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ABSTRACT

In the realm of large-scale language models, a significant challenge arises when
extrapolating sequences beyond the maximum allowable length. This is because
the model’s position embedding mechanisms are limited to positions encountered
during training, thus preventing effective representation of positions in longer se-
quences. We analyzed conventional position encoding methods for long contexts
and found the following characteristics. (1) When the representation dimension is
regarded as the time axis, Rotary Position Embedding (RoPE) can be interpreted
as a restricted wavelet transform using Haar-like wavelets. However, because
it uses only a fixed scale parameter, it does not fully exploit the advantages of
wavelet transforms, which capture the fine movements of non-stationary signals
using multiple scales (window sizes). This limitation could explain why RoPE
performs poorly in extrapolation. (2) Previous research as well as our own anal-
ysis indicates that Attention with Linear Biases (ALiBi) functions similarly to
windowed attention, using windows of varying sizes. However, it has limitations
in capturing deep dependencies because it restricts the receptive field of the model.
From these insights, we propose a new position representation method that cap-
tures multiple scales (i.e., window sizes) by leveraging wavelet transforms with-
out limiting the model’s attention field. Experimental results show that this new
method improves the performance of the model in both short and long contexts. In
particular, our method allows extrapolation of position information without limit-
ing the model’s attention field.

1 INTRODUCTION

Several pre-trained large language models based on Transformer architecture (Vaswani et al., 2017)
have demonstrated robust capabilities in various generative tasks (Devlin et al., 2019; Raffel et al.,
2020; Brown et al., 2020; Touvron et al., 2023a; Jiang et al., 2023). However, limitations on the
input sequence length arise due to the computational resource constraints encountered during the
pre-training phase. Such constraints necessitate a determination of the maximum allowable length
of sequences, hereinafter Ltrain, prior to the pre-training process, thus hindering the model’s per-
formance in processing sequences longer than those encountered during training. This weakness is
primarily attributed to the positional encoding’s ineffectiveness in handling sequences that exceed
the length of those encountered during the model’s training phase (Devlin et al., 2019; Press et al.,
2022).

Rotary Position Embedding (RoPE) (Su et al., 2021) has become a common approach in many
language models that handle long contexts, and it employs a rotation matrix to encode positional
information and facilitate the processing of long sequences. To manage sequences longer than those
encountered during training, various scaling strategies (Chen et al., 2023; bloc97, 2023; Peng et al.,
2024; Liu et al., 2024) have been applied to RoPE, although these often require additional fine-
tuning and incur further learning costs in addition to those of pre-training. In contrast, Attention
with Linear Biases (ALiBi) (Press et al., 2022) is able to sequence length estimation beyond the
limits of pre-training without requiring additional fine-tuning. However, ALiBi limits the attention’s
receptive field (Chi et al., 2023) in the manner of windowed attention (Beltagy et al., 2020). For this
reason, a model using ALiBi may not be able to obtain information that is in a distant dependency
relationship. In this paper, we analyze conventional positional encoding methods for long contexts,

1



Published as a conference paper at ICLR 2025

Figure 1: Overview of Wavelet-based Relative Positional Representation As in RPE (Shaw et al.,
2018), our method computes a relative positional representation (pm,n)

T to the query qm and the
key kn. Instead of learnable embedding in RPE, the position is computed based on the wavelet
function. Different wavelet functions ψa,b are used for each dimension of the head d. Furthermore,
the scale parameter a and the shift parameter b change depending on the dimension of the head d.

and we propose a novel positional representation that permits extrapolation without constraining the
attention mechanism’s receptive field. First, we mathematically show that RoPE performs a pro-
cess similar to a wavelet transformation—considered the gold standard of time-frequency analysis
methodology. We interpreted the position of each token in the sequence as a time point in time-
frequency analysis. However, RoPE does not perform a transformation in accordance with the order
of positions but rather in accordance with the number of dimensions, and it does not capture the
dynamic change in a signal over time. Furthermore, the values corresponding to the wavelet scale
(i.e., window size) are constant, so RoPE does not make good use of the key characteristic of wavelet
transforms, which is the ability to analyze signals on multiple scales. In other words, RoPE may fail
to capture the dynamic change in a signal over time, such as what occurs in natural language. In this
study, we also show that ALiBi provides different window sizes for each head.

Based on these insights, we propose a wavelet transform-based method, using multiple window
sizes, to offer a robust and flexible approach to positional encoding. By performing a wavelet trans-
form along the order of positions and introducing various scale parameters, our method can capture
the dynamic changes in a sequence over positions in the manner of the original feature of wavelet
transformation, i.e., time-frequency analysis. Following the methodology of Relative Position Rep-
resentation (RPE) (Shaw et al., 2018), we implement our method with relative ease.

From our experiments on extrapolation capabilities using the wikitext-103 dataset (Merity et al.,
2017), the results demonstrate that our method surpasses traditional positional encoding methods in
perplexity. We also report that our method has lower perplexity than RoPE in experiments with long
contexts using the Llama-2 model (Touvron et al., 2023b) and the CodeParrot dataset.

2 BACKGROUND

2.1 POSITIONAL REPRESENTATION

Within the Transformer architecture, positional encoding is employed to accurately represent the
sequential position of each token. Positional encoding can be divided into two main types: absolute
position, which expresses the position of a token from the static beginning of the sequence, and
relative position, which expresses the position of each token in relation to the other tokens within
the sequence. RoPE (Su et al., 2021), which adopts a type of absolute position, uses a rotation matrix
to compute the position and then multiplies it by the query and key to represent the position. RPE
(Shaw et al., 2018), based on a type of relative position, uses a learnable embedding that represents
the position of distances of up to 16 or 32 tokens by clipping. Two other variations include T5
Bias (Raffel et al., 2020), which has an enlarged RPE window size, and Transformer-XL (Dai et al.,
2019), which uses a sine wave for position representation instead of learnable embedding.

Position encoding plays a critical role in enabling models to effectively handle long context se-
quences, and it allows for extrapolation. Relative position is not a position expression that depends
on the length of the sequence, so it is effective in extrapolation. ALiBi (Press et al., 2022) is an
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effective position representation method for extrapolation: It uses the relative position bias of all
tokens by adding a linear bias to each head’s attention score, rather than using position embed-
ding. However, ALiBi is unable to obtain information in a distant dependency relationship due to
its constraints on the self-attention mechanism’s receptive field(Chi et al., 2023). On the other hand,
absolute position is unsuitable for extrapolation because it expresses the position of all words in the
sequence. For this reason, many methods have been proposed for fine-tuning RoPE by interpolating
positions in using absolute position (Chen et al., 2023; bloc97, 2023; Peng et al., 2024).

2.2 FREQUENCY ANALYSIS AND TIME-FREQUENCY ANALYSIS

Frequency analysis in signal processing involves analyzing the frequency components of a signal
to understand its behavior. The Fourier transform (FT) (Bracewell & Bracewell, 1986) is a key
method for frequency analysis, converting a signal from the time domain to the frequency domain,
thus providing a global view of its frequency content. However, the FT does not provide any infor-
mation about when specific frequencies occur. To address this limitation, time-frequency analysis
techniques have been applied. The wavelet transform (WT) (Grossmann & Morlet, 1984; Mallat,
1989) offers a more flexible approach by analyzing the signal at multiple scales or resolutions. The
WT adaptively provides high time resolution for high-frequency components and high frequency
resolution for low-frequency components, making it well-suited for analyzing signals with non-
stationary or transient features. This adaptability allows the wavelet transform to capture both time
and frequency information with varying degrees of precision.

3 ROPE AND WAVELET TRANSFORM

3.1 PRELIMINARY

Wavelet Transform A wavelet is a wave that decays quickly and locally as it approaches zero. A
function ψ defined on a real R is called a wavelet function if it belongs to the space L2(R) of square
integrable functions and satisfies the following conditions:∫ ∞

−∞
| ψ(x) |2 dx <∞. (1)

The wavelet function is defined as follows.

ψa,b(t) =
1√
a
ψ
( t− b

a

)
. (2)

In this case, b is the shift and a > 0 is the scale parameter. The scale parameter a simultaneously
changes the range over which the wavelet is localized as well as the wavelet’s amplitude. Typical
wavelets include the Haar wavelet (Haar, 1910), Ricker wavelet (Ricker, 1944), and Morlet wavelet
(Bernardino & Santos-Victor, 2005). Suppose that we sample T values at regular intervals from a
continuous signal. Wavelet transform (WT) (Grossmann & Morlet, 1984) is the process of trans-
forming a signal x(t) into the frequency domain and time domain by computing the inner product
of the wavelet function ψa,b(t) and signal x(t).

W (a, b) =

T−1∑
t=0

ψa,b(t)x(t). (3)

In some cases, the term ”Discrete Wavelet Transform” or ”Wavelet Transform” is used to refer to
multi-resolution analysis (Mallat, 1989), but in this paper we follow the original definition. We can
see that the FT only converts to the frequency domain, whereas the WT converts to two domains:
scale a and shift b. For example, consider the case of a conversion to two scales and four shifts.
When a ∈ [2, 4] and b ∈ [0, 1, 2, 3], the wavelet transform can be expressed in terms of determinants
as follows:

W (2, 0)
W (4, 0)
W (2, 1)
W (4, 1)

...
W (4, 3)

 =



ψ2,0(0) ψ2,0(1) ψ2,0(2) ... ψ2,0(T − 1)
ψ4,0(0) ψ4,0(1) ψ4,0(2) ... ψ4,0(T − 1)
ψ2,1(0) ψ2,1(1) ψ2,1(2) ... ψ2,1(T − 1)
ψ4,1(0) ψ4,1(1) ψ4,1(2) ... ψ4,1(T − 1)

...
...

...
. . .

...
ψ4,3(0) ψ4,3(1) ψ4,3(2) ... ψ4,3(T − 1)




x(0)
x(1)
x(2)

...
x(T − 1)

 . (4)
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Furthermore, since ψa,b(t) = ψa,0(t−b) from Eq.2, ψ of the wavelet transform in Eq 4 is expressed
as follows.

W (2, 0)
W (4, 0)
W (2, 1)
W (4, 1)

...
W (4, 3)

 =


ψ2,0(0) ψ2,0(1) ψ2,0(2) ... ψ2,0(T − 1)
ψ4,0(0) ψ4,0(1) ψ4,0(2) ... ψ4,0(T − 1)
ψ2,0(−1) ψ2,0(0) ψ2,0(1) ... ψ2,0(T − 2)
ψ4,0(−1) ψ4,0(0) ψ4,0(1) ... ψ4,0(T − 2)

...
...

...
. . .

...
ψ4,0(−3) ψ4,0(−2) ψ4,0(−1) ... ψ4,0(T − 3)




x(0)
x(1)
x(2)

...
x(T − 1)

 . (5)

Due to the characteristics of the scale parameter a, the values of the wavelet matrix become 0 or
approach 0 outside a certain range that depends on the specific wavelet function.

RoPE RoPE incorporates positional information directly into the self-attention mechanism by ro-
tating the query and key vectors in complex space. When divided into even and odd dimensions,
the following calculations are performed for the m-th query in each sequence. In even dimensions,
RoPE is expressed as follows.

qm0
qm2

...
qmd−2

 =


cosmθ1 − sinmθ1 0 0 ... 0 0

0 0 cosmθ2 − sinmθ2 ... 0 0
...

...
...

...
. . .

...
...

0 0 0 0 ... cosmθd/2 − sinmθd/2



qm0
qm1

...
qmd−2

qmd−1

 .
(6)

where qm ∈ R1×d is the m-th query when the number of dimensions is d and θi =
10000−2(i−1)/d, i ∈ [1, 2, ..., d/2]. For RoPE in odd dimensions, see Appendix A.1. The same
process is also performed for the n-th key kn ∈ R1×d.

3.2 THEORETICAL ANALYSIS

First, we show the wavelet transform using the following two Haar-like wavelets (Haar, 1910).

ψ(t) =


cos f(t) 0 ≤ t<1,

− sin f(t) 1 ≤ t<2,

0 otherwise.

ψ
′
(t) =


sin f(t) 0 ≤ t<1,

cos f(t) 1 ≤ t<2,

0 otherwise.

(7)

Here, f : R → R is a function that satisfies
∫∞
−∞ ψ(t) dt = 0 and Eq.(1). Assuming that when

x(t)(0 ≤ t ≤ d − 1) is a signal with d elements, the wavelet ψ is used and wavelet transform is
performed at each scale a = 1. We define the shift parameter as bj = j − δ(j)(j = 0, 2, .., d − 2).
Here, δ(t) is a function such that 0 ≤ t ≤ d − 1 and 0 ≤ δ(t) < 1. When the wavelet function is
Haar-like wavelet ψ(t) in Eq.(7) and a = 1 and b ∈ [b0, b2, .., dd−2], the wavelet matrix ψ in the
wavelet transform w = ψx can be expressed in terms of determinants as follows.

W (1, b0)
W (1, b2)

...
W (1, bd−2)

 =


cosϕ0 − sinϕ1 0 0 ... 0 0

0 0 cosϕ2 − sinϕ3 ... 0 0
...

...
...

. . .
...

...
...

0 0 0 0 ... cosϕd−2 − sinϕd−1




x(0)
x(1)

...
x(d− 2)
x(d− 1)

 .
(8)

To simplify the notation in the matrix representation above, we write ϕj for j = 0, 1, . . . , d − 1,
where ϕj = f(1 + δ(j)) if j is odd, and ϕj = f(δ(j)) otherwise. Let x be the query qm, and define
f such that ϕj = ϕj+1 = mθ⌈ j+1

2 ⌉ for j = 0, 2, 4, . . . , d − 2, where θi = 10000−2(i−1)/d and
i ∈ [1, 2, ..., d/2]. Under this definition, the transformation matrix of Eq. (8) becomes identical to
that of Eq. (6) in RoPE. 1 In other words, RoPE can be viewed as a wavelet transform using Haar-
like wavelets that change amplitude on a fixed scale. Furthermore, the same result as RoPE in odd

1The proof of the existence of f(t) that satisfies this condition is provided in Appendix A.2.
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Figure 2: Heatmap of scaled attention scores via softmax normalization in ALiBi without non-
overlapping inference. The vertical axis represents the query, while the horizontal axis corresponds
to the key in the attention map. For clarity, values of 0.001 or more are mapped to black, while values
below that are mapped to yellow. The maximum allowable length of sequences is Ltrain = 512, and
the inference length is 1012.

dimensions can be obtained when using ψ
′

for wavelet transformation. 2 This wavelet transform
in RoPE is performed across the number of query head dimensions d. Therefore, RoPE can be
considered a wavelet transformation along the head dimension using a wavelet with a fixed scale of
2.3

4 WINDOW SIZE VARIABILITY IN ALIBI

ALiBi has a restricted receptive field and behaves in the manner of windowed attention (Chi et al.,
2023; Beltagy et al., 2020). A receptive field refers to the specific region of the input space that
significantly influences the model’s output, typically representing the area where the most relevant
features are captured. ALiBi is expressed as

softmax(qmK
T + slope · [−(m− 1), . . . ,−2,−1, 0]), (9)

where the slope is a head-specific slope fixed before training and KT ∈ Rm×d is the first m keys.
In this section, we analyzed the window size in ALiBi using the attention map.

4.1 INSIGHTS FROM ATTENTION MAP ANALYSIS

A heatmap of scaled attention scores obtained through softmax normalization is shown in Figure 2.
The number of heads N is 8, and the slope of ALiBi is [ 12 ,

1
4 ,

1
8 ,

1
16 ,

1
32 ,

1
64 ,

1
128 ,

1
256 ]. In extrapola-

tion, sequences are often divided, but in this section the sequences are not divided. The experimental
setting was set to the same as that in Section 6.1. The perplexity results are shown in Table 1.

The attention map shows that ALiBi uses multiple window sizes corresponding to relative positions
and that the window size increases as the slope decreases. Moreover, previous research (Chi et al.,
2023) shows that constraining the window size (slope) to a single value leads to increased perplexity.
Consequently, one of the reasons ALiBi is effective, compared to a previous relative position using
fixed window sizes in T5 Bias (Raffel et al., 2020), is its ability to accommodate multiple window
sizes. ALiBi does not perform calculations like those in Eq. (3), so it does not exactly match the
wavelet transform. However, having windows of various sizes is similar to the role of the scale
parameter used in wavelet transforms.

5 WAVELET-BASED POSITIONAL REPRESENTATION

Wavelet transform (WT) is a method of analyzing signals using variable-scale wavelets, and it is
possible to adjust the scale of the window. This scalability allows both broad and fine signal features
to be efficiently extracted by shifting the wavelet while changing the window size. In particular,
this is suitable for investigating non-stationary signals. For this reason, we believe that the wavelet

2Additionally, when sinmθi = cosmθi, the Haar wavelet matrix and RoPE are the same when the scale is
2, and the shift is [2, 4, . . . , d/2]. Refer to Appendix A.3 for the detailed proof.

3From previous research(Tancik et al., 2020), we also hypothesized that this could be equivalent to a Fourier
transform. However, this hypothesis does not hold (refer to Appendix A.4 for details).
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transform approach is effective for capturing the dynamic fluctuations of signals that change over
time, and it is also effective for the fluid nature of natural language, which is not constrained by
periodicity. Furthermore, when extrapolating, it is important to be able to respond flexibly to changes
in context and information. For this reason, we believe that the wavelet transform is also an effective
method for extrapolation.

When applying wavelet transforms to positional encoding, a key question arises: Which features
should be leveraged for handling long-context dependencies? Notably, RoPE shares conceptual
similarities with the wavelet transform (Section 3); however, RoPE depends on absolute positional
information, which limits its effective context window to the training length (Ltrain) and restricts
its extrapolation capabilities. In contrast, ALiBi offers extrapolation capabilities by using relative
position, and it supports varying window sizes (Section 4). However, ALiBi’s linear bias constrains
its receptive field, making it insufficient for capturing long-range dependencies. According to Press
et al. (2022), conventional relative positional encoding (RPE) methods (Shaw et al., 2018; Raf-
fel et al., 2020), which rely on a fixed window size, are similarly ineffective for extrapolation. In
conclusion, we adopt relative position with flexible window sizes to handle long-context and extrap-
olation.

Accordingly, we propose positional representation based on wavelet transform with the following
characteristics:

1. Position-based Transformation: RoPE predominantly relies on independent transforma-
tion based on the ’head’ dimensions. ALiBi employs multiple windows based on the rela-
tive position of the sentence, rather than the dimension of the head, which may contribute
to its performance. Therefore, we apply a wavelet transform based on the relative position
of the sentence.

2. Type of Wavelet: RoPE can be thought of as a wavelet transform using the Haar wavelet,
which is the simplest wavelet. However, Haar wavelets might fall short in capturing the
intricacies of natural languages. Transitioning toward the use of more sophisticated wavelet
functions could enhance our approach to distilling and representing a broader spectrum of
features inherent in natural languages.

3. Diversification of Window Sizes (Scale Parameters): From our analysis of ALiBi, we
found that having multiple windows is effective for long contexts. The original version of
RoPE works with a single fixed scale. To address this limitation, we introduce a variety of
scale and shift parameters.

5.1 METHODOLOGY

Incorporating Wavelet Transform into PE Due to the wavelet shift feature, we adopt relative
position representation using ALiBi because it is more suitable than absolute position representation.
4 In a transformer model (Vaswani et al., 2017), the self-attention mechanism operates by projecting
the input sequence into three distinct representations—queries (Q), keys (K), and values (V )—using
learnable weight matrices. Self-attention sublayers employ N attention heads. In self-attention
sublayers, em,n is the attention score for each query, and then the key is calculated. RPE(Shaw
et al., 2018) expresses position by calculating the inner product of the query and the relative position
embedding. We incorporate the wavelet function into RPE as follows.

em,n =
qmk

T
n + qm(pm,n)

T

√
d

, (10)

where qm is the mth query (qm ∈ R1×d, 1 ≤ m ≤ L) of a sentence of length L, kn is the nth key
(kn ∈ R1×d, 1 ≤ n ≤ L) for qm, and d is the number of dimensions of each head. Here, pm,n is
the relative position from the m-th query to the n-th key. RPE (Shaw et al., 2018) uses learnable
embedding for pm,n ∈ Rd and a fixed scale by clipping. However, instead of using learnable
embeddings to represent pm,n, we use d-pattern wavelet functions with multiple scales to calculate
the position. In our method, there is no clipping, and the distance of the position expression is fixed
regardless of the length of the sentence.

4We also considered incorporating wavelet transforms into RoPE, but decided not to do this because it
would make the computational cost even higher. A discussion on this is included in Appendix A.5.
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Wavelet Function In conventional wavelets, such as in Eq. (2), the amplitude also varies depend-
ing on the scale parameter a. In the proposed method, all amplitudes are the same.

ψa,b(t) = ψ
( t− b

a

)
. (11)

The variable t is assigned the relative position, which is t = m − n. We used the Ricker wavelet
(Ricker, 1944) as a base wavelet, which is formulated as follows.

ψ(t) = (1− t2) exp
(−t2

2

)
. (12)

Shift and scale parameters We use s distinct patterns for the scale parameter a and d
s patterns

for the shift parameter b.

(a, b) ∈ {20, 21, 22, ...2s−1} × {0, 1, 2, 3, ..., d
s
− 1}. (13)

The scale parameter is a power of 2 derived from the principles of the discrete wavelet transform.
By combining the d

s -pattern shift parameters b with the s-pattern scale parameters a, we generate
d distinct wavelets. In this way, our method can set the s-pattern context window size using the
scale parameter a and the d-pattern context window using both the scale parameter a and the shift
parameter b. For instance, with a head dimension of d = 128, we use s = 8 scale variants (a ∈
{20, 21, ..., 27}) and 16 shift variants (b ∈ {0, 1, 2, ..., 15}), resulting in 8 × 16 = 128 unique
wavelets. Finally, pm,n is computed as follows.5

pm,n =
(
1−

(m− n− b

a

)2)
exp

(
−1

2

(m− n− b

a

)2)
. (14)

6 SHORT-CONTEXT EXPERIMENT

6.1 EXPERIMENTAL SETTINGS

First, we conducted a small-scale experiment to compare our approach with various position encod-
ings. We used the WikiText-103 dataset (Merity et al., 2017), which consists of over 103 million
tokens of English Wikipedia articles. We performed a comparative evaluation using a Transformer-
based language model (Baevski & Auli, 2019). The dimensionality of the word embedding dmodel
is 1024, the number of heads N is 8, the dimensionality of the heads d is 128, and the number
of layers is 16. The implementation was based on the fairseq (Ott et al., 2019)-based code6 pro-
vided in a previous work(Press et al., 2022), and all hyperparameters were set to the same values as
those in the literature(Press et al., 2022).7 The maximum allowable lengths of sequences were set to
Ltrain = 512 and Ltrain = 1024.

Compared Methods Although θ = 10, 000 is usually used for RoPE, it has been found that ex-
tending θ to 500,000 is effective for long contexts (Xiong et al., 2024). Therefore, we compared
θ = 10, 000 with θ = 500, 000. In addition to ALiBi and RoPE, the following position representa-
tions were also compared: NoPE (Kazemnejad et al., 2023), in which position information is given,
and TransXL (Dai et al., 2019), which is a relative positional representation that uses sine waves.

Evaluation Metric We use perplexity as our evaluation metric. Following previous research
(Press et al., 2022), we evaluated the validation set. To evaluate sequences longer than Ltrain tokens,
it is common to divide the sequence into Ltrain-length sub-sequences, evaluate each independently,
and report the average score. However, methods that use relative positions to express a wide range,
such as ALiBi, Trans-Xl, and the proposed method, are able to consider a wider range of contexts
than Ltrain. For this reason, in this paper, we report not only the perplexity of non-overlapping in-
ference but also the normal perplexity when the sequence is not divided into partial sequences. Note

5Implementation tips for reducing the memory and computational efficiency of the proposed method are
included in Appendix A.6.

6https://github.com/ofirpress/attention_with_linear_biases
7See Appendix A.7 for more details of hyperparameters.
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Table 1: Perplexity of validation set in extrapolation experiments using Wikitext-103. Maximum
allowable lengths of sequences in pre-training are Ltrain = 512 and Ltrain = 1024.

Sequence Length

Ltrain = 512 Ltrain = 1024

pos 128 256 512 1012 1512 2512 1024 1524 3024 5024

Perplexity in Non-overlapping Inference with Ltrain

NoPE(Kazemnejad et al., 2023) - 26.38 23.23 21.53 21.52 21.53 21.53 20.81 21.52 21.49 21.45
RoPE (Su et al., 2021) abs 23.82 20.98 19.39 19.35 19.39 19.38 18.42 19.51 19.52 19.48
RoPE (Xiong et al., 2024) abs 23.81 20.95 19.35 19.32 19.35 19.33 18.50 19.53 19.54 19.50
Trans-XL (Dai et al., 2019) rel 24.16 21.53 19.96 19.92 19.93 19.96 18.67 19.75 19.74 19.70
ALiBi(Press et al., 2022) rel 24.18 21.32 19.69 19.64 19.69 19.64 18.66 19.64 19.65 19.62
Wavelet(Ricker) rel 23.64 20.82 19.19 19.15 19.17 19.20 18.26 19.30 19.34 19.26

Perplexity without Non-overlapping Inference

NoPE(Kazemnejad et al., 2023) - 26.38 23.23 21.53 21.03 21.58 48.48 20.81 20.45 22.11 59.37
RoPE (Su et al., 2021) abs 23.82 20.98 19.39 23.25 44.38 93.94 18.42 18.29 33.20 122.52
RoPE (Xiong et al., 2024) abs 23.81 20.95 19.35 23.70 40.39 77.90 18.50 18.30 29.25 83.43
Trans-XL(Dai et al., 2019) rel 24.16 21.53 19.96 19.09 18.92 19.05 18.67 18.25 18.17 18.76
ALiBi(Press et al., 2022) rel 24.18 21.32 19.69 18.71 18.42 18.41 18.66 18.14 17.86 17.88
Wavelet(Ricker) rel 23.64 20.82 19.19 18.23 18.00 17.99 18.26 17.13 17.14 17.44
Haar (Fixed scale) rel 24.98 22.07 20.49 51.61 116.87 299.26 - - - -
Haar rel 23.73 20.89 19.27 18.34 18.11 18.17 - - - -
Morlet rel 24.15 21.28 19.65 19.02 20.46 26.56 - - - -
Gaussian rel 23.77 20.90 19.30 18.31 18.02 17.88 - - - -

that when the sequence length is less than Ltrain, the scores for the perplexity of non-overlapping
inference and the normal perplexity without division into partial sequences are the same. Of course,
when perplexity is considered without division into partial sequences, the performance of RoPE is
expected to decrease greatly because unknown values are used for RoPE when processing a sequence
longer than the length encountered during training.

6.2 MAIN RESULTS

The experimental results are shown in Table 1. The results of perplexity in inference without overlap
show that the proposed method using wavelets achieved the lowest perplexity and was also effective
for extrapolation. In RoPE, the values used during training are also used in inference without over-
lap, so the perplexity remains low even when the sequence length exceeds Ltrain. At the same time,
however, perplexity is higher for ALiBi and Trans-XL than for RoPE, which is attributed to the lim-
ited context range of the position representation’s applicability due to the division of the sequence
into sub-sequences. In contrast, the proposed method maintains low perplexity even in the case of
division into sub-sequences, suggesting that the wavelet position representation is highly effective.

On the other hand, perplexity without non-overlapping inference showed the opposite results. First,
since RoPE uses absolute positions, it is necessary to use new values for unknown positions, and thus
perplexity increased significantly. However, in the case of θ = 500, 000, the increase in perplexity
was relatively small. On the contrary, Trans-XL and ALiBi, which use relative positions, were
able to handle longer contexts, and perplexity decreased as the range of position representations
expanded. In the proposed method, perplexity also decreased and the best score was achieved.
Trans-XL uses a position representation based on a periodic sine wave function, but the proposed
method, which uses wavelets, could further decrease perplexity. This result supports our claim
(section 5) that an approach like wavelet transformation is more effective than periodic functions in
capturing the fluid nature of natural language, which is not constrained by periodicity.

6.3 ANALYSIS

6.3.1 HOW EFFECTIVE ARE THE OTHER WAVELET TYPES?

We also conducted experiments to see whether the same effect could be obtained with other
wavelets. The wavelets tested were the Gaussian-based wavelet ψ(t) = exp(−t2), the Morlet-
based waveletψ(t) = exp(−t2)cos(at), and the Haar-based wavelet. Note that when ψ(t/a) exists
in our Morlet wavelet, the frequency of this cosine wavelet is not affected by the scale parameter a.
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Figure 3: Heatmap of scaled attention scores via softmax normalization in 4th head after softmax
operation without non-overlapping inference. The vertical axis represents the query, while the hor-
izontal axis corresponds to the key. For clarity, values of 0.001 or more are mapped to black, while
values below that are mapped to yellow. The maximum allowable length of sequences in pre-training
is Ltrain = 512 and the inference length is 1012. See Appendix A.12 for other heads.

We used the following formula for the Haar wavelet.

ψ(t) =


1 −0.5 ≤ t<0,

− 1 −1 ≤ t<− 0.5,

0 otherwise.

(15)

We kept the shift and scale parameters constant, only changing the wavelet function. We also tested
the Haar wavelet when set to a ∈ {20, 20, 20, ...20}. Consequently, this restricted Haar wavelet had
the same scale parameter setting as the RoPE demonstrated in Section 3.2. 8 The graphs of these
wavelet functions are shown in Appendix A.10 (Fig. 6). Extrapolation experiments were conducted
under the same conditions as the experimental setup in Section 6, with Ltrain = 512 during training.

As shown in Table 1, the Ricker-, Haar- and Gaussian-based wavelets had lower perplexity than
the Morlet wavelet. One possibility is that complex wavelets with multiplied cosine waves, such as
Morlet wavelets, are not suitable for relative positional representation. On the other hand, wavelets
with all positive values, such as Gaussian-based wavelets, are expected to represent positions within
a narrower distance than the window specified by the scale parameter due to softmax normaliza-
tion. This suggests that wavelets with a specific range of negative values are suitable, like a Ricker
wavelet, for positional representation. Although the Haar wavelet is simple, it is such a wavelet with
negative values within a specific range. Therefore, it is considered effective, although not as much
as a Ricker wavelet. However, when the scale parameter is restricted ( a ∈ {20, ..., 20}), as in RoPE,
the perplexity increases. This demonstrates the importance of having multiple scales, or in this case,
window sizes. We also performed ablation studies for each shift and scale parameter (Appendix
A.13) and for discrete wavelets as well as continuous wavelets (Appendix A.14).

6.3.2 CAN IT HANDLE TOKENS WITH LONG-RANGE DEPENDENCIES?

Figure 3 shows the attention map of scaled attention scores obtained through softmax normalization
for the proposed method. The inference length is L = 1012 without non-overlapping inference. The
most notable feature of the proposed method is that it is always able to attend to specific tokens. The
words that always receive attention are those that are important in the sentence, such as the special
token, the first token, and the subject of the sequence. On the other hand, ALiBi has a restricted
receptive field for attention, making it unable to capture long-distance dependencies. Similar to the
proposed method, RoPE emphasizes important and special words but struggles to capture those that
are farther apart. Moreover, as the sentence lengthens, it loses the ability to attend to the initial word.
This tendency was also seen in sentences shorter than Ltrain. Accordingly, the proposed method has
demonstrated its superiority at capturing long dependencies without restricting the receptive field of
attention.

8Normally, the wave is localized when t > 0 in the Haar wavelet, but in the decoder model, only the range
t < 0 is used. Therefore, we transformed the Haar wavelet into a form that reflects the original function f(x)
across the y-axis.
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Table 2: Perplexity in Non-overlapping Inference with Ltrain = 4096.

Sequence Length
4 k 8 k 16 k 32 k

RoPE (Xiong et al., 2024) 9.45 9.33 9.12 8.90
Wavelet 9.00 9.01 8.83 8.60

7 LONG CONTEXT

7.1 EXPERIMENTAL SETTINGS

Next, we conducted a large-scale experiment using a Llama-based model (Touvron et al., 2023b).
We pre-trained the Llama-2-7B9 model from scratch. For pre-training, we used the RedPajama
dataset (Computer, 2023), which selects a 1B-token sample of all samples. The maximum allowable
length of sequences in pre-training was set to Ltrain = 4096. For the same reason as given in Section
6.1, we set θ = 500, 000 for RoPE. Furthermore, when the scale parameter is a ∈ {20, 21, ..., 27},
the range within which the wavelet is localized becomes narrow. Therefore, in our method, we
changed the scale parameter to a ∈ {22, 23, ..., 29}. The other parameters are the same as those used
for the Llama-2-7B model(Touvron et al., 2023b). We used CodeParrot 10 for evaluation, which is
good for long-distance testing because it requires an understanding of patterns and contextualization
of information over long distances. 11

7.2 MAIN RESULTS

The experimental results are shown in Table 2. Regardless of whether interpolation or extrapolation
was applied, the perplexity of our method was lower than RoPE. Therefore, even with large-scale
models and long contexts, our method was found to be effective. Moreover, the results in Section
6.2 show that not dividing the sequence further reduces perplexity. Therefore, our method might
also be able to further reduce perplexity. We investigated the use of LongBench(Bai et al., 2024),
with the results given in Appendix A.15.

In addition, position interpolation methods (Chen et al., 2023; bloc97, 2023; Peng et al., 2024; Ding
et al., 2024) have been proposed to adapt RoPE for longer contexts. We believe these methods can be
integrated into our approach for the following reasons. First, the parameter θ in RoPE corresponds
to the scale parameter a in our method, implying compatibility between the two frameworks. Both
θ and a refer to the upper limit of the number of positions to be expressed. Second, the LongRoPE
paper (Ding et al., 2024) reveals that performance improves when extrapolation is avoided for the
initial positions, which likely aligns with the shift parameter b in our method. Thus, it is highly
likely that existing position interpolation methods will integrate seamlessly with our approach.

8 CONCLUSION

In this paper, we demonstrated that RoPE can be interpreted as a wavelet transform, and we intro-
duced a novel positional representation method that leverages the wavelet transform’s advantages,
effectively capturing positional information across various window sizes. Our experimental results
demonstrate the proposed method’s superior performance in extrapolation tasks when compared to
traditional positional representation techniques. Importantly, our approach offers the advantage of
not constraining the receptive field, which allows more flexible and comprehensive analysis of po-
sitions. Calculating relative positions is known to require more resources than calculating absolute
positions, so we show methods for reducing memory consumption in Appendix A.6. However, the
computational overhead of calculating relative positions may still impose a bottleneck, and thus
reducing it is an important direction for future work.

9https://huggingface.co/meta-llama/Llama-2-7b
10https://huggingface.co/datasets/codeparrot/codeparrot-clean
11See Appendix A.8 for more details of the hyperparameters.
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A APPENDIX

A.1 ROTARY POSITION EMBEDDING

RoPE incorporates positional information directly into the self-attention mechanism by rotating the
query and key vectors in the complex space. When divided into even and odd dimensions, the
following calculations are performed for the m-th query in each sequence. In even dimensions,
RoPE is expressed as follows.

qm0
qm2

...
qmd−2

 =


cosmθ1 − sinmθ1 0 0 ... 0 0

0 0 cosmθ2 − sinmθ2 ... 0 0
...

...
...

...
. . .

...
...

0 0 0 0 ... cosmθd/2 − sinmθd/2



qm0
qm1

...
qmd−2

qmd−1

 .
(16)

In odds dimensions, RoPE is expressed as follows.
qm1
qm3

...
qmd−1

 =


sinθ1 cosθ1 0 0 ... 0 0
0 0 sinmθ2 cosmθ2 ... 0 0
...

...
...

...
. . .

...
...

0 0 0 0 ... sinmθd/2 cosmθd/2



qm0
qm1

...
qmd−2

qmd−1

 , (17)

where qm ∈ R1×d is the m-th query when the number of dimensions is d and θi =
10000−2(i−1)/d, i ∈ [1, 2, ..., d/2]. The same process is also performed for the n-th key kn ∈ R1×d.

A.2 PROOF OF THE EXISTENCE OF f(t)

We prove the existence of f(t) as described in 3.2 such that ϕj = ϕj+1 = mθ⌈ j+1
2 ⌉, where θi =

10000−2(i−1)/d and i ∈ [1, 2, ..., d/2]. Here, we restrict our proof to ψ(t) in Eq.(7), but a similar
argument can be applied to ψ

′
(t), following analogous steps to establish its validity.

First, we revisit the definition of ψ(t):

ψ(t) =


cos f(t) 0 ≤ t < 1,

− sin f(t) 1 ≤ t < 2,

0 otherwise.

(18)

Here, f : R → R is a monotonous function that satisfies
∫∞
−∞ ψ(t) dt = 0 and Eq.(1). Assuming that

when x(t)(0 ≤ t ≤ d− 1) is a signal with d elements, the wavelet ψ is used and wavelet transform
is performed at each scale a = 1. We define the shift parameter as bj = j− δ(j)(j = 0, 2, .., d− 2).
Here, δ(t) is a monotonous function such that 0 ≤ t ≤ d− 1 and 0 ≤ δ(t) < 1.


W (1, b0)
W (1, b2)

...
W (1, bj)

...
W (1, bd−2)

 =


cosϕ0 − sinϕ1 0 0 ... ... 0 0

0 0 cosϕ2 − sinϕ3 ... ... 0 0

...
...

...
. . .

...
...

...
...

0 0 0 ... cosϕj − sinϕj+1 ... 0

...
...

...
...

...
. . .

...
...

0 0 0 0 ... ... cosϕd−2 − sinϕd−1





x(0)
x(1)

...
x(j)

x(j + 1)

...
x(d− 2)
x(d− 1)


.

(19)

To simplify the notation in the matrix representation above, we write ϕj for j = 0, 1, . . . , d − 1,
where ϕj = f(1 + δ(j)) if j is odd, and ϕj = f(δ(j)) otherwise. We let x be the query qm. The
function f(t) is defined such that 0 < f(t) ≤ 2kπ for 0 ≤ t < 1 and 0 < f(t) ≤ 2kπ for 1 ≤ t < 2,
where k is the smallest natural number satisfying m < 2kπ.
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Do Haar-like wavelets satisfy the necessary conditions of a wavelet? Here, f(t) must be a
function such that ψ(t) satisfies the conditions of a wavelet. For Eq. 1, it is evident that it holds
for any f satisfying 0 < f(t) ≤ 2kπ. Next, we consider the zero-mean property. As an example,
consider f(t) defined as f(t) = 2kπt for 0 ≤ t < 1 and f(t) = 2kπ(t− 1) for 1 ≤ t < 2. If we set
θ = f(t), we have: ∫ ∞

−∞
ψ(t)dt =

∫ 2kπ

0

cos θdθ +

∫ 2kπ

0

− sin θdθ = 0. (20)

Since this satisfies the zero-mean property, we conclude that there exists an f(t) such that ψ(t) is a
wavelet.

Furthermore, we observe that there exists a δ(t) satisfying ϕj(= f(δ(j))) = ϕj+1(= f(1+δ(j))) =
2kπδ(t) = mθ⌈ j+1

2 ⌉ for j = 0, 2, . . . , d− 2. In other words, we can simply choose a function δ(j)

that satisfies δ(j) =
mθ⌈ j+1

2 ⌉
2kπ for j = 0, 2, . . . , d− 2.

A.3 HAAR WAVELET

Here, we explain wavelet transform using the Haar wavelet, which is the simplest wavelet. The
definition of the Haar wavelet is as follows.

ψ(t) =


1 0 ≤ t<1/2,

− 1 1/2 ≤ t<1,

0 otherwise.

ϕ(t) =

{
1 0 ≤ t<1,

0 otherwise.
(21)

Haar wavelets are defined not only by a wavelet function ψ but also by a scaling function ϕ.

The method of analyzing signals by performing a discrete wavelet transform using these two func-
tions is called multi-resolution analysis. When the scale is fixed at 2 and the shift b ∈ [0, 2, ..., d/2],
the wavelet transform using the wavelet function and scaling function is expressed as follows.

ψ2,0(0) ψ2,0(1) ψ2,0(2) ψ2,0(3) ... ψ2,0(T − 2) ψ2,0(T − 1)
ϕ2,0(0) ϕ2,0(1) ϕ2,0(2) ϕ2,0(3) ... ϕ2,0(T − 2) ϕ2,0(T − 1)
ψ2,0(−2) ψ2,0(−1) ψ2,0(0) ψ2,0(1) ... ψ2,0(T − 4) ψ2,0(T − 3)
ϕ2,0(−2) ϕ2,0(−1) ϕ2,0(0) ϕ2,0(1) ... ϕ2,0(T − 4) ϕ2,0(T − 3)

...
...

...
... ...

...
...

ψ2,0(− d
2 ) ψ2,0(− d

2 + 1) ψ2,0(− d
2 + 2) ψ2,0(− d

2 + 3) ... ψ2,0(0) ψ2,0(1)
ϕ2,0(− d

2 ) ϕ2,0(− d
2 + 1) ϕ2,0(− d

2 + 2) ϕ2,0(− d
2 + 3) ... ϕ2,0(0) ϕ2,0(1)




x(0)
x(1)
x(2)

...
x(T − 2)
x(T − 1)

 .
(22)

From Eq.(21), ψ2,0 and ϕ2,0 are as follows.

ψ2,0(t) =


1/
√
2 0 ≤ t<1,

− 1/
√
2 1 ≤ t<2,

0 otherwise.

ϕ2,0(t) =

{
1/
√
2 0 ≤ t<2,

0 otherwise.
(23)

Therefore, the Haar wavelet transform is a 2× 2 block matrix.
ψ(2, 0)
ϕ(2, 0)
ψ(2, 2)
ϕ(2, 2)

...
ψ(2, T − 2)
ϕ(2, T − 2)

 =


1/

√
2 −1/

√
2 0 0 ... 0 0

1/
√
2 1/

√
2 0 0 ... 0 0

0 0 1/
√
2 −1/

√
2 ... 0 0

0 0 1/
√
2 1/

√
2 ... 0 0

...
...

...
... ...

...
...

0 0 0 0 ... 1/
√
2 −1/

√
2

0 0 0 0 ... 1/
√
2 1/

√
2




x(0)
x(1)
x(2)
x(3)

...
x(T − 2)
x(T − 1)

 . (24)

This matrix is the Haar forward transform using matrix multiplication for a T element signal. This
matches the RoPE matrix with mθ = π/4.
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A.4 ISN’T ROPE A FOURIER TRANSFORM?

We also hypothesized that this could be equivalent to a Fourier transform. However, this hypothesis
does not hold. When a signal x(t) that changes over time is Fourier transformed, its spectrum F (k)
is obtained. The process of converting an actual discrete signal x(t) into a spectrum F (k) is as
follows.

F (f) =

T∑
t=0

x(t)wf ·t. (25)

The Fourier transform can be expressed as a matrix formula as follows.
F (0)
F (1)
F (2)

...
F (f)

 =


w0·0 w0·1 w0·2 ... w0·(T−1)

w1·0 w1·1 w1·2 ... w1·(T−1)

w2·0 w2·1 w2·2 ... w2·(T−1)

...
...

...
. . .

...
wf·0 wf·1 wf·2 ... wf·(T−1)

.




x(0)
x(1)
x(2)

...
x(T − 1)

 . (26)

Here, f ∈ R is the wave number, T ∈ R is the number of samples, and i is the imaginary unit.
w = exp(− 2πi

T ) is called the Twiddle Factor (Gentleman & Sande, 1966), which is a complex
number expressed in polar form using Euler’s formula e−iθ = cosθ − isinθ. In the complex plane,
wf ·t represents a point on the unit circle with an argument of the complex number − ft2π

T . From this
formula, we can see that the Fourier transform calculates the inner product of all signals and sine
waves. However, in RoPE, the inner product with sine waves is calculated only within each block.

Next, when calculating the attention score with RoPE, does the Fourier transform hold? Attention
scores of the m-th query qm and the n-th key kn with RoPE are calculated as follows.

[
R1
m(Q1

m)T , ..., R
d/2
m (Q

d/2
m )T

] R1
nK

1
n

...
R
d/2
n K

d/2
n

 =

d/2∑
i=1

(Qim)TRin−mK
i
n, (27)

where Qd/2m is the query divided into every two dimensions, and Rd/2m is the rotation matrix.

Qd/2m =

[
qd−1
m

qdm

]
,Kd/2

n =

[
kd−1
n

kdn

]
, Rd/2m =

[
cosmθd/2 −sinmθd/2
sinmθd/2 cosmθd/2

]
.

Aligning with the Fourier transform, as illustrated in Equation 26, requires a process involving the
inner product between a frequency tensor of dimensions f×T and a signal tensor of dimensions T×1
(such as the query vector). However, RoPE operates on independent 2×2 blocks, where each block is
processed separately. Consequently, RoPE’s block-wise operations do not conform to the structure
required by the Fourier transform. Moreover, if we focus solely on the RoPE and key operations
in Equation 27, they may appear to align with the structure of a Fourier transform. However, since
the final step involves taking the inner product with the query, the overall operation deviates from
the path of becoming a perfect match with the Fourier transform. Furthermore, the rotation factor
represents a rotation in the complex plane, and even if it is expressed as in Eq.(26) using a rotation
matrix, it does not completely match a rotation matrix that represents a rotation in the Euclidean
plane.

Therefore, RoPE cannot be equated with the Fourier transform. Furthermore, even if it were the
same as the Fourier transform, it would be unsuitable for processing non-stationary signals and thus
unsuitable for processing natural language, which is a non-stationary flow.
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A.5 CONSIDERATION OF WAVELET TRANSFORMATION BASED ON ROPE

In this paper, we explore the incorporation of wavelet transforms into RoPE (Relative Positional
Encoding) following our previous discussion on RPE (Relative Position Encoding). In this regard,
integrating wavelet transforms into RoPE presents challenges for controlling computational and
memory costs. In Sections 3 and 4, we highlighted the potential effectiveness of employing multiple
scales for extrapolation. With this in mind, we present a simplified formula for applying various
scales and wavelet transforms to RoPE, which we refer to here as a RoPE-based Wavelet.

qm0
qm1
qm2
qm3

...
qmd−1

qmd−2


=



cosmθ1 − sinmθ1 0 0 ... 0 0
sinmθ1 cosmθ1 0 0 ... 0 0
cosmθ2 − sinmθ2 cosmθ2 − sinmθ2 ... 0 0
sinmθ2 cosmθ2 sinmθ2 sinmθ2 ... 0 0

...
...

...
...

. . .
...

...
cosmθd/2 − sinmθd/2 cosmθd/2 − sinmθd/2 ... cosmθd/2 − sinmθd/2
sinmθd/2 cosmθd/2 sinmθd/2 sinmθd/2 ... sinmθd/2 cosmθd/2





qm0
qm1
qm2
qm3

...
qmd−2

qmd−1


,

(28)

where qm ∈ R1×d is the m-th query when the number of dimensions is d and θi =
10000−2(i−1)/d, i ∈ [1, 2, ..., d/2]. The same process is also performed for the n-th key kn ∈ R1×d.

Conversely, the method introduced in Section 5 is here called RPE-based Wavelet. The key differ-
ences between RoPE-based Wavelet and RPE-based Wavelet are as follows:

• Number of Scale Parameters: In RPE-based Wavelet, the scale parameters can be selected
up to the maximum sequence length. However, in RoPE-based Wavelet, the selection is
limited to a maximum of d.

• Memory Usage: RoPE-based Wavelet requires a wavelet matrix that corresponds to the
number of absolute positions m. Consequently, the memory usage is significantly higher.
Unlike RoPE-based Wavelet, RPE-based Wavelet does not necessitate a wavelet matrix that
matches m values, allowing the use of Tip 2 from Appendix A.6, which improves memory
efficiency.

• Absolute and Relative Positions: When applying wavelet transforms using RoPE-based
Wavelet, it is necessary to use absolute positions. In contrast, RPE-based Wavelet can use
relative positions, which enhances extrapolation.

• Computational Cost: Implementing wavelet transforms via RoPE-based Wavelet requires
processing both the query and the key, necessitating two calculations. RPE-based Wavelet,
as discussed in Section 5, only requires one computation, since it processes only the query.

Additionally, we conducted an experiment with RoPE-based Wavelet. Unfortunately, we had to
halt the learning process because it took over five times longer than anticipated. Considering
the learning costs associated with large-scale language models in recent years, we believe the RoPE-
based Wavelet approach is not feasible.
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A.6 IMPLEMENTATION TIPS FOR WAVELET POSITION REPRESENTATION

Tip 1 Similar to RPE(Shaw et al., 2018), we used Eq. (10) as

αij = softmax
(qiKT + qi(pij)

T

√
dk

)
.

By transforming it in this way, it is possible to reduce the computational complexity to O(batch ×
n× length2 × d+ length2 × d), where batch is the batch size, n is the number of heads, length is
the number of tokens, and d is the number of dimensions of each head. The experiments in Section
6 are implemented based on the methodology introduced in this section.

Tip 2 When dealing with long contexts of over 4 k with a large model, the memory efficiency of
(d, length, length) of the wavelet position becomes a bottleneck. Therefore, we further reduce the
memory usage to (d, length) by using torch.scatter to scatter the wavelet position represen-
tation to the attention mask. In the relative position representation in the decoder, only the position
information of the token before the current token is required, for example, 0,−1,−2, etc. There-
fore, we pre-compute the information up to 0,−1,−2, ...length and reduce the memory usage by
using torch.scatter to distribute it. Specifically, we prepare a (d, length) wavelet tensor and
calculate the 2D inner product with the query, which has been transposed to (length × batch, d).
The tensor after the calculation becomes (length × batch, length), which is then scattered us-
ing torch.scatter so that it becomes a relative position in the attention mask. This reduces
the amount of memory used from (d, length, length) to (d, length), and the calculation can be
performed using calculations between 2D tensors. The experiments in Section 7 are implemented
based on the methodology introduced in this section.

A.7 EXPERIMENTAL SETTINGS IN SHORT-CONTEXT EXPERIMENT

The parameter settings used in the extrapolation experiments were the same as those in the original
ALiBi paper. The dimensionality of the word embedding dmodel is 1024, the number of heads N is
8, the dimensionality of the heads d is 128, and the number of layers is 16. The implementation was
based on the fairseq (Ott et al., 2019)-based code12 provided in a previous work(Press et al., 2022),
and all hyperparameters were set to the same values as those in the literature(Press et al., 2022). The
number of training epochs is 205, and the batch size is 9216. The learning rate was set to 1.0, and
the learning process was updated by 1e-7 every 16,000 steps.

A.8 EXPERIMENTAL SETTINGS IN LONG-CONTEXT EXPERIMENT

The dimensionality of the word embedding dmodel is 4096, the number of heads N is 32, the di-
mensionality of the heads d is 128, and the number of layers is 32. The number of training steps is
30,000, and the batch size is 1. The learning rate was set to 0.0003. We used AdamW(Loshchilov
& Hutter, 2019) as the optimizer, with (β1, β2) = (0.9, 0.95). In accordance with previous research
(Rubin & Berant, 2024; Wu et al., 2022; Zhang et al., 2024), we then used 100 sampled sequences
in the training set for evaluation. In this experiment, due to the large model size and long sequence
length, we report perplexity only for non-overlapping inference using Ltrain, since the memory
capacity is exceeded.

12https://github.com/ofirpress/attention_with_linear_biases
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A.9 RICKER WAVELET

Figures 4 and 5 show the Ricker wavelets with multiple scale a.

Figure 4: Graph of compared Ricker wavelet functions with a = [20, 21, 22, 23, 24]

Figure 5: Graph of compared Ricker wavelet functions with a = [25, 26, 27, 28, 29]

A.10 WAVELET TYPE

Figure 6 shows graphs of the wavelets compared in Section 6.3.1. It can be seen that the simplest is
the Haar wavelet, while the most complex is the Morlet wavelet.

Figure 6: Graph of compared wavelet functions. The case with scale parameter a = 24 and shift
parameter b = 0 is shown.
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A.11 EXAMPLE OF HEAT MAP AND TEXT CORRESPONDENCE

Figure 7 shows the attention map after softmax operation for the proposed method. First, the notable
feature of the proposed method is that it is always able to pay attention to specific tokens. The words
that always receive attention are those that are important in the sentence, such as the ’</s>’ token,
the first token, and words that are the subject of the sequence, such as ’he.’ Moreover, as with ALiBi,
the proposed method has a different scope of attention for each head.

Figure 7: Heatmap of attention score eij after softmax operation for the proposed method. The
maximum sequence length is Lmax = 512, and the sequence length at inference is L = 1012. From
left to right, n = 1, 2, 4th heads are shown. Scores above 0.01 are mapped in black and the rest in
yellow. Words that were always given attention in all heads are shown in red, and words that were
frequently given attention only in the n = 2nd head are shown in blue. Sentences are omitted in the
middle because they are long with 1012 tokens.
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A.12 CAN IT HANDLE TOKENS WITH LONG-RANGE DEPENDENCIES?

Figure 8: Heatmap of scaled attention scores via softmax normalization in 1-3rd and 5-8th head
after softmax operation for ALiBi, RoPE, and our method. For clarity, values of 0.001 or more are
mapped to black, while values below that are mapped to yellow.
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Table 3: Perplexity of validation set in extrapolation experiments using Wikitext-103. Maximum
allowable length of sequences in pre-training is Ltrain = 512.

Sequence Length

scale a shift b 128 256 512 1012 1512 2512

Perplexity without Non-overlapping Inference

Ricker {20, 21, ..., 27} {0, 1, 2, ..., 15} 23.64 20.82 19.19 18.23 18.00 17.99
Ricker {21, 22..., 28} {0, 1, 2, ..., 15} 23.77 20.89 19.25 18.23 17.97 18.02
Ricker {22, 23..., 29} {0, 1, 2, ..., 15} 23.92 21.03 19.40 18.41 18.14 18.07
Ricker {20, 21, 22, 23} {0, 1, 2, ..., 31} 23.96 21.13 19.55 18.87 19.40 21.73
Ricker {20, 21} {0, 1, 2, ..., 63} 24.49 21.60 19.95 20.90 32.01 70.80
Ricker {20, 21..., 215} {0, 1, 2, ..., 7} 23.74 20.88 19.24 18.22 17.96 17.84
Ricker {20, 21..., 231} {0, 1, 2, 3} 23.75 20.86 19.26 18.24 17.96 17.84
Ricker {20, 21..., 263} {0, 1} 23.75 20.88 19.30 18.31 18.04 18.02
Ricker {20, 21..., 2127} {0} 23.97 21.10 19.46 18.50 18.27 18.29
Ricker {27} {0, 1, 2, ..., 127} 24.35 21.45 19.80 20.68 20.87 21.31
Gaussian {20, 21, ..., 27} {0, 1, 2, ..., 15} 23.77 20.90 19.30 18.31 18.02 17.88
Gaussian {21, 22..., 28} {0, 1, 2, ..., 15} 23.92 21.02 19.41 18.41 18.15 18.01
Gaussian {22, 23..., 29} {0, 1, 2, ..., 15} 23.98 21.09 19.46 18.43 18.13 17.93
Gaussian {20, 21, 22, 23} {0, 1, 2, ..., 31} 23.83 29.96 19.33 18.43 18.40 18.94
Gaussian {20, 21} {0, 1, 2, ..., 63} 24.28 21.35 19.70 18.96 19.63 23.14
Gaussian {20, 21..., 215} {0, 1, 2, ..., 7} 23.72 20.86 19.24 18.24 17.95 17.77
Gaussian {20, 21..., 231} {0, 1, 2, 3} 23.78 20.92 19.29 18.30 18.01 17.85
Gaussian {20, 21..., 263} {0, 1} 23.86 20.98 19.37 18.46 18.20 18.10
Gaussian {20, 21..., 2127} {0} 24.21 21.31 19.68 18.71 18.45 18.45
Gaussian {27} {0, 1, 2, ..., 127} 24.48 21.62 20.05 19.53 22.63 35.23
Haar - - 24.98 22.07 20.49 51.61 116.87 299.26
Haar {20, 21, ..., 27} {0, 1, 2, ..., 15} 23.73 20.89 19.27 18.34 18.11 18.17
Morlet {20, 21, ..., 27} {0, 1, 2, ..., 15} 24.15 21.28 19.65 19.02 20.46 26.56

A.13 ABLATION STUDY OF SCALE AND SHIFT PARAMETERS

In this section, we present the findings from our ablation study focusing on the shift and scale param-
eters of the Ricker and Gaussian wavelets. As indicated in Table 1, both wavelet types demonstrate
substantial effectiveness in our method. To further evaluate their performance, we explored the con-
tributions of two parameters, i.e., the scale parameter a and the shift parameter b, while keeping all
other settings consistent with those outlined in Section 6.

Results The results of our experiments are summarized in Table 3. Both the Ricker and Gaussian
wavelets exhibit similar trends regarding the influence of the scale and shift parameters on extrap-
olation performance. Initially, we observed that increasing the scale parameter value a while hold-
ing the shift parameter b ({20, 21, ..., 27} × {0, 1, 2, ..., 15}, {21, 22, ..., 28} × {0, 1, 2, ..., 15} and
{22, 23, ..., 29}×{0, 1, 2, ..., 15}) constant maintained the performance of extrapolation, albeit with
some fluctuations. Conversely, when we increased the number of shift parameters while decreasing
the number of scale parameters ({20, 21, 22, 24} × {0, 1, 2, ..., 31} and {20, 21} × {0, 1, 2, ..., 63}),
there was a noticeable decline in performance. These findings underscore the significance of the
scale parameters in extrapolation. Moreover, we found that increasing the number of scale pa-
rameters while decreasing the number of shift parameters led to performance improvements in
some instances ({20, 21, ..., 215} × {0, 1, 2, ..., 7} and {20, 21, ..., 231} × {0, 1, 2, 3}). However,
when the shift parameters were reduced to two or entirely eliminated ({20, 21, ..., 263} × {0, 1} and
{20, 21, ..., 2127} ), relying solely on the scale parameters resulted in a deterioration of extrapolation
performance. Moreover, even when the scale parameter was fixed and only the shift parameter was
used ({27}×{0, 1, 2, .., 127}), the extrapolation performance decreased. This suggests the potential
importance of shift parameters as well.

In conclusion, our analysis highlights the critical roles of both shift and scale parameters in the
effectiveness of our wavelet-based method.
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A.14 ABLATION STUDY OF WAVELET TYPES

In this section, we also explored a variety of wavelet types beyond those previously discussed. In
Section 6.3.1, our focus was primarily on wavelets that could be computed directly from mathemat-
ical formulas. However, in this section, we expand our inquiry to include wavelets with varying
numbers of vanishing moments as well as discrete wavelet transformations. Additionally, drawing
from previous research (Wang et al., 2020), we considered the necessity for a distinct approach
when incorporating complex numbers into positional encoding. Consequently, our study did not
encompass wavelets that incorporate complex numbers.

Wavelet types The specific wavelets under consideration in our investigation are outlined as fol-
lows:

• Daubechies (db) (Daubechies, 1992) - Compactly supported orthonormal wavelets
• Symlets (sym) - Wavelets with minimum asymmetry
• Coiflets (coif) - The scaling and wavelet functions have the same number of vanishing

moments
• Meyer (dmey) - Wavelets defined in the frequency domain
• Biorthogonal Spline (bior) - Two wavelets are used: one for decomposition, and the other

for reconstruction
• Reverse biorthogonal Spline (rbio)

In addition, the graphs of these wavelets are shown in Figures 9 and 10. As the number of vanishing
moments increases, the wave oscillation becomes larger. Therefore, we also conducted a survey
by vanishing point moment. The name of a wavelet is derived from the number of vanishing mo-
ments. For example, db6 is a Daubechies wavelet with 6 vanishing moments, and sym3 is a Symlet
wavelet with 3 vanishing moments. In the case of Coiflet wavelets, coif3 is a Coiflet wavelet
with 6 vanishing moments. The names of bior and rbio wavelets are derived from the number
of vanishing moments possessed by the decomposition and reconstruction wavelets, respectively.
For example, bior3.5 is Biorthogonal wavelet that has 3 vanishing moments for the decomposi-
tion wavelet and 5 vanishing moments for the reconstruction wavelet. Biorthogonal wavelets and
Reverse-Biorthogonal wavelets can calculate the approximate values of decomposition wavelets and
reconstruction wavelets, but in this case, we only used the values of decomposition wavelets.

Experimental Settings We used Pywavelet (Lee et al., 2019) 13 to calculate the approximate val-
ues of these wavelets. In addition, in this experiment, we calculated the approximate values by
specifying 8 levels of {1, 2, ..., 8} instead of the 8-pattern scale parameters {20, 21, ..., 27}. We used
the shift parameter {0, 1, 2, ..., 15}. The other experimental settings are the same as those in Section
6.

Results The experimental results are summarized in Table 4. Overall, the performance observed
was suboptimal for extrapolation. However, it is important to note that since the parameters were
fixed at levels {1, 2, ..., 8}, we believe that performance may be enhanced with adjustments to these
levels. Notably, the rbio1.1 wavelet demonstrated promising extrapolation capabilities, suggesting
significant potential for future improvements. In contrast, the coif and dmey wavelets exhibited lim-
ited performance, even with shorter sequences, indicating their potential unsuitability for position
encoding tasks. Conversely, while the extrapolation performance (> 512) of other wavelets was
generally low, their interpolation performance (≤ 512) remained consistently stable, highlighting
another avenue for enhancement. Furthermore, the performance of the db, bior, and rbio wavelets
showed a positive correlation with an increasing number of vanishing points. This finding under-
scores the importance of vanishing points as a critical factor influencing performance. In conclusion,
our analysis indicates that both the shape of the wavelet and the number of vanishing points play
significant roles in determining extrapolation performance. Future work should explore these rela-
tionships further to identify optimal configurations for improved performance outcomes.

13https://pywavelets.readthedocs.io/en/latest/index.html
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Table 4: Perplexity without Non-overlapping Inference. We evaluated the validation set in extrapo-
lation experiments using Wikitext-103. The maximum allowable length of sequences in pre-training
is Ltrain = 512.

Sequence Length

Wavelet type 128 256 512 1012 1512 2512

Continuous Wavelet Families

Ricker 23.64 20.82 19.19 18.23 18.00 17.99
Gaussian 23.77 20.90 19.30 18.31 18.02 17.88
Morlet 24.15 21.28 19.65 19.02 20.46 26.56

Discrete Wavelet Families

Haar 23.73 20.89 19.27 18.34 18.11 18.17
db2 25.22 22.26 20.64 30.30 60.27 130.93
db4 25.22 22.47 21.37 41.78 51.75 56.18
db8 25.19 22.48 21.58 26.90 31.55 39.75
db16 25.23 22.43 21.24 21.15 22.16 46.65
db32 25.12 22.35 21.14 21.20 22.40 38.00
sym2 25.11 22.21 20.68 31.25 61.00 126.32
sym4 25.27 22.56 21.98 24.70 26.81 42.81
sym8 29.27 26.13 24.63 23.97 31.47 92.36
coif1 31.24 28.00 26.24 64.62 71.06 97.60
coif2 25.24 22.47 21.39 27.74 27.39 44.26
coif4 49.91 45.15 42.42 41.07 56.08 110.27
coif8 25.15 22.39 21.26 21.31 22.26 35.73
coif16 126.38 117.88 113.42 132.14 166.77 230.95
dmey 30.38 27.12 25.45 25.88 46.35 131.48
bior1.3 26.27 23.36 23.69 23.38 30.71 88.66
bior2.2 25.28 22.51 21.59 29.71 29.43 50.25
bior2.6 25.29 22.70 21.60 22.15 22.71 40.61
bior3.1 26.92 24.02 22.38 59.30 113.81 205.54
bior3.5 25.17 22.49 21.65 27.41 27.19 53.99
bior3.9 25.24 22.48 21.51 21.89 23.86 50.14
bior4.4 25.52 22.72 21.64 21.67 24.42 51.46
bior5.5 25.21 22.55 21.72 23.43 24.68 36.30
bior6.8 25.14 22.39 21.21 21.10 22.31 46.97
rbio1.1 24.26 21.34 19.69 18.79 18.63 18.98
rbio1.3 25.28 22.50 21.39 52.06 47.78 59.94
rbio2.2 25.92 23.08 21.98 68.57 86.12 93.90
rbio2.6 25.29 22.68 21.60 24.54 24.47 44.57
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Figure 9: Graph of compared wavelets with level=10. Pywavelet (Lee et al., 2019) was used to
calculate wavelets.
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Figure 10: Graph of compared wavelets with level=10. Pywavelet (Lee et al., 2019) was used to
calculate wavelets.
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A.15 EVALUATION ON LONGBENCH

The models pre-trained in Section 7 were evaluated on LongBench (Bai et al., 2024). This evaluation
was conducted using a dataset that contained relatively long sentences. Furthermore, the multi-
document QA task and single-document QA task were evaluated on all datasets. Since pre-training
was conducted using an English dataset, evaluation was conducted using only the English dataset.

The results are shown in Figure 11. In some datasets, the performance of the model that adopted
RoPE was good (Qasper, MuSiQue, and QMSum). In NarrativeQA, the two models attained almost
the same score. However, in the remaining tasks, the proposed method was more effective. Note that
this is an evaluation of a model that was pre-trained on a small dataset (redpajama-1B). As future
work, it will be necessary to pre-train the model with a larger dataset and conduct evaluations with
other models that are effective for long sentences, such as LongRangeArena (Tay et al., 2021).

Figure 11: Evaluation results using LongBench(Bai et al., 2024). We evaluated the model pretrained
in Section 7. The scores of the difference between the model using the proposed method, which
uses wavelet-based position representation, and the model using RoPE are shown. The tasks were
evaluated using the dataset, which contains relatively long sentences.

Table 5: Overview of the dataset statistics in LongBench (Bai et al., 2024). Avg len (average length)
is computed using the number of words in the English.

Dataset Avg len Metric Samples

NarrativeQA 18,409 F1 200
Qasper 3,619 F1 200
MultiFieldQA-en 4,559 F1 150
HotpotQA 9,151 F1 200
2WikiMQA 4,887 F1 200
MuSiQue 11,214 F1 200
TriviaQA 8,209 F1 200
SAMSum 6258 Rouge-L 200
QMSum 10614 Rouge-L 200
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