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Abstract

Visual prompting techniques are widely used
to efficiently fine-tune pretrained Vision Trans-
formers (ViT) by learning a small set of shared
prompts for all tokens. However, existing meth-
ods overlook the unique roles of different tokens
in conveying discriminative information and
interact with all tokens using the same prompts,
thereby limiting the representational capacity
of ViT. This often leads to indistinguishable
and biased prompt-extracted features, hindering
performance. To address this issue, we propose
a plug-and-play Token Coordinated Prompt
Attention (TCPA) module, which assigns specific
coordinated prompts to different tokens for
attention-based interactions. Firstly, recognizing
the distinct functions of CLS and image tokens-
global information aggregation and local feature
extraction, we disentangle the prompts into CLS
Prompts and Image Prompts, which interact
exclusively with CLS tokens and image tokens
through attention mechanisms. This enhances
their respective discriminative abilities. Fur-
thermore, as different image tokens correspond
to distinct image patches and contain diverse
information, we employ a matching function
to automatically assign coordinated prompts to
individual tokens. This enables more precise
attention interactions, improving the diversity
and representational capacity of the extracted
features. Extensive experiments across various
benchmarks demonstrate that TCPA significantly
enhances the diversity and discriminative power
of the extracted features. The code is available at
https://github.com/zhoujiahuan1991/ICML2025-
TCPA.
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Figure 1. Above: Visualization of the attention map. The existing
visual prompting method VPT (Jia et al., 2022) learns the same
prompts for all tokens, resulting in extracted information that
lacks distinguishability and comprehensiveness. Our TCPA selects
corresponding prompts for different tokens and performs attention
interaction, thereby enhancing the diversity and discriminability of
the extracted information. Below: Comparison of time overhead
and performance.

1. Introduction
In recent years, the pretraining-finetuning strategy has be-
come a foundational paradigm in the deep learning field,
significantly advancing the progress of various multi-media
technologies (Jang et al., 2019; Guo et al., 2019; Iofinova
et al., 2022; Xu et al., 2025; Li & Zhou, 2025; Yao et al.,
2025). However, as the sizes of models and datasets have
rapidly exploded, such a popular paradigm has faced crit-
ical challenges due to its high storage and computational
costs (Jia et al., 2022). Addressing this, recent research (He
et al., 2020; Cai et al., 2020; Zhang et al., 2020; Han et al.,
2023) has focused on efficiently adapting pretrained models
to specific downstream tasks. Among them, visual prompt-
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ing has emerged as a leading player (Bahng et al., 2022; Jia
et al., 2022; Huang et al., 2023) by introducing a minimal
set of learnable prompts into the latest vision transformer
(ViT) without retraining the original model parameters.

Existing visual prompting methods can be primarily cate-
gorized into two branches. Various works involve adding
learnable prompts directly to the input sample itself, guid-
ing the model to focus on discriminative information at the
input-level (Bahng et al., 2022; Chen et al., 2023; Huang
et al., 2023; Tsao et al., 2024). Besides, another branch
introduces learnable tokens as prompts incorporated into
each self-attention layer in ViT (Jia et al., 2022; Han et al.,
2023; Yoo et al., 2023; Wang et al., 2024b). They aim to
continuously prompt the model throughout the entire feature
extraction process, facilitating the extraction of discrimina-
tive features. However, these methods usually learn and
leverage the same prompt for all tokens without considering
the different functionalities of CLS and image tokens, as
well as the varying discriminative information conveyed by
different image tokens. Consequently, this leads to different
tokens focusing on similar regions and extracting biased
discriminative information as shown in Figure 1, thereby
limiting the representation ability of ViT.

To address the above issues, we introduce a plug-and-play
Token Coordinated Prompt Attention (TCPA) module. It
assigns specific coordinated prompts to different tokens for
targeted attention-based interactions, allowing each prompt
to contribute effectively to the extraction of comprehensive
and discriminative information. Specifically, considering
that CLS tokens and image tokens focus on global informa-
tion aggregation and local feature extraction, respectively,
we design CLS prompts and Image prompts for the CLS
token and image tokens. These prompts interact exclusively
with CLS tokens and image tokens within the attention
blocks, thereby enhancing the discriminability of the ex-
tracted features. Furthermore, since different image tokens
correspond to distinct image patches and the information
they need to extract varies, we further disentangle CLS
prompts and Image prompts into a CLS prompt Pool and
an Image prompt Pool, each composed of multiple prompts.
Token-coordinated prompts are automatically assigned to
each token, improving the diversity of discriminative infor-
mation in the extracted features.

To sum up, the main contributions of this work are: (1) To
address the issues in existing visual prompting methods,
we introduce a plug-and-play Token Coordinated Prompt
Attention (TCPA) module, which assigns specific prompts
to different tokens for targeted attention-based interactions,
allowing each prompt to contribute effectively to the extrac-
tion of comprehensive and discriminative information. (2)
Considering the differences in the information extracted by
CLS and image tokens, as well as among different image to-

kens, we first disentangle the prompts into CLS prompts and
Image prompts. We then match corresponding prompts to
different tokens, fostering coordinated interactions between
tokens and prompts and enhancing the discriminative ability
of the extracted features. (3) Extensive experiments on vari-
ous benchmarks show that TCPA consistently enhances the
performance of existing state-of-the-art visual prompting
methods.

2. Related Work
2.1. Parameter-Efficient Fine-Tuning

Vision Transformer (ViT) has made significant strides in
computer vision research (Dosovitskiy et al., 2020; Liu et al.,
2021b; Arnab et al., 2021; Chen et al., 2021a; Wang et al.,
2021). However, the continuously increasing model sizes
and datasets pose challenges in fully fine-tuning pretrained
ViT models for downstream tasks, leading to substantial
storage and computational cost. Consequently, recent stud-
ies (Zhang et al., 2020; Jia et al., 2022; Han et al., 2023)
have shifted focus towards reducing the number of trainable
parameters to streamline the fine-tuning process, broadly
categorized as partial tuning-based, extra module-based,
and prompt learning-based approaches.

Partial tuning-based methods (Yosinski et al., 2014; He et al.,
2020; Noroozi & Favaro, 2016; Zhang et al., 2016) aim to
retain most of the pretrained backbone while fine-tuning
a smaller subset of parameters. Although straightforward
and easy to implement, these methods often exhibit a notice-
able performance gap compared to full fine-tuning (Chen
et al., 2021b). On the other hand, extra module-based ap-
proaches (Rebuffi et al., 2017; Zhang et al., 2020; Cai et al.,
2020; Pfeiffer et al., 2020; Zaken et al., 2021) introduce
additional learnable plug-in architectures to fine-tune the
pretrained model. However, these approaches are often tai-
lored to specific architectures, limiting their applicability
to other models. Moreover, the introduction of additional
learnable parameters poses practical challenges, making
them less feasible in real-world scenarios (Jia et al., 2022;
Han et al., 2023).

2.2. Prompt Learning

Prompt learning techniques initially emerged in the realm
of natural language processing (NLP), involving the incor-
poration of a small set of learnable soft prompts into input
texts to customize language models for specific downstream
tasks (Li & Liang, 2021; Liu et al., 2021a). Recent research
has extended prompt learning to visual tasks, known as vi-
sual prompt tuning or visual prompting (Bahng et al., 2022;
Jia et al., 2022; Han et al., 2023; Liu et al., 2024c;a;b).
Compared to partial tuning-based and extra module-based
methods, visual prompting-based approaches introduce sig-
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Figure 2. The overall pipeline of our proposed TCPA. For each input sample, embeddings for each image patch are first obtained through
the embedding layer. Then, CLS and image tokens adaptively select appropriate prompts from the corresponding CLS and Image Prompt
Pools and generate a binary mask. This binary mask is then fed into the attention module to mask certain values in the attention map,
enabling attention-based interactions between different tokens and different prompts.

nificantly fewer additional parameters and exhibit superior
compatibility with models of various architectures (Jia et al.,
2022; Han et al., 2023).

Specifically, existing visual prompting methods can be
mainly categorized into two types based on the location
where prompts are applied: those added on the input im-
age and those added within the token sequence. Prompting
methods added on the input image overlay learnable visual
prompts onto the original image to adjust pretrained models
from the input level, enabling them to adapt to downstream
tasks (Bahng et al., 2022; Huang et al., 2023; Chen et al.,
2023; Wang et al., 2023; Tsao et al., 2024). These methods
adjust pretrained models only in the input image level, mak-
ing them adaptable to different network structures. However,
since visual prompts are not used in the middle layers of
the network, the representation capacity of prompts in such
methods is limited, resulting in limited performance.

Another category of visual prompting involves introducing
learnable tokens into the intermediate layers of the model,
which undergos self-attention along with CLS and image
tokens, thereby extracting discriminative features (Jia et al.,
2022; Han et al., 2023; Yoo et al., 2023; Wang et al., 2024a).
For instance, VPT (Jia et al., 2022) introduces learnable
tokens at every layer of the vision transformer, allowing
for individual adjustments across layers to better suit down-
stream tasks. These methods continuously provide prompts
during the feature extraction process of the model. However,

they use the same prompts for all tokens without consid-
ering the distinct roles of CLS and image tokens, as well
as the differences in discriminative information extracted
by various image tokens. This results in the features ex-
tracted by different tokens being neither distinguishable nor
comprehensive, which limits the model’s performance.

3. Token Coordinated Prompt Attention
In this section, we illustrate the proposed TCPA in detail,
and the overall pipeline is depicted in Figure 2.

3.1. Notations

In the architecture of a pretrained Vision Transformer (ViT)
backbone, denoted as M, there are L instances of MSA
(Multi-Head Self-Attention) blocks, symbolized as {Bj}Lj=1.
Each block, Bj , integrates multi-head self-attention with
feed-forward networks, incorporating both LayerNorm and
residual pathways for enhanced processing. When pro-
cessing an input image x, with dimensions RH×W×C ,
this image is partitioned into N patches of uniform size
{xi ∈ Rh×w×C}Ni=1. Here, (H,W ) represents the size of
x, C is the channel count, and (h,w) denotes the size of
each patch xi. The transformation of each patch xi into a
D-dimensional feature space is given by:

h1
i = E(xi), (1)
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where h1
i ∈ RD, and E(·) is the embedding layer of M.

These embedded patches, {h1
i }Ni=1, along with a classifi-

cation (CLS) token c1 ∈ RD, are sequentially processed
through the L MSA blocks {Bj}Lj=1. The operation can be
summarized as follows:

[cj+1,h
j+1
1 , · · · ,hj+1

N ] = Bj([cj ,h
j
1, · · · ,h

j
N ]), (2)

where the “[ ]” denotes the concatenation of the vectors. The
final classification is conducted by passing the last MSA
block’s output, cL+1, through a classifier H:

y = H(cL+1) (3)

3.2. Coordinated Prompt Attention of CLS and Image
Tokens

In the vision transformer, an image x is initially divided
into numerous small patches, which are then converted into
corresponding image tokens via an embedding layer. Dur-
ing the attention process, image tokens continuously extract
discriminative information from the input sample x. This in-
formation is subsequently aggregated through a CLS token,
summarizing the insights gathered from all image tokens
for final classification. It is evident that the role of image
tokens is to extract discriminative information, whereas the
CLS token’s purpose is to aggregate this information and
facilitate classification, highlighting the distinct functions
of these two types of tokens. Hence, we design Coordinated
Prompt Attention of CLS and Image Tokens, which disen-
tangles prompts for CLS and image tokens, aiding them in
better fulfilling their respective functions.

Specifically, we disentangle prompts for CLS and image
tokens, denoted as Pc and Pi, respectively:

Pc = {pc
j}Lj=1, (4)

Pi = {pi
j}Lj=1, (5)

where pc
j ∈ RLp×D and pi

j ∈ RLp×D are CLS and image
prompt for j-th MSA block Bj .

Then we feed the CLS token cj , image tokens
(hj

1, · · · ,h
j
N ), and the CLS prompt pc

j together into the
MSA block Bj , obtaining the corresponding output:

[cj+1,p
c,d
j+1,h

j+1,d
1 , · · · ,hj+1,d

N ]

= Bj([cj ,p
c
j ,h

j
1, · · · ,h

j
N ]),

(6)

where the subscript d in pc,d
j+1,h

j+1,d
1 , · · · ,hj+1,d

N indicates
that these outputs will be discarded and not utilized by
subsequent MSA layers. In the equation above, only the
output CLS token continues to be used, and therefore, the
CLS prompt only affects the CLS token, not the image
tokens.

Similarly, we input the image prompt pi
j along with the CLS

token cj and image tokens (hj
1, · · · ,h

j
N ) into the MSA

block Bj , obtaining the output for the image tokens:

[cdj+1,p
i,d
j+1,h

j+1
1 , · · · ,hj+1

N ] = Bj([cj ,p
i
j ,h

j
1, · · · ,h

j
N ]),
(7)

where the subscript d in cdj+1,p
i,d
j+1 indicates that these

outputs will be discarded. Through the equation above, we
obtain the output for the image tokens (hj+1

1 , · · · ,hj+1
N ),

which, together with the previously obtained output of the
CLS token cj+1, serves as the input for the next MSA block
Bj+1.

3.3. Coordinated Prompt Attention of Different Image
Tokens

In the previous text, we disentangle prompts into CLS and
image prompts based on their distinct roles. However, in
vision transformers, different image tokens correspond to
different image patches with varying discriminative infor-
mation. Using the same prompts for all image tokens can
make the extracted features indistinguishable and biased.
Thus, we further introduce coordinated prompt attention of
different image tokens to enhance the pretrained model’s
ability to extract rich, discriminative information from the
input image.

To simplify notation, in the following discussion, we will
not explicitly differentiate prompts from different layers.
It’s important to note that while the parameters of prompts
vary across layers, the processing method for prompts re-
mains consistent throughout. Specifically, we disentangle
the image prompt pi into a image prompt pool Pi composed
of multiple image prompts:

Pi = {(pi
k,κ

i
k)}

Ni

k=1, (8)

where κi
k represents the learnable indicator corresponding

to the prompt pi
k, used for selecting the prompt based on

the image token.

For each image token hj
m, the distance between hj

m and the
prompt indicator κi

k can be measured via a cosine distance
S(·, ·):

S(hj
m,κi

k) = 1− cos(hj
m,κi

k)

= 1− hj
m · κi

k∥∥hj
m

∥∥
2
·
∥∥κi

k

∥∥
2

. (9)

Through the above process, we obtain the affinity matrix
A ∈ RN×Ni between image tokens and different image
prompts, where Am,k = S(hj

m,κi
k). Then, we perform

binarization on the matrix A, setting the top Ki largest
elements in each row to 1 while assigning 0 to all other ele-
ments. Specifically, the binarized matrix Â ∈ {0, 1}N×Ni
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is defined as follows:

Âm,k = I

(
Ki∑
s=1

I(k = πm(s)) > 0

)
, (10)

where I(·) denotes the indicator function, which takes the
value of 1 if the condition inside holds and 0 otherwise;
πm represents the index sequence obtained by sorting the
elements of the i-th row of matrix A in descending order,
i.e., satisfying Am,πm(1) ≥ Am,πm(2) ≥ · · · ≥ Am,πm(n);
and πm(s) corresponds to the column index of the s-th
largest element after sorting. Through this operation, we
obtain a binary mask matrix M, which selects the top Ki

largest elements in each row of A while suppressing the
influence of other irrelevant elements. Then, we align the
dimensions of Â with the dimensions of the attention map
to obtain the final image token mask:

Mi
m,k =

{
0, if m = 0

Âm+1,k, otherwise
(11)

To guide the CLS token corresponding to different sam-
ples in better aggregating global information, we also dis-
entangle the CLS prompt pc into a CLS prompt pool
Pc = {(pc

k,κ
c
k)}

Nc

k=1. In a similar manner to the image
tokens, we can obtain the affinity matrix between the CLS
token and the CLS prompts. Then, by further binarizing
and expanding the dimensions, we obtain the mask Mc

corresponding to the CLS token.

In Vision Transformers, the core operation of the attention
module is:

Attn = Softmax
(
QKT

√
dk

)
, (12)

where Attn is the attention map. We concatenate the two
masks, Mc and Mi, corresponding to the CLS token and
the image token, then expand them to the same dimensions
as the attention map Attn, resulting in the final mask M.
Finally, we perform an element-wise multiplication between
Attn and the mask M to obtain the updated attention map
for subsequent operations:

Attn′ = Attn ⊙M, (13)

where ⊙ denotes the element-wise multiplication.

Although our TCPA selects specific prompts for each token,
the additional computational overhead is limited only to the
calculation of cosine distance for prompt selection and the
self-attention process, with no increase in the computation
of the feed-forward network. Furthermore, we can achieve
the effect of multiple groups of tokens undergoing attention
separately through a single attention computation by uti-
lizing token masking. In TCPA, we compute the attention

weights of all tokens and prompts, Attn = Softmax
(

QKT

√
dk

)
.

Then, based on the token-prompt matching, we generate a
binary mask matrix M and compute Attn ·M · V . This ap-
proach calculates the attention weights only once, enabling
efficient interaction between different tokens and prompts.

(a) 3D Attention Map of VPT

(c) 3D Attention Map of Ours

(b) 2D Attention Map of VPT

(d) 2D Attention Map of Ours
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Figure 3. 3D and 2D attention map of existing visual prompting
method VPT (Jia et al., 2022) and Ours.

3.4. Overall Optimization

As mentioned above, our TCPA introduces only a few addi-
tional parameters: CLS prompt pool Pc and image prompt
pool Pi. Following (Jia et al., 2022), during training, we
maintain the pretrained model’s encoder frozen while al-
lowing only the classification head to be trainable. We
denote all learnable parameters as Φ = {Pc,Pi,H}. The
optimization objective is as follows:

argmin
Φ

Lce(y, ygt)+λi

∑
S(hm,κi

m)+λc

∑
S(cj ,κc

j),

(14)
where Lce is cross-entropy loss, ygt is the label of image x,
λi and λc are weighting parameters.

4. Discussion and Analysis
To further analyze and validate the effectiveness of our
method, this section provides mathematical and experimen-
tal analysis of why existing visual prompting methods ex-
tract discriminative information that is singular and insuf-
ficient, while our TCPA method extracts comprehensive
discriminative information.

Theorem 4.1. Self-attention is low rank. (Proved in (Wang
et al., 2020)). Let A ∈ Rn×n be a self-attention matrix, and
v ∈ Rn be a column vector of value matrix V . Then, there
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Table 1. The comparison results on HTA benchmark. Partial, Extra, and Prompting represent partial tuning-based, extra module-based,
and prompt learning-based methods respectively.

Methods DTD CUB Bird Dog Flower Food Cifar100 Cifar10 GTSRB SVHN Avg
Full - 64.3 87.3 82.7 89.4 98.8 84.9 68.9 97.4 97.1 87.4 85.8
Linear - 63.2 85.3 75.9 86.2 97.9 84.4 63.4 96.3 68.0 36.6 75.7
Partial NeurIPS’14 70.1 85.6 77.8 85.5 98.2 83.8 78.0 95.0 89.3 82.4 84.6
MLP CVPR’20 66.2 85.1 77.3 84.9 97.9 84.6 77.5 93.2 71.8 60.5 79.9
Bias NeurIPS’17 69.8 88.4 84.2 91.2 98.8 86.2 82.9 96.9 89.9 82.5 87.1
Sidetune ECCV’20 57.7 84.7 75.8 85.8 96.9 78.7 68.8 90.4 90.9 80.5 81.0
Adapter NeurIPS’20 62.7 87.1 84.3 89.8 98.5 86.0 74.2 97.7 91.1 36.3 80.8
Former NeurIPS’22 64.2 87.3 84.1 88.1 98.4 85.7 79.4 96.5 91.7 83.0 85.8
E2VPT ICCV’23 66.8 88.4 84.2 91.3 99.0 84.0 80.4 97.1 91.0 79.2 86.1
LION AAAI’24 - - - 83.6 90.5 - 65.4 90.8 - - -
VP arXiv’22 59.5 84.6 77.7 84.5 97.7 80.5 78.7 94.2 89.4 87.6 83.4
+TCPA This Paper 62.3(+2.8) 86.7(+2.1) 78.7(+1.0) 88.6(+3.1) 99.3(+1.6) 81.9(+1.4) 81.4(+2.7) 95.1(+0.9) 90.7(+1.3) 89.6(+2.0) 85.4(+2.0)

VPT ECCV’22 65.8 88.5 84.2 90.2 99.0 83.3 78.8 96.8 90.7 78.1 85.5
+TCPA This Paper 67.6(+1.8) 90.7(+2.2) 85.5(+1.3) 91.7(+1.5) 99.2(+0.2) 84.8(+1.5) 79.9(+1.1) 98.9(+2.1) 92.1(+1.4) 79.4(+1.3) 87.0(+1.5)

DAMVP CVPR’23 73.1 87.5 82.1 92.3 99.2 86.9 88.1 97.3 90.6 87.9 88.5
+TCPA This Paper 74.3(+1.2) 88.9(+1.4) 82.7(+0.6) 93.6(+1.3) 99.3(+0.1) 88.7(+1.8) 89.7(+1.6) 97.8(+0.5) 93.8(+3.2) 90.4(+2.5) 89.9(+1.4)

AutoVP ICLR’24 62.5 85.4 83.5 90.3 90.4 82.3 77.9 95.2 93.1 92.9 85.4
+TCPA This Paper 65.0(+2.5) 88.0(+2.6) 85.6(+2.1) 92.5(+2.2) 91.2(+0.8) 83.6(+1.3) 79.3(+1.4) 97.4(+2.2) 96.2(+3.1) 93.5(+0.6) 87.2(+1.8)

VFPT NeurIPS’24 69.9 88.1 82.8 89.5 98.4 88.7 90.4 97.4 92.1 94.4 89.2
+TCPA This Paper 71.2(+1.3) 89.5(+1.4) 83.6(+0.8) 91.5(+2.0) 99.2(+0.8) 89.2(+0.5) 91.6(+1.2) 98.4(+1.4) 94.2(+2.1) 95.6(+1.2) 90.4(+1.2)
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Table 2. The comparison results on VTAB benchmark. Utilize the
ViT-B/16 pretrained with supervised training on ImageNet-21k as
the backbone.

Methods Natural Specialized Structured
Full 75.9 83.4 47.6
VP 77.3 80.1 53.8
+TCPA 78.1(+0.8) 82.6(+2.5) 55.4(+1.6)

VPT 78.5 82.4 55.0
+TCPA 79.7(+1.2) 84.3(+1.9) 56.2(+1.2)

DAMVP 79.1 83.4 56.2
+TCPA 80.4(+1.3) 85.5(+2.1) 57.1(+0.9)

AutoVP 78.4 83.1 55.8
+TCPA 79.3(+0.9) 85.2(+2.1) 56.9(+1.1)

exists a low-rank matrix Â ∈ Rn×n satisfying

Pr(∥ÂvT −AvT ∥ < ϵ∥AvT ∥) > 1− o(1), (15)

where the rank of Â is bounded, i.e., rank(A) =
Θ(log(n)).
Theorem 4.2. Self-attention is low-rank after prompting.
(Proved in (Kim et al., 2024)). For any low-rank matri-
ces Ân ∈ Rn×n and Ân+m ∈ R(n+m)×(n+m) satisfying
Pr(∥ÂvT −AvT ∥ < ϵ∥AvT ∥) > 1− o(1), we have

rank(Ân+m − rank(Ân) = O(log(m)), (16)

where m is the number of prompts.

Through the above two theorems, we can see that the self-
attention matrix in existing prompt learning methods is low-
rank. This indicates that different prompts in these methods
tend to focus on the same image regions. To further demon-
strate this, we visualize the attention maps of the existing

visual prompting method VPT in both 3D and 2D. As shown
in Figure. 3, the attention regions of prompts in conventional
visual prompting methods are highly similar, leading to CLS
and image tokens extracting nearly identical features.

In contrast, our proposed TCPA module enhances more
diverse attention across prompts, CLS tokens, and image
tokens. This is because our method selects different prompts
for different tokens and performs attention-based interac-
tions, thereby encouraging the model to extract more diverse
and comprehensive discriminative information.

5. Experiments
5.1. Datasets

Building upon (Jia et al., 2022; Huang et al., 2023), the ex-
periments are conducted on HTA (Huang et al., 2023) bench-
mark, including: DTD (Cimpoi et al., 2014), CUB-200-
2011 (Wah et al., 2011), NABirds (Horn et al., 2015), Stan-
ford Dogs (Khosla et al., 2011), Oxford Flowers (Nilsback
& Zisserman, 2008), Food101 (Bossard et al., 2014), Ci-
far100 (Krizhevsky et al., 2009), Cifar10 (Krizhevsky et al.,
2009), GTSRB (Stallkamp et al., 2012), and SVHN (Netzer
et al., 2011).

Moreover, following (Jia et al., 2022; Han et al., 2023), more
experiments are conducted on the VTAB benchmark (Zhai
et al., 2019) which includes 19 visual tasks. These tasks are
categorized into three groups: Natural, for routine image
recognition; Specialized, for domain-specific applications
such as medical imaging; and Structured, for the analysis of
intricate scenes, like 3D object recognition.
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5.2. Comparison Methods

We compare TCPA with the parameter-efficient fine-tuning
and visual prompting methods. We also report the fully-
tuning results as a baseline. Specifically, the parameter-
efficient fine-tuning methods include the partial tuning-
based models (Linear (Iofinova et al., 2022), Partial (Yosin-
ski et al., 2014), MLP (He et al., 2020)) and the ex-
tra module-based ones (Sidetune (Rebuffi et al., 2017),
Bias (Zhang et al., 2020), Adapter (Cai et al., 2020), Adapt-
Former (Chen et al., 2022)). For visual prompting methods,
various latest visual prompting methods such as VP (Bahng
et al., 2022), VPT (Jia et al., 2022), DAMVP (Huang et al.,
2023), Yoo et al (Yoo et al., 2023), E2VPT (Han et al., 2023),
LION (Wang et al., 2023), AutoVP (Tsao et al., 2024) and
VFPT (Zeng et al., 2024) are evaluated.

5.3. Implementation Details

To fully validate the effectiveness of our proposed TCPA,
we implement TCPA based on several representative visual
prompting methods from recent years. For the token-level
methods VPT (Jia et al., 2022) and VFPT (Zeng et al., 2024),
we replace their learnable prompt tokens with our TCPA.
For the input-level prompting methods VP (Bahng et al.,
2022), DAMVP (Huang et al., 2023), and AutoVP (Tsao
et al., 2024), while retaining their prompts added to the input
images, we introduce our TCPA at the token level. The ViT-
B/16 (Dosovitskiy et al., 2020) supervised by ImageNet-
21k (Deng et al., 2009) is used as the backbone. Following
DAMVP (Huang et al., 2023), we train for 100 epochs on
all datasets. The AdamW (Loshchilov & Hutter, 2017)
optimizer and cosine annealing are used for optimization.
The weighting parameters λi and λc are set to 0.5. The
length of the size of CLS prompt pool Nc and size of image
prompt pool Ni are set to 10 and 20 respectively.

5.4. Comparison with State-of-the-arts

We first conduct experiments on HTA using the ImageNet-
21k supervised ViT-B/16 (Dosovitskiy et al., 2020) as the
pretrained model. As shown in Table 1, after integrating
TCPA, in comparison to DAMVP, DAMVP+TCPA shows
average improvements of 1.4% across all ten datasets. Simi-
lar enhancements are also observed when applied to other
methods: VP+TCPA shows an average increase of 0.9%-
2.8% across the ten datasets, VPT+TCPA improved by
0.2%-2.2%, AutoVP+TCPA improved by 0.6%-3.1%, and
VFPT+TCPA also improved by 0.5%-2.0%. This can be
primarily attributed to TCPA’s explicit disentanglement of
prompts based on the distinct roles of CLS and image tokens
and their difference in the attention mechanism, allowing
for more thorough learning of downstream task knowledge
and facilitating comprehensive extraction of discriminative
information, thereby boosting model performance.

Table 3. The influence of components in TCPA. “✓” represent with
this component. R-TCPA represents the coordinated prompt atten-
tion of CLS and image tokens. T-TCPA represents the coordinated
prompt attention of different image tokens.

Components Datasets
R-TCPA T-TCPA CUB Dog GTSRB

- - 88.1 89.5 92.1
✓ - 88.9 90.2 93.0
✓ ✓ 89.5 91.5 94.1

To further validate the effectiveness of our TCPA, follow-
ing (Jia et al., 2022; Han et al., 2023), we also conduct
experiments on VTAB (Zhai et al., 2019) benchmark. As
shown in Table 2, compared to VPT, the integration of TCPA
results in performance improvements of 1.2%, 1.9%, and
1.2% across downstream tasks in groups Natural, Special-
ized, and Structured, respectively. Moreover, TCPA con-
sistently enhances performance based on VP, DAMVP, and
AutoVP. Specifically, VP+TCPA shows improvements of
0.8%, 2.5%, and 1.6%, DAMVP+TCPA shows improve-
ments of 1.3%, 2.1%, and 0.9%, and AutoVP+TCPA also
exhibits performance enhancements of 0.9%, 2.1%, and
1.1% across the same groups of downstream tasks. This
further demonstrates TCPA’s robustness across a variety of
downstream tasks.

5.5. Ablation

5.5.1. INFLUENCE OF DIFFERENT COMPONENTS

To further validate the effectiveness of each component we
proposed, we conduct ablation studies on the two main com-
ponents of TCPA: R-TCPA and T-TCPA. When none of the
modules are utilized, the method degenerates to the original
VPT approach. Conversely, employing all three modules
constitutes the complete VPT+TCPA method. As shown in
Table 3, the introduction of the R-TCPA module leads to
a performance increase of 0.8%-0.9%. This improvement
is attributed to R-TCPA’s disentanglement of CLS and im-
age prompts based on their distinct roles, guiding CLS and
image tokens to fulfill different functions. Further incorpo-
rating T-TCPA allows different image tokens to adaptively
select suitable prompts from the prompt pool, thoroughly
capturing diverse discriminative information from the input
sample, hence boosting model performance by an additional
0.6%-1.1%.

5.5.2. COMPUTATIONAL COST

To validate the efficiency of our proposed method, we con-
duct a computational cost analysis to compare our proposed
method, TCPA, with existing visual prompting approaches.
As shown in Table 4, TCPA introduces only a minimal
additional time cost while enhancing model performance.
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Table 4. Comparison of training time on CUB (seconds/epoch)
with state-of-the-art.

Methods Training Time
VP (Bahng et al., 2022) 1.94

+TCPA 2.24
VPT (Jia et al., 2022) 2.36

+TCPA 2.41
DAMVP (Huang et al., 2023) 2.14

+TCPA 2.27
VFPT (Zeng et al., 2024) 2.58

+TCPA 2.65
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Figure 4. Influence of hyper-parameters (size of CLS prompt pool
Nc, size of image prompt pool Ni) of TCPA on CUB.

Despite disentangling the prompts used for the CLS and
image tokens, as well as between different image tokens,
the increase in computational demand is negligible. The
additional computational load from the prompt matching
process in TCPA is primarily achieved through vector mul-
tiplication, making the increase in computational demand
minimal. Although different prompts are used for differ-
ent tokens, in the implementation, we input all prompts
simultaneously into the attention mechanism for query-key
computations. During the final computation with the at-
tention mechanism’s values, different masks are applied to
different tokens to enable targeted attention interactions be-
tween specific tokens and prompts. This implementation
strategy significantly reduces the computational overhead
of our method.

5.5.3. INFLUENCE OF HYPER-PARAMETERS

As illustrated in Figure 4, we conducted ablation experi-
ments on two hyperparameters introduced in TCPA: the size
of the CLS prompt pool Nc and the image prompt pool Ni.
When the size of the prompt pool is small, there is lower
diversity among prompts, leading to a higher overlap of
prompts selected by different tokens. This results in the
features extracted from different tokens becoming indistin-
guishable. Conversely, an excessive number of prompts
in the pool increases the number of learnable parameters.
Given the limited data in downstream tasks, this scenario

(a) DAMVP on GTSRB (b) TCPA (Ours)  on GTSRB

Figure 5. Feature t-SNE (Van der Maaten & Hinton, 2008) visu-
alization results for our proposed TCPA and comparison method
DAMVP (Huang et al., 2023) on GTSRB.

can lead to overfitting, which also degrades model perfor-
mance. Optimal performance is achieved when the size of
the prompt pool is moderate. Notably, the image prompt
pool requires a larger size than the CLS prompt pool be-
cause image tokens exhibit greater variability compared to
the CLS tokens used directly for classification, necessitating
a broader range of prompts.

5.5.4. THE T-SNE VISUALIZATION OF EXTRACTED
FEATURES

To further validate the effectiveness of our method, Figure 5
presents a t-SNE (Van der Maaten & Hinton, 2008) visual-
ization of features obtained by TCPA and DAMVP (Huang
et al., 2023). As shown in Figure 5, we visualize the fea-
tures obtained by our proposed TCPA and DAMVP via
t-SNE (Van der Maaten & Hinton, 2008). From the visual-
ization results, it can be observed that the features extracted
by DAMVP from samples of the same category are relatively
scattered, and some are mixed with features from other cat-
egories. In contrast, features extracted by our TCPA from
the same category are tightly clustered and display clear
distinctiveness from features of other categories. This is
attributed to our proposed token coordinated prompt atten-
tion, which can recognize more diverse and comprehensive
discriminative characteristics of input images.

6. Conclusion
In this paper, we propose a novel plug-and-play Token Coor-
dinated Prompt Attention (TCPA) module to enhance visual
prompting for Vision Transformers. Unlike existing meth-
ods that learn the same prompts for all tokens, TCPA dis-
entangles and adaptively assigns prompts to different CLS
and image tokens based on their distinct roles, thereby im-
proving feature diversity and discriminability. Specifically,
we introduce CLS Prompts and Image Prompts to inter-
act exclusively with CLS and image tokens, respectively,
strengthening their individual representational capacities.
Furthermore, TCPA leverages a matching function to dy-
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namically allocate coordinated prompts to image tokens,
enabling more precise and targeted attention interactions.
By incorporating these mechanisms, TCPA effectively miti-
gates the limitations of conventional visual prompting, lead-
ing to richer, more diverse feature extraction and improved
model performance, as demonstrated by experimental and
visualization results.
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A. More t-SNE Visualization Results of Extracted Features
To further validate the effectiveness of our method, we also visualized the features extracted on several other datasets using
t-SNE (Van der Maaten & Hinton, 2008). As shown in Figure 6, compared to the existing method DAMVP, the visualization
results of our proposed TCPA show tighter clustering of samples within the same category and better separability between
different categories. This is due to the hierarchically disentangled visual prompting in TCPA, which disentangles prompts
based on different roles and functions. Each prompt is tailored to effectively and comprehensively extract semantic
information from the image samples, enhancing the discriminative ability of the extracted feature.

(b) DAM-VP on Cifar100

(e) TCPA (Ours)  on Cifar100

(c) DAM-VP on SVHN

(f) TCPA (Ours)  on SVHN

(a) DAM-VP on CUB

(d) TCPA (Ours) on CUB

Figure 6. Feature t-SNE (Van der Maaten & Hinton, 2008) visualization results for our proposed TCPA and comparison method DAMVP
on CUB, Cifar100 and SVHN.

B. More Attention Visualization Results
In Figure 7, we provide attention map visualizations for additional samples. As shown, existing methods, which learn the
same prompt for all tokens, result in different tokens are indistinguishable and biased. In contrast, our proposed TCPA
disentangles the prompts used for different tokens, thereby enhancing the diversity and discriminative ability of the features
extracted by each token.
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Figure 7. The attention map visualization results of CLS and image tokens from the existing visual prompting method VPT (Jia et al.,
2022) and our TCPA are presented.
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