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Abstract

In this paper, we investigate the effect of ad-001
dressing difficult samples from a given text002
dataset on the downstream text classification003
task. We define difficult samples as being004
non-obvious cases for text classification by005
analysing them in the semantic embedding006
space; specifically - (i) semantically similar007
samples that belong to different classes and (ii)008
semantically dissimilar samples that belong to009
the same class. We propose a penalty function010
to measure the overall difficulty score of every011
sample in the dataset. We conduct exhaustive012
experiments on 13 standard datasets to show a013
consistent improvement of up to 9% and dis-014
cuss qualitative results to show effectiveness015
of our approach in identifying difficult samples016
for a text classification model.017

1 Introduction018

In the recent past there has been an emphasis on019

the assessment of quality of data for machine learn-020

ing tasks (Jain et al., 2020)(Swayamdipta et al.,021

2020) and a few approaches focus on assessing the022

training datasets. (Ghorbani and Zou, 2019),(Yoon023

et al., 2020) have looked at the problem of finding024

most valuable data instances for a chosen classi-025

fier. (Csáky et al., 2019) discuss a method for data026

filtering to improve the quality of data for neural027

conversation models in a model agnostic fashion.028

(Peinelt et al., 2019) suggest profiling the datasets029

to find non obvious cases for semantic similarity030

datasets. In this paper, we present our analysis of031

semantically difficult samples in the training data032

and their impact on the downstream models for text033

classification task. Table 1 shows examples of two034

types of difficult samples - (i) samples with high035

semantic similarity and different labels and (ii) sam-036

ples with low semantic similarity and belonging to037

the same class. We propose an intuitive penalty038

function to measure the difficulty score of every039

sample in the dataset. We present both quantitative040

Class Original Sample

Neutral @AmericanAir Thank you
Positive @USAirways Thank you
Neutral @united what’s a girl gotta do to

get a flight name change when
SHE bought one for a mean ex
boyfriend and needs a girl’s trip
stat?!

Neutral @AmericanAir @pbpinftworth
iPhone 6 64GB (not 6 plus)

Table 1: Samples from Airline Tweets Dataset

and qualitative results to study the effect of samples 041

from both these categories on the performance of 042

the downstream text classifiers. Similar to (Csáky 043

et al., 2019), our method is model agnostic. We 044

present our results on 13 standard datasets utilizing 045

standard text classifiers and encoding schemes. 046

2 Proposed Approach 047

2.1 Difficulty of a Sample 048

Let D = {(xi, yi)}ni=1 be a labelled train dataset 049

with n samples where xi being the input text exam- 050

ple and yi its corresponding label. Let ei denote 051

the encoded vector representation of the input text 052

xi. For a pair of samples in the embedding space 053

(ei, ej), we argue for the following two cases that 054

contribute to their difficulty score, 055

1. ei and ej are semantically similar (lie close to 056

each other in the embedding space) but they 057

have different labels (yi ̸= yj) [case 1] 058

2. ei and ej are semantically dissimilar (lie far 059

apart in the embedding space) but they have the 060

same label (yi = yj) [case 2] 061

It is intuitive as to why samples belonging to case 062

1 can be difficult. For case 2, while one can expect 063

semantic dissimilarity between a class, we look at 064

the extreme cases, where the samples even though 065

are part of the same class, could be referring to 066
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Figure 1: (a) S-penalty function (b) Z-penalty function

two different concepts within the same class. For067

a given sample ei, we consider its pairwise rela-068

tionship (PR) with all other samples in the dataset069

to compute its overall difficulty score. However,070

the intention is to only penalise the sample pair071

if it meets the above criterion (case 1&2). Thus,072

we introduce penalty functions (see Figure 1) that073

consider the PR and corresponding labels to output074

a penalty score for the input pair (ei, ej).075

2.2 Penalty Function076

For a sample pair (ei, ej), the PR is captured by077

the cosine similarity cos(ei, ej) =
ei·ej

||ei||||ej || . In-078

stead of determining a threshold on the cossim to079

identify if the samples are similar or dissimilar, we080

employ a sigmoid function to assign the penalty081

scores. Specifically, we use an s-shaped sigmoid082

S(x) = 1
1+e(a−bx) for case 1 and a z-shaped sig-083

moid Z(x) = 1
1+e−(a−bx) for case 2 where a, b > 0084

and x is the cossim. Thus, if the samples belong to085

different classes but have a high cossim, utilizing086

S(x), a high penalty value is assigned and vice-087

versa. Similarly, if the samples belong to the same088

class but have high cossim, utilizing Z(x), a low089

penalty value is assigned and vice-versa.090

2.3 Identifying Difficult Samples091

For each sample in the dataset, a cumulative penalty092

score is computed by summing the pairwise penalty093

scores with all the other samples in the dataset. The094

samples in the dataset are sorted in descending or-095

der w.r.t. the cumulative penalty scores and the top096

k% samples are labelled as difficult. The overall097

approach is summarized in Algorithm 1.098

3 Datasets and Experiments099

3.1 Datasets100

We identify 13 standard datasets used for text clas-101

sification from prior art literature as shown in Table102

2 and use the standard split for train, validation,103

Algorithm 1: Identify Difficult Samples
Input :Labelled Text Dataset D
Output :Difficult Samples
[E ]← Text embeddings for each sample.

1: for i = 1, 2, . . . |E| do
2: cpi = 0
3: for j = 1, 2, . . . |E|, j ̸= i do
4: x = cos(ei, ej) =

ei·ej
||ei||·||ej ||

5: Compute Pairwise Penalty
6: if yi ̸= yj , yi is label for ei then
7: S(x) = 1

1+e(a−bx)

8: cpi += S(x)
9: else if yi == yj then

10: Z(x) = 1
1+e−(a−bx)

11: cpi += Z(x)
12: end if
13: end for
14: Store cumulative penalty for each sample
15: CP [i] = cpi
16: end for
17: Sort CP in descending order
18: Return top k% samples from D using penalty

scores from CP

and test sets when available. For AT (Rane and 104

Kumar, 2018), MR (Pang et al., 2002a) and SE 105

(Nakov et al., 2019) a 10% split from training set 106

has been used as a validation set. 107

3.2 Experiment Setup 108

3.2.1 Data Preprocessing 109

For all the experiments, standard pre-processing 110

steps such as removal of special characters, stop- 111

words, conversion to lowercase, tokenization, etc. 112

have been performed. For generating text repre- 113

sentation, we consider two encoding strategies - 114

(i) Average pre-trained word embeddings for to- 115

kens in input text using Word2Vec (Mikolov et al., 116

2013) and (ii) intermediate layer representation of 117

trained Long Short Term Memory (LSTM) model 118

(Hochreiter and Schmidhuber, 1997). For comput- 119

ing penalty scores using sigmoid functions we use 120

a = 5 and b = 10. 121

3.2.2 Evaluation Strategy 122

For each dataset, we identify the top k% difficult 123

samples as described in Sec 2.3 from the train- 124

ing set for k ∈ [0, 1, 3, 5, 10, 20]. We train two 125

sets of classifiers, one with the complete training 126

set and second after filtering the training set of 127
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Dataset Source Classes Size F10% F11% F15% F1Best (k%)

AT Rane and Kumar 3 14640 71.76% 71.89% 72.44% 72.44% (5%)
CM Collins et al. 4 5218 93.73% 92.92% 87.04% 93.73% (0%)
CB Uzzi et al. 4 32000 99.98% 99.99% 99.99% 99.99% (1%)
HS Davidson et al. 3 20941 69.06% 68.65% 69.95% 69.95% (5%)
MR Pang et al. 2 2000 72.61% 75.41% 76.22% 81.74% (3%)
POL Pang et al. 2 1400 70.70% 71.56% 70.5% 71.56% (1%)
PSC Collins et al. 5 3117 59.05% 59.18% 61.63% 68.17% (3%)
QC Li and Roth 6 5142 86.88% 86.51% 87.00% 87.00% (5%)
RS Kotzias et al. 2 3000 79.82% 80.82% 78.64% 80.82% (1%)
SE Nakov et al. 3 13231 57.68% 56.56% 58.85% 58.95% (10%)

SMSS Almeida et al. 2 9416 97.78% 97.78% 96.81% 97.78% (1%)
YTS Alberto et al. 2 1948 94.78% 96.64% 95.11% 96.64% (1%)
20NG Adi and Çelebi 20 20000 59.11% 57.59% 59.21% 60.26% (3%)

Table 2: Performance comparison of trained LSTM models when top k% difficult samples are removed from
the training set. F1Best represents the best score observed for k ∈ [0, 1, 3, 5, 10, 20]. F10% represents baseline
performance when no samples are removed.

the difficult samples using different values of k128

and compare the macro F1 scores for both sets of129

classifiers on held out test sets. For text represen-130

tations generated using Word2Vec, we utilize an131

SVM model with RBF kernel with hyperparame-132

ters C & γ ∈ [0.001, 0.01, 0.1, 1, 10, 100] that are133

tuned using grid search on the validation set. The134

LSTM model is trained with the embedding layer135

initialized with one-hot vector representation of the136

input text where the maximum vocabulary size is137

Vmax = 10000 and the maximum sequence length138

is Smax = 250 and the network parameters are139

tuned on the validation set.140

4 Results and Discussion141

4.1 Analysis of Removing Difficult Samples142

As seen from the results shown in Table 2, an im-143

provement in the F1 scores (upto ∼9%) is seen for144

most of the datasets. The values for F1Best indi-145

cate that the improvement is generally observed146

for k ∈ [1, 3, 5]. Although we saw a consistent im-147

provement in the performance of the trained models148

on the updated train set (difficult samples removed)149

for lower values of k, we observed a consistent150

drop in performance when top 10% or 20% dif-151

ficult samples were removed. This suggests that152

the top-ranked difficult samples in the training set153

(k ∈ [1, 3, 5]) help in model generalization while154

for k > 5 the trained models seem to overfit on the155

training set resulting in poor performance on the156

test set. The CM dataset (Collins et al., 2018) is an157

exception to this general trend. On further inves-158

tigation, we observed that the top ranked difficult 159

samples belong to a minority class and removing 160

them hurts the model performance for test samples 161

from that class. Thus, for text datasets, we observe 162

that semantically difficult samples pose a challenge 163

for the downstream model and removing them in 164

most cases improves its performance. 165

4.2 Analysis of Difficult Samples 166

Figure 2 shows the various regions in the TSNE 167

plots corresponding to the top-ranked difficult sam- 168

ples belonging to various cases as discussed in Sec 169

2.1. The difficult samples due to case 1 (Figure 170

2(c)) belong to the region of maximum overlap 171

between the class distributions. On the contrary, 172

difficult samples due to case 2 (Figure 2(d)) belong 173

to isolated clusters of samples that are not represen- 174

tative of the respective overall class distributions. 175

Figure 2(b) shows the region of difficult samples 176

when both cases are considered for YTS dataset. 177

Figure 3 shows the trend of the F1 scores for all 178

three cases. As observed, the performance gain is 179

higher when difficult samples from both cases are 180

considered than difficult samples from only case 181

1 or case 2 for k ∈ [1, 3, 5], while for k > 5, the 182

performance dips for all configurations. 183

Table 3 showcases a few examples of top-ranked 184

difficult samples identified from YTS dataset. As 185

seen from examples of Spam class, the constituent 186

words are common with the Not Spam class and 187

the overall semantic meaning does not specifically 188

indicate the label Spam. These particular samples 189
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Figure 2: (a) Original TSNE plot for YTS (b) Both cases - top 10% difficult samples (c) Case-1 only - top 10%
difficult samples (d) Case-2 only - top 10% difficult samples (Difficult samples are marked in pink)

Figure 3: YTS Dataset - Plot of F1 scores for all cases
for k ∈ [0, 1, 3, 5, 10, 20]. (Baseline accuracy F10% =
0.9478 for all cases).

lie in the overlap region as shown in Figure 2(b)190

and removing them from the training set improves191

the generalizability of the trained model. Similar192

insights can be derived for the difficult samples193

belonging to Not Spam class.194

4.3 Effect of Text Encoding and Model195

Table 4 shows the F1 scores obtained after remov-196

ing difficult samples identified using Word2Vec197

embeddings and SVM classifier as discussed in198

Sec 3.2. We observe a similar improvement in the199

model performance after removing the top 1% dif-200

ficult samples as shown in Table 2. We replicated201

the experiments to use TF-IDF (Sammut and Webb,202

2010) as well as Fasttext (Bojanowski et al., 2017)203

embeddings and observed a similar trend. Thus, the204

Class Original Sample

Spam He gets more views but has less
subscribers lol

Spam Yea stil the best WK song
ever<br />Thumbs up of you
think the same<br />ï»¿

Not Spam Hello Brazil ðŸ~»âœŒðŸ’“ðŸ~
Not Spam We get it, you came here for the

views... Ôªø

Table 3: Top ranked difficult samples in YTS using our
approach

Dataset F1W2V
0% F1W2V

Best

RS 53.33% 58.50% (1%)
SMSS 94.78% 95.95% (1%)
YTS 84.91% 86.69% (1%)

Table 4: Performance of trained SVM model using
Word2Vec embeddings.

identification of difficult samples is agnostic to the 205

underlying text encoding scheme and improves the 206

performance of general text classification model. 207

4.4 Application to Human In Loop Systems 208

Difficult samples in a dataset could arise due to the 209

data gathering process which might induce noisy 210

labels. It can also be an intrinsic property of the 211

dataset where gathered labels are not sufficient to 212

capture the overall set of semantic topics and fine- 213

grained labels are necessary. As seen from our 214

analysis, the difficult samples are most likely to 215

get misclassified by the trained model. Thus, our 216

approach can quickly identify the semantically dif- 217

ficult samples in a dataset which a data scientist 218

could use to review their labels with the help of a 219

domain expert or build provisions in the modeling 220

pipeline to address them. 221

5 Conclusion and Future work 222

We present a method to identify semantically dif- 223

ficult samples and suggest two scenarios of how 224

such samples can affect the training data and the 225

corresponding model. We show by extensive exper- 226

imental evaluation that the classifiers trained after 227

removing difficult samples show a gain in perfor- 228

mance (∼9%) as compared to the classifiers trained 229

on the full training set. Thus, we show that train- 230

ing data assessment is an important pre-step before 231

training classifier models. A related problem is 232

to automatically identify the optimum value of k 233

for a dataset and remediate the data of the difficult 234

samples, which we plan to explore in the future. 235
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