DENSBO: DYNAMIC ENSEMBLING OF
SURROGATE MODELS FOR
HYPERPARAMETER OPTIMISATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Hyperparameter optimisation (HPO) of machine learning models is crucial for
achieving optimal performance for different tasks. Surrogate-based optimisation
techniques, such as Bayesian optimisation (BO), have been successfully applied
to tackle this problem. BO is subject to different design choices of its components.
In particular, depending on the nature and the size of the search space, the choice
of the surrogate model has a substantial impact on the overall performance of BO.
Surrogate models in BO approximate the function to optimise and guide the search
towards promising regions by predicting the function value for different solution
candidates. Combining different machine learning (ML) models is known to lead
to performance gains, e.g., in different prediction tasks. To this end, we propose a
novel dynamic approach to ensemble surrogate models in the BO pipeline, lever-
aging the complementary powers of different surrogate models at different stages
of the optimisation process. We empirically evaluate our method on numerous
benchmarks and demonstrate its advantage compared to state-of-the-art single-
surrogate BO baselines. We highlight the usefulness of our approach in finding
good hyperparameter configurations in mixed (numerical and categorical) search
spaces for a wide range of problems.

1 INTRODUCTION

The performance of machine learning (ML) and deep learning (DL) models crucially depends on
how their hyperparameters are tuned (Lavesson & Davidsson, 2006; Bischl et al., 2023). Tuning
the hyperparameters in order to achieve peak performance of the model on a specific task is chal-
lenging even for experts. This process is often addressed through trial-and-error methods, requiring
significant effort and resources. Hyperparameter optimisation (HPO) techniques alleviate this bur-
den by automatically searching for well-performing hyperparameter configurations, removing the
need for human intervention (Snoek et al.l [2012). While automated HPO techniques have shown
great potential for classical ML models (Snoek et al., 2012 |[Feurer et al., [2022)), they are not as eas-
ily applicable to more complex ML and DL domains, where evaluating a single configuration of a
model can be very expensive (Brown et al., 2020). Moreover, due to the lack of access to an explicit
problem formulation, HPO is handled as a black-box problem. Consequently, all automated HPO
techniques rely on the only available information about the problem, i.e., evaluating the quality of
candidate configurations, to steer the search towards the most promising regions of the search space
and a good estimate of the global optimum.

Bayesian optimisation (BO) (Mockus| 2012; |Garnett, 2023} [Frazier, [2018) is a surrogate-based,
sample-efficient approach for global optimisation of expensive-to-evaluate black-box problems. BO
is particularly well-suited for settings with a very limited budget of available evaluations (relative to
the size of the search space), such as HPO. Various BO-based HPO techniques have been developed
and successfully applied to this end; a prominent example is HEBO (Cowen-Rivers et al., [2022),
the winner of the Neur[PS BBO competition (Turner et al., |2020). One of the key components of
BO is a probabilistic surrogate model, which is built on an initial sample of solution candidates to
approximate the objective function while also quantifying its uncertainty. At each iteration, a new
solution candidate is selected to be evaluated next by means of maximising an acquisition function

Model 1
Accuracy
Evaluation

on the &
samples

0 otherwise) model weights

J

—Yes Return solution

Surrogate Function i
Ensemble Optimisation >
Weight Mocel (k samples) Ol
Initialisation Fitting Update

Sample Set
Update with [€— No
new samples

Model Weight Exponential
Assignment Moving
(w=11to best, Average of

Budget
exhausted?

—

Figure 1: Bayesian optimisation pipeline with dynamic ensembling of surrogate models. In red, the
blocks for the ensembling strategy that have been plugged into the standard BO pipeline. We start
by sampling an initial set of hyperparameter configurations and initialising the weights for surrogate
models used to construct the ensemble. Within the BO loop, all surrogates are separately fitted to the
past observations and then combined in the weighted ensemble. The acquisition function is derived
from the model ensemble and optimised to determine the next points to sample. The accuracy
of the surrogate models is then evaluated on the newly sampled points and they are assigned new
weights. Finally, the weighting scheme for the next iteration is obtained via an exponential moving
average between the old and new weights, which is parameterised by a smoothing factor in order to
determine how much historical information is retained.

defined on the surrogate. The surrogate is then iteratively refined with newly observed solution
candidates, until the total budget of available evaluations has been exhausted.

Fitting the surrogate model to the observed data is a prediction task that often involves probabilistic
models. BO then uses these probabilistic predictions of function values across the search space to
guide the search towards a good estimate of the global optimal solution. The choice of the surro-
gate model thus strongly affects BO performance and is often linked to the dimensionality of the
problem at hand and the nature of its search space. For continuous search spaces, Gaussian pro-
cesses (GPs) (Rasmussen & Williams|, [2006) are the most widely adopted surrogate model and tend
to be particularly effective on low-dimensional problems, involving up to approximately 20 vari-
ables (Eggensperger et al., 2013). On the other hand, random forests (RFs) (Breiman, 2001) as
surrogate models natively support discrete and conditional search spaces, and tend to excel in higher
problem dimensionalities, where GPs generally do not work well (Eggensperger et al.,|2013;; |Jenat-
ton et al., 2017;|Li et al.,|2017). For complex HPO tasks in mixed domains, with numerical, ordinal
and categorical hyperparameters, it is highly desirable to leverage the complementary strengths of
inherently different surrogate models. One natural way to achieve this is via ensemble methods,
which have in practice demonstrated their versatility in the context of BO-based HPO techniques for
treating a wide range of heterogeneous problems (Turner et al.l 2020; Hoffman et al., 2011).

We propose a novel approach to enhance BO-based HPO performance by dynamically ensembling
surrogate models during the optimisation process. Our approach, which we dub DensBO, is based
on a weighted combination of multiple surrogate models, assigning the largest weight to the surro-
gate model with the highest accuracy on newly observed points in each iteration and updating the
weights via exponential moving average (see Figure|l|for details).

We present, for the first time, a dynamic ensembling approach for surrogate models in the context
of HPO. This poses a significant challenge, as there is a trade-off between the time needed for
finding the best hyperparameter configuration and the time complexity of target function evaluations
(i.e., if the optimiser requires more time to determine the next configurations to sample, there is
naturally less time available for evaluating the target function). In the context of HPO, evaluating the
target function means evaluating the performance of a given ML model for a given hyperparameter
configuration on a given dataset. Ensembling approaches in general require training and querying
more than one surrogate model, which leads to more time required for the optimisation phase.

We assess the effectiveness of the DensBO approach on various HPO tasks involving numerous
datasets and machine learning models. We compare it to several single-surrogate-based BO and a
simple, static ensemble, and we show that our dynamic ensembling method outperforms all of them

on both cheap and expensive functions. We provide the code, instructions for reproducibility, as

well as all figures in the

The remainder of this paper is organised as follows: in Section [2] we define the HPO problem,
describe how BO operates, and position our approach with respect to related work on dynamically
adapting BO components and using ensembles for enhancing BO performance. Section [3introduces
our methodology for dynamic ensembling of surrogate models. In Section] we provide the tech-
nical details on the experimental setup and describe the benchmarks and baselines chosen for our
empirical analysis. We present results and critically discuss them in Section[5] Finally, in Section|[6]
we provide concluding remarks and outline directions for future research.

2 BACKGROUND AND RELATED WORK

In this section, we define the HPO problem and describe the working mechanisms of the BO frame-
work. We also cover related work on dynamic design choices related to BO’s components, as well
as using ensembles in BO.

2.1 HYPERPARAMETER OPTIMISATION

Let A be a learning algorithm with n hyperparameters, A; the domain of the i-th hyperparameter, and
A = Ay x Ay x ... A, the overall hyperparameter configuration space. We denote a hyperparameter
configuration by A € A, and the algorithm A with its hyperparameters instantiated to A by Aj.
Given a dataset D, the objective of HPO is to find a hyperparameter configuration A* that minimises
the loss £ of a model fitted by algorithm A with hyperparameters A\ on training data Dy,q;n, and
evaluated on validation data D, j;4ate, for a given loss function L, i.e.,
A* € argmin L(A, Dirain, Dvatidate) = arg min ¢(\) ()
AEA XEA
Here, ¢(A) is a shorthand for the estimated loss function when Ay and D are fixed. Note that
¢()\) is a black-box function, without a closed-form mathematical expression nor analytic gradient
information.

2.2 BAYESIAN OPTIMISATION

Bayesian optimisation (BO) (Mockus| 2012} [Frazier, [2018; |Garnett, 2023)) is a family of surrogate-
based algorithms for efficient global optimisation of black-box problems. A typical BO pipeline
consists of three main modules: an initial design, i.e., in HPO, a set of hyperparameter configuration
candidates A = (A, ... A\(")) and their evaluations c(A) = (c(AM), ..., c(A)); a surrogate
model (fitted to the initial observations) that returns an approximation ¢(\) of the unknown loss
function ¢(\) while capturing the uncertainty in the prediction 6(\) on unobserved points in the
search space; and an acquisition function, which is optimised to suggest solution candidates to be
evaluated next, usually balancing exploration and exploitation of the search space. To approxi-
mate the expensive objective function, BO typically employs a Gaussian process (GP) model as
the surrogate. The Gaussian process model defines a distribution over functions on the configura-
tion space ¢(A\) ~ GP.(u(A), k(A, X)), where p(-) is a mean function and k(-,-) is a covariance
function. If we consider an observation model y; = c¢(A(*)) + ; with normally distributed noise,
gi = N(0,02), the predicted value by the Gaussian process model at one unknown configuration
A will also follow a normal distribution with mean p(\) = Ky x(Kax + J?I)_ly and variance
o?(A) = k(M A) — Kax(Kax + 021) 7 Ky 5, where y = (y1,...,y,) is the vector of observa-
tions, Kx x = [k(A, AU))]) xhex is the covariance matrix, and Kx x = [(AD, A\)]\oyex is
the correlation vector for all samples. GPs as a surrogate model inherently provide both the mean
and the variance vector. However, GPs are not the only surrogate model used in BO. Another com-
mon choice for a surrogate model are tree-based models, such as random forests. Tree-based models
traditionally predict only the mean of the given data (e.g., in a regression setting). In this case, the
variance is defined based on the variance of the predictions of the leaves (Hutter et al., 2011). We
calculate the mean p(\) and variance o () for a set of trees 7" as follows:

H(A) = ﬁ S @

teT

o)) = ﬁ ST -)2 3

teT

where t()\) is the prediction of a tree t € T

BO proceeds iteratively until a termination criterion is met. In each iteration, it optimises the acqui-
sition function by repeatedly querying the surrogate model to generate a pool of solution candidates.
It then evaluates the most high-potential solutions (i.e., the solutions that maximise the acquisition
function) from this pool, refines the surrogate model based on the new observations, and updates
the optimum if the new point improves upon the true function value of the best observation so far.
Among the many variants of BO from the literature, in this work, we focus on the state-of-the-
art method for HPO to empirically evaluate our ensembling method: HEBO (Cowen-Rivers et al.,
2022).

2.3 DYNAMIC COMPONENT SELECTION IN BAYESIAN OPTIMISATION

As a modular framework, BO performance is highly sensitive to design choices of its modules. Dif-
ferent sampling strategies for the initial design, such as Latin hypercube sampling (McKay et al.,
2000), low-discrepancy sequences (e.g., Sobol (Antonov & Saleev, [1979)) or random uniform sam-
pling; different surrogate models, such as GPs or RFs; and different acquisition functions (AFs),
such as expected improvement (EI) (Mockus, [1975), probability of improvement (PI) (Kushner,
1964) or upper confidence bound (UCB) (Forrester et al., | 2008) — all affect the overall BO perfor-
mance to various degrees (Bossek et al.| 2020} [Lindauer et al., 2019} (Cowen-Rivers et al.| [2022).
Despite few works showing the potential of automated selection of components (Ben Salem &
‘Tomasol 2018}, |Benjamins et al.l 2022ajb), the settings for each component are typically chosen
by practitioners beforehand depending on the desired use-case, and are fixed for the entire optimisa-
tion procedure. However, there have been efforts to show that the dynamic choices of BO modules
lead to performance gains across multiple contexts. Prior attempts to investigate the dynamic ad-
justment of AFs include works on mixed AF strategies, e.g., a self-adjusting AF approach to balance
the exploration-exploitation trade-off (Benjamins et al., [2023)), an online multi-armed bandit strat-
egy on a portfolio of AFs (Hoffman et al.| [2011), or an online update of weights in a portfolio of
AFs (Kandasamy et al.| 2020). When it comes to dynamic adjustment of surrogate models, several
directions have been investigated, notably an online selection of surrogate models based on their
ranking in each BO iteration (Bagheri et al., 2016), adaptive global surrogate modelling via genetic
algorithm-driven sampling (Gorissen et al.l 2009), or adaptive combining of surrogates based on
crowding distance trust regions (Zhang et al.l [2012)). It has also been shown that dynamic compo-
nent selection in general is beneficial in terms of performance in other related areas, e.g., in algorithm
configuration (Biedenkapp et al., 2020), evolutionary computation (Karafotias et al., 2015} |Doerr &
Doerr, |2020), planning (Speck et al.,2021), and deep learning (Adriaensen et al., 2022).

2.4 ENSEMBLES IN BAYESIAN OPTIMISATION

Ensembles of ML models have been shown to outperform single models for a wide range of use-
cases (Sagi & Rokachl 2018; |Opitz & Maclin, [1999; |[Rokachl 2010; |[Dong et al., |2020). Conse-
quently, using ensembles in the context of BO is not a new idea. A series of works has demonstrated
the advantage of using ensembles, most notably in engineering (Jiang et al.,[2020; Zhou et al.,[2011).
Various ensembling strategies have been investigated, e.g., optimal weighting of surrogates trained
on existing observations (Hanse et al., [2022)) or on extracted features (Guo et al., 2019), or opti-
mising multiple AFs on multiple surrogates and combining them accordingly (Huang et al., 2022}
Beaucaire et al., 2019). However, all these works consider a static (i.e., global) ensemble construc-
tion which is then used throughout the entire optimisation. In contrast to this, our method operates
in a dynamic fashion, tracking the accuracy of surrogates and adjusting the ensemble on-the-fly.

Dynamic model ensembles have been used with time-series data (Liu, |2023)), or for approximating
both high- and low-fidelity data during the BO procedure by combining two GP regression mod-
els (Liul 2020); they have also been considered in a non-BO context, e.g., for neural decoding in
brain-computer interfaces (Q1 et al., 2019). However, these approaches substantially differ from
our proposed methodology, as none of them considers the use of exponential moving average to
capture the history of model performance, nor a weighting scheme that is based on the accuracy
on the newly sampled points of the surrogate models trained on past observations. Furthermore,

we consider ensembles of regression models from inherently different families. To the best of our
knowledge, dynamic surrogate ensembles have so far not been applied in the context of HPO. We
thus not only consider a new use-case, but an entirely different challenge compared to other real-
world applications, due to a key trade-off between the budget for evaluating the target function and
the budget for finding the optimal hyperparameter configuration.

3 METHODOLOGY

Our dynamic ensembling approach works as follows. The BO procedure is launched with an initial
set of hyperparameter configurations. We then initialise the weights and assign them to the models
used to construct the ensemble. We denote the initial weight for the surrogate model m as wg .
Then, the BO loop begins. We train all surrogate models separately on all the available samples and
create a weighted ensemble. At each iteration ¢, the weighted ensemble is a convex combination
of the surrogate models, with coefficients defined as the normalised model weights of that iteration,
ie., Wem

> jeMm Wtj 7
where M is the set of available surrogate models and wy ,,, is the weight of model m at iteration ¢.
This way we make sure that Zme M Wem = 1 with 0 < 0y, < 1. The ensemble can then predict
the fiens(A) and oeps(A) of the performance for an unobserved configuration A by using a weighted
average of the individual model predictions g, () and their standard deviations o, (\):

“4)

Wt,m =

,uens()\) = Z UA]tn’n . ,um()\)a (5)
meM

Tens(A) = D i - om (V). 6)
meM

We note that, in preliminary experiments, we investigated a variation of our ensembling method
that applies different weighting schemes for the mean and the variance. However, this did not yield
sufficient improvements to justify a more complex method definition. Further details can be found

in [Appendix H|
In the next stages, at each iteration ¢, we optimise the acquisition function and select the candidates

to sample /\El),)\9), RN ,\§’“), as is typically done in BO. We then evaluate the accuracy of the
different surrogate models using mean squared error (MSE) on the newly sampled points. Based on
the calculated MSE, we determine the new weights w,,, for each model as follows:

L {1 if MSE (i, (Ae), ¢(Ar)) = mingepr MSE(p(Ar), ¢(At)),
Wt m = 0 . (7
otherwise,

where \; = {)\gl)7 Af“), cee)\Ek)}. Therefore, in Equation we assign a weight of w; ,,, = 1 to the
model that has the lowest MSE on the k new points A; sampled at iteration ¢. Then, for each model
m, we use an exponential moving average between the previously calculated weights and the new
weight:

Wt41,m = (1 - Oé) * Wt,m +a- wt,’"b 5 (8)
We use the exponential moving average in the weighting scheme to account for the history of the
surrogate model performances, which is crucial for performing continual ensembling rather than
only model selection at each iteration. However, we also want to be responsive to the recent ten-
dencies of the acquisition function, and thus accordingly reward the models that are accurate in the
regions of the search space which are favoured by the acquisition function.

We summarise our method in the pseudo-code description provided in Algorithm [I]

Initialisation (Lines 1-3). An initial set of r hyperparameter configurations {1, ..., A} is gen-
erated based on the sampling scheme of the chosen BO framework and then evaluated. The weights
wo,m defining the model ensemble are also initialised. The iterative phase of BO starts and is run
until the budget is exhausted.

Model fitting (Lines 5—6). All models used to construct the ensemble are fitted to the data. Then,
the model ensemble is computed as a weighted average of the single models.

Augment dataset with new points (Lines 7-9). The acquisition function AF' of the chosen BO
framework is optimised on the model defined by fiens, Oens to generate k£ new solution candidates to
improve the current best solution. The target function is evaluated on the new candidates, and the
problem dataset is augmented with these new points.

Update weights (Lines 10-11). New model weights are computed based on the accuracy of the
single models evaluated on the newly sampled solutions and weight history.

Return best configuration (Line 13). The best found hyperparameter configuration * is returned
as the optimal solution.

Note that, since our method is a plug-in for a generic BO framework, some of the steps (initial
sample generation and acquisition function optimisation) depend on the specific BO framework.

Algorithm 1 DensBO: Dynamic Ensembling in BO

Input: total budget b, size of newly sampled batch £, initial sample size r, loss function c,
portfolio of surrogate models M, acquisition function AF’,

1: Initialise XA with r randomly sampled points

2: Evaluate initial samples: C < {c(\) | A € A}

3: Initialise model weights wg,

4: while budget is not exhausted do

5: Fit models to data: {(ftym, om) | m € M} < {fit(m,A) | m € M}

6: Generate model ensemble (fiens, 0ens) according to Equations [5{and E]

7: Optimise acquisition function: A\; = {)\gl), .)\gk)} + argmax AF (A, fens, Ocns)
8: Evaluate new candidates: ¢; = {cgl), ce cgk)} — {c(A} | A e N}

9: Augment dataset: A <~ AU\, C+— CU ¢
10: Calculate new model weights: w; ,, according to Equation
11: Update weights w;,,, according to Equation|g]

12: end while
13: Return best configuration A* € argminycy C

4 EXPERIMENTAL SETUP

We conducted a range of experiments to assess the performance of DensBO in various HPO settings
compared to single-surrogate baselines and a static ensemble. In particular, we investigated how
DensBO performs in light of the trade-off between the time for evaluating the target function and
the time for finding the optimal hyperparameter configuration. We implemented our method in
HEBO (Cowen-Rivers et al., [2022), a state-of-the-art HPO framework (Eggensperger et al., [2021).
HEBO is a BO-based optimiser that includes several advancements to improve performance. It
applies a power transformation to the performance data and the Kumaraswamy transformation to
the input data to tackle heteroscedasticity and non-stationarity. (Cowen-Rivers et al.| (2022)) showed
that these transformations improve the performance of Gaussian processes on performance data.
HEBO samples new solution candidates by maximising a multi-objective acquisition function that
consists of EI, PI, and upper confidence bound (UCB) (Forrester et al.| 2008)).

We considered four classes of surrogate models to construct the ensemble: Gaussian processes and
three tree-based models, namely random forest (RF) (Breimanl 2001)), extremely randomised trees
(ET) (Geurts et al., 2006) and gradient boosting (GB) (Friedman, 2001). For GP, we used its native
implementation from HEBO. For tree-based models, we used the scikit—-1learn implementation
of RF, ET and GB. For details on these methods, refer to[Section C.3}

As GPs are preferable for scenarios with continuous hyperparameters and RFs better handle discrete
(and even mixed and conditional) domains (Eggensperger et al.,|2013)), we initialised the weights in
the following manner: if the problem instance contains only continuous hyperparameters, we assign
a weight of 1 to Gaussian process (wo,gp = 1) and 0 to all other surrogate models; otherwise, we
assign a weight of 1 to RF (wg, g = 1) and 0 to all other surrogate models.

We used four values of the smoothing factor « of the exponential moving average for the dynamic
ensemble construction: « € {0.1,0.5,0.9,1.0}. The lower the «, the lower the impact of the new
weights in each iteration, i.e., the higher the impact of the history of the weights. This particular

choice thus reflects low, medium and high memory and a selection-only mode when o = 1. In the
latter case, we select only one model — the one with the highest accuracy on the newly sampled
configurations from the last iteration — rather than construct a weighted ensemble.

In each iteration, the models with null weights are dynamically pruned, i.e., not considered at in-
ference time. In the case of a = 1, only the model achieving the highest accuracy on the newly
sampled solutions is assigned a weight of w = 1, while all other models receive w = 0. Thus,
a = 1 performs model selection rather than ensembling, as no historical information is used. The
o = 1 scenario leads to the shortest running time, due to the fact that in acquisition function optimi-
sation having fewer models with non-zero weights reduces inference time, since fewer models need
to be accessed altogether.

4.1 BENCHMARKS AND BASELINES

We empirically evaluated our approach on two benchmark suites, YAHPO Gym (Pfisterer et al.|
2022) and JAHS-Bench-201 (Bansal et al.,[2022). YAHPO Gym is a surrogate-based benchmark for
hyperparameter optimisation, consisting of 15 scenarios (i.e., machine learning pipelines and their
configuration space) on various datasets. In particular, it contains LCBench (Zimmer et al., |[2021),
which is used to optimise neural networks on tabular data, combined algorithm selection and hy-
perparameter optimisation (CASH) on OpenML datasets (Binder et al., 2020; [Falkner et al., 2018)),
as well as the NAS Bench 301 (Zela et al.| 2022). From YAHPO Gym, we used all 856 available
instances. JAHS-Bench-201 is a surrogate-based benchmark for optimisation of the architecture and
hyperparameters of convolutional neural network on image datasets. From JAHS, we used all three
available instances, each optimising the architecture for a different dataset. Both YAHPO and JAHS
contain mixed-type configuration spaces. For further experimental and implementation details, refer

to[Appendix C

We used single-surrogate BO variants within HEBO with each of the surrogate models considered
(GP, RF, ET, and GB) as baselines to compare our dynamic ensembling approach. Furthermore, we
compared against a simple static ensemble which always assigns an equal weight to all models.

4.2 EXPERIMENTAL PROTOCOL

We used the native implementations of the initial design sampling and the acquisition function in
HEBO. We set the size of the initial sample to 8 for all experiments. Each method ran with 51 differ-
ent random seeds and with a total budget of 100x mean evaluation time, similarly to [Eggensperger
et al.| (2021)). For more details on the evaluation time, refer to Our experiments were
conducted on a cluster of 18 nodes, each equipped with 2 AMD EPYC 7543 32-core CPUs with 256
MB L3 cache, with 1TB of memory per node, and running on a Rocky Linux 9.3 operating system.
We used HEBO version 0.3.5, YAHPO Gym version 1.0.1 and JAHS-Bench-201 version 1.1.0. Our
experiments required approximately 100 000 CPU hours.

5 RESULTS AND DISCUSSION

In this section, we present and discuss the experimental results comparing our dynamic ensembling
approach to the baselines. We first present the rank results on different benchmarks. We then analyse
the evolution of the weights assigned to surrogate models throughout the optimisation process, and
finally assess the running time of our method.

5.1 OVERALL PERFORMANCE

We present the average rank as a function of the percentage of the budget for YAHPO Gym in[Fig-|
The results are split into four parts according to the mean time required for evaluating the
target function. We thus show mean ranks on all target functions, on cheap functions with a budget
of up to 10 minutes, on medium-cost functions with a budget between 10 minutes up to 1 hour, and
on expensive functions with a budget exceeding 1 hour. An analysis of the statistical significance
of our results is presented in When considering all target functions, we see that all
dynamic ensembling approaches outperform the baselines, both single-surrogate ones and the static

ensemble with equal weights. Using the weighting scheme with v = 1.0 is top-ranked on average,
followed by o« = 0.9.

When it comes to cheap target functions, GP is the best-performing surrogate for very low budgets
(i.e., less than 60% of the 10-minute budget). As the budget increases, our dynamic ensembling ap-
proach with o = 1.0 outperforms every surrogate on average. Ensembling approaches with smaller
« values perform worse; ensembles with « = 0.9 and o = 0.5 outrank GP only in the last 10%
of the 10-minute budget. This highlights the fact that dynamically pruning of surrogates with null
weights within the ensemble enhances performance for low budgets, as the running time required
for optimisation is reduced. For medium-cost and expensive functions, all dynamic ensembling ap-
proaches exhibit better ranks on average. We observe that the ensemble using o = 1.0 values is now
the worst performer for these functions, giving way to the other values of a. Moreover, we see that
dynamic ensembling outranks a static ensemble with equal weights.

ENS a=0.1 ENS a=0.1
2
ENS a=0.5 ENS a=0.5
e
ENS a=0.9 ENS a=0.9
4,“‘,»«—'?:@ ENS a=1.0 4 B ENS a=1.0
R v ':::)r/:”/ -
E ‘/,/// ENSeq. w E h”‘/‘:'A&.'V\/ ‘ﬁ"‘& ENSeq. w
R E e aad

] ET 61\//}"/ ET

GB GB
GP GP
8 RF 8 RF
0.2 0.4 0.6 0.8 1 0.2 0.4 06 0.8 1
Fraction of the budget Fraction of the budget
(a) All target functions (b) Cheap (up to 10 minutes)
ENS a=0.1 —— ENS a=0.1
2 2
ENS a=0.5 ——— ENSa=05
ENS a=0.9 ——— ENS a=0.9
4/~"“'“Wm T ——— ENS a=1.0 4?:;;‘:«“ ——— ENS a=1.0
L ENSeq.w £ f"'ﬂ/—/ ENS eq. w
= ET = ET
6 GB 6 GB
GP GpP
8 RF 8 RF
0.2 0.4 0.6 0.8 1 0.2 0.4 06 0.8 1
Fraction of the budget Fraction of the budget
(c) Medium-cost (more than 10 minutes, up to 1 hour) (d) Expensive (more than 1 hour)

Figure 2: Mean ranks of HEBO with different surrogate models on YAHPO Gym and JAHS-Bench-
201, split according to different budgets: (a) all target functions, (b) cheap target functions with a
budget of up to 10 minutes, (c) medium-cost target functions with a budget between 10 minutes and
up to 1 hour, (d) expensive target functions with a budget of more than 1 hour. Ensembling methods
are displayed with solid lines. Single surrogates are displayed with dashed lines. Ensembling meth-
ods outrank single surrogates in all budgets. Which « value in the ensemble is top-ranked depends
on the budget. On y-axis: 1 is the best possible rank value.

5.2 WEIGHTS EVOLUTION

We present the evolution of the weights assigned to surrogate models within the ensemble on NAS-
Bench-301 from YAHPO Gym in one run using 256 target function evaluations in|[Figure 3] In order
to obtain consistent visualisation of the weight values, here, we switch to measuring the optimisation
budget in terms of function evaluations rather than running time. Full results in the setting with the
total budget of 256 evaluations can be found in [Appendix F| In [Figure 3] We observe that higher
values of « yield more rapid and frequent changes of weights. We also notice that in different stages
of the optimisation, different surrogate models are given precedence. For example, for o = 1.0, RF
is used in the beginning of the optimisation (for a low number of evaluations), while GB is favoured

RF RF

ET ET
o GB . GB
= =
o0 Gr B GP
= 05 = 05
E E
]]
e~ =4
0 0
0 50 100 150 200 0 50 100 150 200
Evaluations # Evaluations
(@Aa=1.0 (b)a=0.9
1 1
RF RF
ET ET
o GB GB
3 GP ? GP
o] o]
= 05 = 05
3 z
] 1]
~ ~
0 0
0 50 100 150 200 0 50 100 150 200
Evaluations # Evaluations
(©)a=05 da=0.1

Figure 3: Raw weights of the ensembles with different o values on NAS-Bench-301 (part of YAHPO
Gym). A higher value of « causes sharper variations in the weights. In different stages of the
optimisation, a different surrogate model gets a higher weight.

more often towards the end of the optimisation (for a higher number of evaluations). This shows that
the dynamic weight assignment adapts the weighting scheme throughout the optimisation process.

The increased adoption of GB in the later stages of the optimisation process is an interesting ob-
servation, even though GB as a standalone surrogate consistently ranks as the least effective model.
One potential explanation is that GB may lead to inaccurate predictions when working with a small
number of samples. However, as more samples are collected, particularly when GB gets refined with
more observed points around the optimum, the accuracy of its predictions improves.

5.3 RUNNING TIME

We examine the wall-clock time used by the optimiser itself (i.e., excluding the time required to
evaluate the target function) as a percentage of the optimisation budget and as absolute running time
relative to the number of target function evaluations. shows the proportion of the optimi-
sation budget (in seconds) used by the optimiser to suggest the next configurations to sample across
all functions (from both YAHPO Gym and JAHS-Bench-201). As expected, for very low budgets
(up to approximately 20 seconds), the optimiser consumes a high fraction of the budget (more than
35%). As the budget increases, this fraction decreases, until it becomes negligible (less than 1%
for budgets of more than 10 000 seconds). We observe that using ensembles requires a higher frac-
tion of the optimisation budget than using a single surrogate. However, the difference becomes
indistinguishable when the budget exceeds 10 000 seconds. When using dynamic ensembling with
a = 1.0, the difference becomes difficult to discern even with a budget of 1 000 seconds, once more
demonstrating the effectiveness of dynamic pruning of surrogate models.

Additionally, we assess the absolute cost of using different surrogates in Ensembling
approaches take the longest to run, and among them using o = 1.0 requires the least time due to
dynamic pruning. We also notice that ensembling approaches take roughly twice as long as tree-
based surrogates. GPs are the fastest to run with the low number of evaluations, however the gap
between them and tree-based methods shrinks substantially as more observations are added.

— ENS a=1.0 ENS eq. w
— ENS a=0.1

ENS a=0.1

=
° ——— ENS a=0.5 100 ENS a=0.5
S —~
= —— ENS@a=09 < 5 ENS a=0.9
g 2
g ENSeqw =3 ENS a=1.0
°n
ot = 2
= ET 2 ET
=
=
5 GB 2 10 GB
3}
] GP s GP
=3
RE RE
2
100 1000 10k 100k 50 100 150 200
Budget (s) # Evaluations
(a) Fraction of budget (b) Absolute running time

Figure 4: Running time of the optimisation with dynamic ensembling methods (excluding the time
needed to evaluate the target function): (a) as a fraction of optimisation budget, and (b) as absolute
running time relative to the number of target function evaluations. Ensembles generally require a
higher fraction of the budget compared to single surrogates and take the longest to run in absolute
terms, with a notable exception of the ensemble with & = 1.0, which consumes less budget by an
order of magnitude, and which is the fastest to run, due to dynamic pruning.

6 CONCLUSIONS, LIMITATIONS AND FUTURE WORK

In this work, we proposed a novel dynamic ensembling approach for surrogate models in hyperpa-
rameter optimisation. Our method constructs a weighted ensemble of different types of surrogate
models by assessing the accuracy of different surrogates throughout the optimisation process and
dynamically determining which weight should be assigned to each surrogate model. We experi-
mented with a wide variety of HPO benchmark tasks and found that our method results in a better
mean rank than single-surrogate baselines and a static ensemble with equal weights.

Despite very promising results of our work, there is still room for improvement. One limitation is
the higher running time required to both train and evaluate the surrogate models and to optimise the
acquisition function compared to a single-surrogate BO. We mitigate this by introducing dynamic
pruning of surrogates, which substantially reduces the required running time. However, dynamic
pruning only occurs when we have models with null weights, which is rare in ensembles with values
of o smaller than 1.0. Furthermore, we observe that the Gaussian process outperforms our method
for very small budgets (less than 5 minutes). This is in line with the fact that BO equipped with GP
excels precisely in a very low-budget setting, as well as that our method requires higher time for the
training additional surrogate models.

Our method itself comes with a hyperparameter, the smoothing factor o. While different values of
o work best with different target functions, we observed that using o = 1.0 works consistently well
on all functions, regardless of the cost of function evaluations. The impact of historical accuracy
measurements thus seem to contribute only marginally when determining the weights.

Our work presented here opens several avenues for future research. Multi-fidelity approaches are
very commonly used for HPO, especially in expensive tasks where each evaluation on full fidelity
can take more than an hour. It seems promising to extend our method to multi-fidelity scenarios. A
further promising direction is to learn in which scenarios (e.g.,, input dimensionality, phase of the
optimisation) which surrogate model(s) work best and to create an ensemble by training only these
specific models; in case a single surrogate model is chosen, the overhead of ensembling would thus
be eliminated.

Overall, we believe that combining multiple surrogate models in BO is a promising direction for
achieving better surrogate predictions, thus allowing for faster convergence and increased sample
efficiency. DensBO is the first method that dynamically leverages the potential of complementary
surrogates within the BO procedure itself.

10

REFERENCES

Steven Adriaensen, André Biedenkapp, Gresa Shala, Noor H. Awad, Theresa Eimer, Marius Lin-
dauer, and Frank Hutter. Automated dynamic algorithm configuration. Journal of Artificial Intel-
ligence Research, 75:1633-1699, 2022.

LLA. Antonov and V.M. Saleev. An economic method of computing LPt-sequences. USSR Compu-
tational Mathematics and Mathematical Physics, 19(1):252-256, 1979.

Samineh Bagheri, Wolfgang Konen, and Thomas Béck. Online selection of surrogate models for
constrained black-box optimization. In Proceedings of the IEEE Symposium Series on Computa-
tional Intelligence, pp. 1-8, 2016.

Archit Bansal, Danny Stoll, Maciej Janowski, Arber Zela, and Frank Hutter. JAHS-Bench-201:
A foundation for research on joint architecture and hyperparameter search. In Proceedings of
the Thirty-sixth Internation Conference on Advances in Neural Information Processing Systems
(NeurIPS), 2022.

Paul Beaucaire, Charlotte Beauthier, and Caroline Sainvitu. Multi-point infill sampling strategies
exploiting multiple surrogate models. In Proceedings of the Twentieth International Conference
on Genetic and Evolutionary Computation Conference Companion (GECCO), pp. 1559-1567,
2019.

Malek Ben Salem and Lionel Tomaso. Automatic selection for general surrogate models. Structural
Multidisciplinary Optimisation, 58(2):719-734, aug 2018.

Carolin Benjamins, Anja Jankovic, Elena Raponi, Koen van der Blom, Marius Lindauer, and Carola
Doerr. Towards Automated Design of Bayesian Optimization via Exploratory Landscape Analy-
sis. In Proceedings of the Sixth Workshop on Meta-Learning at NeurIPS, 2022a.

Carolin Benjamins, Elena Raponi, Anja Jankovic, Koen van der Blom, Maria Laura Santoni, Marius
Lindauer, and Carola Doerr. PI is back! Switching Acquisition Functions in Bayesian Optimiza-
tion. In Proceedings of the workshop on Gaussian Processes, Spatiotemporal Modeling, and
Decision-making Systems at NeurlPS, 2022b.

Carolin Benjamins, Elena Raponi, Anja Jankovic, Carola Doerr, and Marius Lindauer. Self-
Adjusting Weighted Expected Improvement for Bayesian Optimization. In Proceedings of the
second International Conference on Automated Machine Learning (AutoML), volume 224, pp.
6/1-50, 2023.

André Biedenkapp, H. Furkan Bozkurt, Theresa Eimer, Frank Hutter, and Marius Lindauer. Dy-
namic algorithm configuration: Foundation of a new meta-algorithmic framework. In Proceed-
ings of the Twenty-fourth European Conference on Artificial Intelligence (ECAI), volume 325 of
Frontiers in Artificial Intelligence and Applications, pp. 427-434, 2020.

Martin Binder, Florian Pfisterer, and Bernd Bischl. Collecting empirical data about hyperparameters
for data driven automl. Proceedings of the Seventh Workshop on Automated Machine Learning at
ICML, pp. 93, 2020.

Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek
Thomas, Theresa Ullmann, Marc Becker, Anne-Laure Boulesteix, Difan Deng, and Marius Lin-
dauer. Hyperparameter optimization: Foundations, algorithms, best practices, and open chal-
lenges. WIREs Data Mining and Knowledge Discovery, 13(2), 2023.

Jakob Bossek, Carola Doerr, and Pascal Kerschke. Initial design strategies and their effects on
sequential model-based optimization: An exploratory case study based on BBOB. In Proceed-
ings Twenty-first International Conference on Genetic and Evolutionary Computation Conference
(GECCO), pp. 778-786, 2020.

Leo Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

11

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In Proceedings of the Thirthy-fourth
International Conference on Advances in Neural Information Processing Systems (NeurIPS), vol-
ume 33, pp. 1877-1901, 2020.

Alexander I. Cowen-Rivers, Wenlong Lyu, Rasul Tutunov, Zhi Wang, Antoine Grosnit, Ryan-Rhys
Griffiths, Alexandre Max Maraval, Jianye Hao, Jun Wang, Jan Peters, and Haitham Bou-Ammar.
HEBO: an empirical study of assumptions in bayesian optimisation. Journal of Artificial Intelli-
gence Research, 74:1269-1349, 2022.

Benjamin Doerr and Carola Doerr. Theory of parameter control for discrete black-box optimiza-
tion: Provable performance gains through dynamic parameter choices. In Theory of Evolutionary
Computation, pp. 271-321. 2020.

Xibin Dong, Zhiwen Yu, Wenming Cao, Yifan Shi, and Qianli Ma. A survey on ensemble learning.
Frontiers in Computer Science, 14(2):241-258, 2020.

Katharina Eggensperger, Matthias Feurer, Frank Hutter, James Bergstra, Jasper Snoek, Holger Hoos,
Kevin Leyton-Brown, et al. Towards an empirical foundation for assessing bayesian optimization
of hyperparameters. In Proceedings of the Workshop on Bayesian Optimization in Theory and
Practice at NIPS, volume 10, 2013.

Katharina Eggensperger, Philipp Miiller, Neeratyoy Mallik, Matthias Feurer, René Sass, Aaron
Klein, Noor H. Awad, Marius Lindauer, and Frank Hutter. Hpobench: A collection of repro-
ducible multi-fidelity benchmark problems for HPO. In Proceedings of the Thirty-fifth Neural
Information Processing Systems (NeurlPS), Datasets and Benchmarks Track, 2021.

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: robust and efficient hyperparameter opti-
mization at scale. In Proceedings of the Thirty-fifth International Conference on Machine Learn-
ing, Proceedings of Machine Learning Research, 2018.

Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and Frank Hutter. Auto-
sklearn 2.0: Hands-free automl via meta-learning. Journal of Machine Learning Research, 23
(261):1-61, 2022.

Alexander L. J. Forrester, Andras Sébester, and Andy J. Keane. Engineering Design via Surrogate
Modelling - A Practical Guide. 2008.

Peter I Frazier. A Tutorial on Bayesian Optimization. arXiv:1807.02811, 2018.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pp. 1189-1232, 2001.

Roman Garnett. Bayesian Optimization. Cambridge University Press, 2023.

Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine Learning,
63(1):3-42, 2006.

Dirk Gorissen, Tom Dhaene, and Filip De Turck. Evolutionary model type selection for global
surrogate modeling. Journal of Machine Learning Research, 10:2039-2078, 2009.

Dan Guo, Yaochu Jin, Jinliang Ding, and Tianyou Chai. Heterogeneous ensemble-based infill cri-
terion for evolutionary multiobjective optimization of expensive problems. IEEE Transactions
Cybernetics, 49(3):1012-1025, 2019.

Gideon Hanse, Roy de Winter, Bas van Stein, and Thomas Bick. Optimally weighted ensembles for

efficient multi-objective optimization. In Proceedings of the International Conference on Machine
Learning, Optimization, and Data Science (LOD), volume 13163, pp. 144—-156, 2022.

12

Matthew Hoffman, Eric Brochu, and Nando de Freitas. Portfolio allocation for bayesian optimiza-
tion. In Proceedings of the Twenty-Seventh Internation Conference on Uncertainty in Artificial
Intelligence (UAI), pp. 327-336, 2011.

Qi Huang, Roy de Winter, Bas van Stein, Thomas Béck, and Anna V. Kononova. Multi-surrogate
assisted efficient global optimization for discrete problems. In IEEE Symposium Series on Com-
putational Intelligence (SSCI), pp. 1650-1658, 2022.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In Carlos A. Coello Coello (ed.), Proceddings of the fifth
International Conference on Learning and Intelligent Optimization (LION), volume 6683, pp.
507-523, 2011.

Frank Hutter, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. Algorithm runtime prediction:
Methods & evaluation. Artificial Intelligence, 206:79—-111, 2014.

Rodolphe Jenatton, Cédric Archambeau, Javier Gonzalez, and Matthias W. Seeger. Bayesian opti-
mization with tree-structured dependencies. In Proceedings of the International Conference on
Machine Learning (ICML), volume 70, pp. 1655-1664, 2017.

Ping Jiang, Qi Zhou, and Xinyu Shao. Ensembles of Surrogate Models, pp. 35-53. 2020.

Kirthevasan Kandasamy, Karun Raju Vysyaraju, Willie Neiswanger, Biswajit Paria, Christopher R.
Collins, Jeff Schneider, Barnabas P6czos, and Eric P. Xing. Tuning hyperparameters without grad
students: scalable and robust bayesian optimisation with dragonfly. Journal of Machine Learning
Research, 21(1), 2020.

Giorgos Karafotias, Mark Hoogendoorn, and A. E. Eiben. Parameter control in evolutionary algo-
rithms: Trends and challenges. IEEE Transactions on Evolutionary Computation, 19(2):167-187,
2015.

Harold Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in
the presence of noise. Journal of Fluids Engineering, pp. 97-106, 1964.

Niklas Lavesson and Paul Davidsson. Quantifying the impact of learning algorithm parameter tun-
ing. In Proceedings of the Twenty-First National Conference on Artificial Intelligence(AAAI), pp.
395-400, 2006.

Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hy-
perband: A novel bandit-based approach to hyperparameter optimization. Journal of Machine
Learning Research, 18:185:1-185:52, 2017.

Marius Lindauer, Matthias Feurer, Katharina Eggensperger, André Biedenkapp, and Frank Hutter.
Towards Assessing the Impact of Bayesian Optimization’s Own Hyperparameters. In Data Sci-
ence Meets Optimisation Workshop at IJCAI, 2019.

Bin Liu. Harnessing low-fidelity data to accelerate bayesian optimization via posterior regular-
ization. In IEEE International Conference on Big Data and Smart Computing (BigComp), pp.
140-146, 2020.

Bin Liu. Robust sequential online prediction with dynamic ensemble of multiple models: A review.
Neurocomputing, 552:126553, 2023.

Michael D. McKay, Richard J. Beckman, and William J. Conover. A comparison of three methods
for selecting values of input variables in the analysis of output from a computer code. Technomet-
rics, 42(1):55-61, 2000.

Jonas Mockus. On bayesian methods for seeking the extremum. In Proceedings of the Technical
Conference on Optimization Techniques (IFIP), pp. 400-404, 1975.

Jonas Mockus. Bayesian approach to global optimization: theory and applications, volume 37.
2012.

13

David W. Opitz and Richard Maclin. Popular ensemble methods: An empirical study. Journal of
Artificial Intelligence Research, 11:169—-198, 1999.

Florian Pfisterer, Lennart Schneider, Julia Moosbauer, Martin Binder, and Bernd Bischl. YAHPO
gym - an efficient multi-objective multi-fidelity benchmark for hyperparameter optimization. In
Proceedings of the first International Conference on Automated Machine Learning (AutoML),
volume 188, pp. 3/1-39, 2022.

Yu Qi, Bin Liu, Yueming Wang, and Gang Pan. Dynamic ensemble modeling approach to nonsta-
tionary neural decoding in brain-computer interfaces. In Proceedings of the Thirty-third Interna-
tional Conference on Advances in Neural Information Processing Systems (NeurIPS), volume 32,
2019.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning.
Adaptive computation and machine learning. 2006.

Lior Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33(1-2):1-39, 2010.

Omer Sagi and Lior Rokach. Ensemble learning: A survey. WIREs Data Mining Knowledge Dis-
covery, 8(4), 2018.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In Proceedings of the Twenty-Sixth International Conference on Advances
in Neural Information Processing Systems (NeurIPS), volume 25, 2012.

David Speck, André Biedenkapp, Frank Hutter, Robert Mattmiiller, and Marius Lindauer. Learn-
ing heuristic selection with dynamic algorithm configuration. In Proceedings of the Thirty-first
International Conference on Automated Planning and Scheduling (ICAPS), pp. 597-605, 2021.

Ryan Turner, David Eriksson, Michael McCourt, Juha Kiili, Eero Laaksonen, Zhen Xu, and Isabelle
Guyon. Bayesian optimization is superior to random search for machine learning hyperparameter
tuning: Analysis of the black-box optimization challenge 2020. In Hugo Jair Escalante and Katja
Hofmann (eds.), Proceedings of the International Conference on Neural Information Processing
Systems (NeurIPS), Competition and Demonstration Track, volume 133, pp. 3-26, 2020.

Christopher John Cornish Hellaby Watkins. Learning from Delayed Rewards. PhD thesis, King’s
College, Oxford, 1989.

Arber Zela, Julien Niklas Siems, Lucas Zimmer, Jovita Lukasik, Margret Keuper, and Frank Hutter.
Surrogate NAS benchmarks: Going beyond the limited search spaces of tabular NAS benchmarks.
In Proceedings of the Tenth International Conference on Learning Representations (ICLR), 2022.

Jie Zhang, Souma Chowdhury, and Achille Messac. An adaptive hybrid surrogate model. Structural
and Multidisciplinary Optimization, 46(2):223-238, 2012.

Xiao Jian Zhou, Yi Zhong Ma, and Xu Fang Li. Ensemble of surrogates with recursive arithmetic
average. Structural and Multidisciplinary Optimization, 44(5):651-671, nov 2011.

Lucas Zimmer, Marius Lindauer, and Frank Hutter. Auto-pytorch: Multi-fidelity metalearning for
efficient and robust autodl. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43
(9):3079-3090, 2021.

14

A SOCIETAL IMPACT

This paper presents fundamental empirical work whose goal is to advance the field of hyperparame-
ter optimisation, and (automated) machine learning more broadly. We do not see any negative ethical
and societal implications of our work. A positive impact of our work concerns reducing computa-
tional load for hyperparameter optimisation, as it is able to find well-performing configurations in
less time than standard baselines we compare against. This leads to a reduced carbon footprint and
saved energy resources.

B CODE AVAILABILITY AND REPRODUCIBILITY

Our code, as well as full results on all benchmarks and additional figures, can be found
at the anonymous Git repository: |https://anonymous.4open.science/r/dyn_ens_
supp—-D5C2/L

C DETAILED IMPLEMENTATION DESCRIPTION

Our method is implemented in HEBO (Cowen-Rivers et al.| [2022)), a state-of-the-art BO-based op-
timiser (Eggensperger et al.l [2021). HEBO starts by sampling random configurations based on
Sobol sequences. Then, in each BO iteration, it transforms the (input) configurations and the (out-
put) performances to tackle non-stationarity and heteroscedasticity of the data, respectively. Non-
stationarity of the input means that the GP kernel does not only depend on the norm between two
inputs; it is corrected by appropriate input warping, in this case the Kumaraswamy transformation.
Given the dimensionality of the decision variable d, tuneable warping parameters for each dimension
ay, and by, and a vector concatenating all free parameters -y, the Kumaraswamy warping is defined
as follows for all input dimensions:

[Kumaraswamy., (ml)]k =1-(1- [ml]zk)bk Vk e [l:d])

Heteroscedasticity of the output means that the output does not adhere to a Gaussian noise model,
but that the noise is a function of the input, i.e., depending on the input, the noise is prone to chang-
ing around the mean. The performances are thus transformed using power transformations, either
Box-Cox (which supports either strictly positive or strictly negative inputs) or Yeo-Johnson (which
handles arbitrary inputs). Given a tunable transformation parameter ¢, the Box-Cox transformation
applies the following mapping to each of the outputs:

B.C¢(y) = ylc —1/¢for{ #0and B.C.; (y;) =logy; if (=0 (10)

where y; is the performance of the I*” hyperparameter configuration. The Yeo-Johnson transforma-
tion is defined as follows:

W £ 0, > 0

_Jlog(y+1), if¢(=0,y,=>0
YJ.Cy) = g1 if¢#2,41<0
L » Yt

¢
—log(1—y) if¢=2,u<0

(11

Power transformations are used to give the data a zero mean and a variance of 1. This is done in
order to get the data distribution close to a Gaussian distribution, which improves the fit of GPs to
the data. HEBO then fits the GP and Kumaraswamy-transformed parameters using the well-known
Adam optimiser.

After fitting the surrogate model, HEBO optimises a multi-objective acquisition function consisting
of three widely used acquisition functions: EI, PI and UCB, which are defined as follows:

El: Oé%l (xl;q | D) - IE:posterior |:§g?}; {RQLU (f (:CJ) - f (.’B+)) }:| (12)
PI: Oégl (flil:q | D) = IEposterior [525%}; {Hé {f (wj) - f (iL‘+)}}:| (13)

15

https://anonymous.4open.science/r/dyn_ens_supp-D5C2/
https://anonymous.4open.science/r/dyn_ens_supp-D5C2/

UCB: afic (@) = Bavsr 135 {10 (2) V/F772 o ()} a4

where x; is the j vector of &1.,; T is the best performing input in the data so far; #{-} is the left-
continuous Heaviside step function; ¢ () is the posterior mean of the predictive distribution; and
vo (x;) = f (x;) — peo (x;). HEBO searches for candidates that are in the Pareto front of the three
functions. This leverages the fact that for different functions and stages of the optimisation process,
different acquisition functions work better (Benjamins et al, 2022a). HEBO then finds candidate
configurations using a multi-objective optimiser NSGA-IL.

We use HEBO with a batch size of 8 (i.e., retraining the surrogate every 8 epochs), as suggested in the
HEBO documentationﬂ and as done in other hyperparameter optimisers such as SMAC (Lindauer,
et al, |2019). For the Gaussian process, we use the default implementation and hyperparameters of
HEBO. For tree-based models, we use the default hyperparameters of scikit-learn, with the
exception of the number of trees which we set to 10, as done in SMAC. In some cases, GPs return
an error during fit. If this occurs when using ensembling, at iteration ¢, we assign:

w,gp =0 15)

Otherwise, when using GPs alone, we instead use random search rather than BO to decide on the
next configurations to sample.

C.1 USED SOFTWARE
In our implementation, we used the following packages:

 HEBO: https://github.com/huawei-noah/HEBO/tree/master/HEBRO
version 0.3.5 under MIT license.

¢ SCIKIT-LEARN: https://scikit—-learn.orgqg/ version 1.4.1 under BSD-3 license.

* YAHPO Gym: https://github.com/slds-1lmu/yahpo_gymversion 1.0.1 under
Apache 2.0 license.

e JAHS-Bench-201: |https://github.com/automl/jahs_bench_201/tree/
main version 1.1.0 under MIT license.

C.2 MOTIVATION FOR USING EXPONENTIAL MOVING AVERAGE

We use an exponential moving average inspired by the reinforcement learning algorithm Q-
learning (Watkins, [1989)), which uses an exponential moving average to update its policy in every
iteration. In Q-learning, the Q(St, A:) of a state S; and an action A; holds the expected reward of
the agent by being in state S; and taking action S;. Q-learning then proceeds iteratively by explor-
ing the state space and updating the Q-values according to the observed rewards. By analogy, in our
optimisation case, we attempt to learn a “weighting policy” for the weights in our models. However,
a notable difference between the reinforcement learning case and the dynamic ensembling is that
reinforcement learning learns a single, static, policy in a training phase. We learn the policy online,
during the optimisation process.

Another motivation for the usage of the exponential moving average is to focus on the accuracy of the
surrogate models in the region that is currently favoured by the acquisition function. This region can
change during the optimisation process. With the exponential moving average, intuitively speaking,
we can gradually “forget” about old scores and put a higher emphasis on new ones.

C.3 SINGLE SURROGATE MODEL BASELINES

In we gave an introduction on GPs. In this appendix, we elaborate on the three other
surrogate models we used in the paper.

Random forest (RF) (Breiman, 2001) is a bagged ensemble of decision trees. This means that each
tree is fitted on a different random subset of the data. This then helps avoid overfitting and improve

'https://hebo.readthedocs.io/en/latest/optimisation.html

16

https://github.com/huawei-noah/HEBO/tree/master/HEBO
https://scikit-learn.org/
https://github.com/slds-lmu/yahpo_gym
https://github.com/automl/jahs_bench_201/tree/main
https://github.com/automl/jahs_bench_201/tree/main
https://hebo.readthedocs.io/en/latest/optimisation.html

the prediction accuracy. Random forests are known as good performance predictors (Hutter et al.,
2014])) and have been used in BO pipelines as surrogate models (Hutter et al., 2011).

Extremely randomised trees (Geurts et al.,|2006)), also known as extra trees (ET,) are an ensemble of
random trees, where the splitting threshold is determined randomly, instead of based on a predeter-
mined criterion. Furthermore, each tree is built on the whole dataset. Extra trees are known to have
lower variance than random forests.

Gradient boosting (GB) (Friedman, 2001) is an ensembling method that consists of multiple decision
trees. Gradient boosting iteratively constructs decision trees to minimise the loss of the ensemble.

D BENCHMARK DETAILS

Yet Another HPO Benchmark (YAHPO) Gym (Pfisterer et al.,2022)) is a surrogate-based benchmark
for hyperparameter optimisation on tabular machine learning tasks. The benchmark consists of
multiple datasets from OpenML and various machine learning algorithms. The authors provide a
surrogate model for each machine learning algorithm and a dataset that predicts different objectives,
such as accuracy, training time, and more.

YAHPO Gym contains several scenarios. Each scenario has a configuration space and is based on
a machine learning algorithm. Each scenario contains multiple datasets, which are called instances.
The YAHPO Gym scenarios are:

* rbv2_ranger (Binder et al.,|2020): random forest using the ranger R implementation.
 rbv2_rpart (Binder et al., [2020): decision tree using the mlr implementation.

* rbv2_glmnet (Binder et al.| [2020): generalised linear models (GLM) with elastic net regu-
larisation using the mlr implementation.

* rbv2_svm (Binder et al., 2020): support vector machine (SVM) with the mlr implementa-
tion.

* rbv2_xgboost (Binder et al., 2020): gradient boosting using XGBoost.
* rbv2_aknn (Binder et al.l 2020): k-nearest neighbours using the mlr implementation.

* rbv2_super (Binder et al.,[2020): a combined algorithm selection and hyperparameter opti-
misation (CASH) scenario that uses all the above rbv2 scenarios.

* iaml_glment (Pfisterer et al.| 2022): generalised linear models (GLM) with elastic net reg-
ularisation using the mlr implementation.

* iaml_rpart (Pfisterer et al.,2022): decision tree using the mlr implementation.
 iaml_ranger (Pfisterer et al.,[2022)): random forest using the ranger R implementation.
* iaml_xgboost (Pfisterer et al.,[2022)): gradient boosting using XGBoost.

* iaml_super (Pfisterer et al.,[2022): combined algorithm selection and hyperparameter opti-
misation (CASH) scenario that uses all the above iaml scenarios.

* LCBench (Zimmer et al.,[2021): optimising the training hyperparameters and architecture
of multi-layer perceptron on tabular datasets.

* FCNet (Falkner et al, 2018): hyperparameter optimisation of a fully-connected network
for tabular data.

* NAS-Bench-301 (Zela et al.l [2022)): neural architecture search (NAS) scenario using a
constant set of training hyperparameters. The search space describes a cell of the neural
network and the hyperparameters are different operations done in each cell.

The configuration spaces for the rbv2 scenarios are in For rbv2_super, the configuration
space contains all the individual algorithms configuration spaces, with an additional hyperparameter
which selects the algorithm. The configuration spaces for the iaml scenarios are in the
iaml_super scenario is similar to rbv2_super, where there is an additional hyperparameter to select
to algorithm. While the iaml and rbv2 scenarios look similar, there are a few differences in the
configuration space. First, the configuration spaces of rbv2 contains the input imputation used, while
in iaml the input imputation is constant. Another difference is a different ranges of hyperparameters

17

120 ==& JAHS

=@ jaml_glmnet
100 =@ jaml_ranger
iaml_rpart
iaml_super
80 iaml_xgboost
Icbench
nb301

60 rbv2_aknn

Instances

rbv2_glmnet

rbv2_ranger

40
rbv2_rpart

rbv2_super

rbv2_svm
20
rbv2_xgboost

0] o o—"—'. (——cP

100 10k M
Budget (s)

Figure 5: Cumulative number of instances as a function of the budget for every instance, for each
scenario. E.g., 60 instances from the iaml_glmnet scenario (in dark green) take up to 100 seconds to
evaluate.

(for example, the number of rounds in xgboost). In all scenarios, the target metric is accuracy, as
defined in (Pfisterer et al., 2022)). The search spaces for LCBench, FCNet and NAS-Bench-301 are

shown in [Table 3| [Table 4] and [Table 2} respectively.

D.1 EVALUATION BUDGET

All YAHPO Gym and JAHS-Bench-201 surrogates predict the running time required to train and
evaluate the model using a specific configuration. Therefore, we calculate the budget per instance
similarly to [Eggensperger et al| (2021): we sample 1000 random configurations per instance and
predict the required running time. We then calculate the mean running time per instance. The
budget for each optimisation is then 100x mean running time of the instance. The running times

per scenario are available in

E FULL RESULTS

All figures (convergence plots, weight evolution and performance comparison), including results for
JAHS-Bench-201, are available in the supplemental Git repository (see|Appendix B) due to reasons
of space, as there are 859 such figures. We provide convergence plots in [Figure 6| for a subset
of YAHPO Gym, namely the YAHPO-SO benchmark suite that contains 20 HPO problems from
different scenarios.

F RESULTS WITH 256 EVALUATIONS

In addition to the main results in [Section 5.1| we performed additional experiments to assess the
effectiveness of our method as a function of the number of evaluations and not as the budget mea-
sured in wall-clock time. We used 8 initial samples and a total budget of 256 evaluations. This

18

Table 1: Configuration spaces for the rbv2 scenarios of YAHPO Gym.

Algorithm Hyperparameter Range Comments
alpha [0, 1]
rbv2_glment s [0.001, 1097] log-scaled
imputation {mean, median, hist}
cp [0.001, 1] log-scaled
maxdepth [1, 30]
rbv2_rpart minbucket [1, 100]
minsplit [1, 100]
imputation {mean, median, hist}
kernel {linear, polynomial, radial}
cost [4.5e-0.5, 2.2¢e4] log-scaled
bv2_svm gamma [4.5e-05, 2.2e4] log-scaled condi-
- tional by the kernel
tolerance [4.5e-0.5, 2] log-scaled
degree [2, 5] conditional by the
kernel
imputation {mean, median, hist}
k [1, 50]
distance {12, cosine, ip}
M [18, 50]
rbv2_aknn ef [7,403] log-scaled
ef_construction [7,403] log-scaled
imputation {mean, median, hist}
num. trees [1,2000]
sample fraction [0.1, 1]
mtry power [0, 1]
rbv2_ranger ;espect unordered {ignore, order, partition}
actors
min node size [1, 100]
splitrule {gini, extratrees}
num random splits [1, 100]
imputation {mean, median, hist}
booster {gblinear, gbtree,dart}
nrounds [7,2980]
eta [0.001, 1]
gamma [4.5e-05, 7.4]
lambda [0.001, 1097]
rbv2_xgboost max_depth [1,15]
min_child_weight [2.72, 148.4]
colsample_bytree [0.01, 1]
rate_drop [0, 1]
skip_drop [0, 1]
imputation {mean, median, hist}

19

Table 2: Configuration spaces for the NAS scenarios: the NAS-Bench-301 scenario of YAHPO
Gym, and JAHS-Bench-201.

Benchmark Hyperparameter Range Comments
Op[1-6] {skip-connect, zero, 1xI
conv, 3x3 conv 3x3 avg pool}
JAHS-Bench-201 Activation {ReLU, Hardswish, Mish}
Learning Rate [107-3, 1070] log-scaled
Weight Decay [107-5, 107-2] log-scaled

Trivial Augment

{On, Off}

NAS-Bench-301

edge_normal _{0-
13}

edge_reduce_{0-
13}

{max pool 3x3, avg pool 3x3,
skip connect, sep conv 3x3,
sep conv 5x5, dil conv 3x, dil
conv 5x5}

{max pool 3x3, avg pool 3x3,
skip connect, sep conv 3x3,
sep conv 5x3, dil conv 3x, dil

conv 5x5}
COLON._inputs {0_1,02,12}
_node_normal_{3-
5}
COLON._inputs {0_.1,02 12}

_node_reduce_{3-

5}

Table 3: Configuration spaces for the LCBench scenarios of YAHPO Gym.

Benchmark Hyperparameter Range Comments
batch size [16, 512] log-sacled
learning rate [le-4,0.1] log-sacled
momentum [0.1, 0.9]

LCBench weight decay [le-5,0.1]
num layers [1, 5]
max_units [64, 1024] log-sacled
max_dropout [0, 1]

Table 4: Configuration spaces for the FCNet scenarios of YAHPO Gym.

Benchmark Hyperparameter Range Comments
activation_fn_1 [tanh, relu]
activation_fn_2 [tanh, relu]
batch_size [8, 64] log-scaled
dropout_1 [0.0, 0.6]
dropout_2 [0.0, 0.6]
epoch [1, 100] log-sacled

FCNet init Ir [0.0005,0.1] log-scaled
Ir_schedule const, cosine
n_units_1 [16, 512]
n_units_2 [16, 512] log-scaled
replication [1, 4]

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

0.25!

0.2

Regret

0.15

0.2 0.4 0.6 0.8 1

Fraction of the budget

(a) LCBench 167168

0.044

Regret

0.039
0.2 0.4 0.6 0.8 1

Fraction of the budget

(e) rbv2_glmnet 375

Regret

0.2 0.4 0.6 0.8 1

Fraction of the budget

(i) rbv2_rpart 14

Regret

0.2 0.4 0.6 0.8 1

Fraction of the budget
(m) rbv2_super 1063
0.05
0.04,
L~ 0.03
)
&
0.02

0.2 0.4 0.6 08 1

Fraction of the budget

(q) rbv2_xgboost 12

ENS a=0.1

ENS o=0.5

Regret

Regret

Regret

Regret

Regret

Regret

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Fraction of the budget

(b) LCBench 189873

Fraction of the budget

(c) LCBench 189906

Fraction of the budget

(d) NB301 CIFAR10

0.004,
0.0035
0.003 o1 T
:)
~ 3
0.0025
0.002
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Fraction of the budget Fraction of the budget Fraction of the budget

(f) rbv2_glmnet 458 (g) rbv2_ranger 16 (h) rbv2_ranger 42

Regret
Regret

0.2 0.4 0.6 0.8 1) 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Fraction of the budget Fraction of the budget Fraction of the budget
(j) rbv2_rpart 40499 (k) rbv2_super 1053 (1) rbv2_super 1457
0.03
0.025
;‘-’lb 0.02 gb
= 3
0.015
2
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Fraction of the budget

(n) rbv2_super 1479

Fraction of the budget Fraction of the budget

(o) rbv2_super 15 (p) rbv2_super 1468

Regret

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Fraction of the budget Fraction of the budget Fraction of the budget
(r) rbv2_xgboost 1501 (s) rbv2_xgboost 16 (t) rbv2_xgboost 40499
ENS a=0.9 ENS a=1.0 ENSea.w -~~~ ET - GB - GP RF

Figure 6: Convergence curves (regret over time) of dynamic ensembling approaches and various
baselines on the YAHPO-SO benchmark set. In each sub-figure caption, the first part is the scenario
and the second part is the instance (i.e., dataset id). On y-axis: lower regret is better.

21

Table 5: Configuration spaces for the iaml scenarios of YAHPO Gym.

Benchmark Hyperparameter Range Comments
. alpha [0, 1]
iaml_glmnet S [1e-4, 1000] log-scaled
cp [le-4. 1] log-scaled
iamb_rpart maxdepth [1, 30]
minbucket [1, 100]
minsplit [1, 100]
num trees [1, 2000]
replace {True, False}
sample fraction [0., 1]
iaml_ranger — mtry ratio [0, 1]
respect unordered factors ~ {ignore, order, partition}
min node size [1, 100]
splitrule {gini, extratrees }
num random splits [1, 100]
—— ENS 0=0.1
2
—— ENS =05
4 —— ENS =10
t
_:4% ;ﬁﬁ ENSeq. w
%N ,JN‘ ET
6
GB
GP
8 RF
50 100 150 200 250

Evaluations

Figure 7: Mean ranks of HEBO with different surrogate models when using 256 evaluations on
YAHPO Gym and JAHS-Bench-201. Dynamic ensembling approaches dominate the other surrogate
models.

additional experiment was designed to show the optimiser’s ability to find good performing candi-
dates, regardless of the running time required for the optimiser or the target function. We evaluated
the approach on both YAHPO Gym and JAHS-Bench-201. The results are presented in
Dynamic ensembling is ranked better, with o = 0.9 having the best performance, closely followed
by a = 1.0. All dynamic ensembling methods are ranked better than the single surrogate baselines,
as well as the static ensemble with equal weights to all models.

G RESULTS WITH 1024 EVALUATIONS

We provide results for HEBO with different surrogate models on a (relatively) high-budget setting
of 1024 total evaluations and an initial design size of 2d, where d is the number of hyperparameters.
The results are shown in Similarly to the previously shown results, dynamic ensembling
outranks the baselines, including the static ensemble baseline. Using o = 0.9 achieves the best
average rank, with a larger gap from o = 1.0 than in the 256 evaluations setting. These results show
that our dynamic ensembling method works well also in a high-budget setting.

22

— ENS 0=0.1

2 — ENS a=0.5
f R
— ENS a=0.9
Y
e — ENS a=1.0
i 41
£ __.IJJ! ENSeq. w
a ET
6 GB
GP
RF
8
0 500 1000

Evaluations

Figure 8: Mean ranks of HEBO with different surrogate models when using 1024 evaluations on
YAHPO Gym and JAHS-Bench-201. Dynamic ensembling approaches achieve better rank than
single surrogate models and static ensemble.

H USING DIFFERENT WEIGHTS FOR VARIANCE

We experimented with weighting the mean and the variance separately by having two, independent
weight vectors. The weight vector of the mean is the same as described in[Section 3] For the variance
weights, we define the variance error VE for a model m € M as follows:

k
VEL () = 1 3 min{1(am) =) e 1t)+ 0))} (16)

=1

Intuitively, it is the distance to the closest variance bound, as can be seen in[Figure 9] We update the
weights for variance accordingly. The new weights are defined as:

1 ifVE, () = minear VE (), a7
Lm0 otherwise,
We calculate the weights for variances using the exponential moving average:
wg-‘rl,m = (1—0[) 'wi,m—i_a'w)/f,m ’ (13)
Then, we normalise the weights for variances independently from the weights for the means:
y Whm
Wy = =7 (19)
> jen Wi

Finally, the variance predicted by the ensemble is defined as the weighted sum of the normalised
weights of the variances:

Tens(N) = D 1} - o (V). (20)

meM

We run the dynamic ensembling approach with variance with o = 0.9 and a budget of 100x mean
evaluation time per target function. Similarly to the results presented in we present
the mean rank of all methods, including dynamic ensembling with different weights for variances
in The experimental setup is similar to [Section 5.1] where the budget is 100x mean
running time of one evaluation. We see that using different weights for variance ranks worse than
the similar dynamic ensembling with the same weights for both the means and variances.

23

H—0o ~ r+o
’ /
..... O
(@
n—0c f#\ pt+o
’ N\
@
(©

pn—o pto

(b)

p+o

I3
)
A

(d)

Figure 9: Illustration of the calculation of the variance error. The white circle is the the predicted
mean, and the blue dot is the actual value of the target function.

\

0.2 0.4 0.6 0.8 1

Fraction of the budget

(a) All target functions

T SSrmosre
et e ARSERIEENS
e T
4 reep=
2 6
8
10
0.2 0.4 0.6 0.8 1

Fraction of the budget

ENS a=0.1
ENS a=0.5
ENS a=0.9
ENS a=1.0

ENS eq. w

Rank

ENS w/ var
ET
GB
GP
RF

ENS a=0.1
ENS a=0.5
ENS a=0.9
ENS a=1.0

ENS eq. w

Rank

ENS w/ var
ET
GB
GP
RF

(c) Medium-cost (more than 10 minutes, up to 1 hour)

ﬁ‘v ‘A%ﬁd ENS eq. w

ENS a=0.1
ENS a=0.5

ENS a=0.9

IR

/‘M

ENS a=1.0

ENS w/ var
ET
GB
GP
RF
0.4 0.6 0.8 1

Fraction of the budget

(b) Cheap (up to 10 minutes)

ENS a=0.1

ENS a=0.5

ENS a=0.9

ENS a=1.0
ENS eq. w
ENS w/ var
ET
GB
GP
RF

0.4 0.6 0.8 1

Fraction of the budget

(d) Expensive (more than 1 hour)

Figure 10: Mean ranks of HEBO with different surrogate models on YAHPO Gym and JAHS-
Bench-201 (as in[Figure 2) with an additional baseline: a dynamic ensemble with different weighting
schemes for mean and variance (in yellow), split according to different budgets: (a) all target func-
tions, (b) cheap target functions with a budget of up to 10 minutes, (c) medium-cost target functions
with a budget between 10 minutes and up to 1 hour, (d) expensive target functions with a budget of
more than 1 hour. The ensemble with different weights for mean and variance closely follows the
trend of other dynamic ensembling approaches, but does not outrank them.

24

I STATISTICAL SIGNIFICANCE

We test the statistical significance of our results presented in and show that dynamic
ensembling significantly outperforms single-surrogate-based BO. To do this, we use the best-found
target function values per optimiser. We then calculate the mean value for each function and opti-
miser pair over the 51 random seeds. The optimiser that has the best value per function is then the
best for the function. We calculate whether the values obtained for each of the other optimisers are
statistically equal to the values of the best optimiser using a permutation test with 10000 samples
and a significance level of 0.05. We report these results in Table [We see that dynamic ensem-
bling approaches are equal to the best method more times than any other baseline, across all budget
groups. As expected, on cheap functions, & = 1.0 equals the most times to the best method. For
medium-cost functions, & = 0.5 performs best, while for the expensive ones, « = 0.9 is the best.
We can, therefore, conclude that using dynamic ensembling is significantly better than any other
baseline.

Table 6: Critical differences of different surrogate models. Total is the number of instances in each
category.

Model All Cheap Medium Expensive
ENSa=0.1 587 152 194 241
ENSa=0.5 628 177 201 250
ENSa =0.9 657 197 192 268
ENSa =10 687 247 195 245
ENS eq. w. 519 144 172 203
ET 198 53 67 78
GB 164 44 33 87
GP 492 201 147 144
RF 396 145 89 162
Total 859 312 234 313

25

