING

In this section, we allow the initial state distribution pg to be stochastic. The return-weighting strategy
in Section 4.2 could be biased toward some trajectories starting from lucky initial states that yield
higher returns than other initial states. Thus, we change the objective of Equation 9 to maximizing
the weighted episodic advantage >, ), w; A(7;) with entropy regularization. A(;) denotes the

episodic advantage of 7; and is defined as A(7;) = G(7;) — V*(si0). V*(s;0) is the estimated

expected return of following p starting from s; ¢, using regression: VH arg miny, E [(G (13) —
V(si0))* | Uni(D)]. Substituting G(7;) with A(7;) in Equation 9 and solving for W, we obtain the
following weighting distribution:
exp A(1;)/« -
w; = ,ATi :GTi —VMSL . (11)
Z-,—,Lep eXpA(Ti)/Oé ( ) ( ) ( 0)

5 EXPERIMENTS

Our experiments answer the following primary questions: (i) Do our methods enable offline RL
algorithms to achieve better performance in datasets with sparse high-return trajectories? (ii) Does
our method benefit from high RPSV? (iii) Can our method also perform well in regular datasets? (iv)
Is our method robust to stochasticity in an MDP?

5.1 SETUP

Implementation. We implement our weighted-sampling strategy and baselines in the following
offline RL algorithms: implicit Q-learning (IQL) (Kostrikov et al., 2022), conservative Q-learning
(CQL) (Kumar et al., 2020b), TD3+BC (Fujimoto & Gu, 2021), and behavior cloning (BC). IQL,
CQL, and TD3+BC were chosen to cover various approaches of offline RL, including one-step,
pessimistic, and conservative algorithms. Note that though BC is an imitation learning algorithm, we
include it since BC clones the behavior policy, which is the object we directly alter, and BC is also a
common baseline in offline RL research (Kumar et al., 2020b; Kostrikov et al., 2022).

Baselines. We compare our weighted sampling against uniform sampling (denoted as Uniform),
percentage filtering (Chen et al., 2021) (denoted as Top-x %), and half-sampling (denoted as Half).
Percentage filtering only uses episodes with top-x% returns for training. We consider percentage
filtering as a baseline since it similarly increases the expected return of the behavior policy by
discarding some data. In the following, we compare our method against Top-10% since 10% is the
best configuration found in the hyperparameter search (Appendix A.11). Half-sampling samples half
of transitions from high-return and low-return trajectories, respectively. Half is a simple workaround
to avoid over-sampling low-return data in datasets consisting of only sparse high-return trajectories.
Note that Half requires the extra assumption of separating a dataset into high-return and low-return
partitions, while our methods do not need this. Our return-weighted and advantage-weighted strategies
are denoted as RW and AW, respectively, for which we use the same hyperparameter « in all the
environments (see Appendix A.7).

Datasets and environments. We evaluate the performance of each algorithm+sampler variant
(i.e., the combination of an offline RL algorithm and a sampling strategy) in MuJoCo locomotion
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Figure 2: Our RW and AW sampling strategies achieve higher returns (y-axis) than all baselines
(color) on average consistently for all algorithms CQL, IQL, BC, and TD3+BC, at all datasets with
varying high-return data ratios 0% (x-axis). Remarkably, our performances in four algorithms exceed
or match the average returns (dashed lines) of these algorithms trained with uniform sampling in full
expert datasets. The substantial performance gain over Uniform at low ratios (1% < ¢% < 10%)
shows the advantage of our methods in datasets with sparse high-return trajectories.

environments of D4RL benchmarks (Fu et al., 2020) and stochastic classic control benchmarks. Each
environment is regarded as an MDP and can have multiple datasets in a benchmark suite. The dataset
choices are described in the respective sections of the experimental results. We evaluate our method in
stochastic classic control to investigate if stochastic dynamics break our weighted sampling strategies.
The implementation of stochastic dynamics is presented in Appendix A.6.

Evaluation metric. An algorithm+sampler variant is trained for one million batches of updates
in five random seeds for each dataset and environment. Its performance is measured by the average
normalized episodic return of running the trained policy over 20 episodes in the environment. As
suggested in Fu et al. (2020), we normalize the performance using (X — Xgrandom )/ (XEzpert —
XRrandom) Where X, Xprandom, and Xpggper: denote the performance of an algorithm-sampler
variant, the random policy, and the expert one, respectively.

5.2 RESULTS IN MIXED DATASETS WITH SPARSE HIGH-RETURN TRAJECTORIES

To answer whether our weighted sampling methods improve the performance of uniform sampling
in datasets with sparse high-return trajectories, we create mixed datasets with varying ratios of
high-return data. We test each algorithm+sampler variant in four MuJoCo locomotion environments
and eight mixed datasets, and one non-mixed dataset for each environment. The mixed datasets
are created by mixing 0% of either an expert or medium datasets (high-return) with (1 — c%)
of a random dataset (low-return), for four ratios, o € {1,5,10,50}. The expert, medium,
and random datasets are generated by an expert policy, a policy with 1/3 of the expert policy
performance, and a random policy, respectively. We test all the variants in those 32 mixed datasets
and random dataset.

Figure 2 shows the mean normalized performance (y-axis) of each algorithm-+sampler (color) variant
at varying o (x-axis). Each algorithm-+sampler variant’s performance is measured in the interquartile
mean (IQM) (also known as 25%-trimmed mean) of average return (see Section 5.1) since IQM is
less susceptible to the outlier performance as suggested in Agarwal et al. (2021). Appendix A.8
details the evaluation protocol.

It can be seen that in Figure 2 our RW and AW strategies significantly outperform the baselines
Uniform, Top-10%, and Half for all algorithms at at all expert/medium data ratio o%. Remarkably,
our methods even exceed or match the performance of each algorithm trained in full expert datasets
with uniform sampling (dashed lines). This implies that our methods enable offline RL algorithms
to achieve expert level of performance by 5% to 10% of medium or expert trajectories. Uniform
fails to exploit to the fullest of the datasets when high-performing trajectories are sparse (i.e., low
o). Top-10% slightly improves the performance, yet fails to Uniform in low ratios (c% = 1%),
which implies the best filltering percentage might be dataset-dependent. Half consistently improves
Uniform slightly at all ratios, yet the amounts of performance gain are far below ours. Overall, these
results suggest that up-weighting high-return trajectories in a dataset with low ratios of high-return
data benefits performance while naively filtering out low-return episodes, as Top-10% does, does not
consistently improve performance. Moreover, AW and RW do not show visible differences, likely
because the initial state distribution is narrow in MuJoCo locomotion environments. We also include
the average returns in each environment and dataset in Appendix A.13. In addition to average return,
we also evaluate our methods in the probability of improvements (Agarwal et al., 2021) over uniform
sampling and show statistically significant improvements in Appendix A.10.
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Figure 3: The left end (average return between O to 0.1) of each plot shows that for all offline RL.
algorithms (CQL, IQL, and TD3+BC) and BC, our AW and RW sampling methods’ performance
gain grows when RPSV increases. The color denotes the performance (average return) gain over the
uniform sampling baseline in the mixed datasets and environments tested in Section 5.2; the x-axis
and y-axis indicate the average return of a dataset and RPSV of the dataset, respectively.

5.3 ANALYSIS OF PERFORMANCE GAIN IN MIXED DATASETS

We hypothesize that our methods’ performance gain over uniform sampling results from increased
RPSV in the datasets. The design of a robust predictor for the performance gain of a sampling
strategy is not trivial since offline RL’s performance is influenced by several factors, including the
environment and the offline RL algorithm that it is paired with. We focus on two statistical factors
that are easy to estimate from the dataset: (i) the mean return of a dataset and (ii) RPSV. Although
dependent on each other, these two factors have a good variability in our experiments since increasing
the ratio of expert/medium data would increase not only RPSV but also the mean return of a dataset.

We show the relationship between the performance gain over uniform sampling (represented by
the color of the dot in the plots below), datasets’ mean return (x-axis), and RPSV (y-axis, in log
scale) in Figure 3. Each dot denotes the average performance gain in a tuple of environment, dataset,
and o. It can be seen that at similar mean returns (x-axis), our methods’ performance gain grows
evidently (color gets closer to red) when RPSV increases (y-axis). This observation indicates that the
performance gain with low o (expert/medium data ratio) in Figure 2 can be related to the performance
gain at high RPSV since most datasets with low mean returns have high RPSV in our experiments.
We also notice that a high dataset average return may temper our advantage. The reason is that offline
RL with uniform sampling is already quite efficient in the settings where o is in a high range, such as
50%, and that the room for additional improvement over it is therefore limited.

5.4 RESULTS IN REGULAR DATASETS WITH MORE HIGH-RETURN TRAJECTORIES

Datasets in Section 5.2 are adversarially created to test the performance with extremely sparse
high-return trajectories. However, we show in Figure 5 that such challenging return distributions
are not common in regular datasets in D4RL benchmarks. As a result, regular datasets are easier
than mixed datasets with sparse high-return trajectories for the uniform sampling baseline. To show
that our method does not lose performance in regular datasets with more high-return trajectories,
we also evaluate our method in 30 regular datasets from D4RL benchmark (Fu et al., 2020) using
the same evaluation metric in Section 5.1, and present the results in Figure 4a. It can be seen that
our methods both exhibit performance on par with the baselines in regular datasets, confirming
that our method does not lose performance. Note that we do not compare with Half since regular
datasets collected by multiple policies cannot be split into two buffers. Notably, we find that with
our RW and AW, BC achieves competitive performance with other offline RL algorithms (i.e., CQL,
IQL, and TD3+BC). The substantial improvement over uniform sampling in BC aligns with our
analysis (Section 4.1) since the performance of BC solely depends on the performance of behavior
policy and hence the average returns of sampled trajectories. Nonetheless, paired with RW and AW,
offline RL algorithms (i.e., CQL, IQL, and TD3+BC) still outperform BC. This suggests that our
weighted sampling strategies do not overshadow the advantage of offline RL over BC. The complete
performance table can be found in Appendix A.13. We also evaluate our methods’ probability of
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Figure 4: (a) Our method matches the Uniform’s return (y-axis). It indicates that our methods do
not lose performance in datasets consisting of sufficient high-return trajectories. These datasets are
regular datasets in DARL without adversarially mixing low-return trajectories as we do in Section 5.2.
(b) Performance in classic control tasks with stochastic dynamics. Our method outperforms the
baselines, showing that stochasticity do not break our methods.

improvements (Agarwal et al., 2021) over uniform sampling, showing that our methods are no worse
than baselines in Appendix A.8.1.

5.5 RESULTS IN STOCHASTIC MDPs

As our weighted-sampling strategy theoretically requires a deterministic MDP, we investigate if
stochastic dynamics (i.e., stochastic state transitions) break our method by evaluating it in stochastic
control environments. The details of their implementation can be found in Appendix A.6. We use the
evaluation metric described in Section 5.1 and present the results in Figure 4b. Both of our methods
still outperform uniform sampling in stochastic dynamics, suggesting that stochasticity does not break
them. Note that we only report the results with CQL since IQL and TD3+BC are not compatible with
the discrete action space used in stochastic classic control.

6 RELATED WORKS

Our weighted sampling strategies and non-uniform experience replay in online RL aim to improve
uniform sample selection. Prior works prioritize uncertain data (Schaul et al., 2015; Horgan et al.,
2018; Lahire et al., 2021), attending on nearly on-policy samples (Sinha et al., 2022), or select
samples by topological order Hong et al. (2022); Kumar et al. (2020a). However, these approaches do
not take the performance of implicit behavioral policy induced by sampling into account and hence
are unlikely to tackle the issue in mixed offline RL datasets.

Offline imitation learning (IL) (Kim et al., 2021; Ma et al., 2022; Xu et al., 2022) consider training an
expert policy from a dataset consisting of a handful of expert data and plenty of random data. They
train a model to discriminate if a transition is from an expert and learn a nearly expert policy from the
discriminator’s predictions. Conceptually, our methods and offline IL aim to capitalize advantageous
data (i.e., sparse high-return/expert data) in a dataset despite different problem settings. Offline IL
require that expert and random data are given in two separated buffer, but do not need reward labels.
In contrast, we do not require separable datasets but require reward labels to find advantageous data.

7 DISCUSSION

Importance of learning sparse high-return trajectories. Though most regular datasets in main-
stream offline RL benchmarks such as D4RL have more high-return trajectories than mixed datasets
studied in Section 5.2, it should be noted that collecting these high-return data is tedious and could be
expensive in realistic domains (e.g., health care). Thus, enabling offline RL to learn from datasets
with a limited amount of high-return trajectories is crucial for deploying offline RL in more realistic
tasks. The significance of our work is a simple technique to enable offline RL to learn from a handful
of high-return trajectories.

Limitation. As our methods require trajectory returns to compute the sample weights, datasets
cannot be partially fragmented trajectories, and each trajectory needs to start from states in the initial
state distribution; otherwise, trajectory return cannot be estimated. One possible approach to lift this
limitation is estimating the sample weight using a learned value function so that one can estimate the
expected return of a state without complete trajectories.
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A APPENDIX

A.1 DETAILED ANALYSIS

We consider the definitions of a policy and a Markovian policy (Laroche et al., 2022):

Definition 2 (Policy). A policy 7 represents any function mapping its trajectory history h; =
(80,0,T0 -+ St—1,04—1,T¢—1, St) to a distribution over actions 7(-|h;) € A 4, where A 4 denotes
the simplex over A. Let 11 denote the space of policies, and 11, the space of deterministic policies.

Definition 3 (Markovian policy). Policy 7 is said to be Markovian if its action probabilities only
depend on the current state sy: m(-|hy) = w(:|s;) € Aa. Otherwise, policy m is non-Markovian.
We let 11, denote the space of Markovian policies, and 11y, the space of deterministic Markovian
policies.

We make no assumption on the behavior policy 3, i.e. 8 € II. We notice that:

j(ﬁ):E[RT |7_Np036ap] :E[RT | BTNﬁaTNp(),ﬂ‘rap] :E[j(ﬁ‘r) | ﬂ‘rwﬁ] . (12)

Equation 12 is a trick that has already been used in Peng et al. (2019). We go a bit further by
constraining 3, to be a deterministic policy sampled at the start of the episode, which may be
programmatically interpreted as sampling the random seed used for the full trajectory. With a
trajectory-wise reweighting V, we obtain:

N-1

TBw) = > wiJ (Br,)- (13)

=0

Furthermore, Altman (1999) tell us that there exists a Markovian policy 3]}, with the same occupancy
measure as )y and the same performance when v < 1 in MDPs with countable state space. Laroche
et al. (2022) generalize this theorem to any MDP (including on uncountable state spaces) as long
as v < 1. Simdo et al. (2020) prove in Theorem 3.2 Eq. (12) that, in finite MDPs, any Markovian

behavior policy 5}, can be cloned with policy BA{\/’I\, from a dataset of IV trajectory up to accuracy of
12_%1 / %2 with high probability 1 — §, where 27 is the reward function amplitude.

A.2 ADDITIONAL RELATED WORKS: IMBALANCE CLASSIFICATION/REGRESSION

Mixed datasets with high RPSV are closely related to imbalanced datasets in supervised learning.
Supervised learning approaches either over-sample minority classes (Cui et al., 2019; Cao et al.,
2019; Dong et al., 2018) or sample data inversely proportional to the target value densities (Yang
et al., 2021; Steininger et al., 2021). Other works (Chawla et al., 2002; Garcia & Herrera, 2009)
synthesize samples by interpolating data points nearby the minority data. In RL, on the other hand,
over-sampling minority data (trajectories) can be harmful if the trajectory is low-return and does
not cover high-performing policies’ trajectories; in other words, naive application of over-sampling
techniques from supervised learning can hurt in an RL setting as they are agnostic to the notion of
return.

A.3 EXAMPLE OF BIAS WITH WEIGHTS THAT DEPEND ON THE REALIZATION OF THE
TRAJECTORY

We will consider a minimal example consisting of a stateless MDP (multi-arm bandit) and 2 actions
A = {aj,as}. Action a; yields a deterministic reward of 0.6. Action as Bernouilli distribution
reward with parameter p = 0.5. In other words, as is a coin flip: with 50% chance, no reward is
received and with 50% chance, a maximal reward of 1. We collect a dataset containing some number
of samples for each action. Now consider weights w; such that:

w; = . (14)
>, 1[G(r)) > 0.8
>We implicitly replace in the denominator their unweigthed term N with its weigthed version N> Zf\gl 2,

14



Published as a conference paper at ICLR 2023

Then,
N-1
Tw) =Y wiT (i) = T(u(az) =1) =05 (15)
i=0
N-1 N-1 ]l[G(Ti) > 0.8]

showing a counter-example for the concentration bound proposed in equation 7.

A.4 DATASET AVERAGE RETURN

We plot the average return of mixed and regular datasets in Figure 5. It can be seen that mixed
datasets used in Section 5.2 have lower average return than regular datasets on average. Also, we
study the relationship between average return of dataset and offline RL performance in Figure 6,
showing that increasing average return of dataset improves offline RL performance. Interestingly,
there is a sweet spot where increasing datasets’ average return starts hurting the performance. We
hypothesize that it is due to insufficient state-aciton coverage of datasets. We also present the return
distribution for each mixed dataset in Figure 7.

-0.5 0.0 0.5 1.0 1.5
Average return of dataset

1 Sparse (mixed) Dense (regular)

Figure 5: Average return of datasets. We see that mixed datasets used in Section 5.2 have lower
average return than regular datasets on average.

1Q BC TD3+BC
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Average return of dataset Average return of dataset Average return of dataset Average return of dataset
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Figure 6: The relationship between average return of dataset (x-axis) and the performance (y-axis) of
uniform sampling with an offline RL algorithm.
A.5 DATASET RPSV

We list the PSV of each dataset in Table 1.

A.6 STOCHASTIC CLASSIC CONTROL

We adapt CartPole-vl, Acrobot-vl, and MountainCar—vO0 in classic control environments
in Open AI gym (Brockman et al., 2016). For each timestep, an agent’s actions has 10% chance to be
replaced with noisy action a ~ A. As such, the transitions dynamics turns to be stochastic.
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RPSV
ant-expert-v2 (o = 1) 0.002886
ant-expert-v2 (o = 5) 0.013152
ant-expert-v2 (o = 10) 0.026764
ant-expert-v2 (o = 50) 0.151138
ant-expert-v2 0.015052
ant-full-replay-v2 0.096415
ant-medium-expert-v2 0.042611
ant-medium-replay-v2 0.038834
ant-medium-v2 (o = 1) 0.001334
ant-medium-v2 (¢ = 5) 0.006703
ant-medium-v2 (o = 10) 0.013846
ant-medium-v2 (¢ = 50) 0.075325
ant-medium-v2 0.020586
ant-random-v2 0.000092
antmaze-large-diverse-v0 0.015378
antmaze-large-play-v0 0.004538
antmaze-medium-diverse-v0 0.072896
antmaze-medium-play-v0 0.006583
antmaze-umaze-diverse-v0 0.029304
antmaze-umaze-v( 0.016956

halfcheetah-expert-v2 (¢ = 1) 0.008236
halfcheetah-expert-v2 (o = 5) 0.035784
halfcheetah-expert-v2 (o = 10) 0.063523
halfcheetah-expert-v2 (o = 50) 0.097583
halfcheetah-expert-v2 0.000130
halfcheetah-full-replay-v2 0.006521
halfcheetah-medium-expert-v2 0.028588
halfcheetah-medium-replay-v2 0.005747
halfcheetah-medium-v2 (¢ = 1) 0.001771
halfcheetah-medium-v2 (o = 5) 0.007604
halfcheetah-medium-v2 (¢ = 10)  0.013685
halfcheetah-medium-v2 (o = 50)  0.021007

halfcheetah-medium-v2 0.000110
halfcheetah-random-v2 0.000019
hopper-expert-v2 (¢ = 1) 0.000318
hopper-expert-v2 (¢ = 5) 0.001436
hopper-expert-v2 (o = 10) 0.002948
hopper-expert-v2 (¢ = 50) 0.024691
hopper-expert-v2 0.000771
hopper-full-replay-v2 0.041835
hopper-medium-expert-v2 0.064473
hopper-medium-replay-v2 0.018824
hopper-medium-v2 (o = 1) 0.000129
hopper-medium-v2 (o = 5) 0.000506
hopper-medium-v2 (o = 10) 0.001055
hopper-medium-v2 (o = 50) 0.008475
hopper-medium-v2 0.006648
hopper-random-v2 0.000025
walker2d-expert-v2 (o = 1) 0.000264
walker2d-expert-v2 (o = 5) 0.001261
walker2d-expert-v2 (o = 10) 0.002601
walker2d-expert-v2 (o = 50) 0.022037
walker2d-expert-v2 0.000030
walker2d-full-replay-v2 0.070379
walker2d-medium-expert-v2 0.027597
walker2d-medium-replay-v2 0.029698
walker2d-medium-v2 (o = 1) 0.000128
walker2d-medium-v2 (o = 5) 0.000559

walker2d-medium-v2 (o = 10) 0.001233
walker2d-medium-v2 (o = 50) 0.010165
walker2d-medium-v2 0.018411
walker2d-random-v2 0.000001

Table 1: RPSV calculated using normalized return.
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A.7 DETAILS OF IMPLEMENTATION
* Temperature .. For RW and AW, we use o = 0.1 for IQL and TD3+BC, and o« = 0.2 for
CQL.

» Trajectory advantage. We use linear regression to approximate V*. We make a training
set (s;.0, G(73)) V7; € D, and train a regression model on the training set.

* Implementation. We use the public codebase, d3r1py (Takuma Seno, 2021). For each
algorithm, we use the hyperparamters as it is.

A.8 DETAILS OF EVALUATION PROTOCOL

Performance logging. Given an environment E' and a dataset D, for each trial (i.e., a random
seed) we train each algorithm+sampler variant for one million batches using Dy and rollout the
learned policy in the environment E for 20 episodes. The average return of the 20 episodes are
booked as the performance of the trial.

Performance metric. Given a list of empirical returns of eacy trial [g1, g2, - - - |, interquantile mean
(IQM) (Agarwal et al., 2021) discards the bottom 25% and top 25% samples and calculate the mean.

A.8.1 PROBABILITY OF IMPROVEMENT

According to Agarwal et al. (2021), the probability of improvement in an environment m is defined
as:

1 N N 1, Tm,i > Ym,j
P(Xm > Ym) = m Z Z S(xm,ivym,j)a S(xm,iaym,j) = %7wm,i = Ym,j
i=1 j=1 0, Zrmi < Ym,j,

where m denote an environment index, @, ; and y,, ; denote the samples of mean of return in
trials of algorithms X and Y, respectively. We report the average probability of improvements

ﬁ Z%;()l P(X,, > Y,,) and its 95%-confidence interval using bootstrapping.

P1I cannot be directly translated into “number of winning” since PI takes the stochasticity resulting
from random seeds into account, measuring the probability of improvements in a trial with a randomly
selected seed, dataset, and environment. For example, in Figure 9, we show that our methods attain
70% probability of improvements over uniform sampling, while this does not mean we beat uniform
sampling in 70% of datasets and environments. From the complete score table in Appendix A.13, we
see that our AW and RW strategies outperform uniform sampling in at least 80% of datasets.

We want to highlight that probability of improvement (PI) measures the robustness of a method,
conveying different messages than the average performance shown in Figure 2 and Figure 4a. PI
measures “how likely is a method to perform better than uniform sampling in a randomly selected
environment, dataset, and random seed?” PI captures the uncertainty among random seeds while
aggregated metrics like average performance does not. For example, suppose we have 5 trials with
different random seeds on the same environment and dataset for two methods A and B. The fact that
A has a higher average return than B, does not follow that A always performs better than B in all
trials. It is possible that A is worse than B in some trials. Comparing only the average return, one
would mis-conclude that A is certainly better than B. Instead, PI answers “how likely is A to be better
than B?”

PI is important for algorithm selection since it measures the robustness of a method. One can have
extremely a high performance gain in a few tasks and lose to baselines in the majority of tasks. If so,
this new method would not always outperform baselines, which makes it not robust. A robust method
should consistently improve baselines and not lose performance in most tasks.

Robustness of a method is important for a user to decide whether or not to prefer the new method
over the existing method (i.e., baselines). As offline RL algorithms’ performance interplay with
several factors (e.g., dataset properties, environment dynamics, reward functions, etc), it is unlikely
to accurately predict what conditions make the new method perform the best. Lacking of perfect
knowledge of the best condition for the new method, it is unclear whether a user should deploy the
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new method on a new task that does not have benchmarking results yet. As a result, robustness is
crucial when selecting an algorithm for a new task. If the new method is shown to be robust and
perform better than the baseline in most trials (i.e., high PI), it would be worth preferring the new
method over the baseline. In contrast, it’s not worth using the new method if the new method has PI
below 50

A.9 SENSITIVITY TO TEMPERATURE

The temperature « (Section 4) is an important hyperparameter of our method. We investigate how
sensitive the choice of temperature algorithms is. Using the evaluation metric shown in Section 5.1,
we compare the performance of RW and AW paired with IQL at varying temperature « in Figure 8,
where 0.1 is the temperature used in Sections 5.2, 5.4, and 5.5. Our methods outperform uniform
sampling in a range of temperatures and hence are not overly sensitive to temperature. The full results
in other offline algorithms are presented in Appendix A.12.

A.10 PROBABILITY OF IMPROVEMENTS

In addition to average performance, the recent study by Agarwal et al. (2021) highlights the importance
of measuring the robustness of an algorithm by its probability of improvement (PI) since outliers
could dominate the average performance. An algorithm with a higher average performance does not
necessarily perform better than baselines in the majority of environments. Therefore, we evaluate our
method in both regular (Section 5.4) and mixed (Section 5.2) datasets in D4RL using probability of per-
forming better than uniform sampling: PI(X > Uniform), where X € {Half, Top-10%,RW,AW}.
The bottom row of Figure 9 shows that our method achieves above 70% chance of outperforming
uniform sampling in mixed datasets with sparse high-return trajectories. Moreover, the lower bounds
of the confidence interval are clearly above 50%, which indicates that the improvements are significant
according to Agarwal et al. (2021). On the other hand, in regular datasets with abundant high-return
data, PI(AW > Uniform) and PI(RW > Uniform) are around 50%, suggesting that our methods
match uniform sampling baseline. Note that PI(RW > Uniform) = 70% does not imply our method
only beats uniform sampling in 70% of datasets and environments. The calculation of P is detailed
in Appendix A.8.1.

A.11 ADDITIONAL RESULTS OF PERCENTAGE FILTERING

Figure 10 presents the additional results at varying percentage for percentage filtering.

A.12 ADDITIONAL RESULTS OF TEMPERATURE SENSITIVITY

Figure 11 presents the full results at varying temperatures.

A.13 FULL RESULTS

We list the full benchmark results in Tables 2, 3, 4, and 5, where bold text denotes a score higher
than Uniform and “*” sign indicates the maximum score in a dataset and environment (row).

A.14 RESULTS IN OFFICIAL IQL CODEBASE

As the performance of our IQL implementation slightly mismatches the official implementation®, we
run the experiments in Sections 5.2 and 5.4 based on the official codebase and report the results in
Figure 12. It can be seen that our methods still exhibit similar amounts of performance gain shown
in Figure 2 and Figure 4a, indicating that the performance gain of our methods are independent of
implementation.

Shttps://github.com/ikostrikov/implicit_g_learning
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AW (ours) RW (ours) Top-10%  Uniform

Dataset

ant-expert-v2 (o = 1) 0.31 0.31* 0.05 0.30
ant-medium-v2 (o = 1) 0.34 0.35* 0.06 0.31
halfcheetah-expert-v2 (o = 1) 0.02 0.03* 0.01 0.02
halfcheetah-medium-v2 (o = 1) 0.02 0.03* 0.02 0.02
hopper-expert-v2 (o = 1) 0.17* 0.16 0.03 0.04
hopper-medium-v2 (o = 1) 0.22 0.34* 0.04 0.04
walker2d-expert-v2 (o = 1) 0.02 0.02%* 0.01 0.01
walker2d-medium-v2 (o = 1) 0.03 0.05* 0.02 0.01
ant-expert-v2 (o = 5) 1.01 1.08* 0.04 0.31
ant-medium-v2 (o = 5) 0.86* 0.86 0.10 0.31
halfcheetah-expert-v2 (o = 5) 0.14* 0.11 0.02 0.02
halfcheetah-medium-v2 (o = 5) 0.36%* 0.36 0.14 0.02
hopper-expert-v2 (¢ = 5) 0.97* 0.87 0.05 0.04
hopper-medium-v2 (o = 5) 0.54* 0.49 0.15 0.05
walker2d-expert-v2 (o = 5) 1.03* 1.01 0.01 0.01
walker2d-medium-v2 (o = 5) 0.60%* 0.56 0.11 0.02
ant-expert-v2 (o = 10) 1.19 1.19% 0.15 0.34
ant-medium-v2 (o = 10) 0.85 0.91* 0.27 0.45
halfcheetah-expert-v2 (¢ = 10) 0.68 0.76 0.77* 0.02
halfcheetah-medium-v2 (o = 10)  0.40 0.42 0.42%* 0.02
hopper-expert-v2 (¢ = 10) 1.03 1.05% 0.06 0.05
hopper-medium-v2 (o = 10) 0.57* 0.57 0.23 0.05
walker2d-expert-v2 (o = 10) 1.08* 1.06 0.01 0.03
walker2d-medium-v2 (o = 10) 0.68* 0.62 0.30 0.06
ant-expert-v2 (o = 50) 1.24 1.21 1.26* 0.44
ant-medium-v2 (¢ = 50) 0.88 0.89%* 0.89 0.73
halfcheetah-expert-v2 (¢ = 50) 0.92 0.92* 0.40 0.80
halfcheetah-medium-v2 (o = 50)  0.42* 0.42 0.41 0.10
hopper-expert-v2 (¢ = 50) 1.10%* 1.10 0.86 0.04
hopper-medium-v2 (o = 50) 0.56 0.57* 0.51 0.03
walker2d-expert-v2 (o = 50) 1.08* 1.08 0.25 0.01
walker2d-medium-v2 (o = 50) 0.71 0.72% 0.59 0.10
ant-expert-v2 1.25% 1.24 1.23 1.25
ant-full-replay-v2 1.26 1.28* 1.25 1.18
ant-medium-expert-v2 1.25 1.27% 1.23 1.17
ant-medium-replay-v2 0.80* 0.79 0.66 0.67
ant-medium-v2 0.86 0.88 0.93* 0.86
ant-random-v2 0.30 0.29 0.06 0.32%*
antmaze-large-diverse-v0 0.12 0.16* 0.00 0.00
antmaze-large-play-v0 0.09 0.13* 0.00 0.00
antmaze-medium-diverse-v0 0.10 0.29* 0.01 0.00
antmaze-medium-play-v0 0.13 0.21%* 0.01 0.00
antmaze-umaze-diverse-v0 0.58 0.65* 0.51 0.54
antmaze-umaze-v0 0.59 0.60 0.65% 0.49
halfcheetah-expert-v2 0.92* 0.92 0.70 0.92
halfcheetah-full-replay-v2 0.67 0.67* 0.64 0.62
halfcheetah-medium-expert-v2 0.92 0.92* 0.88 0.58
halfcheetah-medium-replay-v2 0.38 0.40* 0.31 0.34
halfcheetah-medium-v2 0.42 0.42 0.42 0.43*
halfcheetah-random-v2 0.02 0.02 0.02 0.02*
hopper-expert-v2 1.08 1.11%* 1.06 1.09
hopper-full-replay-v2 0.98 1.01* 0.93 0.31
hopper-medium-expert-v2 1.10 1.10* 1.09 0.53
hopper-medium-replay-v2 0.72% 0.67 0.63 0.27
hopper-medium-v2 0.56 0.54 0.58* 0.52
hopper-random-v2 0.05* 0.05 0.05 0.04
walker2d-expert-v2 1.09%* 1.08 1.03 1.08
walker2d-full-replay-v2 0.84 0.84 0.88* 0.27
walker2d-medium-expert-v2 1.08 1.08% 1.08 0.97
walker2d-medium-replay-v2 0.56 0.56* 0.51 0.19
walker2d-medium-v2 0.70 0.71* 0.70 0.64
walker2d-random-v2 0.01 0.01* 0.01 0.01
Num. win Uniform 58 58 39 -

Table 2: BC results
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AW (ours) RW (ours) Top-10%  Uniform

Dataset

ant-expert-v2 (o = 1) 0.54%* 0.54 0.06 0.25
ant-medium-v2 (o = 1) 0.82 0.82* 0.07 0.39
halfcheetah-expert-v2 (o = 1) 0.03 0.04%* 0.03 0.03
halfcheetah-medium-v2 (o = 1) 0.16 0.20 0.07 0.21*
hopper-expert-v2 (o = 1) 0.55* 0.50 0.11 0.12
hopper-medium-v2 (o = 1) 0.39 0.50 0.30 0.53*
walker2d-expert-v2 (o = 1) 0.29%* 0.28 0.10 0.12
walker2d-medium-v2 (o = 1) 0.46 0.48* 0.12 0.36
ant-expert-v2 (o = 5) 1.16 1.19% 0.12 0.60
ant-medium-v2 (o = 5) 0.88 0.91* 0.28 0.73
halfcheetah-expert-v2 (o = 5) 0.66 0.71* 0.04 0.04
halfcheetah-medium-v2 (o = 5) 0.43* 0.41 0.30 0.33
hopper-expert-v2 (¢ = 5) 1.02%* 0.87 0.18 0.12
hopper-medium-v2 (o = 5) 0.53 0.56* 0.48 0.49
walker2d-expert-v2 (o = 5) 1.08 1.08* 0.53 0.25
walker2d-medium-v2 (o = 5) 0.58 0.61°* 0.49 0.58
ant-expert-v2 (o = 10) 1.18 1.23* 0.40 0.74
ant-medium-v2 (o = 10) 0.87 0.90%* 0.62 0.79
halfcheetah-expert-v2 (¢ = 10) 0.85 0.89* 0.85 0.08
halfcheetah-medium-v2 (o = 10) 045 0.45 0.45%* 0.40
hopper-expert-v2 (¢ = 10) 1.00 1.01%* 0.36 0.18
hopper-medium-v2 (o = 10) 0.55 0.60* 0.54 0.46
walker2d-expert-v2 (o = 10) 1.09* 1.08 0.92 0.66
walker2d-medium-v2 (o = 10) 0.67* 0.64 0.66 0.65
ant-expert-v2 (o = 50) 1.21 1.21 1.24%* 1.07
ant-medium-v2 (¢ = 50) 0.92 0.94 0.96* 0.91
halfcheetah-expert-v2 (¢ = 50) 0.91 0.94* 0.70 0.50
halfcheetah-medium-v2 (o = 50) 0.47 0.47* 0.44 0.45
hopper-expert-v2 (¢ = 50) 1.06 1.07* 0.43 0.50
hopper-medium-v2 (o = 50) 0.54 0.52 0.62* 0.56
walker2d-expert-v2 (¢ = 50) 1.09%* 1.09 1.08 1.08
walker2d-medium-v2 (o = 50) 0.63 0.63 0.71%* 0.67
ant-expert-v2 1.25 1.26 1.27* 1.13
ant-full-replay-v2 1.29% 1.27 1.25 1.24
ant-medium-expert-v2 1.23 1.32% 1.28 1.14
ant-medium-replay-v2 0.83 0.86* 0.72 0.83
ant-medium-v2 0.97 0.98 0.88 0.99*
ant-random-v2 0.14* 0.14 0.06 0.12
antmaze-large-diverse-v0 0.40* 0.24 0.04 0.00
antmaze-large-play-v0 0.18 0.33* 0.00 0.00
antmaze-medium-diverse-v0 0.24 0.31* 0.02 0.05
antmaze-medium-play-v0 0.41 0.43* 0.03 0.03
antmaze-umaze-diverse-v0 0.54 0.40 0.61* 0.46
antmaze-umaze-v0 0.87* 0.86 0.72 0.85
halfcheetah-expert-v2 0.94* 0.93 0.74 0.93
halfcheetah-full-replay-v2 0.75% 0.75 0.71 0.70
halfcheetah-medium-expert-v2 0.94* 0.93 0.89 0.71
halfcheetah-medium-replay-v2 0.44* 0.44 0.35 0.44
halfcheetah-medium-v2 0.47 0.47* 0.45 0.47
halfcheetah-random-v2 0.07 0.07 0.04 0.12*
hopper-expert-v2 1.00%* 0.96 0.92 0.95
hopper-full-replay-v2 0.97* 0.79 0.97 0.89
hopper-medium-expert-v2 0.99 1.01 1.05% 0.59
hopper-medium-replay-v2 0.84 0.86* 0.85 0.83
hopper-medium-v2 0.57 0.57 0.65* 0.55
hopper-random-v2 0.06 0.07 0.08 0.09*
walker2d-expert-v2 1.09% 1.09 1.09 1.09
walker2d-full-replay-v2 0.75 0.83 0.76 0.92*
walker2d-medium-expert-v2 1.10%* 1.09 1.09 1.06
walker2d-medium-replay-v2 0.47 0.37 0.51 0.69*
walker2d-medium-v2 0.69 0.66 0.65 0.75%
walker2d-random-v2 0.03 0.04 0.11* 0.06
Num. win Uniform 48 47 29 -

Table 3: IQL results
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AW (ours) RW (ours) Top-10%  Uniform

Dataset

ant-expert-v2 (o = 1) 0.80%* 0.74 0.04 0.08
ant-medium-v2 (o = 1) 0.79 0.80* 0.06 0.14
halfcheetah-expert-v2 (¢ = 1) 0.39%* 0.38 0.09 0.25
halfcheetah-medium-v2 (o = 1) 0.41 0.42% 0.26 0.40
hopper-expert-v2 (o = 1) 0.84* 0.52 0.15 0.09
hopper-medium-v2 (o = 1) 0.61* 0.58 0.43 0.30
walker2d-expert-v2 (o = 1) 0.57%* 0.54 0.01 0.03
walker2d-medium-v2 (o = 1) 0.46 0.48* 0.12 0.03
ant-expert-v2 (o = 5) 1.06 1.06* 0.35 0.15
ant-medium-v2 (o = 5) 0.88 0.93* 0.57 0.50
halfcheetah-expert-v2 (o = 5) 0.67* 0.66 0.10 0.30
halfcheetah-medium-v2 (o = 5) 0.47* 0.47 0.44 0.47
hopper-expert-v2 (¢ = 5) 0.99* 0.99 0.31 0.10
hopper-medium-v2 (o = 5) 0.65 0.68* 0.63 0.43
walker2d-expert-v2 (o = 5) 1.06* 1.02 0.00 0.03
walker2d-medium-v2 (o = 5) 0.76* 0.75 0.41 0.04
ant-expert-v2 (o = 10) 1.11 1.16% 0.93 0.21
ant-medium-v2 (o = 10) 0.91 0.96* 0.91 0.57
halfcheetah-expert-v2 (o = 10) 0.76 0.76* 0.74 0.29
halfcheetah-medium-v2 (o = 10) 0.48 0.48* 0.47 0.48
hopper-expert-v2 (¢ = 10) 1.08%* 1.03 0.37 0.14
hopper-medium-v2 (o = 10) 0.68 0.71 0.72% 0.62
walker2d-expert-v2 (o = 10) 1.02 1.09* 0.12 0.01
walker2d-medium-v2 (o = 10) 0.79%* 0.79 0.68 0.24
ant-expert-v2 (o = 50) 1.26 0.53 1.27* 0.83
ant-medium-v2 (¢ = 50) 0.97 0.94 0.98* 0.82
halfcheetah-expert-v2 (¢ = 50) 0.80 0.86* 0.56 0.57
halfcheetah-medium-v2 (¢ = 50) 0.49 0.49 0.47 0.49%*
hopper-expert-v2 (¢ = 50) 1.02 1.04 1.04%* 0.82
hopper-medium-v2 (o = 50) 0.63 0.38 0.72 0.73*
walker2d-expert-v2 (o = 50) 1.09* 1.08 0.96 0.24
walker2d-medium-v2 (o = 50) 0.82 0.83* 0.81 0.81
ant-expert-v2 1.27%* 1.27 1.16 1.21
ant-full-replay-v2 1.27 1.24 1.31* 1.22
ant-medium-expert-v2 1.28%* 1.22 1.23 1.17
ant-medium-replay-v2 0.91 0.97* 0.83 0.90
ant-medium-v2 0.95 0.97 0.96 0.98*
ant-random-v2 0.08 0.08 0.06 0.11*
antmaze-large-diverse-v0 0.00 0.00 0.08* 0.00
antmaze-large-play-v0 0.00 0.01* 0.00 0.00
antmaze-medium-diverse-v0 0.00 0.08* 0.00 0.00
antmaze-medium-play-vQ 0.00 0.03* 0.01 0.00
antmaze-umaze-diverse-v0 0.22 0.10 0.23* 0.05
antmaze-umaze-v0 0.65 0.71* 0.25 0.65
halfcheetah-expert-v2 0.89* 0.88 0.77 0.79
halfcheetah-full-replay-v2 0.79 0.79* 0.77 0.78
halfcheetah-medium-expert-v2 0.84 0.85* 0.70 0.63
halfcheetah-medium-replay-v2 0.47 0.47 0.42 0.47*
halfcheetah-medium-v2 0.49 0.49* 0.47 0.49
halfcheetah-random-v2 0.17 0.17 0.03 0.23*
hopper-expert-v2 1.05 1.03 1.01 1.05*
hopper-full-replay-v2 1.03 1.07* 1.01 1.00
hopper-medium-expert-v2 0.91 1.00 1.04* 0.99
hopper-medium-replay-v2 0.99* 0.99 0.96 0.95
hopper-medium-v2 0.71 0.73 0.71 0.74*
hopper-random-v2 0.27* 0.24 0.08 0.12
walker2d-expert-v2 1.09 1.09% 1.09 1.09
walker2d-full-replay-v2 0.86 0.85 0.91 0.94*
walker2d-medium-expert-v2 1.09 1.08 1.09%* 1.08
walker2d-medium-replay-v2 0.87* 0.86 0.71 0.84
walker2d-medium-v2 0.83* 0.82 0.74 0.83
walker2d-random-v2 0.14 0.14 0.17* 0.03
Num. win Uniform 50 50 33 -

Table 4: CQL results
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AW (ours) RW (ours) Top-10%  Uniform

Dataset

ant-expert-v2 (o = 1) 0.18 0.17 0.03 0.25%
ant-medium-v2 (o = 1) 0.48* 0.46 0.01 0.39
halfcheetah-expert-v2 (¢ = 1) 0.04 0.04 0.08* 0.04
halfcheetah-medium-v2 (o = 1) 0.21 0.18 0.31* 0.16
hopper-expert-v2 (o = 1) 0.57* 0.52 0.12 0.21
hopper-medium-v2 (o = 1) 0.53 0.54* 0.21 0.30
walker2d-expert-v2 (o = 1) 0.69 0.90%* 0.03 0.05
walker2d-medium-v2 (o = 1) 0.18* 0.17 0.06 0.13
ant-expert-v2 (o = 5) 0.44%* 0.40 0.08 0.32
ant-medium-v2 (o = 5) 0.99* 0.81 0.25 0.58
halfcheetah-expert-v2 (o = 5) 0.59 0.62* 0.08 0.14
halfcheetah-medium-v2 (o = 5) 0.47* 0.47 0.45 0.30
hopper-expert-v2 (¢ = 5) 0.97* 0.88 0.44 0.42
hopper-medium-v2 (o = 5) 0.55 0.55% 0.42 0.38
walker2d-expert-v2 (o = 5) 0.66 0.70* 0.02 0.13
walker2d-medium-v2 (o = 5) 0.64 0.78* 0.04 0.05
ant-expert-v2 (o = 10) 0.53* 0.46 0.16 0.46
ant-medium-v2 (o = 10) 1.09* 1.05 0.39 0.60
halfcheetah-expert-v2 (o = 10) 0.79 0.82* 0.81 0.31
halfcheetah-medium-v2 (o = 10) 0.48 0.47 0.48* 0.43
hopper-expert-v2 (¢ = 10) 1.02 1.05% 0.64 0.65
hopper-medium-v2 (o = 10) 0.57* 0.57 0.53 0.24
walker2d-expert-v2 (o = 10) 1.10%* 0.81 0.03 0.08
walker2d-medium-v2 (o = 10) 0.76* 0.62 0.03 0.06
ant-expert-v2 (o = 50) 0.48 0.57* 0.47 0.51
ant-medium-v2 (o = 50) 1.11* 1.06 1.00 0.90
halfcheetah-expert-v2 (¢ = 50) 0.94 0.95* 0.69 0.80
halfcheetah-medium-v2 (o = 50)  0.48* 0.48 0.47 0.48
hopper-expert-v2 (¢ = 50) 1.11%* 1.10 1.01 0.97
hopper-medium-v2 (o = 50) 0.62* 0.60 0.52 0.44
walker2d-expert-v2 (o = 50) 1.10%* 1.10 0.07 0.08
walker2d-medium-v2 (o = 50) 0.80 0.81°%* 0.34 0.07
ant-expert-v2 0.96 0.98* 0.83 0.55
ant-full-replay-v2 1.34 1.38* 1.28 1.34
ant-medium-expert-v2 1.13* 1.12 0.95 0.70
ant-medium-replay-v2 0.96 1.00 0.64 1.06*
ant-medium-v2 1.17 1.16 0.86 1.20*
ant-random-v2 0.22 0.36 -0.02 0.37*
antmaze-large-diverse-v0 0.00 0.01 0.03* 0.00
antmaze-large-play-v0 0.00%* 0.00%* 0.00* 0.00*
antmaze-medium-diverse-v0 0.10* 0.05 0.07 0.01
antmaze-medium-play-v0 0.07* 0.01 0.04 0.00
antmaze-umaze-diverse-v0 0.52* 0.26 0.17 0.47
antmaze-umaze-v0 0.50 0.72 0.51 0.79*
halfcheetah-expert-v2 0.97* 0.97 0.84 0.95
halfcheetah-full-replay-v2 0.78* 0.77 0.76 0.73
halfcheetah-medium-expert-v2 0.97* 0.96 0.86 0.87
halfcheetah-medium-replay-v2 0.44 0.45% 0.34 0.44
halfcheetah-medium-v2 0.48* 0.48 0.48 0.48
halfcheetah-random-v2 0.11 0.11 0.12%* 0.11
hopper-expert-v2 1.05 1.10 1.06 1.11*
hopper-full-replay-v2 1.04* 1.03 1.02 0.73
hopper-medium-expert-v2 1.03 1.10% 1.10 0.96
hopper-medium-replay-v2 0.93 0.95* 0.85 0.59
hopper-medium-v2 0.62 0.62 0.64* 0.56
hopper-random-v2 0.07 0.07 0.08 0.10%*
walker2d-expert-v2 1.10%* 1.10 1.10 1.10
walker2d-full-replay-v2 0.96* 0.96 0.92 0.94
walker2d-medium-expert-v2 1.10 1.10 1.10%* 1.10
walker2d-medium-replay-v2 0.80* 0.75 0.78 0.80
walker2d-medium-v2 0.80 0.81 0.67 0.82*
walker2d-random-v2 0.03 0.02 0.02 0.04*
Num. win Uniform 49 48 25 -

Table 5: TD3+BC results
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(d) Trajectory return distribution of Hopper

Figure 7: Trajectory return distribution of each mixed dataset.
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Figure 8: Performance of our method with varying temperature o (Sections 4.2 and 4.3), where color
denotes . Both AW and RW achieve higher returns than the baselines in a wide range of temperatures
[0.01, 1.0], our methods are not overly sensitive to the choice of temperature.
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Figure 9: Probability of improvement over uniform sampling (Agarwal et al., 2021) in 32 mixed
(lower row) and 30 regular datasets (upper row). In mixed datasets with sparse high-return data, our
methods attains above 75% of the probability of improvements with a lower bound of confidence
interval clearly above 50%, suggesting statistically significant improvements over uniform sampling.
On the other hand, in regular datasets with abundant high-return data, PI(AW > Uniform) and
PI(RW > Uniform) are around 50%, suggesting that our methods match uniform sampling baseline.
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Figure 10: Performance of percentage-filtering sampling with varying percentages.
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Figure 11: Performance at varying temperature.
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Figure 12: Our results in official implementation shows similar results to the results from our
implementation in Sections 5.2 and 5.4. (a) The average return of each sampling strategy in mixed
dataszets (Section 5.2) in official IQL codebase. We see that our methods also show higher average
return than the baselines in similar trend shown in Figure 2, suggesting that the performance gain of
our methods are independent of implementation choices. (b) The average returns of each sampling
methods in regular datasets (Section 5.4). We see that our methods show insignificantly performance
in over uniform sampling, similar to the results in Figure 4a.
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