Unlocking the Global Synergies in Low-Rank Adapters

Anonymous ACL submission

Abstract

Low-rank adaption (LoRA) has been the de-
facto parameter-efficient fine-tuning technique
for large language models. We present Het-
eroLoRA, a light-weight search algorithm that
leverages zero-cost proxies to allocate the lim-
ited LoRA trainable parameters across the
model for better fine-tuned performance. In ad-
dition to the allocation for the standard LoRA-
adapted models, we also demonstrate the effi-
cacy of HeteroLoRA by performing the allo-
cation in a more challenging search space that
includes LoRA modules and LoRA-adapted
shortcut connections. Experiments show that
HeteroLoRA enables improvements in model
performance given the same parameter budge.
For example, on RTE, we see an improvement
of 6.7% in accuracy with a similar training pa-
rameter budget compared to a variety of state-
of-the-art methods. We will open-source our
algorithm once the paper is accepted.

1 Introduction

Recently, large language models (LLMs) have
shown impressive performance in a range of natural
language processing tasks (Qiu et al., 2020). Yet,
fine-tuning pre-trained language models (PLMs) is
computationally demanding and memory-intensive,
and this problem is exacerbated by the ongoing
trend of scaling up LLMs (Rae et al., 2022). To mit-
igate this, parameter-efficient tuning (PET) meth-
ods have been developed to fine-tune a small num-
ber of (extra) model parameters instead of the entire
model (Houlsby et al., 2019).

Low-rank adaptation (LoRA) (Hu et al., 2021) is
now the de-facto PET method. LoRA injects two
low-rank matrices A € R™*% and B € R%ux"
with rank r < min(diy, dout), to update the pre-
trained weights W € R%u*dn_ Unlike full fine-
tuning, LoRA updates only the injected A and B
with the pre-trained weights W unchanged. After
fine-tuning, the update weights AW = BA fuse

LoRAadapted  LoRA-adapted
’ module shorteut

Large Transformer model

Enabled E i BIZIIZI

(==

Layeri+1

MLP
A

|
9

Figure 1: An illustration of the HeteroLoRA search
space in a Transformer model. Given a fixed number
of trainable parameters, HeteroLoRA finds an efficient
heterogeneous LoRA configuration for a model on a
specific task. Each of the standard LoORA modules and
LoRA-adapted shortcuts can be enabled or disabled.

T

back to the pre-trained weights W/ = W + BA,
incurring no additional latency. LoRA achieves
performance levels similar to full fine-tuning while
drastically reducing memory usage. Yet, we iden-
tify the following limitations of LoRA.

* Existing methods configure LoORA modules
within a model uniformly with the same rank
r, thus each LoRA module consumes an iden-
tical number of trainable parameters, regard-
less of its potentially varying contributions to
the overall model performance.

* Current LoRA implementations predomi-
nantly adhere to the Transformer architecture.
However, there has been limited exploration
into extending the model architecture to en-
hance performance. This leads to the broader
question of whether it is necessary to incor-
porate LoORA modules under these constraints
and whether LoORA modules would be more ef-
fective with specific new connections, such as
shortcut connections (He et al., 2015; Huang
et al., 2018).



In this work, we introduce HeteroLoRA, a new
lightweight framework designed to autonomously
allocate the LoRA module across the entire LLM
given a parameter budget. Furthermore, we per-
form HeteroLoRA within an expanded search
space including LoRA-adapted shortcut connec-
tions (He et al., 2015) as illustrated in Figure 1.
Specifically, we make the following contributions:

* We propose HeteroLoRA, a novel LoRA con-
figuration search algorithm to solve the rank
allocation problem within a limited trainable
parameter budget. HeteroLoRA leverages
zero-cost proxies (Abdelfattah et al., 2021)
to avoid the high cost of brute-force search for
finding effective allocations.

* We introduce static and dynamic versions of
HeteroLoRA. The dynamic variant permits
periodic enabling and disabling of LoRA mod-
ules. We empirically demonstrate that dy-
namic HeteroLoRA achieves superior perfor-
mance through a flexible allocation scheme.

* We further prove the efficacy of the LoRA-
adapted shortcut connection and combine it
with HeteroLoRA to improve global synergies.
The shortcuts suggested by HeteroLoRA en-
able more gains in model performance given
the same parameter budget. For instance, on
RTE, we see an improvement of 6.7% in ac-
curacy with similar model size budgets.

2 Related Works

We explain the methodology of LoRA in Sec-
tion 2.1, and examine previous uses of shortcut
connections in Section 2.2. In Section 2.3, we sum-
marise previous works in configuration searching
on PET methods.

2.1 Low-Rank Adaptation

Conducting a full fine-tuning on an LLM is often
parameter-inefficient, since every downstream task
can require a large set of its own tuned parame-
ters (Qiu et al., 2020). To resolve this issue, a
series of special fine-tuning methods referred to
as parameter-efficient tuning (PET) was studied.
PET methods usually introduce a small set of ex-
tra trainable parameters (“adapter”) to be trained
on a downstream task with the pre-trained model
parameters frozen.

Pre-trained

W € Réowxdn

Figure 2: Overview of LoRA applied to a Transformer
model. LoRA can be applied to each Transformer block.
Taking a multi-head attention submodule in a block as
an example, LoRA can be applied to linear projections
transforming @), K, V' and the concatenated output. For
each LoRA module, the input is transformed by both a
pre-trained weight W and two low-rank matrices A and
B, whose results are added and returned.

Low-rank adaptation (LoRA) (Hu et al., 2021)
is a PET method that exploits the intrinsic low-
rank structures in deep learning. Mathematically,
LoRA hypothesises that the updates AW to the
pre-trained weights during fine-tuning have a low
“intrinsic rank”. The update can be represented as
the product of two rectangular low-rank decompo-
sition matrices, yielding:

Wo+ AW =W,y + BA

where Wy € R?** denotes the pre-trained matrix,
AW € R¥** denotes the update, and B € R¥*"
and A € R™** with rank r < min(d, k) represents
the low-rank decomposition matrices. During fine-
tuning, only B and A are updated while W is
frozen. The updated B and A are fused into Wy
after fine-tuning.

2.2 Shortcut Connections

The residual connections in the Transformer archi-
tecture, as well as other types of shortcut connec-
tions, have been well explored to improve model
performance.

ResNet (He et al., 2015) proposes residual con-
nection for image processing tasks. The residual
connection acts as an identity shortcut, taking the
input to a function and adding it back to the func-
tion’s output. By fitting a residual mapping directly,
ResNet addresses the optimisation difficulty as
model depth increases. SENet (Hu et al., 2019) in-
troduces “squeeze-and-excitation” operation after
a block of convolutional transformations to capture
cross-channel relations. DenseNet (Huang et al.,
2018) also offers an intuitive shortcut-adapted ar-
chitecture. It divides a deep convolutional network
into blocks based on feature map sizes. Within



each block, the input to the current layer includes
outputs from all preceding layers. Unlike ResNet’s
residual connections, DenseNet concatenates fea-
ture maps from previous layers rather than sum-
ming them.

ResLoRA (Shi et al., 2024a), inspired by ResNet,
incorporates three types of shortcuts into LoRA,
namely input-shortcut, block-shortcut, and middle-
shortcut. ResLoRA’s experiments indicate that
these LoRA-adapted shortcuts improve model per-
formance over the original LoRA by reducing gra-
dient vanishing and explosion.

2.3 Configuration Search in PET

There have been numerous PET methods showing
performance improvements. However, determining
the most suitable method and configuration for a
given task can be complex and time-consuming.
To address this challenge, various automated ap-
proaches to PET search have been proposed.

Prior research has applied neural architecture
search (NAS) methods to automate the search for
PET strategies. For instance, AutoPEFT (Zhou
etal., 2023) utilised Bayesian optimisation (Frazier,
2018) to identify Pareto-optimal configurations for
models adapted to Serial Adapters (Houlsby et al.,
2019), Parallel Adapters (He et al., 2022), and pre-
fix tuning (Li and Liang, 2021). Similarly, S3PET
(Hu et al., 2022), employed DARTS (Liu et al.,
2019a), a gradient-based NAS technique, across
various PET methods. NAS4PET (Lawton et al.,
2023) integrates parameter pruning into LoRA and
BitFit (Zaken et al., 2022).

Specifically, several methods work on the auto-
matic selection of an optimal rank for LoRA. In Dy-
LoRA (Valipour et al., 2023), nested dropout is used
to enforce ordered representations in the low-rank
A and B, allowing simultaneous training of LoRA
modules across a range of ranks . This enables
seamless switching between different rank config-
urations without the need for re-training. In con-
trast, AdaLoRA (Zhang et al., 2023) approximates
the update matrix using singular value decomposi-
tion AW = PAQ such that singular values in A
are pruned in each training step based on certain
importance scores. Moreover, AutoLoRA (Zhang
et al., 2024) expresses the update matrix as the
summation of r rank-1 matrices and estimates the
importance of these matrices. After fine-tuning, the
optimal rank of each LoRA module is determined
by thresholding the importance, then the model is
re-trained with the optimal LoRA ranks.

Table 1: Comparison between HeteroLoRA and previ-
ous works over features including (a) single-shot NAS,
where the search is accomplished in a single training
run; (b) fixed GPU memory usage, where the searching
process does not require more trainable parameters than
the target parameter limitation; and (c) shortcut-enabled,
where the search considers shortcut connections.

Features Single-shot Fixed GPU Shortcut-

Search Memory Usage  enabled
AutoPEFT (Zhou et al., 2023) X v v
S3PET (Hu et al., 2022) v X X
NAS for PET (Lawton et al., 2023) X X X
DyLoRA (Valipour et al., 2023) v X X
AdaLoRA (Zhang et al., 2023) v v X
AutoLoRA (Zhang et al., 2024) X X X
ResLoRA (Shi et al., 2024a) X X v
HeteroLoRA (Ours) v v v

Table 2: Saliency Proxies for LORA modules. We fol-
low the definition of three zero-cost proxies, Sgnip(-) for
SNIP, Sgyne1ow(-) for SYNFLOW, and sgradnorn () for
GRAD-NORM, to build the saliency scores for LoORA
modules (Ssnip(')’ Ssynflow('), and Sgradnorm('))- A con-
stant proxy is considered as random search baseline.
Detailed introduction to zero-cost proxies (Abdelfattah
et al., 2021) is included in Appendix C.

Proxy Saliency score of LoRA-adapted module

Constant Sconstant (M) =1
GRAD-NORM , .
(Abdelfattah et al,, 2021)  Sezadnorn(M) = Sgrasnora(A) + Sgraanorn(B)
SNIP Senip(M) = 3= Sanip(0) + 3 Senip()
(Lee et al., 2019) OcA ¢EB
SYNFLOW

Ssyntion(M) = 3 Ssynrrou(0) + D Ssynriou(9)
(Tanaka et al., 2020) A $€B

However, these methods either necessitate com-
putationally intensive full NAS, or require addi-
tional trainable parameters to determine the LORA
configuration, while being confined to the exist-
ing architecture search space. We propose Het-
eroLoRA to address these limitations. Table 1 sum-
marises the distinctions between HeteroLoRA and
previous methods, highlighting the novelty of our
work.

3 HeteroLoRA

We adopt zero-cost proxies to estimate the impor-
tance of LoRA modules in Section 3.1, and discuss
two ways to integrate the HeteroLoRA search into
the existing PET pipeline in Section 3.2. In Sec-
tion 3.3, we introduce LoRA-adapted shortcuts to
enable exploration of global synergies.

3.1 Saliency Estimation using Proxies

Given a limited number of active LoORA modules,
turning on a subset of modules could potentially be
more effective. For instance, turning on all LoORA



Config

Algorithm 1 Dynamic HeteroLoRA training

End
training

Start Config Train | Epochend
training search 1 epoch

T
(a) Static HeteroLoRA

Config
D:D:D]
D:D]:D
smn Config Train | Epoch end
rain x search 1/5 epoch

T 4 Epochnotend

ax epocii, Yes,
Reached?

No

End
training

(b) Dynamic HeteroLoRA

Figure 3: Training pipeline of (a) static HeteroLoRA,
where LoRA modules are enabled/disabled at the start
of training, and (b) dynamic HeteroLoRA, where LoRA
modules are enabled/disabled periodically, e.g., every
1/5 epoch, during the training.

modules with » = 2 vs. turning on 25% of all
modules with » = §, the latter may achieve higher
model performance. We consider such LoRA con-
figuration assignment as a “LoRA rank allocation”
problem and propose HeteroLoRA to solve it.

We estimate the saliency (importance) of a sin-
gle LoRA module as a reference for HeteroLoRA
searches. Modules with higher saliency scores
will be enabled during training, and tie-breaking
will be done by uniform random sampling. Three
saliency proxies plus a random allocation baseline
are shortlisted in Table 2. The detailed introduction
to SNIP (Lee et al., 2019), SYNFLOW (Tanaka
et al., 2020), and GRAD-NORM (Abdelfattah
et al., 2021) are included in the Appendix C. It
is worth mentioning that, as illustrated in Table 2,
the saliency is applied to both A and B.

Note that the saliency proxies are applied to
the whole LoRA W’ instead of AW = BA for
two reasons. First, at the start of training, the up-
date component AW = BA is initialised as zeros,
hence saliencies do not make sense by then. Sec-
ond, the update component AW has a strong cor-
relation with the pre-trained weight W, indicating
that the features that AW amplified are already in
W (Hu et al., 2021). Therefore, it is reasonable to
include the pre-trained weight in the saliency for
deciding the “on/off” of the LoORA modules.

3.2 Static and Dynamic HeteroLoRA

Static HeteroLoRA A straightforward way to
incorporate HeteroLoRA search into the training
pipeline is to compute the saliency proxy at the
beginning of training, enabling or disabling LoRA
modules accordingly. This is applied on a handful
of training samples at the start that only introduces
minimal search cost, taking around 2-5% of one

Require: model, Dyain, Dva, max_epoch > 0,
TRAIN(model, train_set),
VALIDATE(model, validation_set),

saliency € {CONSTANT, SNIP, SYNFLOW, GRAD-NORM},

enable_rate € (0,100], > percentage of LoRA
and shortcut modules to be enabled
HETEROLORA_SEARCH(model, saliency, en-
able_rate), > configuration search function
search_T > 0. > number of HeteroLoRA search
to perform in every epoch

subepoch < [

epoch < 0
while epoch < maz_epoch do
for i := 0 to search_T — 1 do

| Diain| —‘

search_T

HETEROLORA_SEARCH(model, saliency,
enable_rate) > find a LoRA rank allocation
TRAIN(model, Dyain[i X subepoch : (i + 1) X

subepoch)) > train the model on a fraction of the

training set
VALIDATE(model, Dya)
epoch < epoch + 1

> validate the model

epoch training. We then maintain the same rank
allocation throughout training, as depicted in Fig-
ure 3a. This approach mirrors zero-cost NAS (Ab-
delfattah et al., 2021), where a lightweight search
for optimal configurations is conducted initially,
followed by complete fine-tuning.

Dynamic HeteroLoRA After several training
steps, the optimizer may find that some enabled
LoRA modules are not as important as measured
initially. Therefore, we introduce dynamic Het-
eroLoRA, which periodically updates the rank allo-
cation at the start of each training epoch, as shown
in Figure 3b. Dynamic HeteroLLoRA offers an op-
portunity to inspect the importance of each LoRA
module through the frequency it has been enabled.
We detail the algorithms for both static Het-
eroLoRA (in Appendix D) and dynamic Het-
eroLoRA (in Algorithm 1). Algorithm 1 out-
lines the utilization of various saliency metrics
by HeteroLoRA, where the search process is trig-
gered search_T' times within a single epoch of
training. Dynamic HeteroLoRA then requires
search_T X max_epochs times more search bud-
get, however, we also show in later sections how
this method provides a better fine-tuned model.

3.3 Extending the Search Space with
LoRA-Adapted Shortcut Connections

We introduce LoRA-adapted shortcut connections
to extend the search space, which is later integrated
with HeteroLoRA to foster global synergies be-
tween LoRA modules. A LoRA-style low-rank



Previous layer output

Self attention
p (sarenon |
m e

Tl R —

Layer norm

Layer norm
Layer norm

A Next layer input

Figure 4: LoRA-adapted shortcut architecture on two
Transformer layers with post-layer-normalisation. Blue
blocks are the residual shortcuts se; and Spesn. Green
blocks are the s, same-layer style “cross-layer” short-
cuts. Red blocks are the s¢y “cut-layer” style cross-layer
shortcuts. These shortcuts, combined with the standard
LoRA modules present in the layers, constitute the Het-
eroLoRA search space.

linear transformation is applied to each shortcut:
e
W =Wy + —BA
r

where W) is the initial weight of the linear projec-
tion, depending on the type of the shortcut; « is a
pre-defined scaling factor; and r is the rank of A
and B. A and B are initialised similarly to LoORA
modules to ensure W = W) at the start of train-
ing. We refer to a combination of (Wy, A, B) as a
“shortcut module”. A layer normalisation (Ba et al.,
2016) is appended after the addition of the short-
cut to improve the training stability in post-layer-
normalisation models (e.g., OPT-350M). This is,
however, not employed in pre-layer-normalisation
models (e.g., ROBERTa and Llama3) as we have
observed enhanced performance without the extra
layer normalisation.

As shown in Figure 4, we focus on two types of
shortcut connections, residual shortcut and cross-
layer shortcut, to keep the search space tractable:

1. Residual shortcut: Shortcut is applied to the
micro-architecture by replacing the two orig-
inal residual connections within the Trans-
former block (as the blue blocks in Figure 4).
We refer to them as “residual shortcuts” S;eg;
and Sresp. The initial weight Wy of these short-
cut modules is the identity matrix /.

2. Cross-layer shortcut: Shortcut connection is
applied to the macro-architecture by linking
two points at different Transformer blocks.
We refer to this as the “cross-layer shortcut”.
A cross-layer shortcut skips multiple Trans-
former blocks. We concentrate on cross-layer
shortcuts that skip one Transformer block for
simplicity, as the green blocks (si,) and the red
blocks (scyt) in Figure 4. The initial weights
Wy of the cross-layer shortcut modules are
initialised to zeros because these shortcuts do
not exist in the original architecture. More
details are summarised in Appendix E.

4 Experiments

We outline our basic experiment setup in Sec-
tion 4.1. In Section 4.2, we identify the most
promising saliency proxy and verify that Het-
eroLoRA achieves a better performance than the
standard homogeneous LoRA. In Section 4.3, we
demonstrate that LoRA-adapted shortcuts enable
an additional performance gain. In Section 4.4
we use HeteroLoRA to allocate the rank in a
search space that includes both standard LoRA
moduels and LoRA-adapted shortcuts, highlight-
ing the efficacy of HeteroLoRA. Section 4.5 sub-
sequently evaluates the performance of Dynamic
HeteroLoRA within the shortcut-enabled search
space relative to state-of-the-art methods.

4.1 Experiment Setup

We perform experiments with OPT-350M (Zhang
et al., 2022), RoBERTa-base, and RoBERTa-large
(Liu et al., 2019b) on the GLUE benchmark (Wang
et al., 2019), which contains English natural lan-
guage understanding (NLU) tasks. For each ex-
periment, the mean and standard deviation of the
performance are calculated over three independent
runs of different random seeds. We apply LoRA to
the query layer W& and the value layer WV as ex-
periments show that applying these LORA modules
to these two layers effectively improves model per-
formance (see Appendix A). We use a fixed number
of trainable parameters for all groups in the same
experiment subsection. To make our experimen-
tal results reproducible, detailed rank and training
hyperparameters are summarised in Appendix B
and our code would be open-sourced if the paper is
accepted.



Table 3: Performance of the salience proxies with static
and dynamic HeteroLoRA. Accuracy on MRPC and the
difference with the baseline performance are reported.
The baseline, in which all LoORA modules are enabled
with rank r = 2, achieves 83.8% accuracy. We ob-
serve that the combination of GRAD-NORM and dynamic
HeteroLoRA achieves the highest accuracy.

r=38 CONSTANT GRAD-NORM SNIP SYNFLOW
Static 83.8 (+0.0) 82.8 (-1.0) 82.8 (-1.0) 78.7(-5.1)
Dynamic 824 (-1.4) 84.1 (+0.3) 824 (-1.4) 824(-14)

Table 4: Performance gain of LoRA-adapted shortcut
connections. L-only is the LoRA-only baseline. rg =
r1, denotes the model in which both LoRA modules and
LoRA-adapted shortcuts are applied with the same rank.
rg>ry, represent the model in which the LoRA module
rank is fixed and the rest of ranks are allocated to the
shortcut. We observe that the LoRA-adapted shorcuts
combined with LoRA modules achieve higher accuracy
than the LoRA-only group given the same number of
trainable parameters.

#Trainable ~ Group MRPC RTE SST-2 Avg.
L-only 834+1.1 72112 934+04 | 92.1

2.3M rs=rr | 846+05 735+14 93.9+03 | 92.6
rg>ry | 84.6+19 709+22 937+03 | 924

L-only 834+04 694+32 933x0.5 | 91.9

9.4M rs=rr | 838+£06 72.6+13 941%0.7 | 92.7
rs>ry | 84109 71.8+£3.0 938+03 925

4.2 Determining the Proxy and Comparing
Static and Dynamic HeteroLoRA

We first apply HeteroLoRA to the original LoRA.
Table 3 compares the four proxies (Constant, Grad-
Norm, SNIP and Synflow) under both Static and
Dynamic HeteroLoRA on OPT-350M. In each ex-
periment, 25% of LoRA modules are enabled with
r = 8. The eight combinations are also compared
to a baseline, in which all LoRA modules are en-
abled with »r = 2, so the numbers of trainable
parameters are the same.

We observe that Dynamic HeterLoRA achieves
better performances than static HeteroLoRA, with
GRAD-NORM performing the best and surpass-
ing the baseline. Therefore, we use Dynamic Het-
eroLoRA with the GRAD-NORM proxy in the
following experiments.

4.3 The Performance Gain of Enabling
Shortcut Connections

We conduct controlled experiments in two different
configurations to validate the effectiveness of the
extended search space with shortcut connections
described in Section 3.3. Table 4 presents three
different search configurations (L-only, rg = rp,

Table 5: Dynamic HeteroLoRA combined with LoRA-
adapted shortcuts. The S (LoRA-adapted Shortcut) &
L (Standard LoRA) baselines have all modules enabled.
The DH (Dynamic HeteroLoRA) & S & L have 25%
of LoRA models and LoRA-adapted shortcuts enabled.
They have the same number of trainable parameters
for a fair comparison. We observe that DH & S & L
outperforms the baseline, meaning HeteroLoRA finds a
more optimal rank allocation.

#Trainable  Setup MRPC RTE SST-2 Avg.
23M S&L 83.7+£0.8 73422 93.6+05 835

’ DH&S&L 843+£10 729+18 939+05 837
9.4M S&L 84.6+05 735+14 938104 840

’ DH&S&L 850%1.6 73.6x11 93.6+0.1 84.1

and rg > ry) on OPT-350M under two different
number of trainable parameters constraints:

* L-only: Only the standard LoRA is applied to
the model. This group serves as the baseline.

e rg¢ = rr: Both standard LoRA and LoRA-
adapted shortcuts are applied to the model
and the rank of shortcuts is the same as the
standard LoRA.

* s > rr: Both LoRA and shortcut are applied,
but the LoRA module rank is fixed and the rest
of the ranks are allocated to the shortcut.

We ensure that the three groups have the same num-
ber of trainable parameters for a fair comparison.
The detailed experiment setup is in Appendix B.
Table 4 demonstrates that the shortcut-adapted ar-
chitecture generally outperforms the LoRA-only
architecture, meanwhile with a more prominent ad-
vantage as the budget grows larger (at 9.4M train-
able parameters). This observation indicates that
the linear projections on the shortcuts have larger
“intrinsic ranks” than the LoRA update matrices.
When performance “saturates” in LORA modules,
shortcuts foster further performance improvement
by developing global synergies across layers.

4.4 Dynamic HeteroLoRA with an Extended
Search Space

Finally, we integrate the components and design
choices discussed above in Section 4.2 and Sec-
tion 4.3. We combine Dynamic HeteroLoRA and
the GRAD-NORM proxy.

Table 5 compares the LoRA-adapted OPT-350M
model with/without Dynamic HeteroLoRA under
the same trainable parameter budget:



Table 6: Search time costs of HeteroLoRA configuration
searches for an OPT-350M model training on SST-2,
where the number of trainable parameters is constrained
to 2.3M. Percentage is the search time relative to the
total training time.

Method  Static HeteroLoRA  Dynamic HeteroLoRA
Time cost 50 seconds 200 seconds per epoch
Percentage 0.25% 7.75%

e S & L denotes all the LoRA modules and
LoRA-adapted shortcuts are enabled with the
same rank.

* For DH & S & L, Dynamic HeteroLLoRA sorts
the saliency scores of standard LoRA and
LoRA-adapted shortcuts to determine which
module to enable/disable.

As illustrated in Table 5, we observe that Dy-
namic HeteroLoRA further improves model per-
formance over S & L, indicating that HeteroLoRA
finds a more optimal rank allocation. Figure 5
displays the frequency of each LoRA or shortcut
module being enabled over the 20 training epochs
on MRPC and the 10 training epochs on SST-2.
The frequency of each LoRA module denotes its
importance to performance; the frequency of each
shortcut module characterises its efficacy to global
synergies. A noticeable preference for value pro-
jections over query projections indicates that the
value transformation updates generally contribute
more to the performance. Move results on different
datasets are available in Appendix F.

As stated in Section 3.2, Static HeteroLoRA
incurs minimal search cost at the start of PEFT,
whereas Dynamic HeteroLoRA bears a higher cost
due to its periodic search during PEFT. Table 6
reveals that the cost for Dynamic HeteroLoara,
although very low, extends the training duration
marginally (by 7.75%). It’s also important to note
that the relative overhead is comparable for other
models and datasets, since this cost is proportional
to the total training expenditure.

4.5 Comparing with SoTAs

One piece of work that is related to our Dynamic
HeteroLoRA is ResLoRA (Shi et al., 2024b), which
also incorporated the residual connections into the
LoRA trainable region but they have conducted an
allocation manually for the adaptors. We then focus
on a comparison with ResLoRA in Table 7 on the

Table 7: Comparing with ResLoRA on RoBERTa-large,
where the model size is constrained to 0.4M trainable pa-
rameters for both ResLoRA and Dynamic HeteroLoRA.

Method CoLA RTE MRPC Avg.
ResLoRA; s 65.5 83.0 92.4 80.3
ResLoRAys 654 823 91.3 79.7
ResLoRA s 65.8 82.0 91.6 79.8

Dynamic HeteroLoRA  66.1 85.9 90.0 80.7

RoBERTa-large model. It is worth mentioning that
ResLoRA manually assigns trainable parameters to
certain blocks, and ¢s, bs and ms means the short-
cuts are added to inputs (input-shortcuts), blocks
(block-shortcuts) or middle (middle-shortcuts). In
contrast, we incorporate these design options in a
search space as explained in Section 3.3. Table 7 il-
lustrates that Dynamic HeteroLoRA can effectively
navigate the extended search space, evidenced by
a notable performance increase over the manually
designed ResLoRA methods within a similar PEFT
design space. On these three considered datasets
(CoLA, RTE and MRPC), Dynamic HeteoLoRA
outperforms the best ResLoRA design by 0.3 in
terms of averaged accuracy.

Another research direction related to Het-
eroLoRA involves various LoRA configuration
search algorithms, including AutoL.oRA (Zhang
et al., 2024) and AdalLoRA (Zhang et al., 2023).
We then pivot to a comparative analysis with these
methods in Table 8 focusing on RoBERTa-base,
as this is a model that these methods report per-
formance on. In addition to AdaLoRA and Au-
toLoRA, we also report the standard LoRA’s per-
formance at a rank value 7 = 8 as a baseline. In Ta-
ble 8, all methods are kept to have the same number
of trainable parameters (0.3M). We evaluated per-
formance across eight different downstream tasks
and have shown that HeteroLoRA outperforms
other LoRA configuration search methods.

5 Discussion

5.1 Proxies for PET

The concept of employing saliency metrics to iden-
tify critical components of a neural network is
well-established in the field of Efficient Al and
has been extensively researched in domains like
network compression (to determine which parts
to prune (Lee et al., 2019)) and network architec-
ture search (to design networks guided by saliency
measures (Abdelfattah et al., 2021)). Though it
was natural to anticipate that proven proxies like
SNIP (Lee et al., 2019) and Synflow (Tanaka et al.,



o [ HHNHNHIHIEEEE BN ERNEN

0 11 12 13 14 15 16 17 18 19 20 21 22 23
Layer

(a) MRPC

(b) SST-2

Figure 5: Frequency of linear projections in every model layer being enabled in the Dynamic HeteroLoRA trained
on (a) MRPC and (b) SST-2 for LoRA and shortcut modules. A noticeable preference for value projections over
query projections indicates that the value update generally contributes more to the fine-tuned performance.

Table 8: Comparing with AdaLoRA (Zhang et al., 2023) and AutoLoRA (Zhang et al., 2024) on RoBERTa-base on
different GLUE downstream tasks, where the model size is constrained to 0.3M trainable parameters.

Method Params | MNLI SST-2 MRPC CoLA QNLI RTE QQP Avg

Full fine-tuning 125M 86.7 94.8 89.3 61.6 928 769 903 84.6

LoRA (r = 8) 0.3M 86.9 94.5 89.1 59.0 929 758 89.6 84.0

AdaLoRA 0.3M 87.0 94.0 89.4 58.8 93.0 759 899 84.0

AutoLoRA 0.3M 87.0 94.9 89.4 61.3 929 77 903 847

Dynamic HeteroLoRA | 0.3M 85.9 94.9 89.7 64.5 91.5 825 89.6 855
2020) would be advantageous, given their effec-  architectures.

tiveness in pruning-at-initialisation and zero-cost
NAS, our results in Section 4.2 revealed that the
simple Grad-Norm proxy is more effective for PET
configuration search. This finding suggests that
proxy designs for PET might differ from those pre-
viously proven effective in other domains, and there
is potential for future research to develop more
specialised and mathematically grounded proxies
tailored for PET search.

5.2 The Impact of PET on Different Modules

A common practice in PET, particularly when em-
ploying LoRA, is to uniformly apply trainable mod-
ules with the same rank value, for instance, using
a consistent rank . Our findings depicted in Fig-
ure 6 indicate that Dynamic HeteroLoRA gener-
ally favours assigning trainable parameters to the
value projection layers in transformers. Notably,
HeteroLoRA also tends to allocate resources to
residual layers, particularly in the middle layers.
Conversely, we observe that HeteroLoRA infre-
quently assigns training resources to the query pro-
jection layers. Intuitively, the calculations within
a transformer layer can be seen as constructing
weighted attention for each entry in the value se-
quence. Consequently, for PET, modifying the
value projection may be the most straightforward
way for fine-tuning the network to downstream
tasks. We believe these observations might provide
useful insights for future research in the direction
of novel PET methods or even novel transformer

6 Conclusions

We propose dynamic HeteroLoRA, a framework au-
tomatically determining the “on/off” for the LoRA
modules in LLM fine-tuning. Then we verify that
LoRA-adapted shortcuts improve model perfor-
mance. In the end, we demonstrate that Dynamic
HeteroLoRA effectively solves the rank allocation
problem in a challenging search space including
both LoRA modules and shortcuts. HeteroLoRA
offers a cost-effective way to allocate trainable pa-
rameters within a limited training budget.

Limitations

In comparison to the original LoRA method and
other extensions to LoRA such as ResLoRA, the
shortcut connections in our method do introduce ad-
ditional computational and memory overhead dur-
ing inference, although the overhead is relatively
subtle. The HeteroLoRA configuration search also
inevitably incurs additional time costs. However,
we mitigate this by employing zero-cost proxies
and dynamic configuration search.

Furthermore, a set of more fine-grained rank val-
ues for LoORA modules, rather than enable/disable,
can be considered in configuration searches. How-
ever, a more sophisticated allocation problem may
be involved.



References

Mohamed S. Abdelfattah, Abhinav Mehrotra, Lukasz
Dudziak, and Nicholas D. Lane. 2021. Zero-
cost proxies for lightweight nas. Preprint,
arXiv:2101.08134.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E.
Hinton. 2016. Layer normalization. Preprint,
arXiv:1607.06450.

Peter I. Frazier. 2018. A Tutorial on Bayesian Optimiza-
tion. Preprint, arXiv:1807.02811.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning.
Preprint, arXiv:2110.04366.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Deep residual learning for image recogni-
tion. Preprint, arXiv:1512.03385.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for nlp.
Preprint, arXiv:1902.00751.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. LoRA: Low-Rank Adap-
tation of Large Language Models.  Preprint,
arXiv:2106.09685.

Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and En-
hua Wu. 2019. Squeeze-and-excitation networks.
Preprint, arXiv:1709.01507.

Shengding Hu, Zhen Zhang, Ning Ding, Yadao Wang,
Yasheng Wang, Zhiyuan Liu, and Maosong Sun.
2022.  Sparse Structure Search for Parameter-
Efficient Tuning. Preprint, arXiv:2206.07382.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and
Kilian Q. Weinberger. 2018. Densely connected con-
volutional networks. Preprint, arXiv:1608.06993.

Neal Lawton, Anoop Kumar, Govind Thattai, Aram
Galstyan, and Greg Ver Steeg. 2023. Neural Archi-
tecture Search for Parameter-Efficient Fine-tuning
of Large Pre-trained Language Models. Preprint,
arXiv:2305.16597.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip
H. S. Torr. 2019. Snip: Single-shot network
pruning based on connection sensitivity. Preprint,
arXiv:1810.02340.

Xiang Lisa Li and Percy Liang. 2021.  Prefix-
tuning: Optimizing continuous prompts for gener-
ation. Preprint, arXiv:2101.00190.

Hanxiao Liu, Karen Simonyan, and Yiming Yang.
2019a. DARTS: Differentiable Architecture Search.
Preprint, arXiv:1806.09055.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. Preprint, arXiv:1907.11692.

XiPeng Qiu, TianXiang Sun, YiGe Xu, YunFan
Shao, Ning Dai, and XuanJing Huang. 2020. Pre-
trained models for natural language processing: A

survey. Science China Technological Sciences,
63(10):1872-1897.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, Eliza Rutherford, Tom Hennigan, Ja-
cob Menick, Albin Cassirer, Richard Powell, George
van den Driessche, Lisa Anne Hendricks, Mari-
beth Rauh, Po-Sen Huang, Amelia Glaese, Jo-
hannes Welbl, Sumanth Dathathri, Saffron Huang,
Jonathan Uesato, John Mellor, Irina Higgins, Anto-
nia Creswell, Nat McAleese, Amy Wu, Erich Elsen,
Siddhant Jayakumar, Elena Buchatskaya, David Bud-
den, Esme Sutherland, Karen Simonyan, Michela Pa-
ganini, Laurent Sifre, Lena Martens, Xiang Lorraine
Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena
Gribovskaya, Domenic Donato, Angeliki Lazaridou,
Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsim-
poukelli, Nikolai Grigorev, Doug Fritz, Thibault Sot-
tiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong,
Daniel Toyama, Cyprien de Masson d’ Autume, Yujia
Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin,
Aidan Clark, Diego de Las Casas, Aurelia Guy,
Chris Jones, James Bradbury, Matthew Johnson,
Blake Hechtman, Laura Weidinger, Iason Gabriel,
William Isaac, Ed Lockhart, Simon Osindero, Laura
Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub,
Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Ko-
ray Kavukcuoglu, and Geoffrey Irving. 2022. Scaling
language models: Methods, analysis & insights from
training gopher. Preprint, arXiv:2112.11446.

Shuhua Shi, Shaohan Huang, Minghui Song, Zhou-
jun Li, Zihan Zhang, Haizhen Huang, Furu Wei,
Weiwei Deng, Feng Sun, and Qi Zhang. 2024a.
Reslora: Identity residual mapping in low-rank adap-
tion. Preprint, arXiv:2402.18039.

Shuhua Shi, Shaohan Huang, Minghui Song, Zhou-
jun Li, Zihan Zhang, Haizhen Huang, Furu Wei,
Weiwei Deng, Feng Sun, and Qi Zhang. 2024b.
Reslora: Identity residual mapping in low-rank adap-
tion. Preprint, arXiv:2402.18039.

Hidenori Tanaka, Daniel Kunin, Daniel L. K. Yamins,
and Surya Ganguli. 2020. Pruning neural networks
without any data by iteratively conserving synaptic
flow. Preprint, arXiv:2006.05467.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan
Kobyzev, and Ali Ghodsi. 2023. Dylora: Parame-
ter efficient tuning of pre-trained models using dy-
namic search-free low-rank adaptation. Preprint,
arXiv:2210.07558.


https://arxiv.org/abs/2101.08134
https://arxiv.org/abs/2101.08134
https://arxiv.org/abs/2101.08134
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/2110.04366
https://arxiv.org/abs/2110.04366
https://arxiv.org/abs/2110.04366
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/1709.01507
https://arxiv.org/abs/2206.07382
https://arxiv.org/abs/2206.07382
https://arxiv.org/abs/2206.07382
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/2305.16597
https://arxiv.org/abs/2305.16597
https://arxiv.org/abs/2305.16597
https://arxiv.org/abs/2305.16597
https://arxiv.org/abs/2305.16597
https://arxiv.org/abs/1810.02340
https://arxiv.org/abs/1810.02340
https://arxiv.org/abs/1810.02340
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/1806.09055
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2402.18039
https://arxiv.org/abs/2402.18039
https://arxiv.org/abs/2402.18039
https://arxiv.org/abs/2402.18039
https://arxiv.org/abs/2402.18039
https://arxiv.org/abs/2402.18039
https://arxiv.org/abs/2006.05467
https://arxiv.org/abs/2006.05467
https://arxiv.org/abs/2006.05467
https://arxiv.org/abs/2006.05467
https://arxiv.org/abs/2006.05467
https://arxiv.org/abs/2210.07558
https://arxiv.org/abs/2210.07558
https://arxiv.org/abs/2210.07558
https://arxiv.org/abs/2210.07558
https://arxiv.org/abs/2210.07558

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. Preprint,
arXiv:1804.07461.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2022. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. Preprint, arXiv:2106.10199.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Nikos Karampatziakis, Pengcheng He, Yu Cheng,
Weizhu Chen, and Tuo Zhao. 2023. Adalora: Adap-
tive budget allocation for parameter-efficient fine-
tuning. Preprint, arXiv:2303.10512.

Ruiyi Zhang, Rushi Qiang, Sai Ashish Somayajula, and
Pengtao Xie. 2024. Autolora: Automatically tuning
matrix ranks in low-rank adaptation based on meta
learning. Preprint, arXiv:2403.09113.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open
pre-trained transformer language models. Preprint,
arXiv:2205.01068.

Han Zhou, Xingchen Wan, Ivan Vuli¢, and Anna
Korhonen. 2023. AutoPEFT: Automatic Configu-
ration Search for Parameter-Efficient Fine-Tuning.
Preprint, arXiv:2301.12132.

10


https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/2106.10199
https://arxiv.org/abs/2106.10199
https://arxiv.org/abs/2106.10199
https://arxiv.org/abs/2106.10199
https://arxiv.org/abs/2106.10199
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2403.09113
https://arxiv.org/abs/2403.09113
https://arxiv.org/abs/2403.09113
https://arxiv.org/abs/2403.09113
https://arxiv.org/abs/2403.09113
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2301.12132
https://arxiv.org/abs/2301.12132
https://arxiv.org/abs/2301.12132

A Primary LoRA Experiments

To make the search space manageable, we first decide which linear layers in attention are helpful if
they are LoRA-adapted. We sweep the LoRA combinations and fine-tune them on MRPC. As shown
in Tables 9 and 10, we find that applying LoRA to W and Wy, is most helpful for improving model
performance.

Table 9: Performance of LoRA applied to different combinations of linear projections in the attention submodule
under the same numbers of trainable parameters. Adapting WV and (W?, WV perform the best.

Q K
Projections we wk wv wo  wewk wewv ‘?//VV’ VmV/o’

Rank r 8 8 8 8 4 4 2

MRPC(acc)‘80.2j:1.6 80.3+£0.5 84.3+1.3 83.2+0.1 81.6£1.1 84.1+1.1 83.3%£1.8

Table 10: Comparison of LoRA applied to attention linear projections, FFN linear projections, and both. Due
to the larger feed-forward network module dimension, adapting FFN projections W; or W costs more trainable
parameters than the attention projections.

Projections WQ, wVvV Wy Wy Wi, Wo WQ, WV, Wi, Wo
Rank r 4 8 8 4 2

# Trainable 394K 984K 689K

MRPC (acc) ‘ 84.1+1.1 83.3+0.6 82.3+1.2 84.0+0.9 ‘ 83.54+0.5

B Hyperparameters

Experiments are run on a server with 4 NVIDIA QUADRO RTX 8000 GPUs, as well as an HPC cluster
with servers of 3 NVIDIA A100 40 GB RAM Tensor Core GPUs, 2 AMD EPYC 7742 (Rome) 2.25 GHz
64-core processors, and 512 GB DDR4-3200 RAM.

For experiments with different model configurations and different datasets, the optimal training hyper-
parameters may vary. Due to the expensive computational cost, searching for the optimal hyperparameters
in every experiment is infeasible. Therefore, learning rate searches are conducted for experiments while
other hyperparameters are set by referencing the original ROBERTa paper (Liu et al., 2019b) and LoRA
paper (Hu et al., 2021).

For experiments on the LoRA-searching training pipelines, the optimal hyperparameters tuned indepen-
dently by beam search on MRPC are applied to all datasets, except for the learning rate, which is searched
on each dataset respectively.

B.1 LoRA modules combined with LoRA-Adapted Shortcuts

In the dynamic HeteroLoRA training, a search is conducted every 1/5 training epoch, in which the
GRAD-NORM saliency score is evaluated over 32 batches of training data for each LoRA or shortcut module,
and the modules ranking top 25% are enabled with rank » = 8 until the next HeteroLoRA search.

As shortcut connections have shown their effectiveness at larger ranks in Section 4.3, we further evaluate
dynamic HeteroLoRA with LoRA and shortcut modules enabled with rank » = 32. The two HeteroLoRA
training setups are compared to two baselines with all modules enabled but with 1/4 ranks respectively,
so the numbers of trainable parameters at any time in the training are equivalent respectively.

B.2 Training hyperparameters

Experiments were run on three random seeds (0, 13, 42), and the averaged results were reported. Table 11
and Table 12 display the training hyperparameters. The learning rates were determined through hyperpa-

11



Table 11: The hyperparameters for experiments on the shortcut-adapted OPT-350M model.

Method Dataset | MRPC RTE SST-2
Optimiser ‘ AdamW
Batch size 8
# Epochs 20 20 10
Learning rate 2e-4 2e-4 le-4
OPT-350M Weight decay 0.01
with shorteuts Max seq. len. 512
LoRA config. rg=ry =38
LoRA « 16
Shortcut config. Tresl = Tres2 = Tin = Teut = 8
Shortcut o 4

Table 12: The hyperparameters for experiments on shortcut-adapted RoOBERTa models.

Method Dataset ‘ MNLI SST-2 MRPC CoLA QNLI QQP RTE
Optimiser ‘ AdamW
Batch size 16 16 16 32 32 16 32
# Epochs 30 60 30 80 25 25 80
Learning rate 5e-5 Se-4 4e-4 4e-4  4de-4  Se-4 Se-4
Weight decay 0.01
RoBERTa-base = Max seq. len. 512
LoRA config. rg=ry =16
LoRA « 8
Shortcut config. Tres] = Tres2 = Tin = Tcut = 16
Shortcut o 8
Batch size 4 4 4 4 4 4 8
# Epochs 10 10 20 20 10 20 20
Learning rate 3e-4 4e-4 4e-4 2e-4 2e-4  3e-4 Se-4
Weight decay 0.01
RoBERTa-large = Max seq. len. 128 128 512 128 512 512 512
LoRA config. rg=ry =32
LoRA « 16
Shortcut config. Tres] = Tres2 = Tin = Tcut = 92
Shortcut o 16

12



rameter searches from le-5 to Se-3; other hyperparameters were decided according to previous works Liu
et al. (2019b) and Hu et al. (2021).
B.3 Saliency hyperparameters

For comparison between saliency proxies, the following hyperparameters of the proxies were used:
* CONSTANT: no hyperparameter required.
* SNIP: the score was evaluated on the first 32 batches from the training set.
* SYNFLOW: no hyperparameter required.

* GRAD-NORM: the score was evaluated on the first 32 batches from the training set.

Experiments were conducted to compare different choices of the number of training batches to use for
SNIP and GRAD-NORM. On MRPC, using 8 batches, 32 batches, and the entire training set produced the
same training curve. Following the previous work (Abdelfattah et al., 2021), we used 32 training batches
for the later experiments.

Furthermore, two hyperparameters were involved in the HeteroLoRA strategies:

* Enable rate: the percentage of LoRA and shortcut modules enabled at any time in the training was
set to 25%.

* Frequency of dynamic HeteroLoRA search: for all experiments, the HeteroLoRA search was
conducted 5 times per training epoch. Further ablation experiment results are shown in Appendix F.

The scaling factor o of shortcut modules was searched across 1 to 16. The best hyperparameters
and configurations, as in Tables 11 and 12, were used for the two series of shortcut-adapted models in
Section 4.3 and the dynamic HeteroLoRA training in Sections 4.4 and 4.5 unless particularly specified.

C Zero-Cost Proxies

The detailed definition of zero-cost proxies for the LoRA-adapted module/shortcut and trainable parame-
ters are defined as follows

C.1 CONSTANT

A baseline proxy is designed as assigning score Sconstant (M) = 1 to every LORA module M. This en-
forces tie-breaking on all LORA modules, so uniform random sampling is performed in every HeteroLoRA
search.

C.2 SNIP

The SNIP (Lee et al., 2019) proxy aims to find the elements that degrade the performance the least when
removed. It uses a weight mask C' € {0, 1}"™ applied to each block of parameters, with 0 at the positions
of disabled parameters and 1 at the position of active parameters, and computes the loss gradient to the
mask variables over a few minibatches of training data D:

OL(D;CoW
R

where ¢y denotes the weight mask variable corresponding to parameter f. In HeteroLoRA, since the
LoRA rank allocation regards each LoRA module as a unit, we fill the weight mask C' for each LoRA
module with ones, and extend the saliency of a single parameter s(f) the saliency of a LoORA module M
by summation:

Sensp(M) = 3 Sansp(6)

oeM
= Z Ssnip(e) + Z Ssnip((b)
0eA ¢eB

13



C.3 SYNFLOW

A minibatch of inputs of ones is fed to the model with weights taken as their absolute values. The SYNFLOW
(Tanaka et al., 2020) score computes the product of a parameter value and the gradient of the sum of the
losses on the minibatch to the parameter:

—f- 9 (Zminibatch £(]l7 ‘W‘))
00

We also extended SYNFLOW of a single parameter to the saliency of a LORA module by summation:

Ssynflow(M) = Z Ssynflow(‘g)

Ssynflow (9)

oeM
== Z Ssynflow(e) + Z Ssynflow(¢)
gcA $eB

C.4 GRAD-NORM

A minibatch of training data is fed to the model, and GRAD-NORM computes the Euclidean norm of the loss
gradients on a block of parameters:

OL(D; W)

Sgradnorm(W) = H oW

2

This marks how sensitive the loss is to each block of parameters. We extend this to the saliency of a LoORA
module by taking the sum of GRAD-NORM over the matrices:

Sgradnorm (M) = Sgradnorm (A) + Sgradnorm (B)
D Static HeteroLoRA Algorithm

In Algorithm 2, we present the algorithm of static HeteroLoRA, where as explained previously, the search
operation occurs only once at the start of training.

Algorithm 2 Static HeteroLoRA training

Require: model, Diain, Dyal, max_epoch > 0,
TRAIN(model, train_set),
VALIDATE(model, validation_set),
saliency € {CONSTANT, SNIP, SYNFLOW, GRAD-NORM},
enable_rate € (0,100], > percentage of LoRA and shortcut modules to be enabled

HETEROLORA_SEARCH(model, saliency, enable_rate). > configuration search function
HETEROLORA_SEARCH(model, saliency, enable_rate) > find a LoRA rank allocation
epoch < 0
while epoch < maz_epoch do

TRAIN(odel, Diain) > train the model
L VALIDATE(model, Dya) > validate the model
epoch < epoch + 1

E LoRA-Adapted Shortcuts

The detailed definition of LoRA-adapted shortcuts is as follows.

Cross-Layer Shorcut This type of shortcut forwards the model’s hidden state as:
hiy1 = s(hi) + fi(hi)

where h; denotes the input hidden state to the ith layer of modules, f; denotes the function of the ith layer,
and s denotes the current shortcut linear transformation. The function of the layer f;, however, does not
necessarily need to be an exact Transformer block as:

fin(h) = MLP; (Attention;(h))

14



The two corresponding styles of cross-layer shortcuts, referred to as sj, and sy, are employed in our
shortcut-adapted models (as the green blocks and the red blocks in Figure 4).

LayerNorm Inserted After Shortcut Layer normalisation sometimes needs to be performed after
the cross-layer shortcut output is merged into the original hidden state. In this project, the shortcuts are
applied to the OPT-350M model, which employs post-layer-normalisation Transformer architecture (layer
normalisation is performed after the original residual connection is merged back). For cross-layer shortcuts,
given that the original layer normalisation of OPT-350M performs an element-wise affine transformation
with pre-trained weights, performing another layer normalisation without affine transformation after the
original will impact the original layer normalisation’s effect, meanwhile, training new weights for a new
affine transformation merely on a downstream dataset will be ineffective. Therefore, we re-perform the
original layer normalisation after the cross-layer shortcut output is merged back to the hidden state.
Consequently, the original output hidden state h; 1 of the ith layer:

a; = LNI,@' (hl + Attni(hi))
hi+1 = LNQJ (ai + FFN; (az))

is transformed by the shortcut connections into:

a; = LN7 ; [LN1; (Sres1,i(hi) + Attn;(hi)) + Scui(ai—1)]
hit1 = LNg; [LN2; (Sres2,i(ai) + FFN;(ai)) + Sini(hi)]

where Sies1 4, Sres2,i, Sin,i, Scut,i denote the linear projections on the shortcuts, LNy ; and LN ; represent
the two layer normalisation layers in the ith layer, Attn; represents the attention submodule, and FFN;
represents the feed-forward network submodule.

F Additional Experimental Results

Dynamic HeteroLoRA is experimented on MRPC, RTE and SST-2 with the same setup as in Section 4.4.
Figure 6, Figure 7 and Figure 8 demonstrate the frequency of each LoRA or shortcut module being
enabled over 20 and 10 training epochs on RTE and SST-2, respectively.

Intuitively, frequent LoRA configuration searches give more chances to explore the configuration search
space, while a long search interval allows the chosen configuration to be fully trained. Table 13 shows the
performance on MRPC and RTE of dynamic HeteroLoRA with various configuration search frequencies.
As we can see, no particular performance pattern across the search frequency can be easily observed.

Table 13: Dynamic HeteroLoRA with different HeteroLoRA search frequencies per training epoch.

LoRA Ranking Method Combined Allocation Separated Allocation
Search Freq (per epoch) 10 ) 2 1 10 5 2 1
MRPC (acc) 84.6 84.3 84.1 84.3 84.6 83.7 84.6 85.1
RTE (acc) 72.3 72.9 72.3 72.7 74.5 72.8 70.1 66.9

15



- 100

- [ HHHIHEEEE EEEEEEEEEEE

Projection

10 11 12 13 14 15 16 17 18 19 20 21 22 23

Layer

(a) Dynamic HeteroLoRA with modules at r = 8

- 100

- ] H Nl HIHHEEE BT EEEEEEEEEEN

Projection

gy | || | [ | HEEE B EEEram
L
10 11 12 13 14 15 16 17 18 19 20 21 22 23

Layer

(b) Dynamic HeteroLoRA with modules at r = 32

Figure 6: Frequency of linear projections in every model layer being enabled in the dynamic HeteroLoRA training
on MRPC with (a) » = 8 and (b) » = 32 for LoRA and shortcut modules.

- 100

s ]

Projection

g g " g g g g g g
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Layer

(a) Dynamic HeteroLoRA with modules at r = 8

- 100

V-proj

- [ HHHHNIEEEE EEEEEEEEEEEE

res-1 |

res-2 -

Projection

i g g g i i g g
0 1 2 3 4 5 6 7 8 9 10 11 12 13 18 19 20 21 22 23

Layer

14 15 16 17

(b) Dynamic HeteroLoRA with modules at r = 32

Figure 7: Frequency of linear projections in every model layer being enabled in the dynamic HeteroLoRA training
on RTE with (a) r = 8 and (b) » = 32 for LoRA and shortcut modules.

16



-50

- 40

s ]
V-proj | ..
e | | [ (PP
= HHHH HIEIEEEEEEEEEE EEEE
~-J]l il il H H HEEE §H EEEE
MMII Illlll HNEEEEE ENEEEE

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Layer

Projection

(a) Dynamic HeteroLoRA with modules at » = 8

-50

- 40

V-proj -

s ]

Projection

cross-in |

WMIIIII III HEEEREENEE EEEE
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Layer

(b) Dynamic HeteroLoRA with modules at » = 32

Figure 8: Frequency of linear projections in every model layer being enabled in the dynamic HeteroLoRA training
on SST-2 with (a) » = 8 and (b) » = 32 for LoRA and shortcut modules.

17



	Introduction
	Related Works
	Low-Rank Adaptation
	Shortcut Connections
	Configuration Search in PET

	HeteroLoRA
	Saliency Estimation using Proxies
	Static and Dynamic HeteroLoRA
	Extending the Search Space with LoRA-Adapted Shortcut Connections

	Experiments
	Experiment Setup
	Determining the Proxy and Comparing Static and Dynamic HeteroLoRA
	The Performance Gain of Enabling Shortcut Connections
	Dynamic HeteroLoRA with an Extended Search Space
	Comparing with SoTAs

	Discussion
	Proxies for PET
	The Impact of PET on Different Modules

	Conclusions
	Primary LoRA Experiments
	Hyperparameters
	LoRA modules combined with LoRA-Adapted Shortcuts
	Training hyperparameters
	Saliency hyperparameters

	Zero-Cost Proxies
	CONSTANT
	SNIP
	SYNFLOW
	GRAD-NORM

	Static HeteroLoRA Algorithm
	LoRA-Adapted Shortcuts
	Additional Experimental Results

