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Abstract

Low-rank adaption (LoRA) has been the de-001
facto parameter-efficient fine-tuning technique002
for large language models. We present Het-003
eroLoRA, a light-weight search algorithm that004
leverages zero-cost proxies to allocate the lim-005
ited LoRA trainable parameters across the006
model for better fine-tuned performance. In ad-007
dition to the allocation for the standard LoRA-008
adapted models, we also demonstrate the effi-009
cacy of HeteroLoRA by performing the allo-010
cation in a more challenging search space that011
includes LoRA modules and LoRA-adapted012
shortcut connections. Experiments show that013
HeteroLoRA enables improvements in model014
performance given the same parameter budge.015
For example, on RTE, we see an improvement016
of 6.7% in accuracy with a similar training pa-017
rameter budget compared to a variety of state-018
of-the-art methods. We will open-source our019
algorithm once the paper is accepted.020

1 Introduction021

Recently, large language models (LLMs) have022

shown impressive performance in a range of natural023

language processing tasks (Qiu et al., 2020). Yet,024

fine-tuning pre-trained language models (PLMs) is025

computationally demanding and memory-intensive,026

and this problem is exacerbated by the ongoing027

trend of scaling up LLMs (Rae et al., 2022). To mit-028

igate this, parameter-efficient tuning (PET) meth-029

ods have been developed to fine-tune a small num-030

ber of (extra) model parameters instead of the entire031

model (Houlsby et al., 2019).032

Low-rank adaptation (LoRA) (Hu et al., 2021) is033

now the de-facto PET method. LoRA injects two034

low-rank matrices A ∈ Rr×din and B ∈ Rdout×r035

with rank r ≪ min(din, dout), to update the pre-036

trained weights W ∈ Rdout×din . Unlike full fine-037

tuning, LoRA updates only the injected A and B038

with the pre-trained weights W unchanged. After039

fine-tuning, the update weights ∆W = BA fuse040
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Figure 1: An illustration of the HeteroLoRA search
space in a Transformer model. Given a fixed number
of trainable parameters, HeteroLoRA finds an efficient
heterogeneous LoRA configuration for a model on a
specific task. Each of the standard LoRA modules and
LoRA-adapted shortcuts can be enabled or disabled.

back to the pre-trained weights W ′ = W + BA, 041

incurring no additional latency. LoRA achieves 042

performance levels similar to full fine-tuning while 043

drastically reducing memory usage. Yet, we iden- 044

tify the following limitations of LoRA. 045

• Existing methods configure LoRA modules 046

within a model uniformly with the same rank 047

r, thus each LoRA module consumes an iden- 048

tical number of trainable parameters, regard- 049

less of its potentially varying contributions to 050

the overall model performance. 051

• Current LoRA implementations predomi- 052

nantly adhere to the Transformer architecture. 053

However, there has been limited exploration 054

into extending the model architecture to en- 055

hance performance. This leads to the broader 056

question of whether it is necessary to incor- 057

porate LoRA modules under these constraints 058

and whether LoRA modules would be more ef- 059

fective with specific new connections, such as 060

shortcut connections (He et al., 2015; Huang 061

et al., 2018). 062
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In this work, we introduce HeteroLoRA, a new063

lightweight framework designed to autonomously064

allocate the LoRA module across the entire LLM065

given a parameter budget. Furthermore, we per-066

form HeteroLoRA within an expanded search067

space including LoRA-adapted shortcut connec-068

tions (He et al., 2015) as illustrated in Figure 1.069

Specifically, we make the following contributions:070

• We propose HeteroLoRA, a novel LoRA con-071

figuration search algorithm to solve the rank072

allocation problem within a limited trainable073

parameter budget. HeteroLoRA leverages074

zero-cost proxies (Abdelfattah et al., 2021)075

to avoid the high cost of brute-force search for076

finding effective allocations.077

• We introduce static and dynamic versions of078

HeteroLoRA. The dynamic variant permits079

periodic enabling and disabling of LoRA mod-080

ules. We empirically demonstrate that dy-081

namic HeteroLoRA achieves superior perfor-082

mance through a flexible allocation scheme.083

• We further prove the efficacy of the LoRA-084

adapted shortcut connection and combine it085

with HeteroLoRA to improve global synergies.086

The shortcuts suggested by HeteroLoRA en-087

able more gains in model performance given088

the same parameter budget. For instance, on089

RTE, we see an improvement of 6.7% in ac-090

curacy with similar model size budgets.091

2 Related Works092

We explain the methodology of LoRA in Sec-093

tion 2.1, and examine previous uses of shortcut094

connections in Section 2.2. In Section 2.3, we sum-095

marise previous works in configuration searching096

on PET methods.097

2.1 Low-Rank Adaptation098

Conducting a full fine-tuning on an LLM is often099

parameter-inefficient, since every downstream task100

can require a large set of its own tuned parame-101

ters (Qiu et al., 2020). To resolve this issue, a102

series of special fine-tuning methods referred to103

as parameter-efficient tuning (PET) was studied.104

PET methods usually introduce a small set of ex-105

tra trainable parameters (“adapter”) to be trained106

on a downstream task with the pre-trained model107

parameters frozen.108
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Figure 2: Overview of LoRA applied to a Transformer
model. LoRA can be applied to each Transformer block.
Taking a multi-head attention submodule in a block as
an example, LoRA can be applied to linear projections
transforming Q, K, V and the concatenated output. For
each LoRA module, the input is transformed by both a
pre-trained weight W and two low-rank matrices A and
B, whose results are added and returned.

Low-rank adaptation (LoRA) (Hu et al., 2021)
is a PET method that exploits the intrinsic low-
rank structures in deep learning. Mathematically,
LoRA hypothesises that the updates ∆W to the
pre-trained weights during fine-tuning have a low
“intrinsic rank”. The update can be represented as
the product of two rectangular low-rank decompo-
sition matrices, yielding:

W0 +∆W = W0 +BA

where W0 ∈ Rd×k denotes the pre-trained matrix, 109

∆W ∈ Rd×k denotes the update, and B ∈ Rd×r 110

and A ∈ Rr×k with rank r ≪ min(d, k) represents 111

the low-rank decomposition matrices. During fine- 112

tuning, only B and A are updated while W0 is 113

frozen. The updated B and A are fused into W0 114

after fine-tuning. 115

2.2 Shortcut Connections 116

The residual connections in the Transformer archi- 117

tecture, as well as other types of shortcut connec- 118

tions, have been well explored to improve model 119

performance. 120

ResNet (He et al., 2015) proposes residual con- 121

nection for image processing tasks. The residual 122

connection acts as an identity shortcut, taking the 123

input to a function and adding it back to the func- 124

tion’s output. By fitting a residual mapping directly, 125

ResNet addresses the optimisation difficulty as 126

model depth increases. SENet (Hu et al., 2019) in- 127

troduces “squeeze-and-excitation” operation after 128

a block of convolutional transformations to capture 129

cross-channel relations. DenseNet (Huang et al., 130

2018) also offers an intuitive shortcut-adapted ar- 131

chitecture. It divides a deep convolutional network 132

into blocks based on feature map sizes. Within 133
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each block, the input to the current layer includes134

outputs from all preceding layers. Unlike ResNet’s135

residual connections, DenseNet concatenates fea-136

ture maps from previous layers rather than sum-137

ming them.138

ResLoRA (Shi et al., 2024a), inspired by ResNet,139

incorporates three types of shortcuts into LoRA,140

namely input-shortcut, block-shortcut, and middle-141

shortcut. ResLoRA’s experiments indicate that142

these LoRA-adapted shortcuts improve model per-143

formance over the original LoRA by reducing gra-144

dient vanishing and explosion.145

2.3 Configuration Search in PET146

There have been numerous PET methods showing147

performance improvements. However, determining148

the most suitable method and configuration for a149

given task can be complex and time-consuming.150

To address this challenge, various automated ap-151

proaches to PET search have been proposed.152

Prior research has applied neural architecture153

search (NAS) methods to automate the search for154

PET strategies. For instance, AutoPEFT (Zhou155

et al., 2023) utilised Bayesian optimisation (Frazier,156

2018) to identify Pareto-optimal configurations for157

models adapted to Serial Adapters (Houlsby et al.,158

2019), Parallel Adapters (He et al., 2022), and pre-159

fix tuning (Li and Liang, 2021). Similarly, S3PET160

(Hu et al., 2022), employed DARTS (Liu et al.,161

2019a), a gradient-based NAS technique, across162

various PET methods. NAS4PET (Lawton et al.,163

2023) integrates parameter pruning into LoRA and164

BitFit (Zaken et al., 2022).165

Specifically, several methods work on the auto-166

matic selection of an optimal rank for LoRA. In Dy-167

LoRA (Valipour et al., 2023), nested dropout is used168

to enforce ordered representations in the low-rank169

A and B, allowing simultaneous training of LoRA170

modules across a range of ranks r. This enables171

seamless switching between different rank config-172

urations without the need for re-training. In con-173

trast, AdaLoRA (Zhang et al., 2023) approximates174

the update matrix using singular value decomposi-175

tion ∆W = PΛQ such that singular values in Λ176

are pruned in each training step based on certain177

importance scores. Moreover, AutoLoRA (Zhang178

et al., 2024) expresses the update matrix as the179

summation of r rank-1 matrices and estimates the180

importance of these matrices. After fine-tuning, the181

optimal rank of each LoRA module is determined182

by thresholding the importance, then the model is183

re-trained with the optimal LoRA ranks.184

Table 1: Comparison between HeteroLoRA and previ-
ous works over features including (a) single-shot NAS,
where the search is accomplished in a single training
run; (b) fixed GPU memory usage, where the searching
process does not require more trainable parameters than
the target parameter limitation; and (c) shortcut-enabled,
where the search considers shortcut connections.

Features
Single-shot Fixed GPU Shortcut-

Search Memory Usage enabled

AutoPEFT (Zhou et al., 2023) ✗ ✓ ✓

S3PET (Hu et al., 2022) ✓ ✗ ✗

NAS for PET (Lawton et al., 2023) ✗ ✗ ✗

DyLoRA (Valipour et al., 2023) ✓ ✗ ✗

AdaLoRA (Zhang et al., 2023) ✓ ✓ ✗

AutoLoRA (Zhang et al., 2024) ✗ ✗ ✗

ResLoRA (Shi et al., 2024a) ✗ ✗ ✓

HeteroLoRA (Ours) ✓ ✓ ✓

Table 2: Saliency Proxies for LoRA modules. We fol-
low the definition of three zero-cost proxies, ssnip(·) for
SNIP, ssynflow(·) for SYNFLOW, and sgradnorm(·) for
GRAD-NORM, to build the saliency scores for LoRA
modules (Ssnip(·), Ssynflow(·), and Sgradnorm(·)). A con-
stant proxy is considered as random search baseline.
Detailed introduction to zero-cost proxies (Abdelfattah
et al., 2021) is included in Appendix C.

Proxy Saliency score of LoRA-adapted module

Constant Sconstant(M) = 1

GRAD-NORM
Sgradnorm(M) = sgradnorm(A) + sgradnorm(B)(Abdelfattah et al., 2021)

SNIP Ssnip(M) =
∑
θ∈A

ssnip(θ) +
∑
ϕ∈B

ssnip(ϕ)
(Lee et al., 2019)

SYNFLOW Ssynflow(M) =
∑
θ∈A

ssynflow(θ) +
∑
ϕ∈B

ssynflow(ϕ)
(Tanaka et al., 2020)

However, these methods either necessitate com- 185

putationally intensive full NAS, or require addi- 186

tional trainable parameters to determine the LoRA 187

configuration, while being confined to the exist- 188

ing architecture search space. We propose Het- 189

eroLoRA to address these limitations. Table 1 sum- 190

marises the distinctions between HeteroLoRA and 191

previous methods, highlighting the novelty of our 192

work. 193

3 HeteroLoRA 194

We adopt zero-cost proxies to estimate the impor- 195

tance of LoRA modules in Section 3.1, and discuss 196

two ways to integrate the HeteroLoRA search into 197

the existing PET pipeline in Section 3.2. In Sec- 198

tion 3.3, we introduce LoRA-adapted shortcuts to 199

enable exploration of global synergies. 200

3.1 Saliency Estimation using Proxies 201

Given a limited number of active LoRA modules, 202

turning on a subset of modules could potentially be 203

more effective. For instance, turning on all LoRA 204
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Figure 3: Training pipeline of (a) static HeteroLoRA,
where LoRA modules are enabled/disabled at the start
of training, and (b) dynamic HeteroLoRA, where LoRA
modules are enabled/disabled periodically, e.g., every
1/5 epoch, during the training.

modules with r = 2 vs. turning on 25% of all205

modules with r = 8, the latter may achieve higher206

model performance. We consider such LoRA con-207

figuration assignment as a “LoRA rank allocation”208

problem and propose HeteroLoRA to solve it.209

We estimate the saliency (importance) of a sin-210

gle LoRA module as a reference for HeteroLoRA211

searches. Modules with higher saliency scores212

will be enabled during training, and tie-breaking213

will be done by uniform random sampling. Three214

saliency proxies plus a random allocation baseline215

are shortlisted in Table 2. The detailed introduction216

to SNIP (Lee et al., 2019), SYNFLOW (Tanaka217

et al., 2020), and GRAD-NORM (Abdelfattah218

et al., 2021) are included in the Appendix C. It219

is worth mentioning that, as illustrated in Table 2,220

the saliency is applied to both A and B.221

Note that the saliency proxies are applied to222

the whole LoRA W ′ instead of ∆W = BA for223

two reasons. First, at the start of training, the up-224

date component ∆W = BA is initialised as zeros,225

hence saliencies do not make sense by then. Sec-226

ond, the update component ∆W has a strong cor-227

relation with the pre-trained weight W , indicating228

that the features that ∆W amplified are already in229

W (Hu et al., 2021). Therefore, it is reasonable to230

include the pre-trained weight in the saliency for231

deciding the “on/off” of the LoRA modules.232

3.2 Static and Dynamic HeteroLoRA233

Static HeteroLoRA A straightforward way to234

incorporate HeteroLoRA search into the training235

pipeline is to compute the saliency proxy at the236

beginning of training, enabling or disabling LoRA237

modules accordingly. This is applied on a handful238

of training samples at the start that only introduces239

minimal search cost, taking around 2-5% of one240

Algorithm 1 Dynamic HeteroLoRA training
Require: model, Dtrain, Dval, max_epoch > 0,

TRAIN(model, train_set),
VALIDATE(model, validation_set),
saliency ∈ {CONSTANT, SNIP, SYNFLOW, GRAD-NORM},
enable_rate ∈ (0, 100], ▷ percentage of LoRA
and shortcut modules to be enabled
HETEROLORA_SEARCH(model, saliency, en-
able_rate), ▷ configuration search function
search_T > 0. ▷ number of HeteroLoRA search
to perform in every epoch

subepoch←
⌈

|Dtrain|
search_T

⌉
epoch← 0
while epoch < max_epoch do

for i := 0 to search_T − 1 do
HETEROLORA_SEARCH(model, saliency,
enable_rate) ▷ find a LoRA rank allocation
TRAIN(model, Dtrain[i × subepoch : (i + 1) ×
subepoch]) ▷ train the model on a fraction of the
training set

VALIDATE(model, Dval) ▷ validate the model
epoch← epoch+ 1

epoch training. We then maintain the same rank 241

allocation throughout training, as depicted in Fig- 242

ure 3a. This approach mirrors zero-cost NAS (Ab- 243

delfattah et al., 2021), where a lightweight search 244

for optimal configurations is conducted initially, 245

followed by complete fine-tuning. 246

Dynamic HeteroLoRA After several training 247

steps, the optimizer may find that some enabled 248

LoRA modules are not as important as measured 249

initially. Therefore, we introduce dynamic Het- 250

eroLoRA, which periodically updates the rank allo- 251

cation at the start of each training epoch, as shown 252

in Figure 3b. Dynamic HeteroLoRA offers an op- 253

portunity to inspect the importance of each LoRA 254

module through the frequency it has been enabled. 255

We detail the algorithms for both static Het- 256

eroLoRA (in Appendix D) and dynamic Het- 257

eroLoRA (in Algorithm 1). Algorithm 1 out- 258

lines the utilization of various saliency metrics 259

by HeteroLoRA, where the search process is trig- 260

gered search_T times within a single epoch of 261

training. Dynamic HeteroLoRA then requires 262

search_T ×max_epochs times more search bud- 263

get, however, we also show in later sections how 264

this method provides a better fine-tuned model. 265

3.3 Extending the Search Space with 266

LoRA-Adapted Shortcut Connections 267

We introduce LoRA-adapted shortcut connections
to extend the search space, which is later integrated
with HeteroLoRA to foster global synergies be-
tween LoRA modules. A LoRA-style low-rank
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Figure 4: LoRA-adapted shortcut architecture on two
Transformer layers with post-layer-normalisation. Blue
blocks are the residual shortcuts sres1 and sres2. Green
blocks are the sin same-layer style “cross-layer” short-
cuts. Red blocks are the scut “cut-layer” style cross-layer
shortcuts. These shortcuts, combined with the standard
LoRA modules present in the layers, constitute the Het-
eroLoRA search space.

linear transformation is applied to each shortcut:

W = W0 +
α

r
BA

where W0 is the initial weight of the linear projec-268

tion, depending on the type of the shortcut; α is a269

pre-defined scaling factor; and r is the rank of A270

and B. A and B are initialised similarly to LoRA271

modules to ensure W = W0 at the start of train-272

ing. We refer to a combination of ⟨W0, A,B⟩ as a273

“shortcut module”. A layer normalisation (Ba et al.,274

2016) is appended after the addition of the short-275

cut to improve the training stability in post-layer-276

normalisation models (e.g., OPT-350M). This is,277

however, not employed in pre-layer-normalisation278

models (e.g., RoBERTa and Llama3) as we have279

observed enhanced performance without the extra280

layer normalisation.281

As shown in Figure 4, we focus on two types of282

shortcut connections, residual shortcut and cross-283

layer shortcut, to keep the search space tractable:284

285

1. Residual shortcut: Shortcut is applied to the286

micro-architecture by replacing the two orig-287

inal residual connections within the Trans-288

former block (as the blue blocks in Figure 4).289

We refer to them as “residual shortcuts” sres1290

and sres2. The initial weight W0 of these short-291

cut modules is the identity matrix I .292

2. Cross-layer shortcut: Shortcut connection is 293

applied to the macro-architecture by linking 294

two points at different Transformer blocks. 295

We refer to this as the “cross-layer shortcut”. 296

A cross-layer shortcut skips multiple Trans- 297

former blocks. We concentrate on cross-layer 298

shortcuts that skip one Transformer block for 299

simplicity, as the green blocks (sin) and the red 300

blocks (scut) in Figure 4. The initial weights 301

W0 of the cross-layer shortcut modules are 302

initialised to zeros because these shortcuts do 303

not exist in the original architecture. More 304

details are summarised in Appendix E. 305

4 Experiments 306

We outline our basic experiment setup in Sec- 307

tion 4.1. In Section 4.2, we identify the most 308

promising saliency proxy and verify that Het- 309

eroLoRA achieves a better performance than the 310

standard homogeneous LoRA. In Section 4.3, we 311

demonstrate that LoRA-adapted shortcuts enable 312

an additional performance gain. In Section 4.4 313

we use HeteroLoRA to allocate the rank in a 314

search space that includes both standard LoRA 315

moduels and LoRA-adapted shortcuts, highlight- 316

ing the efficacy of HeteroLoRA. Section 4.5 sub- 317

sequently evaluates the performance of Dynamic 318

HeteroLoRA within the shortcut-enabled search 319

space relative to state-of-the-art methods. 320

4.1 Experiment Setup 321

We perform experiments with OPT-350M (Zhang 322

et al., 2022), RoBERTa-base, and RoBERTa-large 323

(Liu et al., 2019b) on the GLUE benchmark (Wang 324

et al., 2019), which contains English natural lan- 325

guage understanding (NLU) tasks. For each ex- 326

periment, the mean and standard deviation of the 327

performance are calculated over three independent 328

runs of different random seeds. We apply LoRA to 329

the query layer WQ and the value layer W V as ex- 330

periments show that applying these LoRA modules 331

to these two layers effectively improves model per- 332

formance (see Appendix A). We use a fixed number 333

of trainable parameters for all groups in the same 334

experiment subsection. To make our experimen- 335

tal results reproducible, detailed rank and training 336

hyperparameters are summarised in Appendix B 337

and our code would be open-sourced if the paper is 338

accepted. 339
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Table 3: Performance of the salience proxies with static
and dynamic HeteroLoRA. Accuracy on MRPC and the
difference with the baseline performance are reported.
The baseline, in which all LoRA modules are enabled
with rank r = 2, achieves 83.8% accuracy. We ob-
serve that the combination of GRAD-NORM and dynamic
HeteroLoRA achieves the highest accuracy.

r = 8 CONSTANT GRAD-NORM SNIP SYNFLOW

Static 83.8 (+0.0) 82.8 (-1.0) 82.8 (-1.0) 78.7 (-5.1)
Dynamic 82.4 (-1.4) 84.1 (+0.3) 82.4 (-1.4) 82.4 (-1.4)

Table 4: Performance gain of LoRA-adapted shortcut
connections. L-only is the LoRA-only baseline. rS =
rL denotes the model in which both LoRA modules and
LoRA-adapted shortcuts are applied with the same rank.
rS>rL represent the model in which the LoRA module
rank is fixed and the rest of ranks are allocated to the
shortcut. We observe that the LoRA-adapted shorcuts
combined with LoRA modules achieve higher accuracy
than the LoRA-only group given the same number of
trainable parameters.

#Trainable Group MRPC RTE SST-2 Avg.

2.3M
L-only 83.4 ± 1.1 72.1 ± 1.2 93.4 ± 0.4 92.1
rS = rL 84.6 ± 0.5 73.5 ± 1.4 93.9 ± 0.3 92.6
rS > rL 84.6 ± 1.9 70.9 ± 2.2 93.7 ± 0.3 92.4

9.4M
L-only 83.4 ± 0.4 69.4 ± 3.2 93.3 ± 0.5 91.9
rS = rL 83.8 ± 0.6 72.6 ± 1.3 94.1 ± 0.7 92.7
rS > rL 84.1 ± 0.9 71.8 ± 3.0 93.8 ± 0.3 92.5

4.2 Determining the Proxy and Comparing340

Static and Dynamic HeteroLoRA341

We first apply HeteroLoRA to the original LoRA.342

Table 3 compares the four proxies (Constant, Grad-343

Norm, SNIP and Synflow) under both Static and344

Dynamic HeteroLoRA on OPT-350M. In each ex-345

periment, 25% of LoRA modules are enabled with346

r = 8. The eight combinations are also compared347

to a baseline, in which all LoRA modules are en-348

abled with r = 2, so the numbers of trainable349

parameters are the same.350

We observe that Dynamic HeterLoRA achieves351

better performances than static HeteroLoRA, with352

GRAD-NORM performing the best and surpass-353

ing the baseline. Therefore, we use Dynamic Het-354

eroLoRA with the GRAD-NORM proxy in the355

following experiments.356

4.3 The Performance Gain of Enabling357

Shortcut Connections358

We conduct controlled experiments in two different359

configurations to validate the effectiveness of the360

extended search space with shortcut connections361

described in Section 3.3. Table 4 presents three362

different search configurations (L-only, rS = rL363

Table 5: Dynamic HeteroLoRA combined with LoRA-
adapted shortcuts. The S (LoRA-adapted Shortcut) &
L (Standard LoRA) baselines have all modules enabled.
The DH (Dynamic HeteroLoRA) & S & L have 25%
of LoRA models and LoRA-adapted shortcuts enabled.
They have the same number of trainable parameters
for a fair comparison. We observe that DH & S & L
outperforms the baseline, meaning HeteroLoRA finds a
more optimal rank allocation.

#Trainable Setup MRPC RTE SST-2 Avg.

2.3M S & L 83.7 ± 0.8 73.4 ± 2.2 93.6 ± 0.5 83.5
DH & S & L 84.3 ± 1.0 72.9 ± 1.8 93.9 ± 0.5 83.7

9.4M S & L 84.6 ± 0.5 73.5 ± 1.4 93.8 ± 0.4 84.0
DH & S & L 85.0 ± 1.6 73.6 ± 1.1 93.6 ± 0.1 84.1

and rS > rL) on OPT-350M under two different 364

number of trainable parameters constraints: 365

• L-only: Only the standard LoRA is applied to 366

the model. This group serves as the baseline. 367

• rS = rL: Both standard LoRA and LoRA- 368

adapted shortcuts are applied to the model 369

and the rank of shortcuts is the same as the 370

standard LoRA. 371

• rS > rL: Both LoRA and shortcut are applied, 372

but the LoRA module rank is fixed and the rest 373

of the ranks are allocated to the shortcut. 374

We ensure that the three groups have the same num- 375

ber of trainable parameters for a fair comparison. 376

The detailed experiment setup is in Appendix B. 377

Table 4 demonstrates that the shortcut-adapted ar- 378

chitecture generally outperforms the LoRA-only 379

architecture, meanwhile with a more prominent ad- 380

vantage as the budget grows larger (at 9.4M train- 381

able parameters). This observation indicates that 382

the linear projections on the shortcuts have larger 383

“intrinsic ranks” than the LoRA update matrices. 384

When performance “saturates” in LoRA modules, 385

shortcuts foster further performance improvement 386

by developing global synergies across layers. 387

4.4 Dynamic HeteroLoRA with an Extended 388

Search Space 389

Finally, we integrate the components and design 390

choices discussed above in Section 4.2 and Sec- 391

tion 4.3. We combine Dynamic HeteroLoRA and 392

the GRAD-NORM proxy. 393

Table 5 compares the LoRA-adapted OPT-350M 394

model with/without Dynamic HeteroLoRA under 395

the same trainable parameter budget: 396
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Table 6: Search time costs of HeteroLoRA configuration
searches for an OPT-350M model training on SST-2,
where the number of trainable parameters is constrained
to 2.3M. Percentage is the search time relative to the
total training time.

Method Static HeteroLoRA Dynamic HeteroLoRA

Time cost 50 seconds 200 seconds per epoch

Percentage 0.25% 7.75%

• S & L denotes all the LoRA modules and397

LoRA-adapted shortcuts are enabled with the398

same rank.399

• For DH & S & L, Dynamic HeteroLoRA sorts400

the saliency scores of standard LoRA and401

LoRA-adapted shortcuts to determine which402

module to enable/disable.403

As illustrated in Table 5, we observe that Dy-404

namic HeteroLoRA further improves model per-405

formance over S & L, indicating that HeteroLoRA406

finds a more optimal rank allocation. Figure 5407

displays the frequency of each LoRA or shortcut408

module being enabled over the 20 training epochs409

on MRPC and the 10 training epochs on SST-2.410

The frequency of each LoRA module denotes its411

importance to performance; the frequency of each412

shortcut module characterises its efficacy to global413

synergies. A noticeable preference for value pro-414

jections over query projections indicates that the415

value transformation updates generally contribute416

more to the performance. Move results on different417

datasets are available in Appendix F.418

As stated in Section 3.2, Static HeteroLoRA419

incurs minimal search cost at the start of PEFT,420

whereas Dynamic HeteroLoRA bears a higher cost421

due to its periodic search during PEFT. Table 6422

reveals that the cost for Dynamic HeteroLoara,423

although very low, extends the training duration424

marginally (by 7.75%). It’s also important to note425

that the relative overhead is comparable for other426

models and datasets, since this cost is proportional427

to the total training expenditure.428

4.5 Comparing with SoTAs429

One piece of work that is related to our Dynamic430

HeteroLoRA is ResLoRA (Shi et al., 2024b), which431

also incorporated the residual connections into the432

LoRA trainable region but they have conducted an433

allocation manually for the adaptors. We then focus434

on a comparison with ResLoRA in Table 7 on the435

Table 7: Comparing with ResLoRA on RoBERTa-large,
where the model size is constrained to 0.4M trainable pa-
rameters for both ResLoRA and Dynamic HeteroLoRA.

Method CoLA RTE MRPC Avg.
ResLoRAis 65.5 83.0 92.4 80.3
ResLoRAbs 65.4 82.3 91.3 79.7
ResLoRAms 65.8 82.0 91.6 79.8

Dynamic HeteroLoRA 66.1 85.9 90.0 80.7

RoBERTa-large model. It is worth mentioning that 436

ResLoRA manually assigns trainable parameters to 437

certain blocks, and is, bs and ms means the short- 438

cuts are added to inputs (input-shortcuts), blocks 439

(block-shortcuts) or middle (middle-shortcuts). In 440

contrast, we incorporate these design options in a 441

search space as explained in Section 3.3. Table 7 il- 442

lustrates that Dynamic HeteroLoRA can effectively 443

navigate the extended search space, evidenced by 444

a notable performance increase over the manually 445

designed ResLoRA methods within a similar PEFT 446

design space. On these three considered datasets 447

(CoLA, RTE and MRPC), Dynamic HeteoLoRA 448

outperforms the best ResLoRA design by 0.3 in 449

terms of averaged accuracy. 450

Another research direction related to Het- 451

eroLoRA involves various LoRA configuration 452

search algorithms, including AutoLoRA (Zhang 453

et al., 2024) and AdaLoRA (Zhang et al., 2023). 454

We then pivot to a comparative analysis with these 455

methods in Table 8 focusing on RoBERTa-base, 456

as this is a model that these methods report per- 457

formance on. In addition to AdaLoRA and Au- 458

toLoRA, we also report the standard LoRA’s per- 459

formance at a rank value r = 8 as a baseline. In Ta- 460

ble 8, all methods are kept to have the same number 461

of trainable parameters (0.3M). We evaluated per- 462

formance across eight different downstream tasks 463

and have shown that HeteroLoRA outperforms 464

other LoRA configuration search methods. 465

5 Discussion 466

5.1 Proxies for PET 467

The concept of employing saliency metrics to iden- 468

tify critical components of a neural network is 469

well-established in the field of Efficient AI and 470

has been extensively researched in domains like 471

network compression (to determine which parts 472

to prune (Lee et al., 2019)) and network architec- 473

ture search (to design networks guided by saliency 474

measures (Abdelfattah et al., 2021)). Though it 475

was natural to anticipate that proven proxies like 476

SNIP (Lee et al., 2019) and Synflow (Tanaka et al., 477

7
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Figure 5: Frequency of linear projections in every model layer being enabled in the Dynamic HeteroLoRA trained
on (a) MRPC and (b) SST-2 for LoRA and shortcut modules. A noticeable preference for value projections over
query projections indicates that the value update generally contributes more to the fine-tuned performance.

Table 8: Comparing with AdaLoRA (Zhang et al., 2023) and AutoLoRA (Zhang et al., 2024) on RoBERTa-base on
different GLUE downstream tasks, where the model size is constrained to 0.3M trainable parameters.

Method Params MNLI SST-2 MRPC CoLA QNLI RTE QQP Avg
Full fine-tuning 125M 86.7 94.8 89.3 61.6 92.8 76.9 90.3 84.6
LoRA (r = 8) 0.3M 86.9 94.5 89.1 59.0 92.9 75.8 89.6 84.0

AdaLoRA 0.3M 87.0 94.0 89.4 58.8 93.0 75.9 89.9 84.0
AutoLoRA 0.3M 87.0 94.9 89.4 61.3 92.9 77 90.3 84.7

Dynamic HeteroLoRA 0.3M 85.9 94.9 89.7 64.5 91.5 82.5 89.6 85.5

2020) would be advantageous, given their effec-478

tiveness in pruning-at-initialisation and zero-cost479

NAS, our results in Section 4.2 revealed that the480

simple Grad-Norm proxy is more effective for PET481

configuration search. This finding suggests that482

proxy designs for PET might differ from those pre-483

viously proven effective in other domains, and there484

is potential for future research to develop more485

specialised and mathematically grounded proxies486

tailored for PET search.487

5.2 The Impact of PET on Different Modules488

A common practice in PET, particularly when em-489

ploying LoRA, is to uniformly apply trainable mod-490

ules with the same rank value, for instance, using491

a consistent rank r. Our findings depicted in Fig-492

ure 6 indicate that Dynamic HeteroLoRA gener-493

ally favours assigning trainable parameters to the494

value projection layers in transformers. Notably,495

HeteroLoRA also tends to allocate resources to496

residual layers, particularly in the middle layers.497

Conversely, we observe that HeteroLoRA infre-498

quently assigns training resources to the query pro-499

jection layers. Intuitively, the calculations within500

a transformer layer can be seen as constructing501

weighted attention for each entry in the value se-502

quence. Consequently, for PET, modifying the503

value projection may be the most straightforward504

way for fine-tuning the network to downstream505

tasks. We believe these observations might provide506

useful insights for future research in the direction507

of novel PET methods or even novel transformer508

architectures. 509

6 Conclusions 510

We propose dynamic HeteroLoRA, a framework au- 511

tomatically determining the “on/off” for the LoRA 512

modules in LLM fine-tuning. Then we verify that 513

LoRA-adapted shortcuts improve model perfor- 514

mance. In the end, we demonstrate that Dynamic 515

HeteroLoRA effectively solves the rank allocation 516

problem in a challenging search space including 517

both LoRA modules and shortcuts. HeteroLoRA 518

offers a cost-effective way to allocate trainable pa- 519

rameters within a limited training budget. 520

Limitations 521

In comparison to the original LoRA method and 522

other extensions to LoRA such as ResLoRA, the 523

shortcut connections in our method do introduce ad- 524

ditional computational and memory overhead dur- 525

ing inference, although the overhead is relatively 526

subtle. The HeteroLoRA configuration search also 527

inevitably incurs additional time costs. However, 528

we mitigate this by employing zero-cost proxies 529

and dynamic configuration search. 530

Furthermore, a set of more fine-grained rank val- 531

ues for LoRA modules, rather than enable/disable, 532

can be considered in configuration searches. How- 533

ever, a more sophisticated allocation problem may 534

be involved. 535

8



References536

Mohamed S. Abdelfattah, Abhinav Mehrotra, Łukasz537
Dudziak, and Nicholas D. Lane. 2021. Zero-538
cost proxies for lightweight nas. Preprint,539
arXiv:2101.08134.540

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E.541
Hinton. 2016. Layer normalization. Preprint,542
arXiv:1607.06450.543

Peter I. Frazier. 2018. A Tutorial on Bayesian Optimiza-544
tion. Preprint, arXiv:1807.02811.545

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-546
Kirkpatrick, and Graham Neubig. 2022. Towards a547
unified view of parameter-efficient transfer learning.548
Preprint, arXiv:2110.04366.549

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian550
Sun. 2015. Deep residual learning for image recogni-551
tion. Preprint, arXiv:1512.03385.552

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,553
Bruna Morrone, Quentin de Laroussilhe, Andrea554
Gesmundo, Mona Attariyan, and Sylvain Gelly.555
2019. Parameter-efficient transfer learning for nlp.556
Preprint, arXiv:1902.00751.557

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan558
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,559
and Weizhu Chen. 2021. LoRA: Low-Rank Adap-560
tation of Large Language Models. Preprint,561
arXiv:2106.09685.562

Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and En-563
hua Wu. 2019. Squeeze-and-excitation networks.564
Preprint, arXiv:1709.01507.565

Shengding Hu, Zhen Zhang, Ning Ding, Yadao Wang,566
Yasheng Wang, Zhiyuan Liu, and Maosong Sun.567
2022. Sparse Structure Search for Parameter-568
Efficient Tuning. Preprint, arXiv:2206.07382.569

Gao Huang, Zhuang Liu, Laurens van der Maaten, and570
Kilian Q. Weinberger. 2018. Densely connected con-571
volutional networks. Preprint, arXiv:1608.06993.572

Neal Lawton, Anoop Kumar, Govind Thattai, Aram573
Galstyan, and Greg Ver Steeg. 2023. Neural Archi-574
tecture Search for Parameter-Efficient Fine-tuning575
of Large Pre-trained Language Models. Preprint,576
arXiv:2305.16597.577

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip578
H. S. Torr. 2019. Snip: Single-shot network579
pruning based on connection sensitivity. Preprint,580
arXiv:1810.02340.581

Xiang Lisa Li and Percy Liang. 2021. Prefix-582
tuning: Optimizing continuous prompts for gener-583
ation. Preprint, arXiv:2101.00190.584

Hanxiao Liu, Karen Simonyan, and Yiming Yang.585
2019a. DARTS: Differentiable Architecture Search.586
Preprint, arXiv:1806.09055.587

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 588
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 589
Luke Zettlemoyer, and Veselin Stoyanov. 2019b. 590
RoBERTa: A Robustly Optimized BERT Pretrain- 591
ing Approach. Preprint, arXiv:1907.11692. 592

XiPeng Qiu, TianXiang Sun, YiGe Xu, YunFan 593
Shao, Ning Dai, and XuanJing Huang. 2020. Pre- 594
trained models for natural language processing: A 595
survey. Science China Technological Sciences, 596
63(10):1872–1897. 597

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie 598
Millican, Jordan Hoffmann, Francis Song, John 599
Aslanides, Sarah Henderson, Roman Ring, Susan- 600
nah Young, Eliza Rutherford, Tom Hennigan, Ja- 601
cob Menick, Albin Cassirer, Richard Powell, George 602
van den Driessche, Lisa Anne Hendricks, Mari- 603
beth Rauh, Po-Sen Huang, Amelia Glaese, Jo- 604
hannes Welbl, Sumanth Dathathri, Saffron Huang, 605
Jonathan Uesato, John Mellor, Irina Higgins, Anto- 606
nia Creswell, Nat McAleese, Amy Wu, Erich Elsen, 607
Siddhant Jayakumar, Elena Buchatskaya, David Bud- 608
den, Esme Sutherland, Karen Simonyan, Michela Pa- 609
ganini, Laurent Sifre, Lena Martens, Xiang Lorraine 610
Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena 611
Gribovskaya, Domenic Donato, Angeliki Lazaridou, 612
Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsim- 613
poukelli, Nikolai Grigorev, Doug Fritz, Thibault Sot- 614
tiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong, 615
Daniel Toyama, Cyprien de Masson d’Autume, Yujia 616
Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, 617
Aidan Clark, Diego de Las Casas, Aurelia Guy, 618
Chris Jones, James Bradbury, Matthew Johnson, 619
Blake Hechtman, Laura Weidinger, Iason Gabriel, 620
William Isaac, Ed Lockhart, Simon Osindero, Laura 621
Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub, 622
Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Ko- 623
ray Kavukcuoglu, and Geoffrey Irving. 2022. Scaling 624
language models: Methods, analysis & insights from 625
training gopher. Preprint, arXiv:2112.11446. 626

Shuhua Shi, Shaohan Huang, Minghui Song, Zhou- 627
jun Li, Zihan Zhang, Haizhen Huang, Furu Wei, 628
Weiwei Deng, Feng Sun, and Qi Zhang. 2024a. 629
Reslora: Identity residual mapping in low-rank adap- 630
tion. Preprint, arXiv:2402.18039. 631

Shuhua Shi, Shaohan Huang, Minghui Song, Zhou- 632
jun Li, Zihan Zhang, Haizhen Huang, Furu Wei, 633
Weiwei Deng, Feng Sun, and Qi Zhang. 2024b. 634
Reslora: Identity residual mapping in low-rank adap- 635
tion. Preprint, arXiv:2402.18039. 636

Hidenori Tanaka, Daniel Kunin, Daniel L. K. Yamins, 637
and Surya Ganguli. 2020. Pruning neural networks 638
without any data by iteratively conserving synaptic 639
flow. Preprint, arXiv:2006.05467. 640

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan 641
Kobyzev, and Ali Ghodsi. 2023. Dylora: Parame- 642
ter efficient tuning of pre-trained models using dy- 643
namic search-free low-rank adaptation. Preprint, 644
arXiv:2210.07558. 645

9

https://arxiv.org/abs/2101.08134
https://arxiv.org/abs/2101.08134
https://arxiv.org/abs/2101.08134
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/2110.04366
https://arxiv.org/abs/2110.04366
https://arxiv.org/abs/2110.04366
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/1709.01507
https://arxiv.org/abs/2206.07382
https://arxiv.org/abs/2206.07382
https://arxiv.org/abs/2206.07382
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/2305.16597
https://arxiv.org/abs/2305.16597
https://arxiv.org/abs/2305.16597
https://arxiv.org/abs/2305.16597
https://arxiv.org/abs/2305.16597
https://arxiv.org/abs/1810.02340
https://arxiv.org/abs/1810.02340
https://arxiv.org/abs/1810.02340
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/1806.09055
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2402.18039
https://arxiv.org/abs/2402.18039
https://arxiv.org/abs/2402.18039
https://arxiv.org/abs/2402.18039
https://arxiv.org/abs/2402.18039
https://arxiv.org/abs/2402.18039
https://arxiv.org/abs/2006.05467
https://arxiv.org/abs/2006.05467
https://arxiv.org/abs/2006.05467
https://arxiv.org/abs/2006.05467
https://arxiv.org/abs/2006.05467
https://arxiv.org/abs/2210.07558
https://arxiv.org/abs/2210.07558
https://arxiv.org/abs/2210.07558
https://arxiv.org/abs/2210.07558
https://arxiv.org/abs/2210.07558


Alex Wang, Amanpreet Singh, Julian Michael, Felix646
Hill, Omer Levy, and Samuel R. Bowman. 2019.647
Glue: A multi-task benchmark and analysis plat-648
form for natural language understanding. Preprint,649
arXiv:1804.07461.650

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-651
berg. 2022. Bitfit: Simple parameter-efficient652
fine-tuning for transformer-based masked language-653
models. Preprint, arXiv:2106.10199.654

Qingru Zhang, Minshuo Chen, Alexander Bukharin,655
Nikos Karampatziakis, Pengcheng He, Yu Cheng,656
Weizhu Chen, and Tuo Zhao. 2023. Adalora: Adap-657
tive budget allocation for parameter-efficient fine-658
tuning. Preprint, arXiv:2303.10512.659

Ruiyi Zhang, Rushi Qiang, Sai Ashish Somayajula, and660
Pengtao Xie. 2024. Autolora: Automatically tuning661
matrix ranks in low-rank adaptation based on meta662
learning. Preprint, arXiv:2403.09113.663

Susan Zhang, Stephen Roller, Naman Goyal, Mikel664
Artetxe, Moya Chen, Shuohui Chen, Christopher De-665
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-666
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel667
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu668
Wang, and Luke Zettlemoyer. 2022. Opt: Open669
pre-trained transformer language models. Preprint,670
arXiv:2205.01068.671

Han Zhou, Xingchen Wan, Ivan Vulić, and Anna672
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A Primary LoRA Experiments 676

To make the search space manageable, we first decide which linear layers in attention are helpful if 677

they are LoRA-adapted. We sweep the LoRA combinations and fine-tune them on MRPC. As shown 678

in Tables 9 and 10, we find that applying LoRA to WQ and WV is most helpful for improving model 679

performance. 680

Table 9: Performance of LoRA applied to different combinations of linear projections in the attention submodule
under the same numbers of trainable parameters. Adapting WV and (WQ,WV ) perform the best.

Projections WQ WK W V WO WQ,WK WQ,W V WQ,WK ,
W V ,WO

Rank r 8 8 8 8 4 4 2

MRPC (acc) 80.2±1.6 80.3±0.5 84.3±1.3 83.2±0.1 81.6±1.1 84.1±1.1 83.3±1.8

Table 10: Comparison of LoRA applied to attention linear projections, FFN linear projections, and both. Due
to the larger feed-forward network module dimension, adapting FFN projections W1 or W2 costs more trainable
parameters than the attention projections.

Projections WQ,W V W1 W2 W1,W2 WQ,W V ,W1,W2

Rank r 4 8 8 4 2
# Trainable 394K 984K 689K

MRPC (acc) 84.1±1.1 83.3±0.6 82.3±1.2 84.0±0.9 83.5±0.5

B Hyperparameters 681

Experiments are run on a server with 4 NVIDIA QUADRO RTX 8000 GPUs, as well as an HPC cluster 682

with servers of 3 NVIDIA A100 40 GB RAM Tensor Core GPUs, 2 AMD EPYC 7742 (Rome) 2.25 GHz 683

64-core processors, and 512 GB DDR4-3200 RAM. 684

For experiments with different model configurations and different datasets, the optimal training hyper- 685

parameters may vary. Due to the expensive computational cost, searching for the optimal hyperparameters 686

in every experiment is infeasible. Therefore, learning rate searches are conducted for experiments while 687

other hyperparameters are set by referencing the original RoBERTa paper (Liu et al., 2019b) and LoRA 688

paper (Hu et al., 2021). 689

For experiments on the LoRA-searching training pipelines, the optimal hyperparameters tuned indepen- 690

dently by beam search on MRPC are applied to all datasets, except for the learning rate, which is searched 691

on each dataset respectively. 692

B.1 LoRA modules combined with LoRA-Adapted Shortcuts 693

In the dynamic HeteroLoRA training, a search is conducted every 1/5 training epoch, in which the 694

GRAD-NORM saliency score is evaluated over 32 batches of training data for each LoRA or shortcut module, 695

and the modules ranking top 25% are enabled with rank r = 8 until the next HeteroLoRA search. 696

As shortcut connections have shown their effectiveness at larger ranks in Section 4.3, we further evaluate 697

dynamic HeteroLoRA with LoRA and shortcut modules enabled with rank r = 32. The two HeteroLoRA 698

training setups are compared to two baselines with all modules enabled but with 1/4 ranks respectively, 699

so the numbers of trainable parameters at any time in the training are equivalent respectively. 700

B.2 Training hyperparameters 701

Experiments were run on three random seeds (0, 13, 42), and the averaged results were reported. Table 11 702

and Table 12 display the training hyperparameters. The learning rates were determined through hyperpa- 703
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Table 11: The hyperparameters for experiments on the shortcut-adapted OPT-350M model.

Method Dataset MRPC RTE SST-2

Optimiser AdamW

OPT-350M
with shortcuts

Batch size 8
# Epochs 20 20 10

Learning rate 2e-4 2e-4 1e-4
Weight decay 0.01
Max seq. len. 512
LoRA config. rQ = rV = 8

LoRA α 16
Shortcut config. rres1 = rres2 = rin = rcut = 8

Shortcut α 4

Table 12: The hyperparameters for experiments on shortcut-adapted RoBERTa models.

Method Dataset MNLI SST-2 MRPC CoLA QNLI QQP RTE

Optimiser AdamW

RoBERTa-base

Batch size 16 16 16 32 32 16 32
# Epochs 30 60 30 80 25 25 80

Learning rate 5e-5 5e-4 4e-4 4e-4 4e-4 5e-4 5e-4
Weight decay 0.01
Max seq. len. 512
LoRA config. rQ = rV = 16

LoRA α 8
Shortcut config. rres1 = rres2 = rin = rcut = 16

Shortcut α 8

RoBERTa-large

Batch size 4 4 4 4 4 4 8
# Epochs 10 10 20 20 10 20 20

Learning rate 3e-4 4e-4 4e-4 2e-4 2e-4 3e-4 5e-4
Weight decay 0.01
Max seq. len. 128 128 512 128 512 512 512
LoRA config. rQ = rV = 32

LoRA α 16
Shortcut config. rres1 = rres2 = rin = rcut = 32

Shortcut α 16
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rameter searches from 1e-5 to 5e-3; other hyperparameters were decided according to previous works Liu 704

et al. (2019b) and Hu et al. (2021). 705

B.3 Saliency hyperparameters 706

For comparison between saliency proxies, the following hyperparameters of the proxies were used: 707

• CONSTANT: no hyperparameter required. 708

• SNIP: the score was evaluated on the first 32 batches from the training set. 709

• SYNFLOW: no hyperparameter required. 710

• GRAD-NORM: the score was evaluated on the first 32 batches from the training set. 711

Experiments were conducted to compare different choices of the number of training batches to use for 712

SNIP and GRAD-NORM. On MRPC, using 8 batches, 32 batches, and the entire training set produced the 713

same training curve. Following the previous work (Abdelfattah et al., 2021), we used 32 training batches 714

for the later experiments. 715

Furthermore, two hyperparameters were involved in the HeteroLoRA strategies: 716

• Enable rate: the percentage of LoRA and shortcut modules enabled at any time in the training was 717

set to 25%. 718

• Frequency of dynamic HeteroLoRA search: for all experiments, the HeteroLoRA search was 719

conducted 5 times per training epoch. Further ablation experiment results are shown in Appendix F. 720

The scaling factor α of shortcut modules was searched across 1 to 16. The best hyperparameters 721

and configurations, as in Tables 11 and 12, were used for the two series of shortcut-adapted models in 722

Section 4.3 and the dynamic HeteroLoRA training in Sections 4.4 and 4.5 unless particularly specified. 723

C Zero-Cost Proxies 724

The detailed definition of zero-cost proxies for the LoRA-adapted module/shortcut and trainable parame- 725

ters are defined as follows 726

C.1 CONSTANT 727

A baseline proxy is designed as assigning score Sconstant(M) = 1 to every LoRA module M . This en- 728

forces tie-breaking on all LoRA modules, so uniform random sampling is performed in every HeteroLoRA 729

search. 730

C.2 SNIP 731

The SNIP (Lee et al., 2019) proxy aims to find the elements that degrade the performance the least when
removed. It uses a weight mask C ∈ {0, 1}m applied to each block of parameters, with 0 at the positions
of disabled parameters and 1 at the position of active parameters, and computes the loss gradient to the
mask variables over a few minibatches of training data D:

ssnip(θ) =
∂L(D;C ⊙W )

∂cθ

where cθ denotes the weight mask variable corresponding to parameter θ. In HeteroLoRA, since the 732

LoRA rank allocation regards each LoRA module as a unit, we fill the weight mask C for each LoRA 733

module with ones, and extend the saliency of a single parameter s(θ) the saliency of a LoRA module M 734

by summation: 735

Ssnip(M) =
∑
θ∈M

ssnip(θ) 736

=
∑
θ∈A

ssnip(θ) +
∑
ϕ∈B

ssnip(ϕ) 737
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C.3 SYNFLOW738

A minibatch of inputs of ones is fed to the model with weights taken as their absolute values. The SYNFLOW
(Tanaka et al., 2020) score computes the product of a parameter value and the gradient of the sum of the
losses on the minibatch to the parameter:

ssynflow(θ) = θ ·
∂ (

∑
minibatch L(1; |W |))

∂θ

We also extended SYNFLOW of a single parameter to the saliency of a LoRA module by summation:739

Ssynflow(M) =
∑
θ∈M

ssynflow(θ)740

=
∑
θ∈A

ssynflow(θ) +
∑
ϕ∈B

ssynflow(ϕ)741

C.4 GRAD-NORM742

A minibatch of training data is fed to the model, and GRAD-NORM computes the Euclidean norm of the loss
gradients on a block of parameters:

sgradnorm(W ) =

∥∥∥∥∂L(D;W )

∂W

∥∥∥∥
2

This marks how sensitive the loss is to each block of parameters. We extend this to the saliency of a LoRA
module by taking the sum of GRAD-NORM over the matrices:

Sgradnorm(M) = sgradnorm(A) + sgradnorm(B)

D Static HeteroLoRA Algorithm743

In Algorithm 2, we present the algorithm of static HeteroLoRA, where as explained previously, the search744

operation occurs only once at the start of training.745

Algorithm 2 Static HeteroLoRA training
Require: model, Dtrain, Dval, max_epoch > 0,

TRAIN(model, train_set),
VALIDATE(model, validation_set),
saliency ∈ {CONSTANT, SNIP, SYNFLOW, GRAD-NORM},
enable_rate ∈ (0, 100], ▷ percentage of LoRA and shortcut modules to be enabled
HETEROLORA_SEARCH(model, saliency, enable_rate). ▷ configuration search function

HETEROLORA_SEARCH(model, saliency, enable_rate) ▷ find a LoRA rank allocation
epoch← 0
while epoch < max_epoch do

TRAIN(model, Dtrain) ▷ train the model
VALIDATE(model, Dval) ▷ validate the model
epoch← epoch+ 1

E LoRA-Adapted Shortcuts746

The detailed definition of LoRA-adapted shortcuts is as follows.747

Cross-Layer Shorcut This type of shortcut forwards the model’s hidden state as:

hi+1 = s(hi) + fi(hi)

where hi denotes the input hidden state to the ith layer of modules, fi denotes the function of the ith layer,
and s denotes the current shortcut linear transformation. The function of the layer fi, however, does not
necessarily need to be an exact Transformer block as:

fin(h) = MLPi (Attentioni(h))
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but can also be a “layer” recomposed by the sub-modules cutting across a Transformer block boundary,
like:

fcut(h) = Attentioni+1(MLPi(h))

The two corresponding styles of cross-layer shortcuts, referred to as sin and scut, are employed in our 748

shortcut-adapted models (as the green blocks and the red blocks in Figure 4). 749

LayerNorm Inserted After Shortcut Layer normalisation sometimes needs to be performed after 750

the cross-layer shortcut output is merged into the original hidden state. In this project, the shortcuts are 751

applied to the OPT-350M model, which employs post-layer-normalisation Transformer architecture (layer 752

normalisation is performed after the original residual connection is merged back). For cross-layer shortcuts, 753

given that the original layer normalisation of OPT-350M performs an element-wise affine transformation 754

with pre-trained weights, performing another layer normalisation without affine transformation after the 755

original will impact the original layer normalisation’s effect, meanwhile, training new weights for a new 756

affine transformation merely on a downstream dataset will be ineffective. Therefore, we re-perform the 757

original layer normalisation after the cross-layer shortcut output is merged back to the hidden state. 758

Consequently, the original output hidden state hi+1 of the ith layer: 759

ai = LN1,i (hi +Attni(hi)) 760

hi+1 = LN2,i (ai + FFNi(ai)) 761

is transformed by the shortcut connections into: 762

ai = LN1,i [LN1,i (sres1,i(hi) + Attni(hi)) + scut,i(ai−1)] 763

hi+1 = LN2,i [LN2,i (sres2,i(ai) + FFNi(ai)) + sin,i(hi)] 764

where sres1,i, sres2,i, sin,i, scut,i denote the linear projections on the shortcuts, LN1,i and LN2,i represent 765

the two layer normalisation layers in the ith layer, Attni represents the attention submodule, and FFNi 766

represents the feed-forward network submodule. 767

F Additional Experimental Results 768

Dynamic HeteroLoRA is experimented on MRPC, RTE and SST-2 with the same setup as in Section 4.4. 769

Figure 6, Figure 7 and Figure 8 demonstrate the frequency of each LoRA or shortcut module being 770

enabled over 20 and 10 training epochs on RTE and SST-2, respectively. 771

Intuitively, frequent LoRA configuration searches give more chances to explore the configuration search 772

space, while a long search interval allows the chosen configuration to be fully trained. Table 13 shows the 773

performance on MRPC and RTE of dynamic HeteroLoRA with various configuration search frequencies. 774

As we can see, no particular performance pattern across the search frequency can be easily observed. 775

Table 13: Dynamic HeteroLoRA with different HeteroLoRA search frequencies per training epoch.

LoRA Ranking Method Combined Allocation Separated Allocation
Search Freq (per epoch) 10 5 2 1 10 5 2 1

MRPC (acc) 84.6 84.3 84.1 84.3 84.6 83.7 84.6 85.1
RTE (acc) 72.3 72.9 72.3 72.7 74.5 72.8 70.1 66.9
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(a) Dynamic HeteroLoRA with modules at r = 8
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(b) Dynamic HeteroLoRA with modules at r = 32

Figure 6: Frequency of linear projections in every model layer being enabled in the dynamic HeteroLoRA training
on MRPC with (a) r = 8 and (b) r = 32 for LoRA and shortcut modules.
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(a) Dynamic HeteroLoRA with modules at r = 8
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(b) Dynamic HeteroLoRA with modules at r = 32

Figure 7: Frequency of linear projections in every model layer being enabled in the dynamic HeteroLoRA training
on RTE with (a) r = 8 and (b) r = 32 for LoRA and shortcut modules.
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(a) Dynamic HeteroLoRA with modules at r = 8
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(b) Dynamic HeteroLoRA with modules at r = 32

Figure 8: Frequency of linear projections in every model layer being enabled in the dynamic HeteroLoRA training
on SST-2 with (a) r = 8 and (b) r = 32 for LoRA and shortcut modules.
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