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ABSTRACT

Memorization impacts the performance of deep learning algorithms. Prior works
have studied memorization primarily in the context of generalization and privacy.
This work studies the memorization effect on incremental learning scenarios.
Forgetting prevention and memorization seem similar. However, one should discuss
their differences. We designed extensive experiments to evaluate the impact of
memorization on continual learning. We clarified that learning examples with
high memorization scores are forgotten faster than regular samples. Our findings
also indicated that memorization is necessary to achieve the highest performance.
However, at low memory regimes, forgetting regular samples is more important.
We showed that the importance of a high-memorization score sample rises with an
increase in the buffer size. We introduced a memorization proxy and employed it
in the buffer policy problem to showcase how memorization could be used during
incremental training. We demonstrated that including samples with a higher proxy
memorization score is beneficial when the buffer size is large.

1 INTRODUCTION

Memorization plays an important role in
deep learning (Feldman| 2021} Feldman &
/hangl 2020). Deep learning models are ca-
pable of memorizing the entire dataset with
completely random training labels (Zhang
et al.,[2017), achieving almost perfect train-
ing accuracy. Methods that limit memoriza-
tion, such as privacy-preserving algorithms e R

(Papernot et al.l 2017), fail to achieve clas-

sification accuracy comparable to that of = Ejoyre 1: (Left) images with low, middle and high mem-
standard training methods. Motivated by 4rization scores from class "apple” from CIFAR100
these observations, later works have shown  ja¢,qet. (Right) first task accuracy for dataset subsets
that achieving high test set performance re- yith different memorization scores. Images with higher

quires memorization (Feldman, 2021). S0 memorization scores are forgotten twice as fast as im-
far, memorization has been studied primar- ages with low memorization scores.

ily through the lens of generalization or pri-

vacy (Wei et al.;, 2024)). Continual Learning

(CL) (Chen et al., 2018) is the area of machine learning that aims to prevent catastrophic forgetting
(French, 1999) in the models trained incrementally with data sampled from different data distributions.
There were many methods developed that aim to prevent forgetting (Masana et al.,|2022)). Counterin-
tuitively, memorization and forgetting prevention are not the same. According to the definition of
Feldman (Feldman & Zhang|,|2020), memorization refers to the phenomenon where some sample is
classified correctly when it is included in the training data. Once removed from the training dataset, it
is no longer properly classified. It means that the model can only memorize the sample label without
learning any pattern. Such phenomena could occur when the sample has an incorrect label due to
a labeling error or when the sample belongs to a long tail (Feldman| [2021) (meaning it could be a
minority class in an imbalanced setting or it could contain weakly represented features in the dataset).
The opposite of forgetting is not memorization, but complete knowledge retention (Chen et al., 2018)).
In this case, we are interested in keeping the predictive performance high on past tasks, regardless of




whether the sample belongs to the long tail or not. While forgetting and memorization are different,
studying them requires understanding how knowledge is retained in the network. We found that there
are relatively few works (Jagielski et al., 2023} Maini et al., 2022} Tirumala et al., 2022b) that study
the connection between memorization and forgetting. Moreover, these studies examine forgetting
in the context of privacy or label noise, with no focus on the change in data distribution. For this
reason, we want to study what is the role of memorization in an incremental training setup, and how
Continual Learning is impacted by memorization of training data.

Our key findings could be summarized as follows:

* Increasing the number of classes in dataset increases memorization.
 The higher the memorization score of an example, the greater its susceptibility to forgetting.

* When training with full access to data from past tasks, the classification accuracy of memo-
rized samples remains high.

* A computationally efficient proxy for memorization score can effectively guide buffer
policies to improve the performance of incremental training.

» The importance of examples, with a significant proxy memory score, increases for large
buffers.

2 RELATED WORKS

2.1 MEMORIZATION

Memorization (Zhang et all [2017) in deep learning refers to a phenomenon where deep neural
networks learn specific details or particular features of individual training examples, rather than
extracting common patterns or generalized features of the underlying data distribution. This can lead
to a model’s reliance on rote recall, potentially impacting its ability to generalize to new, unseen data
and raising concerns about security and privacy (Wei et al., [2024). In (Zhang et al., 2017)), it was
shown that overparametrized neural networks are capable of fitting training data with random labels
with high training accuracy. Further work (Arpit et al.|[2017) studied the impact of architecture and
dataset size on memorization. It also shows that general concepts are learned early in training, and
memorization could lead to more complicated decision boundaries. Anagnostidis et al. (Anagnostidis
et al.| [2023)) showed that even with random labels, deep neural networks learn some features that are
beneficial for classification on data with original labels. Further works (Carlini et al.| 2019} Maini
et al.| 2023} [Tirumala et al.||2022a) show that memorization does not necessarily lead to overfitting.

In (Feldman| |2021)), it was shown that obtaining high accuracy on the test set requires memorization.
The atypical samples from the long tail are too few to enable proper representation learning, leading
to memorization as the only way of obtaining high performance on the test set. In (Feldman & Zhang]
2020) Feldman et al. introduced an influence score that allows for estimating the influence of training
samples on test samples predictions, finding that there are training examples that impact the correct
classification of unseen long-tail data.

So far, there is no consensus among researchers on what parts of the neural network are responsible
for memorization (Wei et al.,2024). Some evidence (Anagnostidis et al.,|2023) suggested that the last
layers are used for memorization. Other studies (Maini et al.;,[2023)) indicated that neurons responsible
for memorization are scattered across the whole network. In (Feldman & Zhang, |2020), it was shown
that a classifier is not responsible for memorization, suggesting that memorization is a phenomenon
that concerns primarily representation learning.

2.2 CONTINUAL LEARNING

Continual learning addresses the challenge of training models on a sequence of tasks with differing
data distributions, rather than on a single i.i.d. dataset (Chen et al., 2018]). A major issue in this
setting is catastrophic forgetting, where performance on earlier tasks sharply deteriorates as the model
learns new ones (French [1999). To tackle this, continual learning methods are generally grouped
into three categories. Regularization-based methods reduce forgetting by constraining changes to
important parameters. Elastic Weight Consolidation (EWC) adds a regularization term to penalize



updates to critical weights (Kirkpatrick et al.,|2016). Learning without Forgetting (LwF) maintains
previous knowledge by using pseudo-labels from earlier task classifiers (Li & Hoiem) 2018). FeTrIL
(Petit et al., |2023) applies a pseudo-feature generation strategy with the usage of a frozen backbone.
Magistri et al. (Magistri et al.| 2024)) address feature drift by regularizing direction relevant for past
tasks.

Rehearsal-based methods rely on memory buffers to replay examples from previous tasks (Chaudhry
et al.| 2019b)). Gradient Episodic Memory (GEM) and its efficient variant aGEM, constrain gradient
updates to prevent loss on earlier tasks (Chaudhry et al., [2019a; Lopez-Paz & Ranzato, 2017)). More
recent work addresses the limitations of small memory buffers using asymmetric updates and classifier
corrections (Chrysakis & Moens,, [2023). Other strategies, like Dark Experience Replay (DER), store
model logits alongside data and use them in a distillation loss to preserve knowledge (Boschini et al.|
2023; Buzzega et al.| 2020a)). Buffer policy algorithms select what samples should be stored in the
buffer (Hao et al.| 2023} |Tiwari et al., 2022} [Tong et al., [2025)). Researchers used bilevel optimization
(Hao et al.| [2023; [Tong et al., |2025), gradient approximation (Aljundi et al., 2019; [Tiwari et al.| 2022),
or classification uncertainty (Bang et al.,[2021) to select samples stored in the buffer.

Expansion-based methods adapt the model architecture to accommodate new tasks. Progressive
Neural Networks (PNNs) add task-specific subnetworks that reuse prior knowledge through lateral
connections (Rusu et al.l|2016)). Other approaches expand network parameters with selective retraining
to retain performance on old tasks (Yoon et al., [2018). Some methods further enhance this by
introducing additional convolutional features and training with a specialized loss function to encourage
diverse representations for new data (Yan et al., 2021)).

2.3 MEMORIZATION IN CONTINUAL LEARNING

Memorization in Continual Learning was studied primarily through the lens of privacy (Ozdenizci
et al., 2025} [Tobaben et al.} [2025). In (Desai et al.|[2021)), Differential Privacy for Continual Learning
was proposed. This algorithm uses a data sampling strategy and moment accountant to provide
formal privacy guarantees across tasks, achieving tighter privacy loss while maintaining model utility.
Authors of (Tobaben et al.,|2025)) use a prototype classifier with adapters to ensure that the pretrained
model can be continually trained with improved privacy. Prior works have evaluated the connection
between forgetting and memorization (Jagielski et al.| 2023} Maini et al., 2022 [Tirumala et al.,
2022b). However, this research was conducted on data with stationary distribution.

3 METHODS

3.1 NOTATION AND SETTING

In continual learning, a neural network is trained on a sequence of tasks with different data distri-
butions. Each task ¢ is defined by a dataset D, = {(z;,y;)};,, Where z; is image, y; is label, and
n; = |D;|. We focus on the Class-Incremental Learning setting (van de Ven & Tolias, 2019), where
each task consists of a disjoint set of classes. The model f with parameters 6 is trained sequentially
by minimizing the loss on the current task: £(f(6), D;), with access only to the most recent data.
Rehearsal-based methods maintain a buffer M = {(z;,y;)}7.,, where m < n; , to store selected
examples from previous tasks. To avoid ambiguity, we refer to training on the full dataset as stationary
training (with a fixed data distribution), and to sequential task training as incremental training.

3.1.1 MEMORIZATION SCORE

There are many possible definitions of memorization proposed in the literature (Wei et al., [2024]).
This work adopts the Feldman (Feldman, |2021)) definition based on memorization score:

mem(i, A) = Epoap)[P(f(2i) = y)] — Epca(p/an)[P(f(7:) = y)] (1

where A is a training procedure containing randomness that produces a trained network f. Mem-
orization score is the difference between the probability assigned to the correct label by the model
trained on the whole dataset and the probability assigned by a model with the i-th sample removed
from the dataset. Such a definition allows for the detection of memorized samples, but it requires
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Figure 2: The impact of data and architecture on memorization scores. (Left) histogram of memo-
rization scores for different number classes in the training dataset. (Middle) the mean memorization
score and number of samples with memorization score above 0.25 for different number of classes
in training dataset (Right) the mean memorization score and number of samples with memorization
score above 0.25 for different dataset subset size.

training multiple networks for each learning example to compensate for randomness in A. For this
reason, Feldman et al. (Feldman & Zhang|,|2020) introduced an estimator that reduces the required
computational burden, defined as:

memy (i, A) = Eroas)[P(f(xi) = y)] — Epcas_y[P(f(xi) = y)] 2

where S;, S_; are two random subsets of D, each of size k, with S; containing x; and S_; excluding
x;. Feldman showed that this estimator’s variance is bounded by a function of k/n (where n = | D|)
and the number of networks trained, u. To keep variance small in our experiments we choose
k/n = 0.5 and © = 250. According to Feldman bound (Feldman & Zhang, [2020), such a setup
ensures that mem,,, variance is below 0.016. We study the accuracy of this estimator in more depth
in Appendix @ Unless stated otherwise, we use reduced ResNet18 model (He et al.| [2016), tailored
to CIFAR100 (Krizhevskyl 2009} Lopez-Paz & Ranzatol 2017)) dataset. Overall, for the next part of
the experiments, we trained over 3500 neural networks. The exact hyperparameters used for training
are given in the Appendix |D| When we average the results, we repeat runs with different random
seeds, and report standard deviation in tables or as error bars in plots. From now on when referring to
memorization score we will mean Feldman estimator.

3.2 IMPACT OF TASKS SPLIT ON MEMORIZATION

We begin by analyzing how splitting the data into several tasks and changing the number of classes
affects the proportion of training samples with high memorization scores. For this purpose, we train
ResNet18 (He et al.,|2016) on CIFAR100 (Krizhevskyl 2009) subsets with the first 10, 20, 50, and
100 classes and compute memorization scores for the samples from the first 10 classes. The histogram
of memorization scores is presented on the left side of Fig.[2] As the number of classes gets smaller,
the memorization scores are lower. This is most evident for score close to one, when full dataset gets
largest number of samples. In the middle pane of the Fig. 2] we plot mean memorization scores and
number of samples with memorization scores above 0.25 for different number of classes in training
set. It shows clear decline in the mean memorization score.

Previous results from the literature suggest that reducing dataset size should increase memorization
(Arpit et al.} 2017} |Li et al.| 2024)). By reducing the number of classes, we also limit the number of
available training examples. To decuple these two effects, we check the impact of dataset size on
memorization. To this aim, we evaluate memorization scores for different subsets of CIFAR100 with
0.1, 0.2, and 0.5 of the original dataset size. We keep the number of classes equal to 100, and the
images are sampled with stratification to keep the class balance. Lowering the number of learning
examples in dataset with 100 classes can lead to low number of samples per class. For this reason
we also carry our analogous experiments with different subsets of CIFAR10 (Krizhevsky, 2009)
with 0.1, 0.3, 0.5, 0.7, and 0.9 of the original dataset size. In the right panel of Fig.[2] we plot mean
memorization scores and fraction of the dataset with memorization scores above 0.25. Our results
are consistent with prior works, suggesting that the number of classes in the dataset has a stronger
influence than a reduced number of training samples. One can explain such a phenomenon by the



limited capacity of the network. Models trained with a smaller set of classes can learn features that
are tailored well to training data, alleviating the need for excessive memorization. If we introduce
additional classes into the dataset, while keeping the capacity fixed, the model will have to learn
more general features that generalize well across many classes. This interpretation is in line with
results from (Harun et al.| | 2024b)), where it was shown that a higher number of classes positively
correlates with Out-Of-Distribution performance. This means that the model will have to memorize
more samples, as the general patterns will not cover more specific samples from all classes. To verify
our conclusions, we provide in Appendix [E|the memorization scores evaluated for 20 and 50 classes,
showing very similar trends as for the first 10 classes. We also check if the same trend could be
observed in other datasets. We repeat our experiments for the TinyImageNet dataset (Wul [2017) and
find a very similar trend (please refer to Appendix [F| for results).

Impact of architecture. The impact of architecture on
memorization and Continual Learning has already been

20000 W ResNet1s

studied in the literature. In (Arpit et al.| 2017), it was 1500 = reeo
shown that wider networks fit noisy data better. In the con-

text of Continual Learning, studies have found that wider g1

models tend to forget less, while deeper models exhibit g

greater forgetting (Guha & Lakshmanl, 2024} Mirzadeh e

et al| [2022). Motivated by these findings, we also in- - JL |
vestigate how model depth and width affect memoriza- h_ L l I I
tion scores. First, we compute memorization scores for YT emontonsoe
ResNet34 and ResNet50 trained on the entire Cifar100

dataset and plot memorization histograms in Fig. [3| (top).

As the network depth increases, the memorization scores o0

decrease significantly. In Fig. [3| (bottom), we plot memo- g o

rization scores for ResNet18 trained on full Cifar100 with ¥

different width multipliers. With the increase in model

width, the mean memorization score quickly saturates,

but the increase is visible in the samples with the highest CTo e o s a8

memorization score. Therefore, some parallel exists be-

tween wider models that are less prone to forgetting and  Figure 3: Memorization scores his-
exhibiting more memorization, but the connection is not  tograms for different model architectures
strong. (top) and model widths (bottom).

3.3 INCREMENTAL TRAINING

The Feldman formulation of memorization score (Feldman

& Zhang|, |2020) is difficult to apply in the Continual Learning scenario. The exclusion of training
examples from one task would impact representation learning in the following tasks, leading to a
combinatorial explosion of possible training data arrangements that need to be considered when
evaluating memorization. To circumvent this problem, we instead use memorization scores computed
offline for the whole dataset and track how well samples with higher memorization scores are classified
throughout the whole incremental training. We employ a threshold of 0.25 used in (Feldman & Zhang|
2020) to select memorized samples. We study three scenarios. First, we use standard experience
replay with reservoir sampling and a buffer of size 500 for Split-Cifar100. As shown on the left-
hand side of Fig.[d] the accuracy for memorized samples drops significantly after training on two
subsequent tasks. Afterward, the accuracy declines at a similar rate for both the test set samples and
the training examples with high memorization scores. In the second setting, we study training with
unlimited access to past tasks’ memory (Fig. 4 middle left). During training with an infinite buffer,
the accuracy for memorized samples slowly decreases but remains high over the course of the entire
training process. This is in line with Feldman’s observation about memorization being beneficial
and necessary for high performance (Feldman, 2021)). It is also in line with our previous results for
memorization with a different number of classes in the training set. As we introduce new classes, the
model needs to learn more general features, gradually increasing the number of samples that need to
be directly memorized.

Lastly, we study the incremental training with a method that does not use a buffer. We choose
Learning without Forgetting (Li & Hoiem, 2018} (LwF) due to its popularity. On the middle right-
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Figure 4: Task accuracy for test set (solid line) and samples with high memorization (dotted line)
across incremental training on Seq-Cifar100 stream with 10 tasks. (Left) training with buffer size 500.
(Middle left) training with full access to previous tasks. (Middle right) training with LwF. (Right)
Accuracy on task 0 when training with buffer size 500 for data with different memorization scores.
Results averaged over 5 runs.

hand side of Fig. ] we see that the accuracy for memorized samples also decreases significantly
after the data distribution change. For newly introduced tasks, the accuracy of memorized learning
examples is lower than the test set accuracy. In previous scenarios, the initial accuracy for memorized
samples was close to 100%. It shows that learning with heavy regularization affects plasticity,
reducing the model’s capability to classify data with high memorization scores well. On the other
hand, the accuracy for memorized samples does not drop entirely to zero instantly, which suggests
that some trace of memorized data remains in the network, even without access to past data. In
Appendix [[l we include results with different thresholds for determining memorized samples and
show that a change in threshold value does not affect our conclusions significantly. To complete the
analysis, we also provide the accuracies for dataset subsets with different memorization scores in
Fig. [l As in the previous part of our experiments, we define samples with high memorization as the
ones with a memorization score above 0.25, middle memorization between 0.1 and 0.25, and low
memorization below 0.1. With CIFAR100, it means that 28058 out of 50000 training set samples
have been identified as those with a high memorization score (please refer to the left side of Figure 1
for verification). It means that half of the training set is forgotten at a faster pace than the other.

3.4 MEMORIZATION SCORE PROXY

Determining the memorization score is compute-intensive,

even using Feldman estimator (Feldman & Zhang, [2020). a0000
For this reason, it is not feasible to use the memorization
score directly during incremental training. To circumvent
this issue, we introduce a proxy that approximates the
memorization score and is more accessible during training.
We base our proxy on the observation made in (Arpit et al.}
2017), namely that learning of patterns takes place in early
stages of training, while memorization is prone to happen
in the later stages of learning. The same premise was used
to detect noisy labels in (Maini et al.;, 2022)). During offline
continual training, we can store the first iteration when
the given sample was classified correctly, and later, the
prediction did not change in the following epochs. To be
more specific, we define our proxy as:
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Original Memorization Scores

Figure 5: Correlation of training itera-
tion with memorization score.

MEMprozy (i, A) = min{j € N|f;(x;) = ys AVisjfr(zs) = vi} 3)

where f; is the model before the gradient update iteration j. In practice, evaluating each sample in
every iteration would add a huge overload. For this reason, we check if current predictions match the
ground truth after the forward pass with the current minibatch. This approach is straightforward and
adds minimal computational overhead. As shown in Fig.[5] the correlation between training iteration
and original memorization score is moderate, however, we show in Appendix E]that it correlates well
with the Feldman estimator.



3.5 MEMORIZATION-AWARE EXPERIENCE REPLAY

We want to examine how memorization could be used during incremental training. In particular, we
are interested in the buffer policy problem - deciding what samples should be stored in the buffer.
Storing samples with different memorization scores could impact the overall performance differently.
We compute a proposed memorization score proxy to select samples that should correspond to low,
medium, or high memorization and use them to update the buffer. The full algorithm for our approach
is given in Appendix

We are using reservoir sampling and replacing buffer content with selected top-k, mid-k, or bottom-k
samples at the end of training. We found in preliminary experiments that such an approach works
better than updating the buffer only at the end of task training. During the buffer update, we replace
the samples from the current task that were already stored in the buffer. We use a balanced variant of
reservoir sampling to ensure that the data in the buffer is always balanced.

4 EXPERIMENTAL SETUP

Datasets. Our experiments follow the class-incremental learning scenario (van de Ven & Tolias,
2019), using standard continual learning benchmarks created by splitting datasets into multiple tasks.
Specifically, we use CIFAR-10, CIFAR-100 (Krizhevsky, 2009), and Tiny ImageNet (Wul [2017)),
divided into 5, 10, and 20 tasks, respectively. The order of classes across tasks is randomized using
different seeds.

Metrics. We use two evaluation metrics, namely the final test set accuracy averaged over all tasks,
defined as Acc = & . St 1 f (4, 0k) = yi], where K is the number of tasks, and 1 is an

tong

indicator function and forgetting measure (FM) (Chaudhry et al.,|2018)) defined as average difference
between maximum obtained accuracy, and final accuracy for given task.

Baselines. We use standard reservoir sampling (Chaudhry et al.,2019b), ballanced reservoir sampling
from (Buzzega et al.,|2020b), Rainbow Memory (Bang et al.|[2021)), Bilevel Coreset Selection (BCSR)
(Hao et al.| 2023)), and Probabilistic Bilevel Coreset Selection (PBCS) (Zhou et al., 2022)) as baselines
in our experiments. For BCSR and PBCS, we use a small auxiliary convolutional model for sample
selection, which consists of two convolution layers, a max pool between convolutions, and two linear
layers.

Implementation. For all rehearsal-based methods, we use a buffer of size 500 unless specified
otherwise. When available, we adopt the best hyperparameters reported by the original authors;
otherwise, we use the settings detailed in Appendix [D| All experiments are implemented using the
Mammoth library (Buzzega et al.,|2020a). We made our code available online

5 RESULTS

5.1 EVALUATION WITH STANDARD BENCHMARKS

First, we carry out an experiment on a standard set of benchmarks used in Continual Learning. We
compare accuracy and FM for the proposed approach with other buffer policy methods in Tab. |1} In
the standard setup, we can see that selecting lower and mid proxy memorization scores obtains better
results than reservoir sampling. This suggests that with the lowest memory budgets, retaining the
performance for standard data is challenging enough, therefore we should be constructing a buffer
with the most typical samples that are easy to learn and represent well, given the class. This shows
that in such a setting, memorization does not play a significant role as forgetting prevention is more
important, however the memorization could be used to guide the buffer construction process.

We acknowledge, that our results may lack some of the baselines, that may obtain better performance
that the proposed method like (Aljundi et al.l|2019; Tiwari et al., [2022}; [Tong et al., 2025)), however
our primary motivations is not to propose the best algorithm for buffer policy, but rather study the
impact of memorization on Continual Learning. We also show in Tab. 2] that the proposed approach
also works with other rehearsal algorithms (Buzzega et al., [2020a} |Caccia et al., [2022).
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Table 1: Accuracy for incremental training on Split-Cifar10, Split-Cifar100 and Split-TinyImageNet

benchmarks. The results averaged over 5 runs.

Split-Cifar10

Split-Cifar100

Split-TinyImageNet

buffer policy

Ace(T) FM() Ace(T) FM({) Ace(T) FM(})
reservoir 55.18+6.59 42.45+7.04 22.07+0.84 65.47+0.62 6.38+0.62 75.87+0.54
reservoir balanced 55.25+4.66 42.35+4.94 22.3940.75 65.01£0.20 6.53+0.58 75.99+0.68
rainbow memory 56.86+3.17 39.91+4.07 23.19+£0.79 64.16+0.48 6.42+0.52 76.07+0.73
BCSR 55.83+4.71 41.37+5.69 22.84+0.84 64.80+0.53 6.65£0.52 75.86+0.43
PBCS 55.2245.31 42.35+5.44 23.14£1.09 64.39+0.89 6.93+0.57 75.79+0.42
bottom-k memscores 56.04+4.80 41.80+5.25 25.88+1.14 61.60+0.71 7.85+0.29 74.87+0.54
middle-k memsocres 55.96+4.62 41.80+4.98 23.62+1.07 63.81+0.54 7.11£0.57 75.5240.85
top-k memscores 41.16£7.38 56.60+7.85 17.28+1.19 69.95+0.87 5.18+0.13 77.1240.63

Table 3: Test accuracy for buffer policies
Table 2: The Accuracy and Forgetting Measure for based on mixing high memorization samples
the ER-ACE and DER++. The results averaged with mid and bottom on Seq-Cifar100 and

over 5 runs. various buffer sizes.
method Split-Cifar100 Split-TinyImageNet method buffer size
Ace(1) EM() Ace(1) FM({) 2000 5000
ER-ACE 36812086  34.02£036 15074035  39.68+1.17 bottom-k memscores 42242045 52.640.61
+hottom-k  40.032029  32.18+12  19.27:0.81  35.59%0.76 +10% top-k 42.1720.3(-0.07)  52.46£0.62(-0.18)
+mid-k  38.690.76  31.29£1.08 1576052  39.43:1.55 middle-k memsocres 40.52+0.57 52.75£0.71
+op-k 332240.60  37.84x154 12928037  42.07:1.42 +10% top-k 40.7720.64(+0.25)  52.740.43(-0.01)
DER++ 339:1.67 50128216 1258094  58.29+1.99 method 10000 20000
+hottom-k  38.34£1.40  45.13%142  15.09:0.81  55.14%1.88
+midk 34758237 49.04£2.51  13.04£126  57.80:2.27 bottom-k memscores 59.56£0.69 64.810.87
+op-k 28324292 5694307  7.60:1.10  66.79+2.57 +10% top-k 59.61£0.43(+0.05)  64.91+0.68(+0.10)
middle-k memsocres 59.88+0.52 64.57+0.45
+10% top-k 60.16£0.48(+0.28)  64.93+0.64(+0.36)

5.2 TRAINING WITH LARGER BUFFERS

We evaluate how the classification performance of pro-
posed policies changes with an increase in buffer size. In
Fig.[6] we plot test set accuracies for different buffer poli-
cies based on proxy memorization score. Regardless of
buffer size, selecting samples with the lowest or medium
memorization performs better than random selection. Also,
as the buffer size increases, the performance obtained for
selecting top-k samples improves. This suggests that keep-
ing hard samples in the buffer is necessary to obtain per-
formance close to the upper bound.

To further evaluate the impact of high memorization in
different regimes, we modify the sample selection process
for bottom-k and mid-k to reserve 10% of the current task
buffer space for samples with the highest proxy memoriza-
tion score. The results are presented in Tab.[3] As in the
previous case, the benefit of including samples with high
proxy values is mostly visible for higher buffer sizes. How-
ever, the increase in accuracy is lower than the standard
deviation, suggesting that the impact is low.

6 DISCUSSION
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Figure 6: Test set accuracy for vari-
ous buffer sizes on Split-Cifar100 bench-
mark. Results are averaged over 5 runs.
The black horizontal line denotes train-
ing with full access to memory. The re-
sults averaged over 5 runs.

Our results suggest that as the number of classes in the dataset increases, the representations learned
by the network become more general. At the same time, larger fractions of data are not being covered
by general patterns should be memorized. We can think of results for each number of classes as the
upper bound of performance at different stages of incremental training. It shows the changes in the



memorization as we progressively increase the number of tasks. Increasing memorization could be
especially challenging for exemplar-free CL methods, which do not have access to prior labels and
keep model capacity fixed. This means that, in principle, Continual Learning with either increasing
architecture (Rusu et al.,|2016)) or rehearsal with memory (Buzzega et al. 2020a; |(Chaudhry et al.;
2019b) should be much easier.

In our experiments we found that deeper models promote less memorization, while wider models
exhibit larger memorization. In the Continual Learning, the trend is reversed, namely: deeper models
forget more, while wider models forget less. Similarly, we found that larger values of weight decay
lower the memorization, while the Continual Learning algorithms based on rehearsal use low or no
weight decay regularization Buzzega et al.| (2020a); Boschini et al.| (2023); Harun et al.| (2024a);
Mirzadeh et al.[(2020). These results suggest that larger memorization is actually beneficial for the
incremental learning process. On the other hand, we found that memorized samples are forgotten
at significantly faster rates than standard learning examples. In such case increasing memorization
should be detrimental for the stability of the model, and improve only plasticity by allowing to obtain
higher test set performance on current task [Feldman| (2021). These findings are contradictory to each
other. Unraveling this conundrum requires further investigation, both theoretical and empirical, into
the role of memorization in the Continual Learning process.

The accuracy obtained for selecting samples with the top proxy memorization score increases as the
buffer grows. This indicates that when the memory size limitation is relaxed (as it is postulated by
several recent Continual Learning works (Harun et al., 2024a; [Knoblauch et al., [2020; Peng et al.}
2022)), the importance of memorized samples is increasing. We believe that progress in incremental
learning can be achieved by studying both training with high access to memory and low or no
memory access. The first facilitates the necessary conditions for achieving high performance, that is,
comparable to full access to memory, while the second provides highly efficient methods in terms
of memory usage. Practitioners later could select methods from both ends of this spectrum to solve
specific problems they work on.

Limitations Memorization could be affected by the training procedure and hyperparameter selec-
tion. Factors that are known to impact memorization include data augmentation (Li et al.| [2024),
regularization (Zhang et al., 2017} |Arpit et al., 2017), and data repetition (Zhang et al., 2023). In
this study, we focused on popular Continual Learning setups (Buzzega et al.,|2020a), but additional
studies are needed to assess the impact of other factors. Moreover, Feldman et al. (Feldman & Zhang|
2020) showed that CIFAR100 has some samples that occur both in training and in the test set, leading
to increased influence of some atypical samples on the test set. We tried to address that by using
different datasets and settings (see Appendices[E]] and [F). However, at the same time, CIFAR100 is
one of the most popular datasets used for studying Continual Learning. Future experiments should
include broader spectra of datasets to obtain more robust results. Finally, we do not solve the problem
of determining exactly what samples are memorized during incremental training. We leave it for
future research, but we acknowledge that developing such a method could shed more light on the role
of memorization in Continual Learning.

7 CONCLUSION

Memorization is a necessary component for achieving a classification performance comparable to
training with full memory in Continual Learning. Yet, simultaneously, the capability to correctly
classify the samples with high memorization scores drops significantly after a change in data distribu-
tion. Our experiments with standard CL benchmarks show that at lower memory regimes, forgetting
of regular data is a more important consideration than forgetting of long-tail data. Regardless, we
show that the notion of memorization can still be useful in constructing buffer policy, even if data
with a high memorization score is not important. Our further experiments show that closing the gap
between stationary and incremental training requires taking memorization into consideration.

Future work could include the localization of which parts of the network are responsible for mem-
orization (Anagnostidis et al., 2023} Maini et al.,[2023)) and designing a proper measure to protect
these parts from forgetting in incremental training. We know what factors affect memorization in
stationary training. However, the factors that could impact memorization in incremental learning are
unknown. We believe that studying these factors could also be beneficial.
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A ETHICS STATEMENT

Our work primarily studies the properties of continual learning algorithms in the context of their
performance; therefore, it is hard to predict how presented results will impact particular applications,
however we find that two key aspects require attention. Firstly, our work shows that memorization
needs to be considered when designing well-performing incremental training algorithms. This claim
has a significant impact on data privacy, as it puts responsibility on the user of the incremental-training
algorithm, which creates a large buffer to store past data. This user must curate the data used for
rehearsal. This process should involve ensuring that the data owner has agreed to particular data
usage and that the data is properly licensed and anonymized. Failure to adjust to these requirements
can lead to leakage of private or proprietary information used for training.

The second consideration is the higher computational cost compared to other experiments. Evaluating
the memorization requires more computational power due to the repeated training process, which
comes at increased environmental costs due to carbon emissions. However, the incremental learning
has the potential to reduce the required training time by removing the need for training from scratch
every time new data with a different distribution arrives. We believe that our experiments can
potentially reduce the cost of updating deep learning models in the future, at the expense of larger
power consumption now.

B THE USE OF LARGE LANGUAGE MODELS

During preparation of this paper Large Language Models (LLM) were used in two areas, namely:
text edition and code writing. In the case of text edition, all of the text in this paper was written by
humans, the LLMs were used only to improve spelling, grammar and overall text edition. In the case
of code writing the LLMs were used to aid writing the code for visualization for this paper. All the
code for the experiments was written by humans.

C MEMORIZATION SCORE PROXIES

The original memorization scores defined in (Feldman, 2021) require several neural network trainings
to compute a score for only a single sample. For this reason, we analyzed several possible proxies
that require less computation and could be applied more easily in our experiments. Additionally we
wanted to check if proposed method produces substantially different scores for samples, compared to
other methods from the literature. We have considered the following proxy scores for memorization:

* Feldman estimator - introduced in (Feldman & Zhang| 2020), the estimator limits the
number of trainings required to compute the memorization scores. If the original memo-
rization score can be defined as leave-one-out, the estimator is leave-k-out. It requires less
computation compared to the original memorization score, however, it is still not usable
during incremental training.

* Cosine distance - For each sample, we compute the cosine distance between its feature
representation and the mean feature vector of the class to which the sample belongs in
the learned latent representation space. It measures the angular distance between vectors,
providing a normalized metric that is invariant to the magnitude of the feature representations.
A higher distance implies the sample is more dissimilar to the prototypical class member and
potentially more difficult or atypical. This approach follows the distance-based rehearsal
policy used in GRASP (Harun et al.| [2024a)), which progressively selects more diverse or
hard-to-learn samples from the class center using cosine distance.

* Mahalanobis distance - we compute the Mahalanobis distance in the learned latent repre-
sentation space of the neural network. We use a feature vector representing the given sample
and the mean and covariance of the class to which the sample belongs. A similar solution
for rehearsal policy was introduced in (Harun et al., [2024a)).

* Euclidean distance (L2 norm) - this metric represents the straight-line distance between
the feature vector representing the given sample and the mean feature vector of the class
to which the sample belongs in the learned latent representation space. It has been widely
used in continual learning for class-mean-based rehearsal strategies to select samples closest
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to class centers (Castro et al.| 2018} |Chaudhry et al.l 2019b), where samples closest to the
mean are considered representative.

e iCaRL ranks - we compute the ranking of samples based on the herding algorithm intro-
duced in iCaRL (Rebuffi et al.,2017). The herding method selects an exemplar set in a fixed
order that minimizes the distance between the mean of selected exemplars and the class
mean in the representation space. In the first order, the algorithm selects the samples that
best approximate the mean of the given class. However, this algorithm does not directly
provide a numerical score for each sample, which is necessary for evaluating correlation
with our memorization score. For this reason, we converted the order in which samples
are selected into the ranks, meaning that the first selected sample is assigned rank 0, the
second sample rank 1, and so on. Lower ranks indicate samples that would be prioritized for
selection in the herding-based rehearsal strategy. These ranks are then used as a proxy score,
where lower ranks correspond to samples that are closer to the class feature mean.

» LASS distance - in (Arpit et al.| [2017) the Langevin adversarial sample search (LASS) was
introduced to find adversarial samples that are in some predefined ||L||o, neighborhood of
the sample. The authors used this method to study how complicated the decision boundary
is and found that neural networks trained with random labels have much more complicated
decision boundaries compared to standard training. Here we reuse the LASS algorithm,
however, we do not limit the neighborhood size. Instead, we set it to some large constant
and use distance from the original sample ||Z.4y, — Z||oo as the proxy.

* Carlini-Wagner distance - the LASS algorithm was designed primarily to better explore the
search space and not to find the minimal perturbance that causes a change in classification.
For this reason, we use an untargeted Carlini-Wagner adversarial attack (Carlin1 & Wagner,
2017), that directly optimizes for the smaller perturbance in the ||L||2. We utilize this
algorithm to generate the adversarial example, and then compute the ||2 44, — |2 difference
and use it as a proxy.

* Training iteration - based on previous results (Arpit et al., [2017} [Maini et al.,[2022) we
can assume that simple patterns are trained in the first epochs, while memorization mostly
happens later. For this reason, we may consider the iteration at which the sample was
classified correctly (and was classified correctly until the end of the training) as a valid proxy
for memorization score.

To evaluate how closely the proxies match the original memorization scores, we compute the original
memorization score for randomly sampled 150 samples from CIFAR100, and then measure the
correlations between each proxy and the memorization score (see Fig.[7). To limit the computation
used during the calculation of the original memorization score, we train only a single network for a
single sample excluded from the dataset and a single network for the whole dataset.

For each correlation, we report Pearson r, Spearman p, and Kendall 7. Pearson’s r quantifies the
linear relationship between two variables. Spearman’s p is a rank-based measure of monotonic
association, reflecting how often the ordering by proxy matches the ordering by the original score.
Kendall’s 7 is a more robust ordinal metric, less sensitive to ties and outliers.

Figure [7a] shows that the original memorization scores and the Feldman estimator are strongly
correlated (Pearson r = (.76, Spearman p = 0.71, and Kendall 7 = 0.50), whereas the other proxies
exhibit much weaker associations. Among the distance-based metrics, cosine distance shows the
strongest correlation with memorization scores (r = 0.38), although the obtained value suggest
that the corelation is weak. The Mahalanobis distance variants show even weaker correlations
(r = 0.31 for normalized, » = 0.28 for standard), indicating that statistical distance from class
distributions has very limited predictive power for memorization. Notably, Euclidean distance
(r = 0.08) and iCaRL ranks (r = 0.02), while commonly used for exemplar selection, show almost
no correlation with memorization scores, suggesting that simple geometric proximity to the class
mean is largely orthogonal to memorization patterns. The negative correlations observed for Carlini-
Wagner distance (r = —0.15) and LASS distance (r = —0.15) suggest these adversarial robustness
measures may actually be inversely related to memorization, possibly because memorized samples are
more vulnerable to adversarial perturbations and this vulnerability may capture different properties
than those reflected in memorization scores. Overall, these results highlight that most standard
feature-space distances are poor proxies for true memorization, with the Feldman estimator remaining
the most reliable among those tested.
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Following the findings from Fig. |7a, we further demonstrate that our training-iteration proxy follows
the same pattern as the Feldman estimator by comparing them directly in Fig. [8] again observing
strong agreement. Our training-iteration proxy achieves Pearson = 0.81, Spearman p = 0.83, and
Kendall 7 = 0.62 against the Feldman estimator, indicating it is a reasonable approximation. Since
we have established that the Feldman estimator tightly tracks the original memorization scores, and
our proxy tightly tracks the Feldman estimator, we can confidently rely on the training-iteration proxy
as a computationally efficient alternative.

17



Since we use a single training run to compute original memorization scores, our estimate could
be biased. However, given the moderate to high correlations with both the original memorization
scores and the Feldman estimator, we can deduce that samples learned later in training can effectively
identify highly memorized learning examples.

D TRAINING HYPERPARAMETERS

We use a standard set of hyperparameters that are commonly used for various Continual Learning
algorithms (Buzzega et al.,|2020a; Boschini et al.,|2023)). For both the continual and stationary cases,
we train with SGD for 50 epochs per task, or in the case of non-incremental training, we train for
50 epochs on the entire dataset. All networks (including baselines) are trained with a learning rate
of 0.1, which is divided by 10 at epochs 35 and 45. In case of non-incremental training, we used a
weight decay of 1e-06 and momentum equal to 0.9. For continual training, we set both weight decay
and momentum to 0.0. For all training setups, we use a batch size of 32 for both the current data
and samples from the memory buffer. For all experiments with continual learning benchmarks, we
provide on our repository a complete registry of our experiment results in MLFlow (Chen et al.,[2020)
along with hyperparameters used to start each training run. We store each commandline argument
used for training as an MLFlow hyperparameter, therefore our results could be easily inspected. We
did not keep such a registry for our experiments with the memorization score.

The only exception is training LwF, where we used alpha (regularization hyperparameter of knowledge
distillation loss) equal to 0.99, learning rate 0.02, 10 epochs, SGD momentum of 0.0, and weight decay
Se-4. We found that this set of hyperparameters works better than the standard set of hyperparameters
used for other methods.

For all datasets in experiments, we use an augmentation pipeline consisting of the following transfor-
mations:

1. Random Horizontal Flip with probability 0.5

2. Random Crop with size of the original image (32 for CIFAR datasets, and 64 for TinyIma-
geNet) and padding of 4

3. Transformation to tensor - that normalizes image pixels into [0,1] interval

4. Normalization with channel-wise mean and standard deviation computed for each dataset
separately.

This is a standard set of augmentations that is available in Torchvision library.

E ADDITIONAL MEMORIZATION SCORE RESULTS

CIFAR100 subsets We provide the memorization plots for subsets of CIFAR100 with different
size in Fig.[0] As different subsets has different number of samples, the left-hand side of the plot
has largest bars for whole dataset. However, the mean and number of samples plots reveal, that
memorization increases as the dataset subset get smaller. The only exception in our experiments for
that is the smallest subset of size 0.1. To examine this case we plot the memorization for 0.1 subset
of CIFAR100 in Fig. We see that the mode of the memorization scores distribution has shifted to
the right, indicating general increase in the memorization values. This phenomena may arise due to
low number of training samples, where network cannot learn well-generalizable features and must
resort to the memorization.

CIFAR10 subsets For completeness, we also provide the histogram of memorization scores for
different CIFAR10 subsets. The results are presented in[IT] Similarly as in the case of CIFAR100 the
memorization increases as the dataset size subset get smaller, with exception of subset size 0.1. In
Fig. [I2] we present the histograms for different subset sizes on separate plots. For a subset of size
0.1, we can see that the whole distribution of memorization scores shifted its mode from around
zero to 0.1. This caused the skew in the mean value and fraction of memorization scores above 0.25.
Similarly to case of CIFAR100 this could be caused by too small dataset size, and increased need for
memorization. We did not discuss this phenomenon in the main part of our paper due to the limitation
of page size.
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Figure 9: (Left) histogram of proxy memorization scores for different CIFAR100 subsets. (Right)
mean memorization score and number of memorized samples normalized by subset size for the data
from left plot.
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Figure 13: Histograms of memorization scores (left) and mean memorization score with normalized
number of examples (right) for the first 10 (top), 20 (middle), and 50 (bottom) classes.

CIFAR100 other class sets The main part of our paper has memorization scores computed for the
first 10 classes of CIFAR100 for different class subsets used for training. Here we provide plots for

the first 20 and 50 classes as well in Fig. [[3]

In our earlier experiment description, we made the comment that the influence of the larger number
of classes outweighs the influence of the smaller number of samples, without justifying it. With exact
results for both CIFAR100 and CIFARI1O in this appendix, we can now justify our statement. For
50 classes trained on CIFAR100 (Fig. [13|bottom), the mean memorization score is above 0.4. For
CIFARI10 with 0.5 samples (see Fig. Elight), the mean memorization score is below 0.2. These
networks were trained with an equal number of samples, but with different numbers of classes,
showing that indeed the number of classes has a stronger influence than the number of samples.
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F MEMORIZATION SCORES FOR TINY IMAGENET

We test if our observations of the relation between the number of classes and memorization are
robust and occur also in another dataset. We test Tiny ImageNet (Wu, [2017), as it has a larger
image resolution and a larger number of classes. We present our results in Fig.[I4] We notice a
very similar trend to the one observed in the main part of the paper - both the average memorization
score and fraction of samples with memorization scores above 0.25 rise. This additional experiment
results increase credibility of our conclusion, however, more experiments are needed to check if these
observations hold for datasets with even larger image resolution, a larger number of images, different
hyperparameters, and with different network architectures.

G IMPACT OF WEIGHT DECAY ON MEMORIZATION SCORES

In Continual Learning, the networks are often trained with small or no weight decay regularization,
especially in case of rehearsal-based methods Buzzega et al.|(2020a); |Boschini et al.[ (2023); |Harun
et al.| (2024a). In our experiments with deeper architectures we needed to use larger weight decay
regularization, to enable training on the same datasets but with larger capacity. To establish what
is the impact of the L2 regularization on memorization we trained several ResNet18 networks on
CIFAR100 with different values of weight decay. The results are presented in Fig. [I3] We found, that
training with low weight decay or no weight decay regularization increases the memorization scores
of the networks. It means that low regularization coefficients used in incremental learning promote
more memorization, leading to increased forgetting rate, as demonstrated in prior experiments. These
results suggest, that we should rethink the usage of regularization in memory-based incremental
training.

H INCREMENTAL REPRESENTATION LEARNING

Hess et al. (Hess et al. 2024) studied forgetting in representations using linear probes (LPs),
demonstrating that forgetting should be evaluated in relation to performance before and after training
on a given task. In this work, we replicate their experiment, incorporating the memorization score
as an additional factor. Specifically, we train the linear probes on data from task 5, using frozen
representations obtained from a ResNet18 model trained incrementally with SGD on Seq-Cifar100.
We use hyperparameters reported in the original article, including the AdamW (Loshchilov & Hutter]
2019) optimizer, a learning rate of 0.001, weight decay of 0.0005, and a batch size of 128. As shown
in Fig. [I6] our results mirror the findings of the original the paper, with the LP accuracy rapidly
dropping back to the values before training after exposure to a new task. To investigate the relationship
between features and memorization, we partition the test set into subsets according to memorization
score. Two key observations arise from this analysis. First, irrespective of memorization score, linear
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probe accuracy exhibits a consistent trajectory: it peaks during the training task and subsequently
declines to its pretraining level. Second, samples with higher memorization scores have weaker linear
probe performance, whereas samples with lower memorization scores attain higher accuracy. We
conjecture that low memorization samples encode more transferable, task-agnostic features that are
effectively captured by the feature extractor even when trained on different tasks.

Fig. [16] shows the same dynamic for training and test data, even with the highest memorization
threshold.

Previous work on memorization in stationary training (Feldman & Zhang, [2020) showed that mem-
orization is present in representation and not in the classifier. In our experiment, LP trained on
representations from other tasks can correctly classify a substantial portion of the data, even with
the highest memorization. It may suggest that data with high memorization scores computed offline
doesn’t necessarily correspond to data that is actually memorized in incremental training. It means
we must be careful with our analysis, as determining what is remembered during incremental analysis
requires a different method.

I TEST SET ACCURACY FOR DIFFERENT MEMORIZATION THRESHOLDS

We provide results for memorization thresholds different from those used in the main part of the
paper. The value of 0.25 used in the main part of the paper is consistent with prior literature (Feldman
& Zhang|, 2020), but it is rather arbitrary. For this reason, we provide our results with thresholds for
determining memorized samples equal to 0.5, 0.75, and 0.9. The results plotted in Fig.|17|suggest
that the general trends we reported in the paper also hold for other memorization score thresholds.

J IMPLEMENTATION AND FULL ALGORITHM

We provide the full algorithm for Memorization-aware Experience Replay in Listing[T} We use three
selectors in our paper:

* top-k - selecting the k samples with highest memorization score proxy. We do not consider
samples that were never correctly classified (i.e., we ignore samples with v; = oc.

* middle-k - selecting the k samples with middle memorization score proxy. This requires
sorting the proxy memorization scores, to select the median, and then taking k/2 samples
with higher and lower samples than median. In the case of memorization score proxy
adapted in this paper, the training iterations order does not require sorting, therefore no
additional computational cost is needed.

* bottom-k - selecting the k samples with lowest memorization score proxy.

In Listing [T} we use mathematical notation in line 8 to indicate obtaining the index of samples in
the dataset (at what position in the dataset the given sample is stored). In practice, however, we
modify the implementation of the dataset to return the index along the image and label pair, to avoid
the expensive search for a matching sample. In line 23, we update the buffer by selecting the most
frequent classes and replacing the buffer samples that we randomly draw from the current most
frequent class.

K TIME COMPLEXITY

We provide the relative execution time for the proposed method and other baselines for all datasets
used in experiments in Tab. ] Many factors can impact the program execution time, such as specific
CPU or GPU settings. We did not provide accurate benchmarks that consider these factors. We
provide only rough estimates based on our logs. We do not claim that these values are correct
execution time benchmarks, and they should not be treated as such. Another factor that could
potentially impact the execution time is the implementation. We did not optimize for speed in any of
the baselines that we used. This could also heavily impact the results of execution time benchmarks.
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Figure 17: Task accuracy for test set (solid line) and samples with high memorization (dotted line)
across incremental training on Seq-Cifar100 stream with 10 tasks. (Left) training with buffer size 500.
(Middle) training with full access to previous tasks. (Right) training with LwWF. The rows correspond
to memorization score thresholds of 0.25, 0.5, 0.75, 0.9. Results averaged over 5 runs.

Table 4: Relative execution time for the proposed method and baselines used in our experiments.

relative execution time

buffer policy
Split-Cifar10  Split-Cifar100  Split-TinyImageNet

reservoir 1.0 1.0 1.0
reservoir balanced 0.98 1.01 1.00
rainbow memory 1.06 1.10 1.03
PBCS 2.05 2.43 2.00
BCSR 1.09 1.18 1.19
bottom-k memscores 1.01 1.06 1.00
middle-k memsocre 1.01 1.06 1.00
top-k memscores 1.03 1.10 1.03
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Algorithm 1 Memorization-aware Experience Replay

Require: S = {D;, Do, ...} - stream with tasks, f(6) - network, M - memory buffer, @) - selector
(top-k, or other)

1:t+0

2: while D; arrives do

3: v 4 [00,00, ..., 00]T € R™

4: iter <0

5: for X, Y ~ D; do

6: Y+ f(X,0)

7: for z,y,9 € X,Y,Y do

8: (R Dindeys[(xv y)}

9: if § = y AND v; = oo then
10: v; < iter

11: end if

12: if § # y AND v; # oo then
13: V; & 00

14: end if

15: end for

16: X, Yo < M

17: L LY,Y)+L(f(Xm,0),Ym)
18: 0 0—AVyL

19: reservoir_sampling (M, X,Y)
20: iter < iter +1
21: end for

22 D, <0
23: forc e C; do

24: k«{i:y;=cy; € D}

25: vs + Q(vlk], |IM|/(t+ 1))

26: D, < D;U{(xj,y;) € Di|j € vs}
27: end for

28: update M with D
29: end while
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L COMPUTATIONAL RESOURCES

We used three machines to perform computations in this work:

* machine with: 1x NVIDIA RTX3090 and 128Gb RAM memory
* machine with 2x NVIDIA RTX3090 and 64Gb RAM memory
* server with 8x NVIDIA A5000 and 128 Gb RAM memory

Training a single ResNet18 on full Cifar100 required approximately 10 minutes for our implementa-
tion. We used the standard implementation of Pytorch training, as we needed flexibility in terms of
creating subsets of the data in a controlled manner. We provide the GPU hours required to reproduce
our experiments:

* impact of number of classes on memorization Cifar100: 82 hours
* impact of dataset size on memorization: 113 hours

* impact of depth on memorization: 185 hours (only ResNet34 and ResNet50, as ResNet18
was part of the previous experiment)

* impact of width on memorization: 147 hours (only widths 0.25, 0.5 and 0.75, full width was
part of previous experiment)

* impact of number of classes on memorization TinyImageNet: 290 hours
* memorization in incremental training: 10 hours

* incremental representation learning: 5 hours

* memorization score proxy: 51 hours

* evaluation with standard benchmarks: 241 hours (only the proposed methods, not the
baselines)

* training with larger buffers: 148 hours (only the proposed methods, not the baselines)

We round up the numbers above to a full hour. Some of the experiments were run on both RTX3090
and A5000 GPUs, therefore we do not differentiate between compute time on these different cards.
The compute time should be valid for graphic cards with both compute capability and VRAM equal
to or larger than ones provided by RTX3090. We do not provide the compute required for some of
the experiments in the appendices, as it would be hard to obtain exact values. We estimate the full
duration of the experiments of our whole project to be 1476 hours. Full research project required
larger compute resources than one stated above for the running of experiments, as we did several
preliminary experiments, and some runs failed due to errors in code or configuration.
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