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ABSTRACT

In this paper, we introduce a novel concept of user-entity differential privacy
(UeDP) to provide formal privacy protection simultaneously to both sensitive en-
tities in textual data and data owners in learning natural language models. To
preserve UeDP, we developed a novel algorithm, called UeDP-Alg, optimizing
the trade-off between privacy loss and model utility with a tight sensitivity bound
derived from seamlessly combining sensitive and non-sensitive textual data to-
gether. An extensive theoretical analysis and evaluation show that our UeDP-Alg
outperforms baseline approaches in terms of model utility under the same privacy
budget consumption on several NLM tasks, using benchmark datasets.

1 INTRODUCTION

Despite remarkable performance in many applications, natural language models (NLMs), such as
recurrent neural networks, and LSTMs, are vulnerable to privacy attacks because of such attacks’
capacity to memorize unique patterns in training data (Carlini et al., 2018). Recent data training
extraction attacks (Carlini et al., 2020) illustrate that sensitive entities, such as an individual person’s
name, email address, phone number, fax number, physical address, etc., can be accurately extracted
from NLM parameters. These sensitive entities and the language data memorized in NLMs may
identify a data owner - explicitly by name or implicitly, e.g., via a rare or unique phrase - and link
that data owner to extracted sensitive information.

Our main goal is to provide a rigorous guarantee that a trained NLM protects the privacy of data
owners’ data, namely privacy protection for sensitive entities and the participation information of
the data owners in learning NLMs, while maintaining high model utility. The naive solution of
anonymizing (including removing/de-identifying) sensitive entities is insufficient and ineffective;
since the anonymized (or removed) entities can be matched with non-anonymized data records in a
different dataset (Dwork et al., 2014) and the model utility can be significantly affected as shown
in our experimental study. While cryptographic approaches can be applied to protect privacy, they
introduce a huge computation and resource overhead (Al Badawi et al., 2020). Thus, we proposed to
apply differential privacy (Dwork et al., 2006), one of the most adequate solutions, given its formal
privacy protection without undue sacrifice in computation efficiency and model utility.

Differential privacy (DP) provides rigorous privacy protection as a probabilistic term, limiting the
knowledge about a data record a ML model can leak while learning features of the whole training
set. DP-preserving mechanisms have been investigated and applied in practice (Abadi et al., 2016;
Phan et al., 2016; Lee & Kifer, 2018; Shokri & Shmatikov, 2015; Yu et al., 2019; Mironov, 2017),
including image processing (Phan et al., 2019; Sun & Lyu, 2020; Fan, 2018), healthcare data (Zia
et al., 2020; Alnemari et al., 2017; Kartal et al., 2019), financial records (Wu et al., 2019), social
media (Wang & Sinnott, 2017; Li et al., 2012; Ou et al., 2018), and NLMs (McMahan et al., 2017;
Bagdasaryan et al., 2019; Lyu et al., 2020c;a).

However, existing DP levels of protection, including sample-level DP (Abadi et al., 2016; Roth,
2012; Dwork et al., 2014; Wu et al., 2017; Bassily et al., 2014), user-level DP (McMahan et al.,
2017; Ramaswamy et al., 2020), element-level DP (Asi et al., 2019), and local feature-level DP (Lyu
et al., 2020a;b; Erlingsson et al., 2014; Duchi et al., 2013), do not provide the privacy protection
level demanded to solve our problem. Given training data: 1) Sample-level DP protects privacy
of a single sample. 2) User-level DP protects privacy of a single data owner, also called a single
user, who may contribute one or more data samples. 3) Element-level DP partitions data owners’

1



Under review as a conference paper at ICLR 2022

contribution to the training data into sensitive elements, e.g., a curse word, which will be protected.
Element-level DP does not provide privacy protection to data owners. And 4) Local (feature-level)
DP protects true values of a data sample from being inferred. Recently, Lyu et al. (2020a;b) proposed
local DP-preserving approaches for text embedding extraction under (word-level) local DP (Eq. 2).
However, our theoretical revisiting, confirmed to be correct by the authors Lyu et al., shown that
their approaches do NOT achieve word-level DP for extracted text embedding (Appendix G) and
consume excessive privacy budgets (Appendix H). There is a demand for a new level of DP to
protect privacy simultaneously for both sensitive entities in the training data and the participation
information of data owners in learning NLMs.

Our paper is structured around the following key contributions:

1) We apply DP to NLM training using a new notion of user-entity adjacent datasets (Definition 2),
leading to formal guarantees of user-entity privacy, rather than privacy for single user or a single
sensitive entity.

2) To preserve UeDP, we introduce a novel algorithm, called UeDP-Alg, which leverages the recipe
of DP-FEDAVG (McMahan et al., 2017) to achieve user-entity adjacent DP via use of the mo-
ments accountant (Abadi et al., 2016). Moments accountant was first developed to preserve DP
in stochastic gradient descent (SGD) for sample-level privacy. Our federated averaging approach
groups multiple SGD updates, which are computed from a two-level random sampling process in-
cluding a random sample of users and a random sample of sensitive entities, together, thus enabling
large-step model updates (Eq. 4 and Lemma 1).

3) To address the trade-off between privacy loss and the model utility, we derive a new tight noise
scale bound by considering non-sensitive data in learning NLMs without affecting UeDP guarantees
(Lemma 2). The more non-sensitive data we use to train our model, the less privacy loss for sensitive
entities and the higher utility for our model.

4) Through theoretical analysis and rigorous experiments conducted on benchmark datasets, we
show that our UeDP-Alg outperforms baseline approaches in terms of model utility on fundamental
tasks, i.e., next word prediction and text classification, under the same privacy budget consumption.

2 BACKGROUND

In this section, we revisit NLM tasks, privacy risk in NLMs, and DP. For the sake of clarity, let us
focus on next word prediction, and we will extend it to text classification in section 5.

Next Word Prediction. Let D be training data containing U users (data owners), and each user
u ∈ U consists of nu sentences. Given a vocabulary V , each sentence is a sequence of words,
presented as x = x1x2 . . . xmu , where xi ∈ V, (i ∈ [1,mu]) is a word in x and mu is the length
of x. In next word prediction, the first j words in x, i.e., x1, x2, . . . , xj (∀j < mu), are used to
predict the next word xj+1. Here, xj+1 can be considered as a label in the next word prediction
task. Perplexity PP = 2−

∑
x∈D p(x) log2 p(x) is a measurement of how well a model predicts a

sample and is often used to evaluate language models, where p(x) is a probability to predict the next
word xj+1 in x (Chen et al., 1998; Mikolov et al., 2011a). Perplexity is considered the exponential
of the cross-entropy loss of a language model; therefore, a lower perplexity indicates a better model.
All the notations are summarized in Table 2, Appendix A.

Entities and Sensitive Sentences. Each sensitive entity e consists of a word or consecutive words
that need to be protected. A list of categories of sensitive entities is in Table 3 (Appendix B). For
instance, PII related to an identifiable person, such as person names, locations, organizations, phone
numbers, can be considered sensitive entities. We denote a user-predefined set of sensitive entities
as E. If a sentence x consists of a sensitive entity e ∈ E, x is considered as a sensitive sentence;
otherwise, x is a non-sensitive sentence.
For instance, in Figure 1, “David Johnson,” “Maine,” “September 18,” and “Main Hospital” are
considered sensitive entities, correspondingly categorized into PII, geopolitical entities (GPE) (i.e.,
countries, cities, and states), time, and organization names. The first and second sentences consisting
of the sensitive entities are considered sensitive sentences. Meanwhile, the third and fourth sentences
are considered non-sensitive sentences, because they do not contain any sensitive entities.

Privacy Risk. It is well-known that trained ML model parameters can disclose information about
training data (Carlini et al., 2020; Dwork, 2008), especially in NLMs (McMahan et al., 2017; Carlini
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Figure 1: User-Entity DP. Data from users is processed to identify sensitive entities, before being
trained with local trainers. Bounded gradients from local trainers are aggregated at a server with
additive noise. Updated model are sent back to local trainers for next rounds.

et al., 2020). Given a data sample and model parameters, by using a membership inference attack
(Shokri et al., 2017; Salem et al., 2018; Yeom et al., 2018), adversaries can infer whether the training
used the sample or not. In NLMs, by using training data extracting attacks (Carlini et al., 2020),
adversaries can accurately recover individual training examples, such as full names, email addresses,
and phone numbers of individuals. Access to these can lead to severe privacy breaches.
Differential Privacy. To avoid these privacy risks, DP guarantees restriction of the adversaries in
what they can learn from the training data given the model parameters by ensuring similar model
outcomes with and without any single training sample. Let us revisit the definition of DP, as follows:

Definition 1. (ε, δ)-DP (Dwork et al., 2006). A randomized algorithm A fulfills (ε, δ)-DP, if for
any two adjacent datasets D and D′ differing by at most one sample, and for all outcomes O ⊆
Range(A): Pr[A(D) = O] ≤ eεPr[A(D′) = O] + δ (1)

with a privacy budget ε and a broken probability δ.
The privacy budget ε controls the amount by which the distributions induced by D and D′ may
differ. A smaller ε enforces a stronger privacy guarantee. The broken probability δ means the highly
unlikely “bad” events, in which an adversary can infer whether a particular data sample belongs to
the training data, happen with the probability ≤ δ.

There are different levels of DP protection in literature categorized into four research lines, including
sample-level DP, user-level DP, element-level DP, and local (feature-level) DP. Let us revisit these
DP levels and distinguish them with our goal.

Sample-level DP. Traditional DP mechanisms (Roth, 2012; Dwork et al., 2014; Wu et al., 2017;
Bassily et al., 2014; Pan et al., 2020) ensure DP at the sample-level, in which adjacent datasetsD and
D′ are different from at most a single training sample. Sample-level DP does not protect privacy for
users. That is different from our goal. We aim at protecting privacy for users and sensitive entities,
which are different from data samples.

User-level DP. To protect privacy for users, who may contribute more than one training sample,
rather than a single sample, McMahan et al. (2017) proposed a user-level DP, in which neighboring
databases D and D′ are defined to be different from all of the samples associated with an arbitrary
user in the training set. Several works follow this direction (Kairouz et al., 2019; Ramaswamy et al.,
2020). User-level DP is different from our goal, since it has not been designed to guarantee privacy
for sensitive entities in the training set.

Element-level DP. Asi et al. (2019) introduce element-level DP, in which users are partitioned
based on sensitive elements, which will be protected in a way that an adversary cannot infer whether
a user has a sensitive element in her/his data, e.g., if a user has ever sent a curse word in his/her
messages or not. Similar to sample-level DP, element-level DP is different from our goal, since it
does not provide DP protection for users.

Local (Feature-level) DP. Lyu et al. (2020a) proposed a notion of word-level local DP for a sen-
tence’s embedding features, in which two adjacent sentences x and x′ are different at most one word:

Pr[A(f(x)) = O] ≤ eεPr[A(f(x′)) = O] (2)

where f(x) extracts embedding features of x and A is a randomized algorithm, such as a Laplace
mechanism (Dwork et al., 2014). In a similar effort, Lyu et al. (2020b) applied a randomized re-
sponse mechanism (Erlingsson et al., 2014; Bassily & Smith, 2015; Wang et al., 2017) on top of
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binary encoding of embedded features’ real values to achieve local DP feature embedding. The
approaches proposed in (Lyu et al., 2020a;b) are different from our goal, since they do not offer
user-level privacy protection. In addition, the binary encoding in (Lyu et al., 2020b) consumes large
privacy budgets compared with our approaches (Appendix H) and the DPNR does NOT offer word-
level DP (Appendix G) (confirmed by the authors Lyu et al.).

3 USER-ENTITY DIFFERENTIAL PRIVACY

To preserve privacy for both users and sensitive entities in NLMs, we propose a new definition of
user-entity adjacent databases, as follows: Two databases D and D′ are user-entity adjacent if they
differ in a single user and a single sensitive entity; that is, if one user u′ and one sensitive entity e′
are present in one database (i.e., D′) and are absent in the other (i.e, D). Together with the absence
of all data samples from the user u′ in D, all data samples (across users) consisting of the sensitive
entity e′ also absent in D. This is because one user can have multiple sentences (samples), and one
sensitive entity can exist in multiple sentences for training. The definition of our user-entity adjacent
databases is presented as follows:

Definition 2. User-Entity Adjacent Databases. Two databases D and D′ are called user-entity
adjacent if: ‖U −U ′‖1 ≤ 1 and ‖E −E′‖1 ≤ 1, where U and E are the sets of users and sensitive
entities in D, and U ′ and E′ are the sets of users and sensitive entities in D′.

Given the user-entity adjacent datasets, we present our UeDP in the following definition.

Definition 3. (ε, δ)-UeDP. A randomized algorithm A is (ε, δ)-UeDP if for all outcomes O ⊆
Range(A) and for all user-entity adjacent databases D and D′, we have:

Pr[A(D) = O] ≤ eεPr[A(D′) = O] + δ (3)

with a privacy budget ε and a broken probability δ.

If a training set does not have sensitive entity indicators, we suggest several ways to identify sensi-
tive entities in textual data, such as: 1) Using Named Entity Recognition (NER) datasets (Sang &
De Meulder, 2003; Grishman & Sundheim, 1996; Weischedel et al., 2011; Balasuriya et al., 2009;
Derczynski et al., 2017; Liu & Lane, 2017; Lim et al., 2017; Stubbs et al., 2015); and 2) For textual
datasets that do not have NER labels or sensitive entity indicators, there are publicly available tool-
kits for detecting named entities or PII in text. For instance, Spacy (Honnibal & Montani, 2017),
Stanza (Qi et al., 2020), and Microsoft Presidio. These approaches and tool-kits are user-friendly in
identifying sensitive entities, making our UeDP practical. Please refer to Appendix B for details.

4 PRESERVING UEDP IN NLMS

To preserve UeDP, we focus on answering two questions: (1) How to bound the sensitivity of an
NLM under UeDP; and (2) How to address the trade-off between privacy loss and model utility?

Overview. To answer these questions, we present a novel algorithm, called UeDP-Alg (Figure 1,
Alg. 1 in Appendix C), in which we first sample a set of users and then sample a set of sensitive
entities at each training step. Then, the set of sensitive entities are used to identify sensitive samples
(sentences) consisting of each of the sampled users. A bounded gradient for each sampled user is
computed using these sensitive samples. Next, we develop a new estimator to aggregate bounded
gradients from all the users with an additive Gaussian noise enabling large-step model updates under
UeDP protection. Finally, we optimize the trade-off between privacy loss and model utility by
considering non-sensitive training data to tighten the user-entity sensitivity bound. We discover that
the lower the numbers of sensitive samples and the greater the numbers of non-sensitive samples
in the training set, the smaller amount of noise is injected into our model. That offers better model
utility under the same UeDP protection.

4.1 UEDP PRESERVING ALGORITHM

Our UeDP-Alg takes the dataset D containing a set of users U and a set of sensitive entities E,
and hyper-parameters as inputs. At each iteration t, we randomly sample U t users from U and Et
sensitive entities from E, with sampling rates qu and qe, respectively (Lines 8 and 10). Then, we
use all sensitive samples consisting of the sensitive entities in Et belonging to the selected users in
U t for training. Like (McMahan et al., 2017), we leverage the basic federated learning setting in
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(McMahan et al., 2016) to compute gradients of model parameters for a particular user, denoted as
∆t+1
u,E (Line 11). Here, we clip the per-user gradients so that its l2-norm is bounded by a predefined

gradient clipping bound β (Simple-Update(·), Lines 18 - 23). Next, a weighted-average estimator
fE is employed to compute the average gradient ∆t+1 using the clipped gradients ∆t+1

u,E gathered
from all the selected users (Line 12). Finally, we add random Gaussian noise N (0, Iσ2) to the
model update (Line 14). During the training, M is used to compute the T training steps’ privacy
budget consumption (Lines 15-16).

In this process, we need to bound the sensitivity of the weighted-average estimator fE for per-
user gradients ∆t+1

u,E . We first consider the following simple estimator (Line 12, using the Simple-
Update(·)), with both sampling rates qu for the user-level and qe for the sensitive entity-level:

fE(U
t, Et) =

∑
u∈Ut wu∆t+1

u,E

quWu × qeWe
s.t. ∆t+1

u,E =
∑
e∈Et

we(
∑
s∈Stue

∆u,s) (4)

where wu, we ∈ [0, 1] be weights associated with a user u and with a sensitive entity e. These
weights capture the influence of a user and a sensitive entity to the model outcome. Stue is a set of
samples belonging to user u, and each of samples s ∈ Stue consists of the sensitive entity e. ∆u,s is
the parameter gradients computed using the sample s. In addition,Wu =

∑
u wu andWe =

∑
e we.

The estimator fE is unbiased to the sampling process; since E[
∑
u∈Ut wu] = quWu and

E[
∑
e∈Et we] = qeWe. The sensitivity of the estimator fE can be computed as: S(fE) =

maxu′,e′‖fE({U t ∪ u′, Et ∪ e′}) − fE({U t, Et})‖2, where the added user u′ can have arbitrary
data and e′ is an arbitrary sensitive entity.

Given that ∆t+1
u,E is l2(β)-norm bounded, where β is the radius of the norm ball by replacing ∆t+1

u,E

with ∆t+1
u,E ·min

(
1, β

‖∆t+1
u,E ‖

)
(Lines 32-33), the sensitivity of the estimator S(fE) is also bounded.

Lemma 1. If for all users u we have ‖∆t+1
u,E ‖2 ≤ β, then S(fE) ≤ (qu|U |+1) max(wu)β

quWu×qeWe
.

The proof of Lemma 1 is in Appendix D. By applying Lemma 1, given a hyper-parameter z, the
noise scale σ for the estimator fE (Line 13) is:

σ = zS(fE) =
z(qu|U |+ 1) max(wu)β

quWu × qeWe
(5)

We show that this approach achieves (ε, δ)-UeDP, by applying the moments accountantM (Abadi
et al., 2016) to bound the total privacy loss of T steps of the Gaussian mechanism with the noise
N (0, Iσ2) in Theorem 1. However, this mechanism only uses sensitive samples to train the model
ignoring a large number of non-sensitive samples. As a result, it introduces a loose sensitivity bound
(Lemma 1) and affects our model utility.

4.2 OPTIMIZING UTILITY - PRIVACY TRADE-OFF

To improve model utility under the same UeDP protection, we incorporate non-sensitive samples
into the training process. There are two critical impacts of doing so: 1) reducing privacy loss since
the model can learn more from non-sensitive samples, limiting the knowledge the model learns from
sensitive samples, and 2) deriving a notably tighter sensitivity bound. Our algorithm is as follows.

In each step t, for each user u, by using the Optimized-Update(·) (Lines 11, 24 - 31), we randomly
select non-sensitive samples S

t

u from all the non-sensitive samples consisting in the user u’s data
Su with the probability qs (Line 25). The selected non-sensitive samples S

t

u will be merged with
the sensitive samples Stu to compute the per-user gradients (Lines 26 - 30). Next, we also clip the
per-user gradients so that its l2-norm is bounded by β (Line 31). To tighten the sensitivity bound,
we propose a new estimator fE+ (Line 12), as follows:

fE+(U t, Et) =

∑
u∈Ut wu∆t+1

u,E

quWu × (qeWe + qsWs)
s.t. ∆t+1

u,E = (
∑
e∈Et

we∆u,e +
∑
s∈Stu

ws∆u,s) (6)

where ws ∈ [0, 1] is a weight associated with a non-sensitive sample s to capture the influence of s
to the model outcome, and Ws =

∑
s∈S ws given a set of non-sensitive samples S in the data D.
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Since E[
∑
e∈Et we +

∑
s∈S ws] = qeWe + qsWs, the estimator fE+ is unbiased. The sensitivity of

the estimator S(fE+) is computed as:

S(fE+) = max
u′,e′
‖fE+({U t ∪ u′, Et ∪ e′})− fE+({U t, Et})‖2

S(fE+) is bounded in the following lemma.

Lemma 2. If for all users u we have ‖∆t+1
u,E ‖2 ≤ β, then S(fE+) ≤ (qu|U |+1) max(wu)β

quWu×(qeWe+qsWs)
.

The proof of Lemma 2 is in Appendix E. By applying Lemma 2, the noise scale σ becomes:

σ = zS(fE+) =
z(qu|U |+ 1) max(wu)β

quWu × (qeWe + qsWs)
(7)

The noise scale σ in Eq. 7 is significantly smaller than the noise scale in Eq. 5. In fact, given a
fixed set of all samples, if there are more sensitive samples, we will have: (1) More non-sensitive
samples will contribute to the gradients through S

t

u; and (2) A smaller noise scale σ, given a larger
term qeWe + qsWs (i.e., a larger set S), since we can set qs to be larger than qe. As a result, the less
number of sensitive samples and the more number of non-sensitive samples in the training set, we
can inject the smaller amount of noise into our model (proportionally to qsWs). That enables us to
reduce the privacy loss while improving our model utility.
UeDP Guarantee. Given the bounded sensitivity of the estimators, moments accountant M
(Abadi et al., 2016) is used to get a tight bound on the total UeDP privacy consumption of T steps
of the Gaussian mechanism with the noise N (0, Iσ2) (Line 14), in the following theorem.
Theorem 1. For the estimators fE and fE+ , the moments accountant of the sampled Gaussian
mechanism correctly computes the UeDP privacy loss with the scale z = σ/S(fE) for fE and
z = σ/S(fE+) for fE+ for T training steps.

The proof of Theorem 1 is in Appendix F.

5 EXPERIMENTAL RESULTS

We conducted an extensive experiment, both in theory and on benchmark datasets, to shed light
on understanding 1) the integrity of sensitive entity identification, 2) the interplay among the UeDP
privacy budget (ε, δ), different types of sensitive entities (i.e., organization, location, PII, and miscel-
laneous entities), and model utility, and 3) whether considering non-sensitive samples will improve
our model utility under the same UeDP protection.

Baseline Approaches. We evaluate our UeDP-Alg (with estimators fE and fE+ ) in comparison
with both noiseless and privacy-preserving mechanisms (either user level or entity level), including:
(1) User-level DP (McMahan et al., 2017), which is the state-of-the-art DP-preserving model closely
related to our work; (2) De-Identification (Dernoncourt et al., 2017), which is considered a strong
baseline to provide privacy protection to sensitive entities. Although sensitive entities are masked
to hide them in the training process, De-Identification does not offer formal privacy protection to
either the data owners or sensitive entities; and (3) A Noiseless model, which is a language model
trained without any privacy-preserving mechanisms. In our experiment, our algorithms and baseline
approaches, i.e., UeDP-Alg, User-level DP, and De-Identification, are applied on the noiseless model
in the training process. As in our literature review, there are no other appropriate DP-preserving
baselines to UeDP protection, i.e., (Asi et al., 2019; Lyu et al., 2020a;b).

Evaluation Tasks and Metrics. Two tasks are considered in our experiment: (1) next word predic-
tion and (2) text classification. For the next word prediction, we employ the widely used perplexity
(Mikolov et al., 2011b; Bengio et al., 2003). Perplexity is the exponential of the average negative
log-likelihood to measure how well a language model predicts a word or a sequence of words. The
smaller perplexity is, the better model is. For the text classification, we use the test error rate as in
earlier work (Howard & Ruder, 2018). Test error rate implies prediction error on a test set, so it is
likely 1 - the test set’s accuracy. The lower the test error rate is, the better model is.

Data and Model Configuration. For the reproducibility sake, all details about our datasets, data
processing, and model configuration are included in Appendices I and J. We carried out our ex-
periment on three textual datasets, including the CONLL-2003 news dataset (Sang & De Meulder,
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Table 1: Breakdown of CONLL-2003, AG, and SEC datasets.
Dataset |V| # of samples # of users # of sensitive samples

CONLL-2003 8,882 14,040 946 Org Loc Person Misc All
5,187 5,433 4,406 3,438 11,176

AG 30,000 112,000 7,536 Org Loc GPE PII All
58,177 39,988 18,506 42,683 67,157

SEC 12,651 5,188 1,592 Org Loc GPE PII All
1,955 273 60 357 2,166

(a) CONLL-2003-all entities (b) AG-all entities (c) SEC-all entities

Figure 2: Privacy budget of UeDP-Alg fE , UeDP-Alg fE+ , and User-level DP as a function of
iterations in CONLL-2003, AG, and SEC datasets. “All” mean all sensitive entity types are used in
training. (The lower the better)

2003), AG’s corpus of news articles, and our collected Security and Exchange Commision (SEC)
financial contract dataset. The data breakdown for these datasets is in Table 1.

For the next word prediction, we employ a GPT-2 model (Radford et al., 2019), which is one of
the state-of-art text generation models (Radford et al., 2018; Brown et al., 2020). To make the
work easily reproducible, we use a version of the pretrained GPT-2 that has 12-layer, 768-hidden,
12-heads, 117M parameters, and then fine-tune with the aforementioned datasets as our Noiseless
GPT-2 model. For the text classification, we fine-tune a Noiseless BERT (i.e., BERT-Base-Uncased)
pre-trained model (ber; Devlin et al., 2018) that has 12-layer, 768-hidden, 12-heads, and 110M
parameters with adding a softmax function on top of the BERT model. To test the effectiveness and
adaptability of our mechanism across models, we also conducted experiments with an AWD-LSTM
model (Merity et al., 2017; Merity, 2019) (ASGD Weight-Dropped LSTM), which has a much fewer
parameters compared with GPT-2 and BERT. In AWD-LSTM model, we use a three-layer LSTM
model with 1, 150 units in the hidden layer and an embedding input layer of size 100.

Evaluation Results. In order to answer our evaluation questions, we conducted the following
comparisons: (1) examining the sensitive information coverage of sensitive entities identified by
the sensitive entity identification, i.e., spaCy (Honnibal & Montani, 2017), (2) estimators fE , fE+ ,
and User-level DP; (3) the interplay between privacy budget and model utility; (4) the impacts of
different sensitive entity categories and non-sensitive sentences on the privacy budget and model
utility; and (5) confirming our results in the text classification task. Our result analysis is as follows:

• Integrity of sensitive entities. In practice, sensitive information does not have to be some entities.
We can consider sensitive entities as a sub-type of sensitive information and vice-versa. However,
identifying sensitive information is out of the scope of our work. Note that our mechanism is not
limited to sensitive entities, since we can naturally extend it to cover sensitive information. For
instance, we can treat sensitive information as a category of sensitive entities when a sensitive infor-
mation identification method is available.

In our work, we utilize spaCy (Honnibal & Montani, 2017), which is one of the state-of-the-art
large-scale entity recognition systems, to identify sensitive entities. In order to evaluate the integrity
of identified sensitive entities, we conducted a clarification on Amazon Mechanical Turk (AMT),
and we found that the results from spaCy covers over 94% of sensitive information as identified
by AMT workers. Note that we recruited master-level AMT workers for a high quality of results,
and we provided detailed guidance before AMT workers conducted the task. Each data sample
was assigned to 3 master-level workers to mitigate bias and subjective views. Consequently, our
experiments using the spaCy identified sensitive entities are solid.

• Comparing Estimators fE , fE+ , and User-level DP. In this analysis, we set qu = 0.05, qe = 0.5,
qs = 1, z = 2, and compute privacy budget ε at δ = 10−5 (a typical value of δ in DP) as a function
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(a) CONLL-2003 dataset (b) AG dataset (c) SEC dataset

Figure 3: Next word prediction results using the GPT-2 model. (The lower the better)

(a) AG dataset (b) AG dataset with varying qs̄

Figure 4: Text classification results on the AG dataset using the BERT model. With qs̄ = 0.0, the
test error rate is 75% in all cases. (The lower the better)

of the training steps T . Figure 2 shows curves of using different estimators and the User-level DP
with all entities in CONLL-2003, AG, and SEC datasets. More results with a breakdown of sensitive
entities are in Figure 6 (Appendix K).

Our UeDP-Alg with fE+ achieves a notably tighter privacy budget compared with fE and with the
User-level DP mechanism in all scenarios in CONLL-2003, AG, and SEC datasets. User-level DP
consumes a much higher privacy budget ε compared with both of our estimators fE and fE+ . For
instance, at T = 50, the values of ε in organization entities of fE and fE+ , and the value of ε of the
User-level DP in: (1) the CONLL-2003 dataset are 0.62, 0.36, and 1.18; (2) the AG dataset are 0.75,
0.47, and 1.48; and (3) the SEC dataset are 0.71, 0.38, and 1.40 respectively.
Significantly, the privacy budget (ε) gap between User-level DP, fE , and fE+ is proportionally in-
creased to the number of steps T . That means the more training steps T , the larger the privacy
budget our model can save compared with the baseline User-level DP. That is a promising result in
the context that our model provides DP protection for both users and sensitive entities, compared
with only protection for users in User-level DP. We observe a similar phenomenon on all entities and
other sensitive categories (Appendix K).
• Privacy Budget (ε, δ)-UeDP and Model Utility. From our theoretical analysis, fE+ is better than
the estimator fE . Therefore, for the sake of simplicity, we only consider UeDP-Alg fE+ instead of
showing results from both estimators. From now, UeDP-Alg is used to indicate the use of our estima-
tor fE+ . Figure 3 illustrates the perplexity as a function of the privacy budget ε for an GPT-2 model
trained on a variety of sensitive entity categories in UeDP, User-level DP, and De-Identification. The
noiseless GPT-2 (for the next word prediction) and BERT (for the text classification) models are
considered an upper-bound performance mechanism without offering any privacy protection.

In the CONLL-2003 dataset (Figure 3a), there are NER labels for person, location, organization,
and miscellaneous entities; therefore, we choose these types as sensitive entity categories to protect
in UeDP-Alg. UeDP-Alg achieves a better perplexity compared with User-level DP under a tight
privacy budget ε ∈ [0.18, 0.20]. Also, from ε = 0.185 (a tight privacy protection), our UeDP-
Alg achieves a better perplexity than De-Identification. In fact, at at ε = 0.185, our UeDP-Alg
achieves 35.09 for person, 35.34 for organization, 35.57 for miscellaneous, 36.79 for location en-
tities, compared with 52.01 in User-level DP. When spending more privacy budget (ε ≥ 0.195),
both UeDP-Alg and User-level DP converge at a very competitive perplexity level, approaching the
upper-bound Noiseless GPT-2. For instance, at ε = 0.20, there are significant perplexity drops given
UeDP-Alg and User-level DP mechanisms, i.e., our UeDP-Alg is 29.24 for person, 29.35 for mis-
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cellaneous, 29.58 for organization, and 29.75 for location entities. Meanwhile, the perplexity values
of User-level DP, De-Identification, and the noiseless GPT-2 model are 30.15, 38.30, and 27.13.

Results on AG and SEC datasets (Figures 3b and 3c) further strengthen our observations. In AG
and SEC datasets, we applied spaCy to identify different sensitive entity categories, such as GPE,
location, organization, and PII (i.e., person and location information). UeDP-Alg achieves better re-
sults compared with User-level DP in all considering sensitive entity categories and privacy budgets,
and outperforms De-Identification in most cases. That is promising and consistent with our previous
analysis. For instance, in the AG dataset, at ε = 0.19, our UeDP-Alg achieves 25.33 for location,
25.72 for PII, 25.77 for organization, and 26.01 for GPE entities, compared with 36.05 in User-level
DP. De-Identification obtains 35.90, and the upper bound result in the noiseless GPT-2 model is
24.98. Similarly, in the SEC dataset (Figure 3c), at ε = 0.19, UeDP-Alg achieves perplexity of
20.98 in GPE, 21.12 in PII, 21.22 in location, 21.50 in organization, and 21.33 in all entities, com-
pared with 36.07 in User-level DP, and 34.07 in De-Identification. In AG and SEC datasets, at a tight
privacy budget, i.e., ε = 0.19, our UeDP-Alg has better perplexity values than the De-Identification,
approaching the noiseless GPT-2 model.

• Sensitive Entity Categories. In all datasets (Figures 3 and 6, Appendix K), the more sensitive
data samples to protect, the higher the privacy budget is needed and the lower performance of the
model achieves (i.e., higher values of perplexity). These theoretical and experimental results are
consistent with our theoretical analysis after Lemma 2. For instance, in the SEC dataset, the number
of sensitive samples in each category is as follows: 60 in GPE, 273 in location, 357 in PII, 1, 955 in
organization, and 2, 166 in all entities. After 500 steps, the respective values of ε are 0.19 in GPE,
0.24 in location, 0.26 in PII, 0.73 in organization, 0.81 in all entities, and 4.08 in User-level DP
(Figure 6). At ε = 0.18 (Figure 3c), we obtain perplexity values of 42.63 in GPE, 43.21 in location,
43.30 in PII, 43.70 in organization, 43.77 in all entities, and a 583.06 in User-level DP.

• Text classification. Figure 4a shows that our UeDP-Alg achieves lower test error rates in terms of
text classification on the AG dataset than baseline approaches in most cases across different types of
sensitive entities under a very tight UeDP protection (ε ∈ [0.18, 0.19]). This is a promising result.
When ε is higher, the test error rates of both UeDP-Alg and User-level DP drop, approaching the
noiseless BERT model’s upper-bound result.

• Non-Sensitive Sentences. To shed light into the impact the non-sensitive sentence sampling rate
qs on model utility under UeDP protection, we varied the value of qs from 0 to 1 in all datasets
and tasks. Figures 4b, 7, 8, and 10b (Appendix K) show that considering non-sensitive sentences
(i.e., qs > 0) significantly improves model utility (i.e., perplexity or test error rate) compared with
only considering sensitive-sentences (i.e., qs = 0). However, different tasks on different datasets
may have different optimal values of qs. This opens a new research question on how to theoretically
approximate the optimal value of qs.

Results on the AWD-LSTM model (Figures 8-10 in Appendix K) further strengthen our observa-
tions. In our experiments, the AWD-LSTM model generally obtains comparable results with GPT-2
(for next word prediction) and BERT (for text classification) at a higher privacy budget range (i.e.,
ε ∈ [0.5, 3.0] in the AWD-LSTM model compared with ε ∈ [0.18, 0.2] in the GPT-2 and BERT mod-
els). This is because the GPT-2 and BERT models are pretrained on large-scale datasets, so that it is
easily adapted to the idiosyncrasies of a target task (i.e., next word prediction or text classification)
compared with the AWD-LSTM model trained from scratch.

6 CONCLUSION

In this paper, we developed a novel notion of user-entity DP (UeDP), providing protection to both
the participation information of users and sensitive entities in learning NLMs. That is one step
forward compared with existing protection levels in DP. By incorporating non-sensitive samples in
the training process, we addressed the trade-off between model utility and privacy loss with a tight
bound of model sensitivity. Theoretical analysis and rigorous experiments conducted on real-world
datasets shown that our UeDP-Alg outperforms baseline approaches in fundamental NLM tasks,
i.e., next word prediction and text classification, under rigorous UeDP protection, i.e., small privacy
budget ε. In addition, considering non-sensitive samples into our UeDP estimators notably improves
model utility under the same UeDP protection. The more number of sensitive entities is, the lower
the model utility will be; and vice-versa.
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A NOTATIONS AND TERMINOLOGIES

Table 2: Notations and Terminologies.

Notations Meaning

D, U , x DatasetD consisting U users and x samples
u, nu Set of users U , u ∈ U , nu is the number of samples in u
E, e Set of sensitive entitiesE, e ∈ E
S, s Set of samples having sensitive entities inE, s ∈ S
S Set of non-sensitive samples that do not consist of any sensitive entities inE

PP = 2−
∑
x∈D p(x) log2 p(x) Perplexity where p(x) is a probability to predict the next word in x
ε, δ Privacy budget ε and broken probability δ
D,D′ User-entity adjacent databases

‖U − U ′‖1 l1 distance between two sets of users U ∈ D and U ′ ∈ D′
‖E − E′‖1 l1 distance between two sets of sensitive entitiesE ∈ D andE′ ∈ D′

Ut, St,Et, St Selected sets of users, non-sensitive samples, sensitive entities,
sensitive samples having e ∈ Et, with sample rates qu, qs, qe

M Moments accountant
wu = min( nuw̄u , 1),Wu =

∑
u∈U wu User-level weight associated with a user

we = min( new̄e , 1),We =
∑
e∈E we Entity-level weight associated with a sensitive sample

ws = min( nsw̄s , 1),Ws =
∑
s∈S ws Sample-level weight associated with a non-sensitive sample

∆u,s Gradients computed using the sample s of user u
β Radius of the norm ball to bound l2-norm of gradients

∆t+1
u,E =

∑
e∈Et we(

∑
s∈Stue

∆u,s) Updated gradients of model parameters in Simple-Update UeDP

fE(Ut, Et) =

∑
u∈Ut wu∆

t+1
u,E

quWu×qeWe Simple-Update UeDP at iteration t

S(fE) ≤ (|U|+1) max(wu)β
quWu×qeWe Sensitivity of the estimator fE

σ = zS(fE) =
z(|U|+1) max(wu)β
quWu×qeWe Noise scale σ computed for the estimator fE , z is a hyper-parameter

∆t+1
u,E = (

∑
e∈Et we∆u,e +

∑
s∈Stu

ws∆u,s) Updated gradients of model parameters in Optimized-Update UeDP

fE+ (Ut, Et) =

∑
u∈Ut wu∆

t+1
u,E

quWu×qeWe+qsWs
Optimized-Update UeDP at iteration t

S(fE) ≤ (|U|+1) max(wu)β
quWu×(qeWe+qsWs)

Sensitivity of the estimator fE+

σ = zS(fE+ ) =
z(|U|+1) max(wu)β

quWu×(qeWe+qsWs)
Noise scale σ computed for the estimator fE+

θt+1 ← θt + ∆t+1 +N (0, Iσ2) Update model parameters

B CATEGORIES OF SENSITIVE ENTITIES, AND TOOL-KITS

If a training set does not have sensitive entity indicators, we suggest several ways to identify sensitive
entities in textual data, as follows:

Using Named Entity Recognition (NER) datasets. NER datasets (Sang & De Meulder, 2003; Gr-
ishman & Sundheim, 1996; Weischedel et al., 2011; Balasuriya et al., 2009; Derczynski et al., 2017;
Liu & Lane, 2017; Lim et al., 2017; Stubbs et al., 2015) refer to textual data in which entities in a text
are labeled based on several predefined categories. NER typically makes it easy for individuals and
systems to identify and understand the subject of the given text quickly. Therefore, extracted entities
are critical and should be protected. For instance, in the CONLL-2003 dataset (Sang & De Meulder,
2003), there are four entity types, i.e., location, person, organization, and miscellaneous.

Using Publicly Available Tool-kits. For textual datasets that do not have NER labels or sensitive
entity indicators, there are publicly available tool-kits for detecting named entities or PII in text,
for example, Spacy (Honnibal & Montani, 2017), Stanza (Qi et al., 2020), and Microsoft Presidio1.
Spacy and Stanza deploy pre-trained NER models based on statistical learning methods to identify
eighteen categories of named entities, including person, nationality or religious groups, facility, etc.
(Table 3). Microsoft Presidio is another toolbox for PII detectors and NER models based on Spacy
and regular expression2. For instance, Spacy is used as a sensitive entity identification in Figure 1
to detect “David Johnson” a person entity, “Main” a GPE entity, “September 18” a date entity, and
“Main Hospital” an organization entity.

1https://microsoft.github.io/presidio/
2https://github.com/google/re2/
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We present descriptions of different sensitive entity categories in the CONLL-2003, AG, and SEC
datasets in Table 3. The descriptions are from (Sang & De Meulder, 2003) and Spacy3, support-
ing eighteen different entity types. In the current work, we play with four different types and their
combinations. Note that, in UeDP, providing the name of an algorithm and a sensitive entity means
we consider that type of entity as sensitive entities in the training process. For instance, in Figure
6, UeDP-Alg fE+ (Org) means we use all organization entities as sensitive entities in the UeDP
Optimized algorithm. “All entities” means all types of sensitive entities considered for the dataset
are used. For example, “all entities” in the CONLL-2003 dataset means all person, location, orga-
nization, and miscellaneous entities are regarded as sensitive entities. Meanwhile, in the AG and
SEC datasets, “all entities” means that all organization, location, GPE, and PII entities are consid-
ered sensitive entities. More entity types are also presented in Table 3 so that users can have more
choices when identifying sensitive entities.

Table 3: Description of sensitive entity categories.

Type Description
Person Person, i.e., people, including fictional
Loc Location, i.e., non-GPE locations, mountain ranges, bodies of water.
Org Organization, i.e., companies, agencies, institutions, etc.
Misc Miscellaneous, i.e., entities that do not belong to the person, location,

and organization in CONLL-2003.
GPE Geopolitical entity, i.e., countries, cities, states
PII Personal identification information, i.e., person name, location, phone number, etc.
Date Absolute or relative dates or periods
NoRP Nationalities or religious or political groups
Fac Buildings, airports, highways, bridges, etc.
Product Objects, vehicles, foods, etc. (Not services.)
Event Named hurricanes, battles, wars, sports events, etc.
Law Named documents made into laws
Language Any named language
Work of art Titles of books, songs, etc.
Time Times smaller than a day
Percent Percentage, including “%”
Money Monetary values, including unit
Quantity Measurements, as of weight or distance
Ordinal “First”, “second”, etc.
Cardinal Numerals that do not fall under another type

3https://spacy.io/api/annotation#named-entities
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C PSEUDO-CODE OF UEDP PRESERVING ALGORITHM

Algorithm 1 UeDP-Alg

1: Input: Dataset D, set of sensitive entities E, set of sensitive samples S, set of non-sensitive samples S,
user sampling rate qu, sensitive entity sampling rate qe, non-sensitive sample sampling rate qs, a hyper-
parameter z, gradient clipping bound β, and number of iterations T

2: Initialize model θ0 and moments accountantM
3: wu = min( nu

ŵu
, 1) for all users u (nu is the number of samples in user u, ŵu is per-user sample cap)

4: we = min( ne
ŵe
, 1) for all sensitive samples in S (ne is the number of sensitive samples containing sensitive

entities e, ŵe is per-entity sample cap)
5: ws = min( ns

ŵs
, 1) for all non-sensitive samples in S (ns is the number of non-sensitive samples in S, ŵs

is per-sample sample cap)
6: Wu =

∑
u wu, We =

∑
e∈S we, Ws =

∑
s∈S ws

7: for t ∈ T do
8: U t ← sample users with probability qu
9: for each user u ∈ U t do

10: Stu ← sensitive samples (belonging to the user u) consisting of sensitive entities Et sampled from E
with probability qe

11:

{
∆t+1
u,E ← Simple-Update(u, Stu, θ

t,ClipFn), for fE in Lemma 1
∆t+1
u,E ← Optimized-Update(u, Stu, θ

t,ClipFn), for fE+ in Lemma 2

12: ∆t+1 =


∑
u∈Ut wu∆t+1

u,E
quWu×qeWe , for fE∑

u∈Ut wu∆t+1
u,E

quWu×(qeWe+qeWe)
, for fE+

13: σ ←

{
z(qu|U|+1) max(wu)β

quWu×qeWe , for fE
z(qu|U|+1) max(wu)β
quWu×(qeWe+qeWe)

, for fE+

14: θt+1 ← θt + ∆t+1 +N (0, Iσ2)
15: M.accum_priv_spending(z)
16: printM.get_priv_spent()
17: Output: (ε, δ)-UeDP θ,M
18: Simple-Update(u, Stu, θt, ClipFn):
19: for each sample s in Stu do
20: θ ← θt − η5 l(θ, s)
21: ∆u,s = θ − θt
22: ∆u,E =

∑
e∈Et we(

∑
s∈Stue

∆u,s)

23: return ClipFn(∆u,E , β)
24: Optimized-Update(u, Stu, θt, ClipFn):
25: S

t
u ← non-sensitive samples sampled from Su with probability qs

26: for each sample s in Stu ∪ S
t
u do

27: θ ← θt − η5 l(θ, s)
28: ∆u,s = θ − θt
29: ∀e ∈ Et : ∆u,e = we(

∑
s∈Stue

∆u,s)

30: ∆u,E = (
∑
e∈Et we∆u,e +

∑
s∈Stu

ws∆u,s)

31: return ClipFn(∆u,E , β)
32: ClipFn(∆, β):
33: return π(∆, β) = ∆ ·min

(
1, β
‖∆‖

)
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D PROOF OF LEMMA 1

Proof. If for all users u we have ‖∆t+1
u,E ‖2 ≤ β, then

S(fE) =

[∑
u∈Ut∪u′ wu[(

∑
e∈Et we(

∑
s∈Stue

∆u,s)) + we′(
∑
s∈St

ue′
∆u,e′)]

]
(quWu × qeWe)

−
∑
u∈Ut wu[

∑
e∈Et we(

∑
s∈Stue

∆u,s)]

(quWu × qeWe)

≤
∑
u∈Ut∪u′ wuβ

quWu × qeWe
≤ (qu|U |+ 1) max(wu)β

quWu × qeWe
(8)

Consequently, Lemma 1 holds.

E PROOF OF LEMMA 2

Proof. If for all users u we have ‖∆t+1
u,E ‖2 ≤ β, then

S(fE+) =

[∑
u∈Ut∪u′ wu[(

∑
e∈Et we(

∑
s∈Stue

∆u,s)) + we′(
∑
s∈St

ue′
∆u,e′) +

∑
s∈Stu

ws∆u,s]
]

quWu × (qeWe + qsWs)

−
∑
u∈Ut wu[

∑
e∈Et we(

∑
s∈Stue

∆u,s) +
∑
s∈Stu

ws∆u,s]

quWu × (qeWe + qsWs)

≤
∑
u∈Ut∪u′ [(wu)β]

quWu × (qeWe + qsWs)
≤ (qu|U |+ 1) max(wu)β

quWu × (qeWe + qsWs)
(9)

Consequently, Lemma 2 holds.

F PROOF OF THEOREM 1

Proof. At each step, users, sensitive entities, and non-sensitive samples are respectively selected
randomly with probability qu, with probability qe, and with probability qs. For the estimator fE+ , if
the l2-norm of each user’s gradient update, using both sampled sensitive and non-sensitive samples,
is bounded by S(fE+), then the moments can be bounded by that of the sampled Gaussian mecha-
nism with sensitivity 1, the scale z = σ/S(fE+), and sampling probabilities qu, qe, and qs. Thus, we
can apply the composability as in Theorem 2.1 (Abadi et al., 2016) to correctly compute the UeDP
privacy loss with the scale z = σ/S(fE+) for T steps.

Similarly, for fE , we can use the composability as in Theorem 2.1 (Abadi et al., 2016) to compute
the UeDP privacy loss with the scale z = σ/S(fE) for T training steps.

G REVISITING WORD-LEVEL LDP ANALYSIS IN (LYU ET AL., 2020A)

This section aims at revisiting privacy protection in (Lyu et al., 2020a) and describes existing issues
of privacy accumulation over the embedding dimension in terms of theory and experimental results
of their approach, which is confirmed by the authors (Lyu et al.). Then, we provide corrected
Theorems based upon our theoretical analysis, and we compare them with our approaches.

In the paper, they aim at preserving privacy of the extracted test representation from the user while
maintaining a good performance of the classifier, which is trained at a server by the data collected
from users. To achieve the goal, they consider a word-level DP; i.e., two inputs x and x′ are consid-
ered to be adjacent if they differ by at most 1 word. Additionally, they introduce a DP noise layer r
after a predefined feature extractor f(x). To train a robust classifier at the server, they add the same
level of noise as the test phase in the training process and optimize the classifier by minimizing the
loss function as follows:

L(x, y) = X (C(f(x) + r), y) (10)
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where C is the classifier, y is the true label, X is the cross entropy loss function. The Laplace noise
layer r is injected into the embedding f(x) in which its coordinates r = {r1, r2, . . . , rk} are i.i.d.
random variables drawn from the Laplace distribution defined by Lap(b) with b =

∆f

ε , ε is the
privacy budget, and ∆f is the sensitivity of the extracted representation. Here, k is the dimension of
the embedding f(x).

Algorithm 2 describes how to derive differentially private representation from the feature extractor
f . Note that xs in the Algorithm 2 is a sentence (equivalent to x in our notation), which is considered
to be sensitive and be protected.

Algorithm 2 Differentially Private Neural Representation (DPNR) (Lyu et al., 2020a)

1: Input: Each sensitive input xs ∈ Rd, feature extractor f
2: Parameters: Dropout vector In ∈ {0, 1}d
3: Word dropout: x̃s ← xs � In, where � performs a word-wise multiplication.
4: Extraction: xr ← f(x̃s)
5: Normalization: xr ← xr −min(xr)/(max(xr)−min(xr))
6: Perturbation: x̂r ← xr + r, ri ∼ Lap(b)
7: Output: Perturbed representation x̂r.

Theorems 1 and 2 in (Lyu et al., 2020a) do NOT hold. Lyu et al. (2020a) consider adjacent
databases differing by one word. It is clear that changing one word in x may result in changing
the entire embedding vector f(x). In their paper, they normalize each element of f(x) into the
range [0, 1] (Line 5, Algorithm 2), hence each element sensitivity of f(x) is ∆f = 1, the noise is
Lap(∆f/ε). Therefore, each element of the embedding f(x) consumes a privacy budget ε. Since
the k elements of the embedding are derived from a single sensitive input x, applying the LDP mech-
anism A(.), i.e., Lap(b), k times will consume the privacy budget kε. This follows the composition
property in DP, also known as the curse of dimensionality in local DP. Note that the k elements
cannot be treated by using the parallel property in DP (Dwork & Lei, 2009), since all of them are
derived from a single input x (data), NOT from k different inputs (k different datasets). Conse-
quently, Theorem 1 of (Lyu et al., 2020a) does NOT hold at their reported ε word-level DP. Since
Theorem 2 of (Lyu et al., 2020a) is derived from the result of Theorem 1 of (Lyu et al., 2020a), it is
clear that Theorem 2 of (Lyu et al., 2020a) also does NOT hold.

Element-level DP does NOT hold. During our discussion with the authors of (Lyu et al., 2020a),
the authors mentioned that their approach preserves a new notion of (ε, 0)-element-level DP, i.e.,
two embeddings differ from one element, instead of a word-level DP. However, for the element-
DP to hold, all the elements in the embedding f(x) must be independent from each other, that is,
changing one element will not result in changing any other element. If changing one element results
in changing all the remaining elements, then element-DP will be suffered from the dimension of
the embedding by following group privacy. In the current approach, changing one element means
there is a change in the input data x to occur. Equivalently, using BERT, any change in the input
data x will result in changing the whole embedding (all elements). Therefore, the condition of two
neighboring embeddings only differing in only one element does NOT hold in theory and practice.
Consequently, the introduced element-level DP does NOT hold at the level of (ε, 0)-DP.

Surprisingly Good Experimental Results in (Lyu et al., 2020a) due to Inappropriate Privacy
Analysis. In their experimental results, e.g., Table 2 of (Lyu et al., 2020a), it is surprising that
the approach could achieve almost the same (and even better) model utility with noiseless model
given the extremely low ε = 0.05 using BERT embeddings. For Theorems 1 and 2 to hold and
support the correctness of the approach, the privacy budget must be ε × k, which is at least 0.05 ×
768 = 38.4, instead of just ε reported in the paper. Similar results were reported through out the
all in experiments. Eventually, the approach in (Lyu et al., 2020a) cannot provide any practical DP
protection to the embedding at any levels, including word-level, character-level, and even a single
embedding element given an input data x.

Our Correcting Theorems 1 and 2 in (Lyu et al., 2020a). Based upon our analysis, we introduce
corrected versions of the Theorems 1 and 2 in (Lyu et al., 2020a), as follows.
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Theorem 1. Corrected Theorem 1 in (Lyu et al., 2020a). Let the entries of the noise vector r be
drawn from Lap(b) with b =

∆f

ε . The Algorithm 2 is kε-word-level DP, where k is dimension of the
embedding f(x).

Proof. Each element of the embedding f is bounded in [0, 1], so ∆f = 1 for each element. By
adding i.i.d. random noise variables drawn from the Laplace Lap(b) with b =

∆f

ε into each element
of f , each element consumes ε/k privacy budget. Since the k elements of the embedding are derived
from a single sensitive input x, applying the mechanism Lap(b) k times on the k elements will
consume the privacy budget kε. Therefore, the Algorithm 2 is kε-word-level DP.

Theorem 2. Given an input x ∈ D, suppose A(x) = f(x) + r is kε-word-level DP, let In with
dropout rate µ be applied to x: x̃ = x � In, then A(x̃) is ε′-word level-DP, where ε′ = ln[(1 −
µ) exp(kε) + µ].

Proof. Suppose there are two adjacent inputs x1 and x2 that differ only in the i-th coordinate (word),
say x1i = v, x2i 6= v. For arbitrary binary vector In, after dropout, x̃1 = x1 � In, x̃2 = x2 � In,
there are two possible cases, i.e., Ini = 0 and Ini = 1.

If Ini = 0: Since x1 and x2 differ only in i-th coordinate, after dropout x̃1i = x̃2i = 0, hence
x1 � In = x2 � In. Then Pr{A(x1 � In) = S} = Pr{A(x2 � In) = S}.
If Ini = 1: Since x1 and x2 differ only in i-th coordinate, after dropout x̃1i = v, and x̃2i 6= v. Since
A(x) is kε-word level-DP, then Pr{A(x1 � In) = S} ≤ exp(kε)Pr{A(x2 � In) = S}.
Combining these two cases, and Pr[Ini = 0] = µ, we have:

Pr{A(x1 � In) = S} = µPr{A(x1 � In) = S}+ (1− µ)Pr{A(x1 � In) = S}
≤ µPr{A(x2 � In) = S}+ (1− µ) exp(kε)Pr{A(x2 � In) = S}
= [(1− µ) exp(kε) + µ]Pr{A(x2 � In) = S}

= exp
(

ln[(1− µ) exp(kε) + µ]
)
Pr{A(x2 � In) = S} (11)

Therefore, after dropout, the privacy budget is ε′ = ln[(1− µ) exp(kε) + µ].

Comparison with Our Work. Apart from the privacy accumulation over the embedding dimension
issue, in their work, during training the model, they draw the Laplace or Gaussian noise at every
training iteration. It means that the model accesses the raw data at every iteration; therefore, the
privacy budget at the training phase is accumulated over the number of training iterations, which
can be a large number that results in an exploded privacy budget in training. In fact, they focus on
protecting privacy at the inference time and use the noise in the training phase to obtain a more robust
model without considering training data privacy. This is different from our goal to protect users and
sensitive entities of training data, which is a more challenging task. Our UeDP-preserving model
can be deployed to the end-users for a direct use in the inference phase, without demanding that the
end-users send their data embedding to our server; thus offering a more rigorous privacy protection
and better usability. In addition to this, our approach offer a tight DP budget bound compared with
the DPNR algorithm in (Lyu et al., 2020a), which consumes large DP budgets that is proportional to
the large size of the embedding k.

H REVISITING BINARY ENCODING-BASED LDP ANALYSIS IN (LYU ET AL.,
2020B)

This section aims at revisiting privacy protection for the binary encoding-based LDP mechanism in
(Lyu et al., 2020a) and it describes the existing privacy exaggeration problem and the loose privacy
budget bounding problem in terms of theoretical results of their approach.

In general, let us apply a randomized response mechanism B(v) on a binary bit string v to preserve
LDP. We denote Bi(v) when B(v) is applied on bit i-th of v. If B(v) is ε-LDP applied on all
elements of the embedding v, then the privacy budget ε consumed by v is computed from:
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PB(v)(z)

PB(v′)(z)
=

exp(− εd(B(v)−z)
∆B )

exp(− εd(B(v′)−z)
∆B )

≤ exp(
ε|d(B(v)− z)− d(B(v′)− z)|

∆B
)

≤ exp(
εd(B(v)−B(v′))

∆B
) (12)

where ∆B = maxv,v′ |B(v)−B(v′)| is the sensitivity of the function B(v).

H.1 HASH FUNCTION-BASED LDP (ERLINGSSON ET AL., 2014; BASSILY & SMITH, 2015;
WANG ET AL., 2017)

If v is obtained by mapping a value or an input data into a random hash using a hash function,
then all elements of v are i.i.d., and changing one bit of v will not result in changing any other bits
of v. Therefore, ∆B =

∑
i ∆Bi, in which ∆Bi is the sensitivity of Bi(v) computed by ∆Bi =

maxv,v′ |Bi(v) − Bi(v′)| = maxv,v′
∑rl
j=1 |Bi(vj) − Bi(v′j)| = 1, and d(Bi(v) − Bi(v′)) = 1

since vi and v′i are adjacent databases.

Therefore, in hash function-based approaches (Erlingsson et al., 2014; Bassily & Smith, 2015; Wang
et al., 2017), we have:

PB(v)(z)

PB(v′)(z)
= Πrl

i=1

PBi(v)(z)

PBi(v′)(z)
≤ Πrl

i=1 exp(
εid(Bi(v)−Bi(v′))

∆Bi
) ≤ Πrl

i=1 exp(εi) = exp(
∑
i

εi)

(13)

As a result, the privacy budget spent on v is truthfully ε where ε =
∑
i εi.

H.2 BINARY ENCODING-BASED LDP (LYU ET AL., 2020B)

As discussed in Section 2, binary encodings of all the embedded features are concatenated into a
large binary vector v of the size rl, where r is the number of embedded features, and l is the number
of binary bits, i.e., 1 sign bit, m integer bits, and n fraction bits, used to encode each embedded
feature’s real value, i.e., l = 10 in (Lyu et al., 2020b). Straightforwardly, Lyu et al. (2020b) applied
the randomized response mechanism B on the bit string rl and shown that they can achieve ε-LDP:

PB(v)(z)

PB(v′)(z)
= Πrl

i=1

PBi(v)(z)

PBi(v′)(z)
≤ exp(ε) (14)

However, a critical mistake in their paper is considering ∆B = rl for the entire embedding v of
size rl, which is equivalent to consider ∆Bi = 1 for every bit. In addition, a binary encoding bit
string cannot be treated as a random hash, since the released result of Bi(v) can be transformed into
a real-value exposing privacy risk to the true value v. This is fundamentally different for a hash, in
which the perturbation cannot be transformed into a real-value. In other words, the bits in binary
encoding is not independent as binary bits in a hash.

From Eq. 14, for every bit i, there always exists a privacy budget εi quantified by
PBi(v)(z)

PBi(v′)(z)
.

Note that ε =
∑
i εi. This is equivalent to satisfying the following condition:

PBi(v)(z)

PBi(v′)(z)
≤

exp( εid(Bi(v)−Bi(v′))
∆Bi

) ≤ exp(εi). Next, we will show that this condition does NOT always hold
given the binary encoded bit string rl.

Given ∆Bi = 1 for every bit, then we have:

PBi(v)(z)

PBi(v′)(z)
≤ exp(

εid(Bi(v)−Bi(v′))
∆Bi

) = exp(εid(Bi(v)−Bi(v′)))

To bound the privacy loss given theBi(v), we need to bound the distance function d(Bi(v)−Bi(v′)).
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Privacy Risk Exaggeration. Given a bit i in the integer part of one embedding element, we have
that:

If i ∈ [1,m] is an integer bit : d(Bi(v)−Bi(v′)) ≤ max
v,v′

(|Bi(v)−Bi(v′)| × 2i−1) (15)

We can see that |Bi(v)−Bi(v′)| ≤ 1. As a result, we have

If i ∈ [1,m] is an integer bit : d(Bi(v)−Bi(v′)) ≤ 2i−1 (16)

Consequently, we have that

If i ∈ [1,m] is an integer bit :
PBi(v)(z)

PBi(v′)(z)
≤ exp(

εid(Bi(v)−Bi(v′))
∆Bi

) ≤ exp(2i−1εi) (17)

From the Eq. 18, the actual privacy budget used for an integer bit i ∈ [1,m] is 2i−1εi, which is
significantly larger than the privacy budget εi quantified by the binary encoding-based LDP approach
in (Lyu et al., 2020b). We call this a privacy risk exaggeration in the integer part of the binary
encoding-based LDP approach in (Lyu et al., 2020b). This problem is also true for the sign bit. If i
is a sign bit, then the actual privacy budget is 2m+1εi, since d(Bi(v)−Bi(v′)) ≤ 2m+1, as follows:

If i is a sign bit :
PBi(v)(z)

PBi(v′)(z)
≤ exp(

εid(Bi(v)−Bi(v′))
∆Bi

) ≤ exp(2m+1εi) (18)

This privacy risk exaggeration problem is severe, since the actual privacy budget can be exponential,
given m× r integer bits and r sign bits in the whole bit string rl.

Loose Privacy Budget Bounding. Similarly, for fraction bits i ∈ [1, n], we have that

If i ∈ [1, n] is a fraction bit :
PBi(v)(z)

PBi(v′)(z)
≤ exp(

εid(Bi(v)−Bi(v′))
∆Bi

) ≤ exp(2−iεi) (19)

From Eq. 19, the actual privacy budget used for a fraction bit i ∈ [1, n] is 2−iεi, which is smaller
than the privacy budget εi quantified in the binary encoding-based LDP approach in (Lyu et al.,
2020b). In other words, the approach proposed in (Lyu et al., 2020b) quantified the privacy budget
more than it needed. We call this a loose privacy budget bounding problem in the fraction part in
(Lyu et al., 2020b).

To conclude, straightforwardly applying a randomized response mechanism on binary encoded vec-
tor as in (Lyu et al., 2020b) cannot correctly bound the actual privacy risk with local DP, due to the
primitive difference between a random hash and a binary encoding bit string. The privacy risk exag-
geration problem can severely loosen the privacy protection claimed in (Lyu et al., 2020b). Similar
approaches with (Lyu et al., 2020b), such as (Chamikara et al., 2019), may suffer from the same
problems.

I DATASETS AND DATA PROCESSING

(a) CONLL-2003 dataset (b) AG dataset (c) SEC dataset

Figure 5: Distribution of users and samples in CONLL-2003, AG, and SEC datasets.
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CONLL-2003 consists of Reuters news stories published between August 1996 and August 1997.
CONLL-2003 is an NER dataset, where there are labels for four different types of named entities,
including location, organization, person, and miscellaneous entities. These types of named entities
are considered sensitive entities. In the CONLL-2003 dataset, there is no obvious user information;
hence, we consider each document as a user and each sentence in a document as a sample in the next
word prediction task.

AG dataset is a collection of news articles gathered from more than 2, 000 news sources by Come-
tomyhead academic news search engine. It is categorized into four classes: world, sport, business,
and science/technology classes. Similar to the CONLL-2003 dataset, there is no user information in
the AG dataset. To imitate a user indicator, we randomly divide news into different users based on
Gaussian distribution. There are no named entities; thus, we apply pre-trained Spacy to find named
entities and PII in the dataset. We choose different types of these named entities to be sensitive
entities: organization, GPE (i.e., countries, cities, and states), location, and PII entities. Please refer
to Table 3 in Appendix B for details of sensitive entities.

Our SEC dataset consists of over 10,000 contract clauses collected from contracts submitted in SEC
filings4. Since the contracts can be associated with a company ID, we use the ID as a user indicator.
Similar to the AG dataset, we consider organization, GPE, location, and PII entities as sensitive
entities to protect.

In addition to the next word prediction in all datasets, we conducted text classification on the AG
dataset to further strengthen our observations. For text classification, the number of labels is not
sufficient in the SEC dataset, and the labels do not exist in the CONLL-2003 dataset. Therefore, we
do not utilize CONLL-2003 and SEC datasets for text classification in this study.

For data preprocessing, we changed all words to lower-case and removed punctuation marks. In
CONLL-2003 and SEC datasets, rare words that appear less than three times in the dataset are
replaced with a <unk> token. In the AG dataset, we kept 30, 000 words that appear the most, and
we replaced the rest with a <unk> token.

Figure 5 shows the distribution of users and samples in CONLL-2003, AG, and SEC datasets. In
the CONLL-2003 dataset, there is no obvious user information; hence, we consider each document
as a user and each sentence in a document as a sample. Like the CONLL-2003 dataset, in the AG
dataset, there is no user information. Therefore, to imitate a user indicator, we randomly divide news
into different users. The number of samples per user follows a Gaussian distributionN (15, 22), i.e.,
there are 15 samples per user on average, and the standard deviation is 2 samples. Each news is
considered as a sample. In the SEC dataset, since the contracts can be associated with a company
ID, we use the ID as a user indicator. The document related to the ID is considered as a sample.

J MODEL CONFIGURATION

For the GPT-2 and BERT models, we use the versions that have 12-layer, 768-hidden, and 12-heads.
Adam optimizer is used with the learning rate is 10−5. Clipping bound β = 0.1 and the scale
z = 2.5. The sampling rate qu, qe, qs are 0.05, 0.5, and 1.0.

With the AWD-LSTM model for both next word prediction and text classification tasks, all experi-
ments use a three-layer LSTM model with 1,150 units in the hidden layer and an embedding input
layer of size 100. Embedding weights are uniformly initialized in the interval [−0.1, 0.1] with di-
mension d = 100 and other weights are initialized between [− 1√

H
, 1√

H
], where H is the size of all

hidden layers. The values used for dropout on the embedding layer, the LSTM hidden-to-hidden
matrix, and the final LSTM layer’s output are 0.1, 0.3, 0.5, respectively. Clipping bound β = 0.1
and the scale z = 2. The sampling rate qu, qe, qs are 0.05, 0.5, and 1.0 (note that qs is 0.6 in
the text classification task). SGD optimizer is used. In text classification with the AG dataset, a
softmax layer is applied on top of the AWD-LSTM with the output dimension is 4, corresponding
to four classes in the dataset. The same sets of sensitive entity categories are used in the next word
prediction and the text classification tasks.

4https://www.sec.gov/edgar.shtml
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K EXPERIMENTAL RESULTS ON DIFFERENT CATEGORIES OF SENSITIVE
ENTITIES AND TEXT CLASSIFICATION

From theoretical analysis, as shown in Figure 6, the greater the number of sensitive data samples to
protect, the higher the privacy budget is needed, and the lower the performance that the language
model achieves (i.e., the model reaches higher values of perplexity). These theoretical and experi-
mental results are consistent with our theoretical analysis after Lemma 2.

For instance, in the SEC dataset, the number of sensitive samples in each category is 60 in GPE,
273 in location, 357 in PII, 1, 955 in organization, and 2, 166 in all entities. After 500 steps, the
respective values of ε are 0.19 in GPE, 0.24 in location, 0.26 in PII, 0.73 in organization, 0.81 in all
entities, and 4.08 in User-level DP. In addition, at ε = 0.5, we obtain perplexity values of 39.41 in
GPE, 58.11 in location, 76.05 in PII, 235.32 in organization, 277.42 in a 556.34 in User-level DP.

Given a little larger privacy budget ε ≥ 2, the perplexity values drop, and the gap among different
sensitive entity categories, User-level DP, and the noiseless AWD-LSTM model reduces notably. For
instance, at ε = 3, the perplexity value is 34.79 in organization, and 36.25 in all entities, compared
with 45.18 in User-level DP, and 32.77 in the noiseless AWD-LSTM model.

In the CONLL-2003 dataset, the number of sensitive samples per category is 3, 438 in miscellaneous,
4, 406 in person, 5, 187 in organization, 5, 433 in location, and 11, 176 in all entities. There are
14, 040 samples in total. At iteration 500th, the corresponding εs are 0.44 in miscellaneous, 0.52 in
person, 0.61 in organization, 0.63 in location, and 1.31 in all entities, and 3.40 in User-level DP. In
the AG dataset, we find 18, 506 in GPE, 39, 988 in location, 42, 683 in PII, 58, 177 in organization,
and 67, 157 in all entities. There are 112, 000 samples in total. At iteration 500th, the corresponding
εs are: 0.39 in GPE, 0.73 in location, 0.78 in PII, 1.07 in organization, and 1.24 in all entities, and
4.34 in User-level DP.

We can see that De-Identification achieves a competitive perplexity result. The key reason is that, in
De-Identification, sensitive entities are marked, resulting in a smaller model sensitivity, compared
with the worst-case scenarios (i.e., the upper bound of the model sensitivity) in our UeDP-Alg.
Our algorithm offers rigorous DP guarantees for both users and sensitive entities; meanwhile, De-
Identification provides no privacy guarantee to users or sensitive entities. More importantly, when
we have a little larger privacy budget ε ≥ 2, our UeDP-Alg has very competitive perplexity values –
even better than the De-Identification in all cases – approaching the noiseless AWD-LSTM model.

Like the next word prediction task, the text classification results on the AG dataset (Figure 10a)
also showed that our UeDP-Alg achieves lower test error rates than baseline approaches in most
cases across different types of sensitive entities. The result is promising given the very tight UeDP
protection (ε ∈ [0.7, 1]). For instance, at ε = 0.7, the test error rates are 0.30 in GPE and in
organization, 0.31 in location, 0.32 in PII, and 0.28 in all entities, compared with 0.32 in User-level
DP and 0.32 in De-Identification.

When spending more privacy budget, the test error rates of both UeDP-Alg and User-level DP drops,
approaching the noiseless AWD-LSTM model’s upper-bound result. At ε = 1, UeDP-Alg obtains
0.22 in organization, 0.26 in GPE, 0.28 in location, 0.27 in PII and in all entities, compared with
0.29 in User-level DP, 0.32 in De-Identification, and 0.22 in the noiseless AWD-LSTM model.

From our experiments, as shown in Figure 8, considering non-sensitive sentences into training UeDP
notably improves model performance under the same UeDP protection. However, different tasks on
different datasets may require different optimal values of the sampling rate qs to achieve the best
model performances. For instance, in the CONLL-2003 dataset, without non-sensitive sentences
(qs̄ = 0), the perplexity (PPL) is 27.06 in Organization, 30.67 in Person, 42.75 in Miscellaneous,
66.74 in Location, and 28.89 in All entities. At the same privacy budget, the lowest perplexity
achieves at qs̄ = 0.4 in Location (PPL = 21.85) and in Organization (PPL = 21.55), and at qs̄ = 0.6
in Person (PPL = 20.10), in Miscellaneous (PPL = 19.56), and in All entities (PPL = 22.16). A
similar phenomenon appears in the AG and SEC datasets. In the AG dataset, the PPL is significantly
high without using non-sensitive sentences (qs̄ = 0), such as PPL = 4, 058 in GPE. When using
non-sensitive sentences in training UeDP, the PPL significantly drops (i.e., the lower, the better), the
lowest perplexity is achieved at qs̄ = 0.6 in Location (PPL = 46.80) and in Organization (PPL =
54.30), in PII (PPL = 48.25), and in All entities (PPL = 59.62) and at qs̄ = 0.4 in GPE (PPL = 45.97).
In SEC dataset, the PPL is significantly high without using non-sensitive sentences (qs̄ = 0), such
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(a) CONLL-2003-organization entities (b) AG-organization entities (c) SEC-organization entities

(d) CONLL-2003-location entities (e) AG-location entities (f) SEC-location entities

(g) CONLL-2003-person entities (h) AG-GPE entities (i) SEC-GPE entities

(j) CONLL-2003-miscellanous entities (k) AG-PII entities (l) SEC-PII entities

(m) CONLL-2003-all entities (n) AG-all entities (o) SEC-all entities

Figure 6: Privacy budget of UeDP-Alg fE , UeDP-Alg fE+ , and User-level DP as a function of
iterations in CONLL-2003, AG, and SEC datasets. UeDP-Alg fE+ achieves a tighter privacy budget
compared with UeDP-Alg fE and User-level DP.
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as PPL = 515.97 in All entities. When using non-sensitive sentences in training UeDP, the PPL
significantly drops (i.e., the lower, the better): the lowest perplexity is achieved at qs̄ = 0.6 in
Location (PPL = 36.47), at qs̄ = 0.8 in Organization (PPL = 43.55), in GPE (PPL = 34.53), in PII
(PPL = 33.78), and at qs̄ = 1.0 (using all non-sensitive sentences in training) with All entities (PPL
= 43.28).

• Privacy Budget (ε, δ)-UeDP and Model Utility. From our theoretical analysis, fE+ is better
than the estimator fE . Therefore, for the sake of simplicity, we only consider UeDP-Alg fE+ in-
stead of showing results from both estimators. From now, UeDP-Alg is used to indicate the use of
our estimator fE+ . Figure 9 illustrates the perplexity as a function of the privacy budget ε for an
AWD-LSTM model trained on a variety of sensitive entity categories in UeDP, User-level DP, and
De-Identification. The noiseless AWD-LSTM model is considered an upper-bound performance
mechanism without offering any privacy protection.

In the CONLL-2003 dataset (Figure 9a), there are NER labels for person, location, organization,
and miscellaneous entities; therefore, we choose these types as sensitive entity categories to protect
in UeDP-Alg. In all values of ε, UeDP-Alg achieves a better perplexity compared with User-level
DP. Also, from ε = 1 (reasonable privacy protection), our UeDP-Alg achieves a better perplexity
than De-Identification. In fact, at ε = 1, our UeDP-Alg achieves 25.76 for person, 25.09 for miscel-
laneous, 26.43 for organization, 26.45 for location entities, compared with 42.66 in User-level DP.
When spending more privacy budget (ε ≥ 1.5), both UeDP-Alg and User-level DP converge at a
very competitive perplexity level, approaching the upper-bound noiseless AWD-LSTM model. For
instance, at ε = 2, there are significant perplexity drops given UeDP-Alg and User-level DP mecha-
nisms, i.e., our UeDP-Alg is 23.96 for person, 24.60 for organization, 24.88 for location, and 23.97
for miscellaneous entities. Meanwhile, the perplexity values of User-level DP, De-Identification,
and the noiseless AWD-LSTM model are 26.18, 33.10, and 22.80.

Results on AG and SEC datasets (Figures 9b and 9c) further strengthen our observations. In AG
and SEC datasets, we applied Spacy to identify different sensitive entity categories, such as GPE,
location, organization, and PII (i.e., person and location information). UeDP-Alg achieves better re-
sults compared with User-level DP in all considering sensitive entity categories and privacy budgets,
and outperforms De-Identification in most cases. That is promising and consistent with our previous
analysis. For instance, in the AG dataset, at ε = 1, our UeDP-Alg achieves 50.80 for PII, 50.90
for location, 51.58 for GPE, 52.42 for organization entities, compared with 55.96 in User-level DP.
De-Identification obtains 58.57, and the upper bound result in the noiseless AWD-LSTM model is
47.93. Similarly, in the SEC dataset (Figure 9c), at ε = 1, UeDP-Alg achieves perplexity of 33.39
in location, 40.07 in PII, 73.39 in organization, and 85.95 in all entities, compared with 99.36 in
User-level DP, and 40.34 in De-Identification. In AG and SEC datasets, when we have a little larger
privacy budget, i.e., ε ≥ 0.9 and ε ≥ 2 in AG and SEC datasets, our UeDP-Alg has better perplexity
values than the De-Identification, approaching the noiseless AWD-LSTM model.

• Sensitive Entity Categories. In all datasets (Figures 6 and 9), the more sensitive data samples to
protect, the higher the privacy budget is needed and the lower performance of the model achieves
(i.e., higher values of perplexity). These theoretical and experimental results are consistent with
our theoretical analysis after Lemma 2. For instance, in the SEC dataset, the number of sensitive
samples in each category is as follows: 60 in GPE, 273 in location, 357 in PII, 1, 955 in organization,
and 2, 166 in all entities. After 500 steps, the respective values of ε are 0.19 in GPE, 0.24 in location,
0.26 in PII, 0.73 in organization, 0.81 in all entities, and 4.08 in User-level DP (Figure 6). At ε = 0.5
(Figure 9c), we obtain perplexity values of 39.41 in GPE, 58.11 in location, 76.05 in PII, 235.32 in
organization, 277.42 in all entities, and a 556.34 in User-level DP.

• Text classification. Figure 10a shows that our UeDP-Alg achieves lower test error rates in terms
of text classification on the AG dataset than baseline approaches in most cases across different types
of sensitive entities under a very tight UeDP protection (ε ∈ [0.7, 1]). This is a promising result.
When ε is higher, the test error rates of both UeDP-Alg and User-level DP drops, approaching the
noiseless AWD-LSTM model’s upper-bound result.

• Non-Sensitive Sentences. Figures 8 and 10b show that considering non-sensitive sentences (i.e.,
qs > 0) significantly helps to improve model utility (i.e., perplexity or test error rate) compared with
only considering sensitive-sentences (i.e., qs = 0). However, different tasks on different datasets
may have different optimal values of qs.
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(a) CONLL-2003 dataset (b) AG dataset (c) SEC dataset

Figure 7: Next word prediction results using the GPT-2 model with varying non-sensitive sentences
sampling rate qs̄ in training. (The lower the better)

(a) CONLL-2003 (b) AG (c) SEC

Figure 8: Next word prediction results using the AWD-LSTM model with varying non-sensitive
sentences sampling rate qs̄ in training. (The lower the better)

(a) CONLL-2003 dataset (b) AG dataset (c) SEC dataset

Figure 9: Next word prediction results using the AWD-LSTM model. (The lower the better)

(a) AG dataset (b) AG dataset with varying qs̄

Figure 10: Text classification results using the AWD-LSTM model. (The lower the better)
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