
Under review as a conference paper at ICLR 2023

COUPLING SEMI-SUPERVISED LEARNING WITH REIN-
FORCEMENT LEARNING FOR BETTER DECISION MAK-
ING — AN APPLICATION TO CRYO-EM DATA COLLEC-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider a semi-supervised Reinforcement Learning (RL) approach that takes
inputs of a perception model. Performances of such approaches can be signif-
icantly limited by the quality of the perception model in the low labeled data
regime. This paper proposes a novel iterative framework that simultaneously cou-
ples and improves the training of RL and the perception model. The perception
model takes pseudo labels generated from the trajectories of a trained RL agent be-
lieving that the decision-model can correct errors made by the perception model.
We applied the framework to cryo-electron microscopy (cryo-EM) data collection,
whose goal is to find as many high-quality micrographs taken by cryo-electron mi-
croscopy as possible by navigating at different magnification levels. Our proposed
method significantly outperforms various baseline methods in terms of both RL
rewards and the accuracy of the perception model. We further provide some theo-
retical insights into the benefits of coupling the decision model and the perception
model by showing that RL generated pseudo labels are biased towards localiza-
tion which aligns with the underlying data generating mechanism. Our iterative
framework that couples both sides of the semi-supervised RL can be applied to a
wide range of sequential decision-making tasks when the labeled data is limited.

1 INTRODUCTION

Decoupling representation learning or perception learning from Reinforcement Learning (RL) is
commonly used to improve performance in RL applications (Stooke et al., 2021). For example, the
idea of state abstraction for RL concerns learning a low dimensional state representation to deal with
a large state space (Jong & Stone, 2005; Abel et al., 2016; Raffin et al., 2018; Ho, 2019). The success
of decoupling perception learning from RL depends on the quality of the perception model, which
often requires a large amount of labeled data for training. In many realistic scenarios, acquiring
fully labeled datasets is nevertheless costly and sometimes infeasible, while acquisition of unlabeled
data is relatively inexpensive. Such situations render semi-supervised learning (SSL) (Zhu, 2005)
a natural choice for obtaining good perception representations with limited annotations for RL.
However, a naive application of SSL to perception models may not necessarily lead to promising
results for RL because a) the improvement of SSL in the case of a small number of labeled data can
be too subtle to facilitate RL; and b) the improved overall accuracy of the perception model may not
be directly relevant to better RL policies.

Interestingly, in many cases, an RL agent can provide useful feedback to the perception model
through the quality of sampled trajectories during learning. We investigate the idea of improving
perception modeling by RL under an SSL setting with limited labeled data and vice versa. We
specifically consider a family of navigation problems with the goal of discovering as many targets
of interest as possible. For example, Scavenger hunt (Yedidsion et al., 2021) trains a robot to search
places with high probability of finding the targets, and Fan et al. (2022) applies RL to optimize mi-
croscope movement for efficient CryoEM data collection. The structure of such navigation problem
permits a straightforward approach to generates pseudo labels directly from current policies’ rollouts
and correct mistakes made by the perception model, as illustrated by the example in Figure 1.
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Figure 1: A simple path planning toy
example of RL trajectories correcting
mistakes made by the perception model.
The goal of the agent to find as many
targets of interest as possible (marked
by squares). A pretrained classifier is
used for the perception model, whose
misclassificaitons are marked by orange
The misclassifications of the model are
marked by orange.

In light of the intuition above, we propose to couple perception modeling and RL in an iterative
framework to mutually enhance each other in scenarios with label shortage issues. Specifically, we
leverage state trajectories sampled from a learned RL policy to generate pseudo labels to improve
the perception model. The improved perception representations, which, in turn, provide better input
to RL, lead to more effective RL polices. We alternate perception modeling and RL iteratively until
converge. Since both perception modeling and RL use labeled and unlabeled data for training, we
dub our approach SSL2-RL (SSL-RL with SSL learned perception models).

SSL has been applied to improve RL (SSL-RL) where the reward function can only be evalu-
ated in some settings but not all. For instance, Finn et al. (2016) uses unlabeled trajectories for
a better importance sampling estimator of a particular parameter in the entropy objective function.
Konyushkova et al. (2020) learns a reward function to annotate the trajectories without generating
new unlabeled trajectories to improve the reward function. Fu et al. (2017) learns a discrimination
model to discriminate the RL trajectories from the positive examples in a binary reward setup. The
major difference between our approach and Sem fin the literature is that our approach directly gen-
erates pseudo labels from RL, while other approaches either utilizes the unlabeled trajectories in an
indirect way or uses a fixed reward model without trying to leverage the feedbacks from RL for a
better reward modeling.

1.1 RELATED LITERATURE

Label propagation. Label propagation propagates labels through a dataset along high density areas
defined by unlabeled data. It follows the intuition that close points should have similar labels. Zhu
& Ghahramani (2002) iteratively propagates labels using a linear combination of adjacent nodes
defined on a graph. Su et al. (2015); Vernaza & Chandraker (2017); Jabri et al. (2020) perform
label propagation through random walk. Our method can be seen as a special way of propagating
labels through a decision-making models, which incorporates both context information and the ge-
ometric information. Cai et al. (2021) proposed to optimize the loss with a regularization on the
inconsistency over samples within the same neighborhood.

Semi-supervised RL. Semi-supervised RL concerns the problem where the agent must perform RL
when the reward function is known in some settings, but cannot be evaluated in others. For semi-
supervised RL, a wide range of pseudo reward is generated. For example, Finn et al. (2016); Fu
et al. (2018); Singh et al. (2019); Konyushkova et al. (2020) learns a classifier for reward labeling
using a labeled dataset, which is applied to optimize a entropy-regularized objective for an unlabeled
dataset. Yu et al. (2022) states that a zero pseudo reward is sufficient for tasks using sparse reward
functions. Some other pseudo rewards are proposed using task-specific prior knowledge such as
distance to goals in goal-conditioned settings (Andrychowicz et al., 2017). In contrast to others,
some approaches directly imitate expert trajectories to achieve high-levels of performance without
requiring reward labels (Ross & Bagnell, 2012; Ho & Ermon, 2016).

Cryo-EM data collection. We have focused this work on addressing the issue of cryo-EM data
collection. Cryo-EM serves as a critical tool for determining the three-dimensional structures of bi-
ological macromolecules. As such, cryo-EM is a powerful tool in the development of vaccines and
therapeutics to combat diseases such as COVID-19. Within weeks of the release of the genomic se-
quence of SARS-CoV-2, cryo-EM determined the first SARS-CoV-2 spike protein structure (Wrapp
et al., 2020). Since this original publication, cryo-EM was used to determine additional SARS-CoV-
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2 structures such as spike protein bound to antibody fragments (Lempp et al., 2021; Scheid et al.,
2021), remdesivir bound to SARS-CoV-2 RNA-dependent RNA polymerase (Bravo et al., 2021; Yin
et al., 2020; Kokic et al., 2021), and reconstructions of intact SARS-CoV-2 virions (Yao et al., 2020;
Ke et al., 2020).

2 PROBLEM FORMULATION

We study the problem of training RL policies for navigation, where there are a large amount of
unlabeled data whereas very few labels are available for learning perception representations for RL.
We start by defining the RL environment, which consists of four major elements, i.e the state space,
action space, transition function and reward function. The state space is a set of tuples, where each
state is denoted by (s, x, y), where s ∈ S encodes the context information that uniquely identifies
each state, y ∈ {0, 1} is a binary label and, x ∈ X is the input feature that can be used to predict y.
Depending on the actual application, the context can be interpreted as the geometric information that
encodes the location of the state on a map. Whenever is clear from the context, we let y(s) be the true
label corresponding to the state s. At the step t the agent is provided with an action set At and the
next reward and state are sampled from the R : S × A 7→ [0, 1] and T : S × A 7→ S. We consider
a deterministic transition function. Throughout the paper, we consider a reward function that is
directly relevant to the labels, i.e., R(s, a) = 1(y(s) = 1) + c(s, T (s, a)), where c : S × S 7→ R
is a cost function. In the context of navigation problem, c prevents the agent from conducting large
movements.

We consider a semi-supervised learning scenario for both the perception model and Reinforcement
Learning. We are given both labeled and unlabeled dataset denoted by L = {si, xi, yi}NL

i=1 and
U = {si, xi}NU

i=1, respectively, where NL and NU are their sizes. The perception model is a mapping
f : X 7→ [0, 1] that predicts the positive label probability with input feature x. Note that we consider
a binary label for easier presentation, while our framework can be extended to the multi-class case.

2.1 CRYO-EM DATA COLLECTION

Cryo-EM is a key technique for structural biology that enables 3D structure determination of im-
portant macromolecular complexes and membrane proteins Wrapp et al. (2020). Cryo-EM data
collection involves steering transmission electron microscopes hierarchically at different magnifi-
cation levels (as shown in Figure 2) to explore a grid with the goal of identifying and collecting
high-quality micrographs at high magnification. This sequential process includes several mechani-
cal operations to allow microscope navigation to different regions of a grid, namely grid switching,
square switching, and patch switching. An effective data collection session aims at finding a se-
quence of holes where there is a considerable portion of high-quality micrographs. However, it is a
highly involved and time-consuming process that requires expertise and skills to make decisions at
different levels of microscope operations.

To mitigate that inefficiency in data collection, Fan et al. (2022) proposed to train an RL agent for a
automatic cryo-EM data collection. Their framework is called cryoRL, which first trains an image
classifier. The predictions of the image classifier as well as the distributions of labels within each
grid, square, patch are used as features to train a DQN agent. They maximize the total number of
high quality holes within a fixed budget of time, which cast requirement on a efficient path that does
not need to steer the microscopes too frequently. Similar practice can also be found in Li et al.
(2022).

CTF (contrast transfer function) is used to evaluate the quality of a hole. As a variable evaluated on
the multiple micrographs for each hole, it is infeasible to evaluate CTFs for all the holes in a dataset
before navigation. In real data collection practice, a numerous number of samples are generated in
the daily data collection practice, while only a small proportion of them can be actually evaluated
and labeled, which makes cryo-EM data collection a perfect example to apply SSL approaches.

To fit cryo-EM data collection into the proposed problem formulation, we let each hole in the cryo-
EM data collection be a state in the problem state. A hole can be represented as {si, xi, yi}, where
si = (gridi, squarei, patchi) represents grid, square and patch indices of the i-th hole. xi is the
hole-level image of the i-th hole and yi represents the true quality of the hole.
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Figure 2: (a) (Figure 2 in Fan et al. (2022)) Overview of cryo-EM data collection. A purified sample
is prepared and vitrified on the support grid. The atlas image provides a low magnification overview
by stitching multiple ”grid-level” images into a single montage. Next, users will select specific
squares to image at medium magnification. After inspection, the user selects ”patch” areas on the
square to inspect holes with higher magnification, using the patch image to decide holes to collect
for micrographs. The micrographs contain high-resolution images for downstream data processing.
(b) (Adapted from Li et al. (2022)) A trajectory collected by a trained RL policy.

3 PROPOSED METHOD

We first discuss the training of the perception model and the RL model separately, before the iterative
algorithm that integrates the two models are presented.

Perception model training. The quality of the perception model determines the overall quality of
the RL agent. We propose to use the semi-supervised learning method, i.e. FixMatch (Sohn et al.,
2020). FixMatch adds an unsupervised loss that regularizes the inconsistency between the strongly
augmented and weakly augmented inputs from the unlabeled dataset. Recall that f : X 7→ [0, 1] is
the perception model. We let Pf : X 7→ [0, 1]2 be the predicted label distribution over {0, 1}. The
unsupervised loss is given by

lU (f) =

NU∑
i=1

1(max{Pf (x
w
i )} ≥ τ)H (Pf (x

w
i ), Pf (x

s
i )) , (1)

where xw
i , x

s
i are the weakly and strongly augmented inputs of the i-th input in unlabeled data, and

H is the entropy function between two distributions.

In the cryo-EM task, we solve an binary image-classification problem, using a CTF threshold 6. As
seen in Table 1b), the performance of a supervised model trained from the fully labeled dataset is
∼ 65% only, indicating the classification task is nontrivial. A shown in Fig. 7 of the Appendix B,
with a cutoff threshold 6.0, many samples in the hole data lie around the threshold, suggesting that
the training data is quite ambiguous.

RL policy training. Since the labeled data can be highly limited and training of RL is unstable
with a small number of observations, we train RL on both labeled and unlabeled data to utilize the
information from the unlabeled data. As the pretrained classifier can be seen as a prediction on
reward function (without movement cost), it is natural to follow the commonly used approach that
generates pseudo rewards through predicted reward labels (Finn et al., 2016). Let the reward at the
step t be r̃t = yt+11(st+1 ∈ L)+f(xt+1)1(st+1 ∈ U)−c(st, st+1). For instance, in cryo-EM task,
whenever a hole in L is visited, a reward is generated from the true labels. If the hole is unlabeled, a
pseudo reward is given by the predicted probability of being low CTF. Following Fan et al. (2022),
we add to the final rewards an extra cost function that penalizes large movements (See Appendix A
for details). We consider a constrained RL, which terminates an episode whenever the cumulative
cost c(st, st+1) reaches a threshold τ . With the pseudo rewards, we train a regular offline DQN on
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the whole dataset (Van Hasselt et al., 2016) to optimize the following objective function:

max

nl∑
l=0

r̃l s.t.
nl∑
l=0

c(st, st+1) ≤ τ, where nl is the index when terminated.

Pseudo labels for perception models. Since we consider a navigation problem, where the visits
of trajectories directly indicate the chances of find a target of interest, we generate pseudo labels
straightly from the visiting orders of trajectories as opposed to other SSL-RL methods (Finn et al.,
2016; Fu et al., 2017). This approach allows us to back-propagate the geometric structural bias
learned by RL agent back to the perception model. Let (S1, . . . , SNU+NL

) be the sequence of states
the policy iterates until all the states are visited. For a given cutoff NC > 0, we label the first
NC states as positive while the rest of states negative. Note although we evaluate on the whole
dataset, we will only use the pseudo labels for unlabeled data. A visualization of the process can
be found in the right panel of Figure 3. As the starting point are chosen in a stochastic way, we
evaluate the policy for M independent times, which gives M pseudo labels for each state for a more
robust labeling process. Let the pseudo labels for the i-th state in the m-th run be Ȳim. Let the
pseudo label Ȳi be the majority of {Ȳi1, . . . , Ȳim}. We let the confidence of each pseudo label be
pi =

∑M
m=1 Ȳim/M if Ȳi = 1 and 1−

∑M
m=1 Ȳim/M if Ȳi = 0.
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Figure 3: An iterative semi-supervised framework for perception and RL models. On the round t,
the framework trains a RL agent πt+1 that takes the perception model ft as input. By evaluating
the agent t + 1 on the unlabeled dataset, it generates the pseudo labels for each visited state. The
perception model at the next step is trained on both labeled dataset with true labels and unlabeled
dataset with pseudo labels.

Iterative framework. Our main idea to integrate RL and perception learning. We propose to feed
the pseudo labels back to the perception model. We fine-tune the pretrained classifier on the whole
dataset using pseudo labels for the unlabeled data. Each input in the unlabeled data is sampled with
a probability proportional to its confidence. Let CE : [0, 1]2×{0, 1} 7→ R be the cross entropy loss.
The loss function of fine-tuning the perception model with soft pseudo labels from RL trajectories
is then given by l(f) = lsup(f) + λlU (f), where

lsup =

NU+NL∑
i=1

pi CE(f(xi), Ȳi)1(si ∈ U) + CE(f(xi), yi)1(si ∈ L).

An overview of our propose method is given in Algorithm 1. It may not reach the best performance
in one-round. Thus, we repeat the above process for multiple rounds. The round with the best
validation performance is selected as the final model.

4 EXPERIMENTAL RESULTS

In this section, we first introduce some implementation details, and then present the experimental
results on Cryo-EM dataset. Most of our implementations follow the setups in Fan et al. (2022). We
briefly go through important details, while referring the readers to the Appendix A for the complete
setups.
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Algorithm 1 Iterative framework for the joint training of the perception and RL models

Input: Labeled and unlabeled dataset L, U and the number of iterations K
Pretrain teacher classifier f0 on L and U using FixMatch .
for t = 1, . . . K do

Train RL on both L and U with pseudo rewards predicted by classifier ft−1.
Generate pseudo labels Ȳ1, . . . , ȲNL+NU

.
Fine-tune the classifier ft−1 with the pseudo labels which generates ft.

end for

We experiment on a cryo-EM dataset called Y3 with 8653 holes over 9 grids, 58 squares and 771
patches. We split the dataset into training and validation dataset with 6489 and 2164 hole respec-
tively. Each hole corresponds to a state in the environment. The feature information for each state
is the hole-level image observation. Note that the ground truth CTFs are valued by the micrographs,
which can not be accessed through hole-level images.

We train a ResNet-18 (He et al., 2016) to classify the hole-level images for the perception model.
Hyperparameters for FixMatch training is given in Appendix A.

Apart from the hole-level predictions from the perception model, we add the following features to
encode the geometric information for RL policy training. For each of the patch, square and grid, we
compute the number of unvisited holes, unvisited low CTFs holes, visited holes and visited low CTFs
hole within the patch, square and grid, respectively. Additionally, we have three dummy variables
encoding whether the agent reaches a new patch, square or grid. During the training, the features of
the past three steps are concatenated as the input of DQN. We terminate an episode whenever the
duration, i.e. the cumulative sum of cost reaches certain threshold. Two thresholds 120 and 480 are
considered for RL training. We use a three layer MLP model with hidden sizes (128, 256, 128) and
ReLU activation function for the Q-network.

4.1 RESULTS

We experiment on 5%, 10% and 20% of the training data and conduct evaluation on the entire val-
idation set. We compare our proposed approach with 3 baseline methods: a) the cryoRL method
proposed in Fan et al. (2022) based on a supervised classifier (SL); b) cryoRL based on Fix-
Match (FixMatch ); and c) cryoRL based on Iterative FixMatch that runs FixMatch multiple rounds
with pseudo labeling (provided by the perception model obtained in the last round used for cryoRL).
We evaluate our proposed method for duration 120 and 480 (i.e. SSL2-RL 120 and SSL2-RL 480),
respectively. For fairness, cryoRL is trained with both labeled and unlabeled data in all cases and
evaluated at a duration of 480. The RL rewards and the accuracy of the corresponding perception
models are presented in Table 1. For algorithms that do iteration, the best validation RL rewards and
the corresponding accuracy are presented. For reference, when the fully labeled dataset is used, the
classification model achieves an accuracy of 65.24%, and the best RL reward from cryoRL is 69.76.

With 5% of the labeled data, FixMatch improves the classification accuracy by 5% compared with
supervised learning. By further increasing the labeled data to 10% and 20%, the improvement (∼
1%) becomes less obvious. Our proposed approach (SSL2−RL480) consistently outperforms Fix-
Match by ∼ 2% and is on par with the supervised model trained using 100% labeled data (65.24%).
As a comparison, iterative FixMatch performs only slightly better than FixMatch, clearly indicating
the effectiveness of incorporating feedback from RL. By incorporating feedbacks from RL (SSL2-
RL 120. A similar trend can also be found in terms of the RL rewards (Table 1b), suggesting that RL
benefits from improved classification overall. Iterative approaches performs in general better than
the non-iterative approaches. Nevertheless, SSL2-RL 480 still outperforms FixMatch +iteration by
2. Figure 4 (b) visualizes the total number of low-CTF holes found by different approaches. Not
surprisingly, our approach outperforms all the others. As shown in Figure 8, the quality of pseudo
labels is able to generate labels at a higher accuracy then the that of the perception model at the
current round.

Classification accuracy is not the best metric to reflect the performance. We further investigate
the precision score. Precision score measures the number of true positive out of all the positive
samples predicted by the model. It is more consistent with the RL rewards since an episode is
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Table 1: A summary of RL rewards and classification accuracy of compared methods. Table (a)
shows the classification accuracy for the perception model. For the iterative methods, we report the
results that reaches the highest RL reward over 10 independent runs. Table (b) shows the average
RL rewards and their standard deviation. Bold text marks the best RL rewards for each row.

(a) Classification accuracy

% of labels SL FixMatch Iterative FixMatch SSL2-RL 120 SSL2-RL 480
5% 0.5707 0.6229 0.6372 0.6423 0.6451
10% 0.6188 0.6303 0.6377 0.6480 0.6557
20% 0.6299 0.6382 0.6396 0.6502 0.6479
100% 0.6524 - - - -

(b) RL rewards

% of labels SL FixMatch Iterative FixMatch SSL2-RL 120 SSL2-RL 480
5% 59.55 ± 5.4 56.97 ± 3.2 62.33 ± 7.5 62.94 ± 4.6 61.62 ± 7.1
10% 50.96 ± 5.6 58.50 ± 5.5 61.95 ± 3.4 64.28 ± 8.5 65.73 ± 7.0
20% 56.76 ± 7.3 58.98 ± 3.5 65.77 ± 4.2 64.29 ± 8.2 67.28 ± 6.3
100% 69.76 ± 2.1 - - - -

terminated at duration 480, which only allows the agent to visit a small number of holes. In Figure
4 (a), we observe significant increases in the precision score during the iteration, which marks the
overall improvement in the quality of the perception models, while the compared iteration method,
FixMatch +iteration does not show a similar improvement in precision score during the iteration.
Another metric is to directly compare the number of low-CTF holes found by the trained RL agent.
As shown in Figure 4 (b) SSL-RL has the dominant performance over other methods at different
levels of percentages of labeled data.
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Figure 4: (a) Changes in precision score over 10 rounds of iteration for SSL2-RL 480 and Fix-
Match +iteration for 10% of labaled data. (b) The average number of low CTF holes found by the
trained RL agents within 480 duration for different methods under different percentages of labeled
data.

4.2 ABLATION STUDY

In this section, we conduct experiments to characterize the proposed approach. We investigate the
following components including an alternative way to select models for iteration methods, impor-
tance of using semi-supervised learning for RL, the essential of using cost penalty inside the iteration
and the performance of other RL methods.

Termination strategy. In table 1, we compare the results of iteration approaches that terminate
when RL reward is the highest. One can also terminate when classification accuracy reaches the
highest. The results are given in Appendix B Table 3, which is similar to Table 1.

Without Semi-supervised RL. We remove the use of pseudo rewards for RL and use only 10%
of the data to train RL policies. Figure 5 (a) shows the change of RL rewards during a 10-round
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iteration. There is a significant gap between semi-supervised RL and supervised RL that trains only
on the 10% labeled data.

Without moving cost penalty. Though we will show later that the movement cost introduces strong
bias towards localization, which may improve the quality of pseudo labels, we empirically investi-
gate the benefits of adding movement penalty. We can see that the classification accuracy does not
increase. Figure 5 (b) shows the change of classification accuracy of SSL2-RL 480 for a 10-round
iteration on 10% data. We don’t see significant increase on classification accuracy. It also performs
worse than the results reported in Table 1.
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Figure 5: (a) RL rewards for 10-rounds SSL2-RL 480 with policies trained by semi-supervised RL
and supervised RL, respectively. (b) Classification accuracy for 10-round SSL2-RL 480 without
movement penalty on 10% of labeled data.

Other RL models. DQN is used for decision-models in Table 1. We replace DQN with other RL
models, e.g. A2C Rosenstein et al. (2004) and Rainbow. The best RL rewards and classification
accuracy by SSL2-RL 480 using A2C over 10-round iterations are 61.80 ± 5.7 and 0.64 respectively
for 10% of data. These of Rainbow are 62.80 ± 3.1 and 0.64. Both A2C and Rainbow are worse
than SSL2-RL 480 using DQN. Note that this is also consistent with the observations in Fan et al.
(2022).

Table 2: Performances of Rainbow and A2C compared with DQN

Metrics SSL2-RL 120 SSL2-RL 480 Rainbow 480 A2C 480
Accuracy 0.6557 0.6480 0.6400 0.6430
RL rewards 64.28+9.5 65.73+7.0 62.80+3.1 61.80+5.7

5 THEORETICAL UNDERSTANDING

In this section, we provide some theoretical insights into the benefits of our proposed method. A key
to understanding our problem is whether RL could generate better pseudo labels than the classifier
pretrained on the labeled dataset. Recall the pseudo label of the i-th state is denoted by Ȳi. We study
whether

∑NU

i=1 1(Ȳi = yi) ≥
∑NU

i=1 1(f(xi) = yi).

Benefits of RL label propagation. Pseudo labels from RL can be seen as a special way of do-
ing label propagation. As opposed to label propagation through random walk, RL navigate on the
map under the guide of the pretrained predictor. We understand the benefits of using RL for label
propagation in the following two ways.

First, RL agents are trained with additional geometric information. It is normally not easy for a
classifier to encode geometric information since most classifiers treats data i.i.d. For example, if
the input features are images, popular image classification models does not directly incorporate
dependence among images. Second, the movement costs added to the RL reward function induce
bias towards localization of the true labels, which may align with the true label generating process.
To this end, we use the example in Figure 6 to illustrate. The RL trajectory is able to correctly
classify cluster 4 (on the right panel), because starting from 3 RL tries to avoid large movements.
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Figure 6: An illustration of localization bias
from RL pseudo labels (adapted from Cai et al.
(2021)). The black lines represent the (equiva-
lent) decision boundaries of the pretrained clas-
sification model and RL. The numbers repre-
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Localization of RL-based Label propagation. In this section, we rigorously discuss the lo-
calization property of the train RL policy. To this end, we introduce some extra setups. We
assume that the marginal distribution of (s, x) is L for the labeled dataset and U for the un-
labeled dataset. Let the inconsistency rate between two predictors g1, g2 : S × X 7→ Y be
EL(g1, g2) = Es,x∼L1(g1(s, x) ̸= g1(s, x)).

In the literature, label propagation is given by regularizing the consistency across neighboring points.
Cai et al. (2021) proposes to solve the following optimization problem for a improved classifier f∗:

f∗ = argmin
f :S×X→Y

EL (f, ftc) s.t. RB(g) ≤ µ, for some µ > 0, (2)

where ftc is the pretrained classifier and the regularization is defined by

RB(f) = Ps,x∼ 1
2 (L+U) [∃s′ ∈ B(s) , s.t. f(s′, x) ̸= f (s, x)] ,

and B(s) is the neighboring of s. In practice, one optimizes its empirical version.

Now we define the object of RL training. For a trained policy π, let (S1, Y1, . . . , SNU+NL
, YNU+NL

)
be the trajectory of visited state and labels by evaluating π on the whole dataset. We aim at finding
the policy π that maximizes the regularized cumulative rewards up to step NC :

π∗ = argmaxπ

NU+NL∑
t=1

1(Yt = 1)1(t ≤ NC)− c(St, St+1)
1. (3)

Slightly abusing the notation, we let the equivalent decision boundary of a policy π by fπ : S×X 7→
{0, 1}, such that fπ(s, x) = 1(t(s, π) ≤ NC), where t(s, π) is the step in which s being visited
by running policy π. We have the following lemma that proves the equivalence between the two
regularization.
Lemma 1. Let {S1 . . . ,SB} be a B-partition of S, i.e. ∪B

b=1Sb = S and let P (s) be the partition s
belongs to. We define the neighbor function by the partitions, i.e. B(s) = {s′ ∈ S : P (s′) = P (s)}.
Then for all policy π, R̂B(fπ) ≤ C1

∑
t c(St, St+1)+C2, for some universal constants C1 and C2.

The equality holds, if π visits each partition at most twice.

Cai et al. (2021) shows that the improved classifier can achieve arbitrary small classification error
even if the error rate of the pretrained classifier is high.

6 DISCUSSION AND LIMITATIONS

In this paper, we proposed SSL2-RL , an iterative framework that joint learns the perception model
and decision-making model. We focus on the navigation problem, which allows us to connect the
learning of RL and that of the perception model by directly generating pseudo labels from trajec-
tories. The framework shows significant improvements in cryo-EM data collection task. We then
showed that RL with a penalty on large movement induces bias towards localization on the pseudo
labels, which may improve the quality of the pseudo labels. A potential direction is to extend the
framework to more general RL problems. Currently our approach only applies to navigation prob-
lem where the orders of visiting in a trajectory imply the labels for the perception learning. One
potential way to generalize is to generate pseudo labels from the learned Q function.

1Note that we consider the policy running through the whole dataset even after it is terminated
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