
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

DENSBO: DYNAMIC ENSEMBLING OF
SURROGATE MODELS FOR
HYPERPARAMETER OPTIMISATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Hyperparameter optimisation (HPO) of machine learning models is crucial for
achieving optimal performance for different tasks. Surrogate-based optimisation
techniques, such as Bayesian optimisation (BO), have been successfully applied
to tackle this problem. BO is subject to different design choices of its components.
In particular, depending on the nature and the size of the search space, the choice
of the surrogate model has a substantial impact on the overall performance of BO.
Surrogate models in BO approximate the function to optimise and guide the search
towards promising regions by predicting the function value for different solution
candidates. Combining different machine learning (ML) models is known to lead
to performance gains, e.g., in different prediction tasks. To this end, we propose a
novel dynamic approach to ensemble surrogate models in the BO pipeline, lever-
aging the complementary powers of different surrogate models at different stages
of the optimisation process. We empirically evaluate our method on numerous
benchmarks and demonstrate its advantage compared to state-of-the-art single-
surrogate BO baselines. We highlight the usefulness of our approach in finding
good hyperparameter configurations in mixed (numerical and categorical) search
spaces for a wide range of problems.

1 INTRODUCTION

The performance of machine learning (ML) and deep learning (DL) models crucially depends on
how their hyperparameters are tuned (Lavesson & Davidsson, 2006; Bischl et al., 2023). Tuning
the hyperparameters in order to achieve peak performance of the model on a specific task is chal-
lenging even for experts. This process is often addressed through trial-and-error methods, requiring
significant effort and resources. Hyperparameter optimisation (HPO) techniques alleviate this bur-
den by automatically searching for well-performing hyperparameter configurations, removing the
need for human intervention (Snoek et al., 2012). While automated HPO techniques have shown
great potential for classical ML models (Snoek et al., 2012; Feurer et al., 2022), they are not as eas-
ily applicable to more complex ML and DL domains, where evaluating a single configuration of a
model can be very expensive (Brown et al., 2020). Moreover, due to the lack of access to an explicit
problem formulation, HPO is handled as a black-box problem. Consequently, all automated HPO
techniques rely on the only available information about the problem, i.e., evaluating the quality of
candidate configurations, to steer the search towards the most promising regions of the search space
and a good estimate of the global optimum.

Bayesian optimisation (BO) (Močkus, 2012; Garnett, 2023; Frazier, 2018) is a surrogate-based,
sample-efficient approach for global optimisation of expensive-to-evaluate black-box problems. BO
is particularly well-suited for settings with a very limited budget of available evaluations (relative to
the size of the search space), such as HPO. Various BO-based HPO techniques have been developed
and successfully applied to this end; a prominent example is HEBO (Cowen-Rivers et al., 2022),
the winner of the NeurIPS BBO competition (Turner et al., 2020). One of the key components of
BO is a probabilistic surrogate model, which is built on an initial sample of solution candidates to
approximate the objective function while also quantifying its uncertainty. At each iteration, a new
solution candidate is selected to be evaluated next by means of maximising an acquisition function

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: Bayesian optimisation pipeline with dynamic ensembling of surrogate models. In red, the
blocks for the ensembling strategy that have been plugged into the standard BO pipeline. We start
by sampling an initial set of hyperparameter configurations and initialising the weights for surrogate
models used to construct the ensemble. Within the BO loop, all surrogates are separately fitted to the
past observations and then combined in the weighted ensemble. The acquisition function is derived
from the model ensemble and optimised to determine the next points to sample. The accuracy
of the surrogate models is then evaluated on the newly sampled points and they are assigned new
weights. Finally, the weighting scheme for the next iteration is obtained via an exponential moving
average between the old and new weights, which is parameterised by a smoothing factor in order to
determine how much historical information is retained.

defined on the surrogate. The surrogate is then iteratively refined with newly observed solution
candidates, until the total budget of available evaluations has been exhausted.

Fitting the surrogate model to the observed data is a prediction task that often involves probabilistic
models. BO then uses these probabilistic predictions of function values across the search space to
guide the search towards a good estimate of the global optimal solution. The choice of the surro-
gate model thus strongly affects BO performance and is often linked to the dimensionality of the
problem at hand and the nature of its search space. For continuous search spaces, Gaussian pro-
cesses (GPs) (Rasmussen & Williams, 2006) are the most widely adopted surrogate model and tend
to be particularly effective on low-dimensional problems, involving up to approximately 20 vari-
ables (Eggensperger et al., 2013). On the other hand, random forests (RFs) (Breiman, 2001) as
surrogate models natively support discrete and conditional search spaces, and tend to excel in higher
problem dimensionalities, where GPs generally do not work well (Eggensperger et al., 2013; Jenat-
ton et al., 2017; Li et al., 2017). For complex HPO tasks in mixed domains, with numerical, ordinal
and categorical hyperparameters, it is highly desirable to leverage the complementary strengths of
inherently different surrogate models. One natural way to achieve this is via ensemble methods,
which have in practice demonstrated their versatility in the context of BO-based HPO techniques for
treating a wide range of heterogeneous problems (Turner et al., 2020; Hoffman et al., 2011).

We propose a novel approach to enhance BO-based HPO performance by dynamically ensembling
surrogate models during the optimisation process. Our approach, which we dub DensBO, is based
on a weighted combination of multiple surrogate models, assigning the largest weight to the surro-
gate model with the highest accuracy on newly observed points in each iteration and updating the
weights via exponential moving average (see Figure 1 for details).

We present, for the first time, a dynamic ensembling approach for surrogate models in the context
of HPO. This poses a significant challenge, as there is a trade-off between the time needed for
finding the best hyperparameter configuration and the time complexity of target function evaluations
(i.e., if the optimiser requires more time to determine the next configurations to sample, there is
naturally less time available for evaluating the target function). In the context of HPO, evaluating the
target function means evaluating the performance of a given ML model for a given hyperparameter
configuration on a given dataset. Ensembling approaches in general require training and querying
more than one surrogate model, which leads to more time required for the optimisation phase.

We assess the effectiveness of the DensBO approach on various HPO tasks involving numerous
datasets and machine learning models. We compare it to several single-surrogate-based BO and a
simple, static ensemble, and we show that our dynamic ensembling method outperforms all of them

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

on both cheap and expensive functions. We provide the code, instructions for reproducibility, as
well as all figures in the Appendix C.

The remainder of this paper is organised as follows: in Section 2, we define the HPO problem,
describe how BO operates, and position our approach with respect to related work on dynamically
adapting BO components and using ensembles for enhancing BO performance. Section 3 introduces
our methodology for dynamic ensembling of surrogate models. In Section 4, we provide the tech-
nical details on the experimental setup and describe the benchmarks and baselines chosen for our
empirical analysis. We present results and critically discuss them in Section 5. Finally, in Section 6,
we provide concluding remarks and outline directions for future research.

2 BACKGROUND AND RELATED WORK

In this section, we define the HPO problem and describe the working mechanisms of the BO frame-
work. We also cover related work on dynamic design choices related to BO’s components, as well
as using ensembles in BO.

2.1 HYPERPARAMETER OPTIMISATION

LetA be a learning algorithm with n hyperparameters, Λi the domain of the i-th hyperparameter, and
Λ = Λ1×Λ2× . . .Λn the overall hyperparameter configuration space. We denote a hyperparameter
configuration by λ ∈ Λ, and the algorithm A with its hyperparameters instantiated to λ by Aλ.
Given a dataset D, the objective of HPO is to find a hyperparameter configuration λ∗ that minimises
the loss L of a model fitted by algorithm A with hyperparameters λ on training data Dtrain, and
evaluated on validation data Dvalidate, for a given loss function L, i.e.,

λ∗ ∈ argmin
λ∈Λ

L(Aλ, Dtrain, Dvalidate) = argmin
λ∈Λ

c(λ) (1)

Here, c(λ) is a shorthand for the estimated loss function when Aλ and D are fixed. Note that
c(λ) is a black-box function, without a closed-form mathematical expression nor analytic gradient
information.

2.2 BAYESIAN OPTIMISATION

Bayesian optimisation (BO) (Močkus, 2012; Frazier, 2018; Garnett, 2023) is a family of surrogate-
based algorithms for efficient global optimisation of black-box problems. A typical BO pipeline
consists of three main modules: an initial design, i.e., in HPO, a set of hyperparameter configuration
candidates λ = (λ(1), . . . , λ(r)) and their evaluations c(λ) = (c(λ(1)), . . . , c(λ(r))); a surrogate
model (fitted to the initial observations) that returns an approximation ĉ(λ) of the unknown loss
function c(λ) while capturing the uncertainty in the prediction σ̂(λ) on unobserved points in the
search space; and an acquisition function, which is optimised to suggest solution candidates to be
evaluated next, usually balancing exploration and exploitation of the search space. To approxi-
mate the expensive objective function, BO typically employs a Gaussian process (GP) model as
the surrogate. The Gaussian process model defines a distribution over functions on the configura-
tion space c(λ) ∼ GPc(µ(λ), k(λ, λ

′)), where µ(·) is a mean function and k(·, ·) is a covariance
function. If we consider an observation model yi = c(λ(i)) + εi with normally distributed noise,
εi = N (0, σ2

ε), the predicted value by the Gaussian process model at one unknown configuration
λ will also follow a normal distribution with mean µ(λ) = Kλ,λ(Kλ,λ + σ2

εI)
−1y and variance

σ2(λ) = k(λ, λ) − Kλ,λ(Kλ,λ + σ2
εI)

−1Kλ,λ, where y = (y1, . . . , yr) is the vector of observa-
tions, Kλ,λ = [k(λ(i), λ(j))]λ(i),λ(j)∈λ is the covariance matrix, and Kλ,λ = [k(λ(i), λ)]λ(i)∈λ is
the correlation vector for all samples. GPs as a surrogate model inherently provide both the mean
and the variance vector. However, GPs are not the only surrogate model used in BO. Another com-
mon choice for a surrogate model are tree-based models, such as random forests. Tree-based models
traditionally predict only the mean of the given data (e.g., in a regression setting). In this case, the
variance is defined based on the variance of the predictions of the leaves (Hutter et al., 2011). We
calculate the mean µ(λ) and variance σ(λ) for a set of trees T as follows:

µ(λ) =
1

|T |
·
∑
t∈T

t(λ) , (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

σ(λ) =
1

|T |
·
∑
t∈T

(t(λ)− µ(λ))2 , (3)

where t(λ) is the prediction of a tree t ∈ T .

BO proceeds iteratively until a termination criterion is met. In each iteration, it optimises the acqui-
sition function by repeatedly querying the surrogate model to generate a pool of solution candidates.
It then evaluates the most high-potential solutions (i.e., the solutions that maximise the acquisition
function) from this pool, refines the surrogate model based on the new observations, and updates
the optimum if the new point improves upon the true function value of the best observation so far.
Among the many variants of BO from the literature, in this work, we focus on the state-of-the-
art method for HPO to empirically evaluate our ensembling method: HEBO (Cowen-Rivers et al.,
2022).

2.3 DYNAMIC COMPONENT SELECTION IN BAYESIAN OPTIMISATION

As a modular framework, BO performance is highly sensitive to design choices of its modules. Dif-
ferent sampling strategies for the initial design, such as Latin hypercube sampling (McKay et al.,
2000), low-discrepancy sequences (e.g., Sobol (Antonov & Saleev, 1979)) or random uniform sam-
pling; different surrogate models, such as GPs or RFs; and different acquisition functions (AFs),
such as expected improvement (EI) (Močkus, 1975), probability of improvement (PI) (Kushner,
1964) or upper confidence bound (UCB) (Forrester et al., 2008) – all affect the overall BO perfor-
mance to various degrees (Bossek et al., 2020; Lindauer et al., 2019; Cowen-Rivers et al., 2022).
Despite few works showing the potential of automated selection of components (Ben Salem &
Tomaso, 2018; Benjamins et al., 2022a;b), the settings for each component are typically chosen
by practitioners beforehand depending on the desired use-case, and are fixed for the entire optimisa-
tion procedure. However, there have been efforts to show that the dynamic choices of BO modules
lead to performance gains across multiple contexts. Prior attempts to investigate the dynamic ad-
justment of AFs include works on mixed AF strategies, e.g., a self-adjusting AF approach to balance
the exploration-exploitation trade-off (Benjamins et al., 2023), an online multi-armed bandit strat-
egy on a portfolio of AFs (Hoffman et al., 2011), or an online update of weights in a portfolio of
AFs (Kandasamy et al., 2020). When it comes to dynamic adjustment of surrogate models, several
directions have been investigated, notably an online selection of surrogate models based on their
ranking in each BO iteration (Bagheri et al., 2016), adaptive global surrogate modelling via genetic
algorithm-driven sampling (Gorissen et al., 2009), or adaptive combining of surrogates based on
crowding distance trust regions (Zhang et al., 2012). It has also been shown that dynamic compo-
nent selection in general is beneficial in terms of performance in other related areas, e.g., in algorithm
configuration (Biedenkapp et al., 2020), evolutionary computation (Karafotias et al., 2015; Doerr &
Doerr, 2020), planning (Speck et al., 2021), and deep learning (Adriaensen et al., 2022).

2.4 ENSEMBLES IN BAYESIAN OPTIMISATION

Ensembles of ML models have been shown to outperform single models for a wide range of use-
cases (Sagi & Rokach, 2018; Opitz & Maclin, 1999; Rokach, 2010; Dong et al., 2020). Conse-
quently, using ensembles in the context of BO is not a new idea. A series of works has demonstrated
the advantage of using ensembles, most notably in engineering (Jiang et al., 2020; Zhou et al., 2011).
Various ensembling strategies have been investigated, e.g., optimal weighting of surrogates trained
on existing observations (Hanse et al., 2022) or on extracted features (Guo et al., 2019), or opti-
mising multiple AFs on multiple surrogates and combining them accordingly (Huang et al., 2022;
Beaucaire et al., 2019). However, all these works consider a static (i.e., global) ensemble construc-
tion which is then used throughout the entire optimisation. In contrast to this, our method operates
in a dynamic fashion, tracking the accuracy of surrogates and adjusting the ensemble on-the-fly.

Dynamic model ensembles have been used with time-series data (Liu, 2023), or for approximating
both high- and low-fidelity data during the BO procedure by combining two GP regression mod-
els (Liu, 2020); they have also been considered in a non-BO context, e.g., for neural decoding in
brain-computer interfaces (Qi et al., 2019). However, these approaches substantially differ from
our proposed methodology, as none of them considers the use of exponential moving average to
capture the history of model performance, nor a weighting scheme that is based on the accuracy
on the newly sampled points of the surrogate models trained on past observations. Furthermore,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

we consider ensembles of regression models from inherently different families. To the best of our
knowledge, dynamic surrogate ensembles have so far not been applied in the context of HPO. We
thus not only consider a new use-case, but an entirely different challenge compared to other real-
world applications, due to a key trade-off between the budget for evaluating the target function and
the budget for finding the optimal hyperparameter configuration.

3 METHODOLOGY

Our dynamic ensembling approach works as follows. The BO procedure is launched with an initial
set of hyperparameter configurations. We then initialise the weights and assign them to the models
used to construct the ensemble. We denote the initial weight for the surrogate model m as w0,m.
Then, the BO loop begins. We train all surrogate models separately on all the available samples and
create a weighted ensemble. At each iteration t, the weighted ensemble is a convex combination
of the surrogate models, with coefficients defined as the normalised model weights of that iteration,
i.e.,:

ŵt,m =
wt,m∑
j∈M wt,j

, (4)

where M is the set of available surrogate models and wt,m is the weight of model m at iteration t.
This way we make sure that

∑
m∈M ŵt,m = 1 with 0 ≤ ŵt,m ≤ 1. The ensemble can then predict

the µens(λ) and σens(λ) of the performance for an unobserved configuration λ by using a weighted
average of the individual model predictions µm(λ) and their standard deviations σm(λ):

µens(λ) =
∑
m∈M

ŵt,m · µm(λ), (5)

σens(λ) =
∑
m∈M

ŵt,m · σm(λ). (6)

We note that, in preliminary experiments, we investigated a variation of our ensembling method
that applies different weighting schemes for the mean and the variance. However, this did not yield
sufficient improvements to justify a more complex method definition. Further details can be found
in Appendix H.

In the next stages, at each iteration t, we optimise the acquisition function and select the candidates
to sample λ

(1)
t , λ

(2)
t , . . . , λ

(k)
t , as is typically done in BO. We then evaluate the accuracy of the

different surrogate models using mean squared error (MSE) on the newly sampled points. Based on
the calculated MSE, we determine the new weights w̄m for each model as follows:

w̄t,m =

{
1 if MSE(µm(λt), c(λt)) = minl∈MMSE(µl(λt), c(λt)),

0 otherwise,
(7)

where λt = {λ(1)
t , λ

(2)
t , . . . , λ

(k)
t }. Therefore, in Equation 7, we assign a weight of w̄t,m = 1 to the

model that has the lowest MSE on the k new points λt sampled at iteration t. Then, for each model
m, we use an exponential moving average between the previously calculated weights and the new
weight:

wt+1,m = (1− α) · wt,m + α · w̄t,m , (8)
We use the exponential moving average in the weighting scheme to account for the history of the
surrogate model performances, which is crucial for performing continual ensembling rather than
only model selection at each iteration. However, we also want to be responsive to the recent ten-
dencies of the acquisition function, and thus accordingly reward the models that are accurate in the
regions of the search space which are favoured by the acquisition function.

We summarise our method in the pseudo-code description provided in Algorithm 1.
Initialisation (Lines 1–3). An initial set of r hyperparameter configurations {λ1, . . . , λr} is gen-
erated based on the sampling scheme of the chosen BO framework and then evaluated. The weights
w0,m defining the model ensemble are also initialised. The iterative phase of BO starts and is run
until the budget is exhausted.
Model fitting (Lines 5–6). All models used to construct the ensemble are fitted to the data. Then,
the model ensemble is computed as a weighted average of the single models.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Augment dataset with new points (Lines 7–9). The acquisition function AF of the chosen BO
framework is optimised on the model defined by µens, σens to generate k new solution candidates to
improve the current best solution. The target function is evaluated on the new candidates, and the
problem dataset is augmented with these new points.
Update weights (Lines 10–11). New model weights are computed based on the accuracy of the
single models evaluated on the newly sampled solutions and weight history.
Return best configuration (Line 13). The best found hyperparameter configuration λ∗ is returned
as the optimal solution.

Note that, since our method is a plug-in for a generic BO framework, some of the steps (initial
sample generation and acquisition function optimisation) depend on the specific BO framework.

Algorithm 1 DensBO: Dynamic Ensembling in BO
Input: total budget b, size of newly sampled batch k, initial sample size r, loss function c,

portfolio of surrogate models M , acquisition function AF ,
1: Initialise λ with r randomly sampled points
2: Evaluate initial samples: C ← {c(λ) | λ ∈ λ}
3: Initialise model weights w0,m

4: while budget is not exhausted do
5: Fit models to data: {(µm, σm) | m ∈M} ← {fit(m,λ) | m ∈M}
6: Generate model ensemble (µens, σens) according to Equations 5 and 6
7: Optimise acquisition function: λt = {λ(1)

t , . . . , λ
(k)
t } ← argmaxAF (λ, µens, σens)

8: Evaluate new candidates: ct = {c(1)t , . . . , c
(k)
t } ← {c(λ} | λ ∈ λt}

9: Augment dataset: λ← λ ∪ λt, C← C ∪ ct
10: Calculate new model weights: w̄t,m according to Equation 7
11: Update weights wt,m according to Equation 8
12: end while
13: Return best configuration λ∗ ∈ argminλ∈λ C

4 EXPERIMENTAL SETUP

We conducted a range of experiments to assess the performance of DensBO in various HPO settings
compared to single-surrogate baselines and a static ensemble. In particular, we investigated how
DensBO performs in light of the trade-off between the time for evaluating the target function and
the time for finding the optimal hyperparameter configuration. We implemented our method in
HEBO (Cowen-Rivers et al., 2022), a state-of-the-art HPO framework (Eggensperger et al., 2021).
HEBO is a BO-based optimiser that includes several advancements to improve performance. It
applies a power transformation to the performance data and the Kumaraswamy transformation to
the input data to tackle heteroscedasticity and non-stationarity. Cowen-Rivers et al. (2022) showed
that these transformations improve the performance of Gaussian processes on performance data.
HEBO samples new solution candidates by maximising a multi-objective acquisition function that
consists of EI, PI, and upper confidence bound (UCB) (Forrester et al., 2008).

We considered four classes of surrogate models to construct the ensemble: Gaussian processes and
three tree-based models, namely random forest (RF) (Breiman, 2001), extremely randomised trees
(ET) (Geurts et al., 2006) and gradient boosting (GB) (Friedman, 2001). For GP, we used its native
implementation from HEBO. For tree-based models, we used the scikit-learn implementation
of RF, ET and GB. For details on these methods, refer to Section C.3.

As GPs are preferable for scenarios with continuous hyperparameters and RFs better handle discrete
(and even mixed and conditional) domains (Eggensperger et al., 2013), we initialised the weights in
the following manner: if the problem instance contains only continuous hyperparameters, we assign
a weight of 1 to Gaussian process (w0,GP = 1) and 0 to all other surrogate models; otherwise, we
assign a weight of 1 to RF (w0,RF = 1) and 0 to all other surrogate models.

We used four values of the smoothing factor α of the exponential moving average for the dynamic
ensemble construction: α ∈ {0.1, 0.5, 0.9, 1.0}. The lower the α, the lower the impact of the new
weights in each iteration, i.e., the higher the impact of the history of the weights. This particular

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

choice thus reflects low, medium and high memory and a selection-only mode when α = 1. In the
latter case, we select only one model – the one with the highest accuracy on the newly sampled
configurations from the last iteration – rather than construct a weighted ensemble.

In each iteration, the models with null weights are dynamically pruned, i.e., not considered at in-
ference time. In the case of α = 1, only the model achieving the highest accuracy on the newly
sampled solutions is assigned a weight of w = 1, while all other models receive w = 0. Thus,
α = 1 performs model selection rather than ensembling, as no historical information is used. The
α = 1 scenario leads to the shortest running time, due to the fact that in acquisition function optimi-
sation having fewer models with non-zero weights reduces inference time, since fewer models need
to be accessed altogether.

4.1 BENCHMARKS AND BASELINES

We empirically evaluated our approach on two benchmark suites, YAHPO Gym (Pfisterer et al.,
2022) and JAHS-Bench-201 (Bansal et al., 2022). YAHPO Gym is a surrogate-based benchmark for
hyperparameter optimisation, consisting of 15 scenarios (i.e., machine learning pipelines and their
configuration space) on various datasets. In particular, it contains LCBench (Zimmer et al., 2021),
which is used to optimise neural networks on tabular data, combined algorithm selection and hy-
perparameter optimisation (CASH) on OpenML datasets (Binder et al., 2020; Falkner et al., 2018),
as well as the NAS Bench 301 (Zela et al., 2022). From YAHPO Gym, we used all 856 available
instances. JAHS-Bench-201 is a surrogate-based benchmark for optimisation of the architecture and
hyperparameters of convolutional neural network on image datasets. From JAHS, we used all three
available instances, each optimising the architecture for a different dataset. Both YAHPO and JAHS
contain mixed-type configuration spaces. For further experimental and implementation details, refer
to Appendix C.

We used single-surrogate BO variants within HEBO with each of the surrogate models considered
(GP, RF, ET, and GB) as baselines to compare our dynamic ensembling approach. Furthermore, we
compared against a simple static ensemble which always assigns an equal weight to all models.

4.2 EXPERIMENTAL PROTOCOL

We used the native implementations of the initial design sampling and the acquisition function in
HEBO. We set the size of the initial sample to 8 for all experiments. Each method ran with 51 differ-
ent random seeds and with a total budget of 100× mean evaluation time, similarly to Eggensperger
et al. (2021). For more details on the evaluation time, refer to Appendix D. Our experiments were
conducted on a cluster of 18 nodes, each equipped with 2 AMD EPYC 7543 32-core CPUs with 256
MB L3 cache, with 1TB of memory per node, and running on a Rocky Linux 9.3 operating system.
We used HEBO version 0.3.5, YAHPO Gym version 1.0.1 and JAHS-Bench-201 version 1.1.0. Our
experiments required approximately 100 000 CPU hours.

5 RESULTS AND DISCUSSION

In this section, we present and discuss the experimental results comparing our dynamic ensembling
approach to the baselines. We first present the rank results on different benchmarks. We then analyse
the evolution of the weights assigned to surrogate models throughout the optimisation process, and
finally assess the running time of our method.

5.1 OVERALL PERFORMANCE

We present the average rank as a function of the percentage of the budget for YAHPO Gym in Fig-
ure 2. The results are split into four parts according to the mean time required for evaluating the
target function. We thus show mean ranks on all target functions, on cheap functions with a budget
of up to 10 minutes, on medium-cost functions with a budget between 10 minutes up to 1 hour, and
on expensive functions with a budget exceeding 1 hour. An analysis of the statistical significance
of our results is presented in Appendix I. When considering all target functions, we see that all
dynamic ensembling approaches outperform the baselines, both single-surrogate ones and the static

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

ensemble with equal weights. Using the weighting scheme with α = 1.0 is top-ranked on average,
followed by α = 0.9.

When it comes to cheap target functions, GP is the best-performing surrogate for very low budgets
(i.e., less than 60% of the 10-minute budget). As the budget increases, our dynamic ensembling ap-
proach with α = 1.0 outperforms every surrogate on average. Ensembling approaches with smaller
α values perform worse; ensembles with α = 0.9 and α = 0.5 outrank GP only in the last 10%
of the 10-minute budget. This highlights the fact that dynamically pruning of surrogates with null
weights within the ensemble enhances performance for low budgets, as the running time required
for optimisation is reduced. For medium-cost and expensive functions, all dynamic ensembling ap-
proaches exhibit better ranks on average. We observe that the ensemble using α = 1.0 values is now
the worst performer for these functions, giving way to the other values of α. Moreover, we see that
dynamic ensembling outranks a static ensemble with equal weights.

0.2 0.4 0.6 0.8 1

8

6

4

2
ENS α=0.1

ENS α=0.5

ENS α=0.9

ENS α=1.0

ENS eq. w

ET

GB

GP

RF

Fraction of the budget

R
an

k

(a) All target functions

0.2 0.4 0.6 0.8 1

8

6

4

2
ENS α=0.1

ENS α=0.5

ENS α=0.9

ENS α=1.0

ENS eq. w

ET

GB

GP

RF

Fraction of the budget

R
an

k

(b) Cheap (up to 10 minutes)

0.2 0.4 0.6 0.8 1

8

6

4

2
ENS α=0.1

ENS α=0.5

ENS α=0.9

ENS α=1.0

ENS eq. w

ET

GB

GP

RF

Fraction of the budget

R
an

k

(c) Medium-cost (more than 10 minutes, up to 1 hour)

0.2 0.4 0.6 0.8 1

8

6

4

2
ENS α=0.1

ENS α=0.5

ENS α=0.9

ENS α=1.0

ENS eq. w

ET

GB

GP

RF

Fraction of the budget

R
an

k

(d) Expensive (more than 1 hour)

Figure 2: Mean ranks of HEBO with different surrogate models on YAHPO Gym and JAHS-Bench-
201, split according to different budgets: (a) all target functions, (b) cheap target functions with a
budget of up to 10 minutes, (c) medium-cost target functions with a budget between 10 minutes and
up to 1 hour, (d) expensive target functions with a budget of more than 1 hour. Ensembling methods
are displayed with solid lines. Single surrogates are displayed with dashed lines. Ensembling meth-
ods outrank single surrogates in all budgets. Which α value in the ensemble is top-ranked depends
on the budget. On y-axis: 1 is the best possible rank value.

5.2 WEIGHTS EVOLUTION

We present the evolution of the weights assigned to surrogate models within the ensemble on NAS-
Bench-301 from YAHPO Gym in one run using 256 target function evaluations in Figure 3. In order
to obtain consistent visualisation of the weight values, here, we switch to measuring the optimisation
budget in terms of function evaluations rather than running time. Full results in the setting with the
total budget of 256 evaluations can be found in Appendix F. In Figure 3, We observe that higher
values of α yield more rapid and frequent changes of weights. We also notice that in different stages
of the optimisation, different surrogate models are given precedence. For example, for α = 1.0, RF
is used in the beginning of the optimisation (for a low number of evaluations), while GB is favoured

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

0 50 100 150 200
0

0.5

1
RF

ET

GB

GP

Evaluations

R
aw

 W
ei

gh
t

(a) α = 1.0

0 50 100 150 200
0

0.5

1
RF

ET

GB

GP

Evaluations

R
aw

 W
ei

gh
t

(b) α = 0.9

0 50 100 150 200
0

0.5

1
RF

ET

GB

GP

Evaluations

R
aw

 W
ei

gh
t

(c) α = 0.5

0 50 100 150 200
0

0.5

1
RF

ET

GB

GP

Evaluations
R

aw
 W

ei
gh

t

(d) α = 0.1

Figure 3: Raw weights of the ensembles with different α values on NAS-Bench-301 (part of YAHPO
Gym). A higher value of α causes sharper variations in the weights. In different stages of the
optimisation, a different surrogate model gets a higher weight.

more often towards the end of the optimisation (for a higher number of evaluations). This shows that
the dynamic weight assignment adapts the weighting scheme throughout the optimisation process.

The increased adoption of GB in the later stages of the optimisation process is an interesting ob-
servation, even though GB as a standalone surrogate consistently ranks as the least effective model.
One potential explanation is that GB may lead to inaccurate predictions when working with a small
number of samples. However, as more samples are collected, particularly when GB gets refined with
more observed points around the optimum, the accuracy of its predictions improves.

5.3 RUNNING TIME

We examine the wall-clock time used by the optimiser itself (i.e., excluding the time required to
evaluate the target function) as a percentage of the optimisation budget and as absolute running time
relative to the number of target function evaluations. Figure 4a shows the proportion of the optimi-
sation budget (in seconds) used by the optimiser to suggest the next configurations to sample across
all functions (from both YAHPO Gym and JAHS-Bench-201). As expected, for very low budgets
(up to approximately 20 seconds), the optimiser consumes a high fraction of the budget (more than
35%). As the budget increases, this fraction decreases, until it becomes negligible (less than 1%
for budgets of more than 10 000 seconds). We observe that using ensembles requires a higher frac-
tion of the optimisation budget than using a single surrogate. However, the difference becomes
indistinguishable when the budget exceeds 10 000 seconds. When using dynamic ensembling with
α = 1.0, the difference becomes difficult to discern even with a budget of 1 000 seconds, once more
demonstrating the effectiveness of dynamic pruning of surrogate models.

Additionally, we assess the absolute cost of using different surrogates in Figure 4b. Ensembling
approaches take the longest to run, and among them using α = 1.0 requires the least time due to
dynamic pruning. We also notice that ensembling approaches take roughly twice as long as tree-
based surrogates. GPs are the fastest to run with the low number of evaluations, however the gap
between them and tree-based methods shrinks substantially as more observations are added.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

100 1000 10k 100k

0

0.2

0.4

ENS α=1.0

ENS α=0.1

ENS α=0.5

ENS α=0.9

ENS eq. w

ET

GB

GP

RF

Budget (s)

Fr
ac

tio
n

of
 b

ud
ge

t f
or

 o
pt

.

(a) Fraction of budget

50 100 150 200

2

5

10

2

5

100

2
ENS eq. w

ENS α=0.1

ENS α=0.5

ENS α=0.9

ENS α=1.0

ET

GB

GP

RF

Evaluations

R
un

ni
ng

 ti
m

e
(s

)

(b) Absolute running time

Figure 4: Running time of the optimisation with dynamic ensembling methods (excluding the time
needed to evaluate the target function): (a) as a fraction of optimisation budget, and (b) as absolute
running time relative to the number of target function evaluations. Ensembles generally require a
higher fraction of the budget compared to single surrogates and take the longest to run in absolute
terms, with a notable exception of the ensemble with α = 1.0, which consumes less budget by an
order of magnitude, and which is the fastest to run, due to dynamic pruning.

6 CONCLUSIONS, LIMITATIONS AND FUTURE WORK

In this work, we proposed a novel dynamic ensembling approach for surrogate models in hyperpa-
rameter optimisation. Our method constructs a weighted ensemble of different types of surrogate
models by assessing the accuracy of different surrogates throughout the optimisation process and
dynamically determining which weight should be assigned to each surrogate model. We experi-
mented with a wide variety of HPO benchmark tasks and found that our method results in a better
mean rank than single-surrogate baselines and a static ensemble with equal weights.

Despite very promising results of our work, there is still room for improvement. One limitation is
the higher running time required to both train and evaluate the surrogate models and to optimise the
acquisition function compared to a single-surrogate BO. We mitigate this by introducing dynamic
pruning of surrogates, which substantially reduces the required running time. However, dynamic
pruning only occurs when we have models with null weights, which is rare in ensembles with values
of α smaller than 1.0. Furthermore, we observe that the Gaussian process outperforms our method
for very small budgets (less than 5 minutes). This is in line with the fact that BO equipped with GP
excels precisely in a very low-budget setting, as well as that our method requires higher time for the
training additional surrogate models.

Our method itself comes with a hyperparameter, the smoothing factor α. While different values of
α work best with different target functions, we observed that using α = 1.0 works consistently well
on all functions, regardless of the cost of function evaluations. The impact of historical accuracy
measurements thus seem to contribute only marginally when determining the weights.

Our work presented here opens several avenues for future research. Multi-fidelity approaches are
very commonly used for HPO, especially in expensive tasks where each evaluation on full fidelity
can take more than an hour. It seems promising to extend our method to multi-fidelity scenarios. A
further promising direction is to learn in which scenarios (e.g.,, input dimensionality, phase of the
optimisation) which surrogate model(s) work best and to create an ensemble by training only these
specific models; in case a single surrogate model is chosen, the overhead of ensembling would thus
be eliminated.

Overall, we believe that combining multiple surrogate models in BO is a promising direction for
achieving better surrogate predictions, thus allowing for faster convergence and increased sample
efficiency. DensBO is the first method that dynamically leverages the potential of complementary
surrogates within the BO procedure itself.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Steven Adriaensen, André Biedenkapp, Gresa Shala, Noor H. Awad, Theresa Eimer, Marius Lin-
dauer, and Frank Hutter. Automated dynamic algorithm configuration. Journal of Artificial Intel-
ligence Research, 75:1633–1699, 2022.

I.A. Antonov and V.M. Saleev. An economic method of computing LPt-sequences. USSR Compu-
tational Mathematics and Mathematical Physics, 19(1):252–256, 1979.

Samineh Bagheri, Wolfgang Konen, and Thomas Bäck. Online selection of surrogate models for
constrained black-box optimization. In Proceedings of the IEEE Symposium Series on Computa-
tional Intelligence, pp. 1–8, 2016.

Archit Bansal, Danny Stoll, Maciej Janowski, Arber Zela, and Frank Hutter. JAHS-Bench-201:
A foundation for research on joint architecture and hyperparameter search. In Proceedings of
the Thirty-sixth Internation Conference on Advances in Neural Information Processing Systems
(NeurIPS), 2022.

Paul Beaucaire, Charlotte Beauthier, and Caroline Sainvitu. Multi-point infill sampling strategies
exploiting multiple surrogate models. In Proceedings of the Twentieth International Conference
on Genetic and Evolutionary Computation Conference Companion (GECCO), pp. 1559–1567,
2019.

Malek Ben Salem and Lionel Tomaso. Automatic selection for general surrogate models. Structural
Multidisciplinary Optimisation, 58(2):719–734, aug 2018.

Carolin Benjamins, Anja Jankovic, Elena Raponi, Koen van der Blom, Marius Lindauer, and Carola
Doerr. Towards Automated Design of Bayesian Optimization via Exploratory Landscape Analy-
sis. In Proceedings of the Sixth Workshop on Meta-Learning at NeurIPS, 2022a.

Carolin Benjamins, Elena Raponi, Anja Jankovic, Koen van der Blom, Maria Laura Santoni, Marius
Lindauer, and Carola Doerr. PI is back! Switching Acquisition Functions in Bayesian Optimiza-
tion. In Proceedings of the workshop on Gaussian Processes, Spatiotemporal Modeling, and
Decision-making Systems at NeurIPS, 2022b.

Carolin Benjamins, Elena Raponi, Anja Jankovic, Carola Doerr, and Marius Lindauer. Self-
Adjusting Weighted Expected Improvement for Bayesian Optimization. In Proceedings of the
second International Conference on Automated Machine Learning (AutoML), volume 224, pp.
6/1–50, 2023.

André Biedenkapp, H. Furkan Bozkurt, Theresa Eimer, Frank Hutter, and Marius Lindauer. Dy-
namic algorithm configuration: Foundation of a new meta-algorithmic framework. In Proceed-
ings of the Twenty-fourth European Conference on Artificial Intelligence (ECAI), volume 325 of
Frontiers in Artificial Intelligence and Applications, pp. 427–434, 2020.

Martin Binder, Florian Pfisterer, and Bernd Bischl. Collecting empirical data about hyperparameters
for data driven automl. Proceedings of the Seventh Workshop on Automated Machine Learning at
ICML, pp. 93, 2020.

Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek
Thomas, Theresa Ullmann, Marc Becker, Anne-Laure Boulesteix, Difan Deng, and Marius Lin-
dauer. Hyperparameter optimization: Foundations, algorithms, best practices, and open chal-
lenges. WIREs Data Mining and Knowledge Discovery, 13(2), 2023.

Jakob Bossek, Carola Doerr, and Pascal Kerschke. Initial design strategies and their effects on
sequential model-based optimization: An exploratory case study based on BBOB. In Proceed-
ings Twenty-first International Conference on Genetic and Evolutionary Computation Conference
(GECCO), pp. 778–786, 2020.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In Proceedings of the Thirthy-fourth
International Conference on Advances in Neural Information Processing Systems (NeurIPS), vol-
ume 33, pp. 1877–1901, 2020.

Alexander I. Cowen-Rivers, Wenlong Lyu, Rasul Tutunov, Zhi Wang, Antoine Grosnit, Ryan-Rhys
Griffiths, Alexandre Max Maraval, Jianye Hao, Jun Wang, Jan Peters, and Haitham Bou-Ammar.
HEBO: an empirical study of assumptions in bayesian optimisation. Journal of Artificial Intelli-
gence Research, 74:1269–1349, 2022.

Benjamin Doerr and Carola Doerr. Theory of parameter control for discrete black-box optimiza-
tion: Provable performance gains through dynamic parameter choices. In Theory of Evolutionary
Computation, pp. 271–321. 2020.

Xibin Dong, Zhiwen Yu, Wenming Cao, Yifan Shi, and Qianli Ma. A survey on ensemble learning.
Frontiers in Computer Science, 14(2):241–258, 2020.

Katharina Eggensperger, Matthias Feurer, Frank Hutter, James Bergstra, Jasper Snoek, Holger Hoos,
Kevin Leyton-Brown, et al. Towards an empirical foundation for assessing bayesian optimization
of hyperparameters. In Proceedings of the Workshop on Bayesian Optimization in Theory and
Practice at NIPS, volume 10, 2013.

Katharina Eggensperger, Philipp Müller, Neeratyoy Mallik, Matthias Feurer, René Sass, Aaron
Klein, Noor H. Awad, Marius Lindauer, and Frank Hutter. Hpobench: A collection of repro-
ducible multi-fidelity benchmark problems for HPO. In Proceedings of the Thirty-fifth Neural
Information Processing Systems (NeurIPS), Datasets and Benchmarks Track, 2021.

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: robust and efficient hyperparameter opti-
mization at scale. In Proceedings of the Thirty-fifth International Conference on Machine Learn-
ing, Proceedings of Machine Learning Research, 2018.

Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and Frank Hutter. Auto-
sklearn 2.0: Hands-free automl via meta-learning. Journal of Machine Learning Research, 23
(261):1–61, 2022.

Alexander I. J. Forrester, András Sóbester, and Andy J. Keane. Engineering Design via Surrogate
Modelling - A Practical Guide. 2008.

Peter I Frazier. A Tutorial on Bayesian Optimization. arXiv:1807.02811, 2018.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pp. 1189–1232, 2001.

Roman Garnett. Bayesian Optimization. Cambridge University Press, 2023.

Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine Learning,
63(1):3–42, 2006.

Dirk Gorissen, Tom Dhaene, and Filip De Turck. Evolutionary model type selection for global
surrogate modeling. Journal of Machine Learning Research, 10:2039–2078, 2009.

Dan Guo, Yaochu Jin, Jinliang Ding, and Tianyou Chai. Heterogeneous ensemble-based infill cri-
terion for evolutionary multiobjective optimization of expensive problems. IEEE Transactions
Cybernetics, 49(3):1012–1025, 2019.

Gideon Hanse, Roy de Winter, Bas van Stein, and Thomas Bäck. Optimally weighted ensembles for
efficient multi-objective optimization. In Proceedings of the International Conference on Machine
Learning, Optimization, and Data Science (LOD), volume 13163, pp. 144–156, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Matthew Hoffman, Eric Brochu, and Nando de Freitas. Portfolio allocation for bayesian optimiza-
tion. In Proceedings of the Twenty-Seventh Internation Conference on Uncertainty in Artificial
Intelligence (UAI), pp. 327–336, 2011.

Qi Huang, Roy de Winter, Bas van Stein, Thomas Bäck, and Anna V. Kononova. Multi-surrogate
assisted efficient global optimization for discrete problems. In IEEE Symposium Series on Com-
putational Intelligence (SSCI), pp. 1650–1658, 2022.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In Carlos A. Coello Coello (ed.), Proceddings of the fifth
International Conference on Learning and Intelligent Optimization (LION), volume 6683, pp.
507–523, 2011.

Frank Hutter, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. Algorithm runtime prediction:
Methods & evaluation. Artificial Intelligence, 206:79–111, 2014.

Rodolphe Jenatton, Cédric Archambeau, Javier González, and Matthias W. Seeger. Bayesian opti-
mization with tree-structured dependencies. In Proceedings of the International Conference on
Machine Learning (ICML), volume 70, pp. 1655–1664, 2017.

Ping Jiang, Qi Zhou, and Xinyu Shao. Ensembles of Surrogate Models, pp. 35–53. 2020.

Kirthevasan Kandasamy, Karun Raju Vysyaraju, Willie Neiswanger, Biswajit Paria, Christopher R.
Collins, Jeff Schneider, Barnabás Póczos, and Eric P. Xing. Tuning hyperparameters without grad
students: scalable and robust bayesian optimisation with dragonfly. Journal of Machine Learning
Research, 21(1), 2020.

Giorgos Karafotias, Mark Hoogendoorn, and A. E. Eiben. Parameter control in evolutionary algo-
rithms: Trends and challenges. IEEE Transactions on Evolutionary Computation, 19(2):167–187,
2015.

Harold Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in
the presence of noise. Journal of Fluids Engineering, pp. 97–106, 1964.

Niklas Lavesson and Paul Davidsson. Quantifying the impact of learning algorithm parameter tun-
ing. In Proceedings of the Twenty-First National Conference on Artificial Intelligence(AAAI), pp.
395–400, 2006.

Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hy-
perband: A novel bandit-based approach to hyperparameter optimization. Journal of Machine
Learning Research, 18:185:1–185:52, 2017.

Marius Lindauer, Matthias Feurer, Katharina Eggensperger, André Biedenkapp, and Frank Hutter.
Towards Assessing the Impact of Bayesian Optimization’s Own Hyperparameters. In Data Sci-
ence Meets Optimisation Workshop at IJCAI, 2019.

Bin Liu. Harnessing low-fidelity data to accelerate bayesian optimization via posterior regular-
ization. In IEEE International Conference on Big Data and Smart Computing (BigComp), pp.
140–146, 2020.

Bin Liu. Robust sequential online prediction with dynamic ensemble of multiple models: A review.
Neurocomputing, 552:126553, 2023.

Michael D. McKay, Richard J. Beckman, and William J. Conover. A comparison of three methods
for selecting values of input variables in the analysis of output from a computer code. Technomet-
rics, 42(1):55–61, 2000.

Jonas Močkus. On bayesian methods for seeking the extremum. In Proceedings of the Technical
Conference on Optimization Techniques (IFIP), pp. 400–404, 1975.

Jonas Močkus. Bayesian approach to global optimization: theory and applications, volume 37.
2012.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

David W. Opitz and Richard Maclin. Popular ensemble methods: An empirical study. Journal of
Artificial Intelligence Research, 11:169–198, 1999.

Florian Pfisterer, Lennart Schneider, Julia Moosbauer, Martin Binder, and Bernd Bischl. YAHPO
gym - an efficient multi-objective multi-fidelity benchmark for hyperparameter optimization. In
Proceedings of the first International Conference on Automated Machine Learning (AutoML),
volume 188, pp. 3/1–39, 2022.

Yu Qi, Bin Liu, Yueming Wang, and Gang Pan. Dynamic ensemble modeling approach to nonsta-
tionary neural decoding in brain-computer interfaces. In Proceedings of the Thirty-third Interna-
tional Conference on Advances in Neural Information Processing Systems (NeurIPS), volume 32,
2019.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning.
Adaptive computation and machine learning. 2006.

Lior Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33(1-2):1–39, 2010.

Omer Sagi and Lior Rokach. Ensemble learning: A survey. WIREs Data Mining Knowledge Dis-
covery, 8(4), 2018.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In Proceedings of the Twenty-Sixth International Conference on Advances
in Neural Information Processing Systems (NeurIPS), volume 25, 2012.

David Speck, André Biedenkapp, Frank Hutter, Robert Mattmüller, and Marius Lindauer. Learn-
ing heuristic selection with dynamic algorithm configuration. In Proceedings of the Thirty-first
International Conference on Automated Planning and Scheduling (ICAPS), pp. 597–605, 2021.

Ryan Turner, David Eriksson, Michael McCourt, Juha Kiili, Eero Laaksonen, Zhen Xu, and Isabelle
Guyon. Bayesian optimization is superior to random search for machine learning hyperparameter
tuning: Analysis of the black-box optimization challenge 2020. In Hugo Jair Escalante and Katja
Hofmann (eds.), Proceedings of the International Conference on Neural Information Processing
Systems (NeurIPS), Competition and Demonstration Track, volume 133, pp. 3–26, 2020.

Christopher John Cornish Hellaby Watkins. Learning from Delayed Rewards. PhD thesis, King’s
College, Oxford, 1989.

Arber Zela, Julien Niklas Siems, Lucas Zimmer, Jovita Lukasik, Margret Keuper, and Frank Hutter.
Surrogate NAS benchmarks: Going beyond the limited search spaces of tabular NAS benchmarks.
In Proceedings of the Tenth International Conference on Learning Representations (ICLR), 2022.

Jie Zhang, Souma Chowdhury, and Achille Messac. An adaptive hybrid surrogate model. Structural
and Multidisciplinary Optimization, 46(2):223–238, 2012.

Xiao Jian Zhou, Yi Zhong Ma, and Xu Fang Li. Ensemble of surrogates with recursive arithmetic
average. Structural and Multidisciplinary Optimization, 44(5):651–671, nov 2011.

Lucas Zimmer, Marius Lindauer, and Frank Hutter. Auto-pytorch: Multi-fidelity metalearning for
efficient and robust autodl. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43
(9):3079–3090, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A SOCIETAL IMPACT

This paper presents fundamental empirical work whose goal is to advance the field of hyperparame-
ter optimisation, and (automated) machine learning more broadly. We do not see any negative ethical
and societal implications of our work. A positive impact of our work concerns reducing computa-
tional load for hyperparameter optimisation, as it is able to find well-performing configurations in
less time than standard baselines we compare against. This leads to a reduced carbon footprint and
saved energy resources.

B CODE AVAILABILITY AND REPRODUCIBILITY

Our code, as well as full results on all benchmarks and additional figures, can be found
at the anonymous Git repository: https://anonymous.4open.science/r/dyn_ens_
supp-D5C2/.

C DETAILED IMPLEMENTATION DESCRIPTION

Our method is implemented in HEBO (Cowen-Rivers et al., 2022), a state-of-the-art BO-based op-
timiser (Eggensperger et al., 2021). HEBO starts by sampling random configurations based on
Sobol sequences. Then, in each BO iteration, it transforms the (input) configurations and the (out-
put) performances to tackle non-stationarity and heteroscedasticity of the data, respectively. Non-
stationarity of the input means that the GP kernel does not only depend on the norm between two
inputs; it is corrected by appropriate input warping, in this case the Kumaraswamy transformation.
Given the dimensionality of the decision variable d, tuneable warping parameters for each dimension
ak and bk, and a vector concatenating all free parameters γ, the Kumaraswamy warping is defined
as follows for all input dimensions:[

Kumaraswamyγ (xl)
]
k
= 1− (1− [xl]

ak

k)
bk ∀k ∈ [1 : d] (9)

Heteroscedasticity of the output means that the output does not adhere to a Gaussian noise model,
but that the noise is a function of the input, i.e., depending on the input, the noise is prone to chang-
ing around the mean. The performances are thus transformed using power transformations, either
Box-Cox (which supports either strictly positive or strictly negative inputs) or Yeo-Johnson (which
handles arbitrary inputs). Given a tunable transformation parameter ζ, the Box-Cox transformation
applies the following mapping to each of the outputs:

B.C.ζ (yl) = yζl − 1/ζ for ζ ̸= 0 and B.C.ζ (yl) = log yl if ζ = 0 (10)

where yl is the performance of the lth hyperparameter configuration. The Yeo-Johnson transforma-
tion is defined as follows:

Y.J.ζ (yl) =

(yl+1)ζ−1

ζ , if ζ ̸= 0, yl ≥ 0

log (yl + 1) , if ζ = 0, yl ≥ 0
(1−yl)

2−ζ−1
ζ−2 if ζ ̸= 2, yl < 0

− log (1− yl) if ζ = 2, yl < 0

(11)

Power transformations are used to give the data a zero mean and a variance of 1. This is done in
order to get the data distribution close to a Gaussian distribution, which improves the fit of GPs to
the data. HEBO then fits the GP and Kumaraswamy-transformed parameters using the well-known
Adam optimiser.

After fitting the surrogate model, HEBO optimises a multi-objective acquisition function consisting
of three widely used acquisition functions: EI, PI and UCB, which are defined as follows:

EI: αθ
EI (x1:q | D) = Eposterior

[
max
j∈1:q

{
ReLU

(
f (xj)− f

(
x+

))}]
(12)

PI: αθ
PI (x1:q | D) = Eposterior

[
max
j∈1:q

{
⊮
{
f (xj)− f

(
x+

)}}]
(13)

15

https://anonymous.4open.science/r/dyn_ens_supp-D5C2/
https://anonymous.4open.science/r/dyn_ens_supp-D5C2/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

UCB: αθ
UCB (xj) = Eposterior

[
max
j∈1:q

{
µθ (xj) +

√
βπ/2 |γθ (xj)|

}]
(14)

where xj is the jth vector of x1:q; x+ is the best performing input in the data so far; ⊮{·} is the left-
continuous Heaviside step function; µθ (xj) is the posterior mean of the predictive distribution; and
γθ (xj) = f (xj)− µθ (xj). HEBO searches for candidates that are in the Pareto front of the three
functions. This leverages the fact that for different functions and stages of the optimisation process,
different acquisition functions work better (Benjamins et al., 2022a). HEBO then finds candidate
configurations using a multi-objective optimiser NSGA-II.

We use HEBO with a batch size of 8 (i.e., retraining the surrogate every 8 epochs), as suggested in the
HEBO documentation1, and as done in other hyperparameter optimisers such as SMAC (Lindauer
et al., 2019). For the Gaussian process, we use the default implementation and hyperparameters of
HEBO. For tree-based models, we use the default hyperparameters of scikit-learn, with the
exception of the number of trees which we set to 10, as done in SMAC. In some cases, GPs return
an error during fit. If this occurs when using ensembling, at iteration t, we assign:

wt,GP = 0 (15)

Otherwise, when using GPs alone, we instead use random search rather than BO to decide on the
next configurations to sample.

C.1 USED SOFTWARE

In our implementation, we used the following packages:

• HEBO: https://github.com/huawei-noah/HEBO/tree/master/HEBO
version 0.3.5 under MIT license.

• SCIKIT-LEARN: https://scikit-learn.org/ version 1.4.1 under BSD-3 license.

• YAHPO Gym: https://github.com/slds-lmu/yahpo_gym version 1.0.1 under
Apache 2.0 license.

• JAHS-Bench-201: https://github.com/automl/jahs_bench_201/tree/
main version 1.1.0 under MIT license.

C.2 MOTIVATION FOR USING EXPONENTIAL MOVING AVERAGE

We use an exponential moving average inspired by the reinforcement learning algorithm Q-
learning (Watkins, 1989), which uses an exponential moving average to update its policy in every
iteration. In Q-learning, the Q(St, At) of a state St and an action At holds the expected reward of
the agent by being in state St and taking action St. Q-learning then proceeds iteratively by explor-
ing the state space and updating the Q-values according to the observed rewards. By analogy, in our
optimisation case, we attempt to learn a “weighting policy” for the weights in our models. However,
a notable difference between the reinforcement learning case and the dynamic ensembling is that
reinforcement learning learns a single, static, policy in a training phase. We learn the policy online,
during the optimisation process.

Another motivation for the usage of the exponential moving average is to focus on the accuracy of the
surrogate models in the region that is currently favoured by the acquisition function. This region can
change during the optimisation process. With the exponential moving average, intuitively speaking,
we can gradually “forget” about old scores and put a higher emphasis on new ones.

C.3 SINGLE SURROGATE MODEL BASELINES

In Section 2.2, we gave an introduction on GPs. In this appendix, we elaborate on the three other
surrogate models we used in the paper.

Random forest (RF) (Breiman, 2001) is a bagged ensemble of decision trees. This means that each
tree is fitted on a different random subset of the data. This then helps avoid overfitting and improve

1https://hebo.readthedocs.io/en/latest/optimisation.html

16

https://github.com/huawei-noah/HEBO/tree/master/HEBO
https://scikit-learn.org/
https://github.com/slds-lmu/yahpo_gym
https://github.com/automl/jahs_bench_201/tree/main
https://github.com/automl/jahs_bench_201/tree/main
https://hebo.readthedocs.io/en/latest/optimisation.html

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

the prediction accuracy. Random forests are known as good performance predictors (Hutter et al.,
2014) and have been used in BO pipelines as surrogate models (Hutter et al., 2011).

Extremely randomised trees (Geurts et al., 2006), also known as extra trees (ET,) are an ensemble of
random trees, where the splitting threshold is determined randomly, instead of based on a predeter-
mined criterion. Furthermore, each tree is built on the whole dataset. Extra trees are known to have
lower variance than random forests.

Gradient boosting (GB) (Friedman, 2001) is an ensembling method that consists of multiple decision
trees. Gradient boosting iteratively constructs decision trees to minimise the loss of the ensemble.

D BENCHMARK DETAILS

Yet Another HPO Benchmark (YAHPO) Gym (Pfisterer et al., 2022) is a surrogate-based benchmark
for hyperparameter optimisation on tabular machine learning tasks. The benchmark consists of
multiple datasets from OpenML and various machine learning algorithms. The authors provide a
surrogate model for each machine learning algorithm and a dataset that predicts different objectives,
such as accuracy, training time, and more.

YAHPO Gym contains several scenarios. Each scenario has a configuration space and is based on
a machine learning algorithm. Each scenario contains multiple datasets, which are called instances.
The YAHPO Gym scenarios are:

• rbv2 ranger (Binder et al., 2020): random forest using the ranger R implementation.
• rbv2 rpart (Binder et al., 2020): decision tree using the mlr implementation.
• rbv2 glmnet (Binder et al., 2020): generalised linear models (GLM) with elastic net regu-

larisation using the mlr implementation.
• rbv2 svm (Binder et al., 2020): support vector machine (SVM) with the mlr implementa-

tion.
• rbv2 xgboost (Binder et al., 2020): gradient boosting using XGBoost.
• rbv2 aknn (Binder et al., 2020): k-nearest neighbours using the mlr implementation.
• rbv2 super (Binder et al., 2020): a combined algorithm selection and hyperparameter opti-

misation (CASH) scenario that uses all the above rbv2 scenarios.
• iaml glment (Pfisterer et al., 2022): generalised linear models (GLM) with elastic net reg-

ularisation using the mlr implementation.
• iaml rpart (Pfisterer et al., 2022): decision tree using the mlr implementation.
• iaml ranger (Pfisterer et al., 2022): random forest using the ranger R implementation.
• iaml xgboost (Pfisterer et al., 2022): gradient boosting using XGBoost.
• iaml super (Pfisterer et al., 2022): combined algorithm selection and hyperparameter opti-

misation (CASH) scenario that uses all the above iaml scenarios.
• LCBench (Zimmer et al., 2021): optimising the training hyperparameters and architecture

of multi-layer perceptron on tabular datasets.
• FCNet (Falkner et al., 2018): hyperparameter optimisation of a fully-connected network

for tabular data.
• NAS-Bench-301 (Zela et al., 2022): neural architecture search (NAS) scenario using a

constant set of training hyperparameters. The search space describes a cell of the neural
network and the hyperparameters are different operations done in each cell.

The configuration spaces for the rbv2 scenarios are in Table 1. For rbv2 super, the configuration
space contains all the individual algorithms configuration spaces, with an additional hyperparameter
which selects the algorithm. The configuration spaces for the iaml scenarios are in Table 5, the
iaml super scenario is similar to rbv2 super, where there is an additional hyperparameter to select
to algorithm. While the iaml and rbv2 scenarios look similar, there are a few differences in the
configuration space. First, the configuration spaces of rbv2 contains the input imputation used, while
in iaml the input imputation is constant. Another difference is a different ranges of hyperparameters

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

100 10k 1M

0

20

40

60

80

100

120 JAHS

fcnet

iaml_glmnet

iaml_ranger

iaml_rpart

iaml_super

iaml_xgboost

lcbench

nb301

rbv2_aknn

rbv2_glmnet

rbv2_ranger

rbv2_rpart

rbv2_super

rbv2_svm

rbv2_xgboost

Budget (s)

In

st
an

ce
s

Figure 5: Cumulative number of instances as a function of the budget for every instance, for each
scenario. E.g., 60 instances from the iaml glmnet scenario (in dark green) take up to 100 seconds to
evaluate.

(for example, the number of rounds in xgboost). In all scenarios, the target metric is accuracy, as
defined in (Pfisterer et al., 2022). The search spaces for LCBench, FCNet and NAS-Bench-301 are
shown in Table 3, Table 4 and Table 2, respectively.

D.1 EVALUATION BUDGET

All YAHPO Gym and JAHS-Bench-201 surrogates predict the running time required to train and
evaluate the model using a specific configuration. Therefore, we calculate the budget per instance
similarly to Eggensperger et al. (2021): we sample 1 000 random configurations per instance and
predict the required running time. We then calculate the mean running time per instance. The
budget for each optimisation is then 100× mean running time of the instance. The running times
per scenario are available in Figure 5.

E FULL RESULTS

All figures (convergence plots, weight evolution and performance comparison), including results for
JAHS-Bench-201, are available in the supplemental Git repository (see Appendix B) due to reasons
of space, as there are 859 such figures. We provide convergence plots in Figure 6 for a subset
of YAHPO Gym, namely the YAHPO-SO benchmark suite that contains 20 HPO problems from
different scenarios.

F RESULTS WITH 256 EVALUATIONS

In addition to the main results in Section 5.1, we performed additional experiments to assess the
effectiveness of our method as a function of the number of evaluations and not as the budget mea-
sured in wall-clock time. We used 8 initial samples and a total budget of 256 evaluations. This

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Table 1: Configuration spaces for the rbv2 scenarios of YAHPO Gym.

Algorithm Hyperparameter Range Comments

rbv2 glment
alpha [0, 1]
s [0.001, 1097] log-scaled
imputation {mean, median, hist}

rbv2 rpart

cp [0.001, 1] log-scaled
maxdepth [1, 30]
minbucket [1, 100]
minsplit [1, 100]
imputation {mean, median, hist}

rbv2 svm

kernel {linear, polynomial, radial}
cost [4.5e-0.5, 2.2e4] log-scaled
gamma [4.5e-05, 2.2e4] log-scaled condi-

tional by the kernel
tolerance [4.5e-0.5, 2] log-scaled
degree [2, 5] conditional by the

kernel
imputation {mean, median, hist}

rbv2 aknn

k [1, 50]
distance {l2, cosine, ip}
M [18, 50]
ef [7, 403] log-scaled
ef construction [7, 403] log-scaled
imputation {mean, median, hist}

rbv2 ranger

num. trees [1, 2000]
sample fraction [0.1, 1]
mtry power [0, 1]
respect unordered
factors

{ignore, order, partition}

min node size [1, 100]
splitrule {gini, extratrees}
num random splits [1, 100]
imputation {mean, median, hist}

rbv2 xgboost

booster {gblinear, gbtree,dart}
nrounds [7, 2980]
eta [0.001, 1]
gamma [4.5e-05, 7.4]
lambda [0.001, 1097]
max depth [1, 15]
min child weight [2.72, 148.4]
colsample bytree [0.01, 1]
rate drop [0, 1]
skip drop [0, 1]
imputation {mean, median, hist}

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Table 2: Configuration spaces for the NAS scenarios: the NAS-Bench-301 scenario of YAHPO
Gym, and JAHS-Bench-201.

Benchmark Hyperparameter Range Comments

JAHS-Bench-201

Op[1-6] {skip-connect, zero, 1x1
conv, 3x3 conv 3x3 avg pool}

Activation {ReLU, Hardswish, Mish}
Learning Rate [10ˆ-3, 10ˆ0] log-scaled
Weight Decay [10ˆ-5, 10ˆ-2] log-scaled
Trivial Augment {On, Off}

NAS-Bench-301

edge normal {0-
13}

{max pool 3x3, avg pool 3x3,
skip connect, sep conv 3x3,
sep conv 5x5, dil conv 3x, dil
conv 5x5}

edge reduce {0-
13}

{max pool 3x3, avg pool 3x3,
skip connect, sep conv 3x3,
sep conv 5x5, dil conv 3x, dil
conv 5x5}

COLON inputs
node normal {3-

5}

{0 1, 0 2, 1 2}

COLON inputs
node reduce {3-

5}

{0 1, 0 2 1 2}

Table 3: Configuration spaces for the LCBench scenarios of YAHPO Gym.

Benchmark Hyperparameter Range Comments

LCBench

batch size [16, 512] log-sacled
learning rate [1e-4, 0.1] log-sacled
momentum [0.1, 0.9]
weight decay [1e-5, 0.1]
num layers [1, 5]
max units [64, 1024] log-sacled
max dropout [0, 1]

Table 4: Configuration spaces for the FCNet scenarios of YAHPO Gym.

Benchmark Hyperparameter Range Comments

FCNet

activation fn 1 [tanh, relu]
activation fn 2 [tanh, relu]
batch size [8, 64] log-scaled
dropout 1 [0.0, 0.6]
dropout 2 [0.0, 0.6]
epoch [1, 100] log-sacled
init lr [0.0005, 0.1] log-scaled
lr schedule const, cosine
n units 1 [16, 512]
n units 2 [16, 512] log-scaled
replication [1, 4]

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

0.2 0.4 0.6 0.8 1

0.15

0.2

0.25

Fraction of the budget

R
eg

re
t

(a) LCBench 167168

0.2 0.4 0.6 0.8 1
0.01

2

5

0.1

2

Fraction of the budget

R
eg

re
t

(b) LCBench 189873

0.2 0.4 0.6 0.8 1

0.06

0.08

0.1

0.12

0.14

0.16
0.18

Fraction of the budget

R
eg

re
t

(c) LCBench 189906

0.2 0.4 0.6 0.8 1

0.056

0.058

0.06

0.062

0.064

Fraction of the budget

R
eg

re
t

(d) NB301 CIFAR10

0.2 0.4 0.6 0.8 1
0.039

0.04

0.041

0.042

0.043

0.044

Fraction of the budget

R
eg

re
t

(e) rbv2 glmnet 375

0.2 0.4 0.6 0.8 1

0.002

0.0025

0.003

0.0035

0.004

Fraction of the budget

R
eg

re
t

(f) rbv2 glmnet 458

0.2 0.4 0.6 0.8 1

0.03

0.035

0.04

0.045

0.05

Fraction of the budget
R

eg
re

t

(g) rbv2 ranger 16

0.2 0.4 0.6 0.8 1

0.01

0.015

0.02

0.025

0.03

Fraction of the budget

R
eg

re
t

(h) rbv2 ranger 42

0.2 0.4 0.6 0.8 1

0.2

0.22

0.24

0.26

0.28

Fraction of the budget

R
eg

re
t

(i) rbv2 rpart 14

0.2 0.4 0.6 0.8 1

0.12

0.13

0.14

0.15

0.16

Fraction of the budget

R
eg

re
t

(j) rbv2 rpart 40499

0.2 0.4 0.6 0.8 1
0.06

0.08

0.1

0.12

0.14

0.16

0.18

Fraction of the budget

R
eg

re
t

(k) rbv2 super 1053

0.2 0.4 0.6 0.8 1

0.2

0.25

0.3

Fraction of the budget

R
eg

re
t

(l) rbv2 super 1457

0.2 0.4 0.6 0.8 1

0.08

0.09

0.1

0.11

0.12

0.13

0.14

Fraction of the budget

R
eg

re
t

(m) rbv2 super 1063

0.2 0.4 0.6 0.8 1

2

3

4
5
6
7
8
9

0.1

2

Fraction of the budget

R
eg

re
t

(n) rbv2 super 1479

0.2 0.4 0.6 0.8 1

0.015

0.02

0.025

0.03

Fraction of the budget

R
eg

re
t

(o) rbv2 super 15

0.2 0.4 0.6 0.8 1

0.04

0.06

0.08

0.1
0.12
0.14

Fraction of the budget

R
eg

re
t

(p) rbv2 super 1468

0.2 0.4 0.6 0.8 1

0.02

0.03

0.04

0.05

Fraction of the budget

R
eg

re
t

(q) rbv2 xgboost 12

0.2 0.4 0.6 0.8 1
0.04

0.06

0.08

0.1

0.12
0.14
0.16
0.18

Fraction of the budget

R
eg

re
t

(r) rbv2 xgboost 1501

0.2 0.4 0.6 0.8 1

0.02

0.03

0.04

0.05

0.06
0.07

Fraction of the budget

R
eg

re
t

(s) rbv2 xgboost 16

0.2 0.4 0.6 0.8 1

2

5

0.01

2

5

Fraction of the budget

R
eg

re
t

(t) rbv2 xgboost 40499

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

8

6

4

2

ENS α=0.1 ENS α=0.5 ENS α=0.9 ENS α=1.0 ENS eq. w ET GB GP RF

Fraction of the budget

R
an

k

Figure 6: Convergence curves (regret over time) of dynamic ensembling approaches and various
baselines on the YAHPO-SO benchmark set. In each sub-figure caption, the first part is the scenario
and the second part is the instance (i.e., dataset id). On y-axis: lower regret is better.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Table 5: Configuration spaces for the iaml scenarios of YAHPO Gym.

Benchmark Hyperparameter Range Comments

iaml glmnet alpha [0, 1]
s [1e-4, 1000] log-scaled

iamb rpart

cp [1e-4. 1] log-scaled

maxdepth [1, 30]
minbucket [1, 100]
minsplit [1, 100]

iaml ranger

num trees [1, 2000]

replace {True, False}
sample fraction [0., 1]
mtry ratio [0, 1]
respect unordered factors {ignore, order, partition}
min node size [1, 100]
splitrule {gini, extratrees}
num random splits [1, 100]

50 100 150 200 250

8

6

4

2
ENS α=0.1

ENS α=0.5

ENS α=0.9

ENS α=1.0

ENS eq. w

ET

GB

GP

RF

Evaluations

R
an

k

Figure 7: Mean ranks of HEBO with different surrogate models when using 256 evaluations on
YAHPO Gym and JAHS-Bench-201. Dynamic ensembling approaches dominate the other surrogate
models.

additional experiment was designed to show the optimiser’s ability to find good performing candi-
dates, regardless of the running time required for the optimiser or the target function. We evaluated
the approach on both YAHPO Gym and JAHS-Bench-201. The results are presented in Figure 7.
Dynamic ensembling is ranked better, with α = 0.9 having the best performance, closely followed
by α = 1.0. All dynamic ensembling methods are ranked better than the single surrogate baselines,
as well as the static ensemble with equal weights to all models.

G RESULTS WITH 1024 EVALUATIONS

We provide results for HEBO with different surrogate models on a (relatively) high-budget setting
of 1024 total evaluations and an initial design size of 2d, where d is the number of hyperparameters.
The results are shown in Figure 8. Similarly to the previously shown results, dynamic ensembling
outranks the baselines, including the static ensemble baseline. Using α = 0.9 achieves the best
average rank, with a larger gap from α = 1.0 than in the 256 evaluations setting. These results show
that our dynamic ensembling method works well also in a high-budget setting.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

0 500 1000

8

6

4

2

ENS α=0.1

ENS α=0.5

ENS α=0.9

ENS α=1.0

ENS eq. w

ET

GB

GP

RF

Evaluations

R
an

k

Figure 8: Mean ranks of HEBO with different surrogate models when using 1024 evaluations on
YAHPO Gym and JAHS-Bench-201. Dynamic ensembling approaches achieve better rank than
single surrogate models and static ensemble.

H USING DIFFERENT WEIGHTS FOR VARIANCE

We experimented with weighting the mean and the variance separately by having two, independent
weight vectors. The weight vector of the mean is the same as described in Section 3. For the variance
weights, we define the variance error VE for a model m ∈M as follows:

VEm(λt) =
1

k

k∑
i=1

min{|(µm(λ
(i)
t)−σm(λ

(i)
t))−c(λ(i)

t)|, |(µm(λ
(i)
t)+σm(λ

(i)
t))−c(λ(i)

t)|} (16)

Intuitively, it is the distance to the closest variance bound, as can be seen in Figure 9. We update the
weights for variance accordingly. The new weights are defined as:

w̄′
t,m =

{
1 if VEm(λt) = minl∈MVEl(λt),

0 otherwise,
(17)

We calculate the weights for variances using the exponential moving average:

w′
t+1,m = (1− α) · w′

t,m + α · w̄′
t,m , (18)

Then, we normalise the weights for variances independently from the weights for the means:

ŵ′
t,m =

w′
t,m∑

j∈M w′
t,j

, (19)

Finally, the variance predicted by the ensemble is defined as the weighted sum of the normalised
weights of the variances:

σens(λ) =
∑
m∈M

ŵ′
t,m · σm(λ). (20)

We run the dynamic ensembling approach with variance with α = 0.9 and a budget of 100× mean
evaluation time per target function. Similarly to the results presented in Section 5.1, we present
the mean rank of all methods, including dynamic ensembling with different weights for variances
in Figure 9. The experimental setup is similar to Section 5.1, where the budget is 100× mean
running time of one evaluation. We see that using different weights for variance ranks worse than
the similar dynamic ensembling with the same weights for both the means and variances.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

(a) (b)

(c) (d))

Figure 9: Illustration of the calculation of the variance error. The white circle is the the predicted
mean, and the blue dot is the actual value of the target function.

0.2 0.4 0.6 0.8 1
10

8

6

4

2
ENS α=0.1

ENS α=0.5

ENS α=0.9

ENS α=1.0

ENS eq. w

ENS w/ var

ET

GB

GP

RF

Fraction of the budget

R
an

k

(a) All target functions

0.2 0.4 0.6 0.8 1
10

8

6

4

2
ENS α=0.1

ENS α=0.5

ENS α=0.9

ENS α=1.0

ENS eq. w

ENS w/ var

ET

GB

GP

RF

Fraction of the budget

R
an

k

(b) Cheap (up to 10 minutes)

0.2 0.4 0.6 0.8 1
10

8

6

4

2
ENS α=0.1

ENS α=0.5

ENS α=0.9

ENS α=1.0

ENS eq. w

ENS w/ var

ET

GB

GP

RF

Fraction of the budget

R
an

k

(c) Medium-cost (more than 10 minutes, up to 1 hour)

0.2 0.4 0.6 0.8 1
10

8

6

4

2
ENS α=0.1

ENS α=0.5

ENS α=0.9

ENS α=1.0

ENS eq. w

ENS w/ var

ET

GB

GP

RF

Fraction of the budget

R
an

k

(d) Expensive (more than 1 hour)

Figure 10: Mean ranks of HEBO with different surrogate models on YAHPO Gym and JAHS-
Bench-201 (as in Figure 2) with an additional baseline: a dynamic ensemble with different weighting
schemes for mean and variance (in yellow), split according to different budgets: (a) all target func-
tions, (b) cheap target functions with a budget of up to 10 minutes, (c) medium-cost target functions
with a budget between 10 minutes and up to 1 hour, (d) expensive target functions with a budget of
more than 1 hour. The ensemble with different weights for mean and variance closely follows the
trend of other dynamic ensembling approaches, but does not outrank them.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

I STATISTICAL SIGNIFICANCE

We test the statistical significance of our results presented in Section 5.1, and show that dynamic
ensembling significantly outperforms single-surrogate-based BO. To do this, we use the best-found
target function values per optimiser. We then calculate the mean value for each function and opti-
miser pair over the 51 random seeds. The optimiser that has the best value per function is then the
best for the function. We calculate whether the values obtained for each of the other optimisers are
statistically equal to the values of the best optimiser using a permutation test with 10 000 samples
and a significance level of 0.05. We report these results in Table 6. We see that dynamic ensem-
bling approaches are equal to the best method more times than any other baseline, across all budget
groups. As expected, on cheap functions, α = 1.0 equals the most times to the best method. For
medium-cost functions, α = 0.5 performs best, while for the expensive ones, α = 0.9 is the best.
We can, therefore, conclude that using dynamic ensembling is significantly better than any other
baseline.

Table 6: Critical differences of different surrogate models. Total is the number of instances in each
category.

Model All Cheap Medium Expensive

ENS α = 0.1 587 152 194 241
ENS α = 0.5 628 177 201 250
ENS α = 0.9 657 197 192 268
ENS α = 1.0 687 247 195 245
ENS eq. w. 519 144 172 203
ET 198 53 67 78
GB 164 44 33 87
GP 492 201 147 144
RF 396 145 89 162
Total 859 312 234 313

25

