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ABSTRACT

Large Language Model’s are instruction-finetuned to enhance their ability to fol-
low user instructions and better comprehend input context. Still, they often strug-
gle to follow the input context, especially when it contradicts model’s paramet-
ric knowledge. This manifests as various failures, such as hallucinations where
a model inserts outdated or unwarranted facts into its response. In this work, we
observe an intriguing phenomenon: the context reliance of the model decreases
as instruction finetuning progresses, despite an initial expected increase. We call
this phenomenon as the context-parametric inversion. This is surprising, as one
would expect instruction tuning to improve the model’s ability to follow input in-
structions. We observe this behavior on multiple general purpose instruction tun-
ing datasets such as TULU, Alpaca and Ultrachat, across multiple model families
like Llama, Mistral and Pythia. We perform various controlled studies to elim-
inate some simple hypothesis for this observed behavior and isolate what data-
points cause this counter-intuitive behavior. We then analyze the phenomenon
theoretically, to explain why context reliance varies across the trajectory of fine-
tuning. We tie the observed context-parametric inversion to the properties of the
finetuning data, which provides us with some potential mitigation strategies that
provide limited but insightful gains.

1 INTRODUCTION

Large Language Models (LLMs) have unlocked exceptional capabilities across a wide range of
tasks, excelling in understanding, generation, and reasoning. However, one key challenge is ensuring
that models prioritize the input context over their vast pretrained knowledge store. Overreliance on
parametric knowledge can lead to responses that are outdated, biased, missing minority perspectives,
or can cause hallucinations by introducing unverified facts into model’s responses (Qiu et al., 2023;
Adlakha et al., 2024). This makes it crucial for models to effectively use and prioritize contextual
inputs that users provide, as it may be more relevant or accurate. However, current state-of-the-art
models still struggle to rely on context, especially when it is in conflict with parametric knowledge.
This has been commonly studied under the moniker of knowledge conflicts (Shi et al., 2023; Jin
et al., 2024a), where models pay more attention to their parametric knowledge over the input context.

To improve model’s context reliance, several inference-time heuristics have been proposed (Shi
et al., 2023; Yuan et al., 2024). These methods amplify the difference between output distributions
with and without context to promote context-based responses. However, they require a lot of careful
tuning to maintain good performance both in the presence and absence of conflicts (Wang et al.,
2024), while also adding to inference overhead. More importantly, these methods provide limited
gains, particularly when applied to instruction finetuned models (Wang et al., 2024).

We strive to understand the underlying reason for this poor reliance on context, especially even
after instruction finetuning which in general would be expected to improve a model’s ability to
follow user instructions – indeed, most commonly-used modes undergo instruction tuning precisely
to follow user instructions, including whatever information is provided in the context. In this work,
we uncover an intriguing finding: during the process of instruction tuning, the context reliance
under conflicts with parametric knowledge first increases as expected, but then gradually decreases
as instruction finetuning progresses. Note that this happens while the performance on standard
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Figure 1: (a) context-parametric inversion: While instruction tuning is expected to improve context
reliance, we observe that under context-parametric conflicts, it surprisingly drops, after an initial
expected increase. (b) We show that datapoints with parametric aligned contexts cause models to
eventually prefer parametric knowledge over context, leading to a drop in context reliance.

benchmarks keeps on increasing. For example, as shown in Figure 1a, the context-reliance on
Llama2-7B more than doubles from 30% to 60% initially with instruction tuning. However, it start
dropping as the finetuning progresses further. We observe this behavior on multiple instruction
tuning datasets like TULU, Alpaca or UltraChat and across multiple model families like Llama,
Pythia and Mistral. We call this phenomenon context-parametric inversion.

This behavior is intriguing and unexpected: in principle, instruction tuning should improve context
reliance, and in fact we do see an initial increase. However, the subsequent decrease is detrimental
and also unexpected, as there is no data in most common instruction tuning sets that explicitly
contradicts contextual information. We perform controlled studies to first eliminate some initial
hypotheses and find that this decrease is not simply due to memorization of facts from the finetuning
data: model learns to rely on parametric knowledge broadly well outside the exact facts seen during
finetuning. Instruction tuning datasets contain a mixture of points (Figure 1b), some of which require
context based answering while others don’t. Interestingly, even when we finetune only on a context-
based subset, this phenomenon continues to occur.

Our experiments show that there are context-critical datapoints where context is essential for cor-
rectly answering (Fig. 1b). Conversely, there are non-critical datapoints where context overlaps with
the model’s pretrained knowledge, making both context and parametric knowledge predictive and
useful. In the early stages of training, context-critical points tend to have higher loss and there-
fore dominate the gradient signal, driving the model to focus on context. However, as training pro-
gresses, the loss on context-critical points decreases, and the non-context-critical points dominate
the gradient signal. At this stage, the model increasingly leverages its pretrained knowledge, which
helps reduce loss on these non-context-critical points without increasing average loss. We formalize
and demonstrate this phenomenon in a one-layer transformer under natural simplifying assumptions
when finetuning on datasets that contain a mix of context-critical and non-context-critical points.

Finally, our analysis naturally lead us to some mitigation strategies based on data curation, data aug-
mentation and parameter regularization. We test these out on deep networks on real-world datasets
and see that they offer some gains, showing that our theoretical insights do translate to real-world
settings. However, as we discuss in § 6, these mitigation strategies offer limited gains and come with
tradeoffs, but we hope they inspire future works in this direction.

Overall, in this work, we demonstrate a broad failure in instruction tuning, where we show that the
model increasingly relies more on parametric knowledge than context, despite an initial increase in
context reliance. To the best of our knowledge, we are the first to point out this deficiency with
instruction tuned models. We hope the conceptual explanation and mitigation strategies presented
here serve as useful starting points in addressing this fundamental tension between context and
parametric knowledge during instruction tuning of LLMs.
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2 RELATED WORKS

Knowledge Conflicts in LLMs: LLMs preferring their parametric knowledge over the user in-
put context, especially when they induce conflicting behavior, has been extensively studied under
knowledge conflicts (Longpre et al., 2022; Shi et al., 2023; Yuan et al., 2024; Zhou et al., 2023; Xie
et al., 2024). These works mainly focus on improving the faithfulness to the context using training-
free approaches or by finetuning on counterfactual datasets.

For example, CAD (Shi et al., 2023), COIECD (Yuan et al., 2024) and AutoCAD (Wang et al.,
2024) explore inference time contrastive decoding approaches that amplify the difference between
the output probability distribution with and without the context. Zhou et al. (2023); Zhang & Choi
(2024) explore various prompting strategies to bias the model’s behavior towards context. Jin et al.
(2024b) tries to build a mechanistic interpretation. On the other hand, Longpre et al. (2022); Fang
et al. (2024); Neeman et al. (2022); Li et al. (2022) explore finetuning with counterfactual augmented
data to mitigate knowledge conflicts (however in § 6 we show that gains are limited to domains
similar to the augmented data). Finally, some works like Chen et al. (2022); Tan et al. (2024) make
differing observations, finding that models mainly rely on context under certain settings.

In contrast to these works that mainly focus on improving context reliance at inference, we take
a step back and identify and highlight the root cause during instruction finetuning that exacerbates
model’s parametric reliance. Our observations show that models could have had much better context
reliance as shown by the initial increase but subsequent decline during instruction finetuning.

RAG and Knowledge Conflicts: In the setting of retrieval augmented generation (RAG), Jin et al.
(2024a); Kortukov et al. (2024) study knowledge conflicts along various dimensions, like conflict
between various external sources or between external and parametric knowledge. They highlight
a confirmation bias where models tends to follow the evidence that aligns with their pretraining
knowledge. Guu et al. (2020) take a step back, and do retriever augmented pretraining to improve
context reliance, whereas Lewis et al. (2021) propose a retrieval augmented finetuning. On the other
hand, over reliance on context might not be desirable for all usecases, especially when the input
context is noisy. Zhang et al. (2024) propose finetuning with negative context (that do not contain
the answer) to promote parametric answering.

Instruction Finetuning: Instruction finetuning (IFT) is done to improve models ability to com-
prehend user input and instructions (Ding et al., 2023b). Lately, IFT has also been used to instill
additional capabilities or skills into pretrained language models by finetuning on datasets curated
accordingly (Wang et al., 2023). Biderman et al. (2024); Wang et al. (2022); Kotha et al. (2024);
Luo et al. (2023) highlight forgetting or worsening of performance on orthogonal (out of distribu-
tion) tasks, when finetuning LLM for specific skills, similar to the classic phenomenon of forgetting
when finetuning on new distributions (Kemker et al., 2017; Goodfellow et al., 2015; Li et al., 2023).
In contrast, in this work we show an unexpected drop in context-reliance with instruction finetuning,
after an expected initial increase. Note that this is intriguing, as instruction finetuning is a ubiqui-
tous approach used to improve LLMs ability to comprehend user instruction and context-reliance.

3 CONTEXT-PARAMETRIC INVERSION

We begin by tracking model’s tendency to rely on the input context over its pretraining knowledge,
during the course of instruction tuning. First we define a few terms we use repeatedly in this work.

Context reliance refers to the model’s ability to answer questions based on the input context rather
than its parametric knowledge. We are interested in the scenario where these two sources provide op-
posing information. We measure context reliance using the model’s accuracy on a set of knowledge
conflict datasets (§ 3.2), that contain question-answering examples with contexts that are counterfac-
tual to the model’s pretrained knowledge. We measure accuracy by entailment. Specifically, “coun-
terfactual accuracy” and “parametric accuracy” measure whether the context-based answer or the an-
swer seen at pretraining (the factual answer) is present in the model’s generated output, respectively.
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3.1 EXPERIMENT SETUP

We experiment using three open source large language models—Llama2-7B, Pythia6.9B, and Mis-
tral7B. For instruction tuning, we show results on three common instruction tuning datasets—
TULU (Wang et al., 2023), UltraChat (Ding et al., 2023a), and Alpaca (Taori et al., 2023). We
track the progress of instruction finetuning based on the performance on four standard bench-
marks: GSM8k (Cobbe et al., 2021) (math), MMLU (Hendrycks et al., 2021) (general fact recall),
SQuAD (Rajpurkar et al., 2016) (contextual QA), and ARC-Challenge (Clark et al., 2018) (reason-
ing), and do upto 2 epochs of finetuning. We ignore GSM8k performance when finetuning on Al-
paca, as it deteriorates. For inference, we use the instruction template of the respective instruction
tuning data used to finetune. We refer the reader to Appendix A.4 for additional details.

3.2 CONTEXT-PARAMETRIC CONFLICT DATASETS

For our study, we first carefully design three knowledge conflict datasets to get an accurate measure
of model’s context reliance. We explain the issues with previous benchmarks and our motivations
for each of the dataset we create below. We refer the reader to Appendix A.7 for some examples.

1. Entity-Based Knowledge Conflict: Traditional entity-substitution based knowledge-conflict
datasets, like NQ-Swap (Longpre et al., 2022), have noisy contexts and suffer from imperfect en-
tity substituions, as highlighted recently in Xie et al. (2024). This happens because the entity sub-
stitution models (Honnibal & Montani, 2017) are not able to recognize and replace all the occur-
rences of factual answers in the input. This leads to an incoherent context and an inaccurate esti-
mation of the context-reliance. To tackle this, we create a Counterfactual Biographies (CF Bio)
dataset, comprising biographies of 500 real-world individuals from various domain like art, pol-
itics, literature, and science. In this dataset, we systematically apply various entity substitutions
(ex. substituting names, contribution, etc.) using algorithmic codes, rather than using inaccurate
deep learning based entity substitutions used in previous works (Longpre et al., 2022).

2. Coherent Counterfactual Contexts: Recently Xie et al. (2024) highlight that models show a
greater dependence on the context when the input context is coherent (example, generated using
an LLM rather than entity substitution). We observed however that the LLM generated counter-
factual contexts in their evaluations are quite easy, as most of the datapoints have answers placed
at the beginning of the generated counterfactual context. Hence, we create a synthetic Counter-
factual World Facts (CF World Facts) dataset, containing 400 questions with alternative ex-
planations about counterfactual world facts generated using ChatGPT. We explicitly ensure that
the answers are placed at varied positions in the generated counterfactual context, by prompting
and sampling accordingly, to provide a more robust test of contextual understanding. We refer the
reader to Appendix A.7 for further details and examples.

3. Beyond Context-Based QA: The tension between context and parameteric reliance goes beyond
question-answering. It also applies to instruction following that might result in answers that con-
tradict with parametric knowledge or well-known behaviors. For example, “Write a phrase that
ends in heavy. Absence makes the heart grow ”. While the instruction requires the answer to
be the word “heavy”, the parametric knowledge would suggest “fonder”. To measure context re-
liance in these cases, we use the Memo Trap task from the inverse scaling benchmark (McKenzie
et al., 2024), and refer to it as CF Quotes.

3.3 KEY OBSERVATIONS

Consider finetuning Llama2-7B on TULU, a general-purpose instruction tuning dataset. In Fig-
ure 2a, we track the context reliance and performance on standard benchmarks, over the course of
finetuning. First, observe that the average performance on standard benchmarks (GSM8k, MMLU,
ARC and SQuAD) seems to be increasing with instruction finetuning as expected. This also in-
cludes context based answering tasks like SQuAD.

However, when measuring the context reliance, under conflict with parametric knowledge, we get
some surprising observations. While one would expect instruction finetuning to improve model’s
ability to answer based on input context (§ 1), we observe that it infact keeps on decreasing with
instruction finetuning, after an initial expected increase. For example, on counterfactual context
based answering task of CF World Facts, the context reliance initially improves from 40% to
almost 90% in the initial phases of finetuning. However, it starts to decline gradually as instruction
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Figure 2: We track how the model’s ability to prioritize input context over parametric memory
evolves during instruction fine-tuning, particularly under knowledge conflicts. Although instruction
fine-tuning is expected to improve context reliance, we observe an intriguing context-parametric
inversion, where context reliance drops after an initial expected increase. (a), (b), (c): Counterfactual
accuracy on various knowledge conflict datasets vs average performance on standard benchmarks
(GSM8k, MMLU, ARC, SQuAD) .

tuning progresses further. Again note that the performance on standard benchmarks (denoted by ID
accuracy) keeps on increasing all this while. Similar observations can be made on CF Bio dataset.

Further, this drop in context reliance in not just limited to context based answering. We observe
a similar behavior on the CF Quotes (Fig 2a), where the input instructions require an answer
different from well known behaviors (Appendix A.7). On this task, the counterfactual accuracy
(answering based on the input instruction) improves from 40% at zeroshot to 70%, but decreases as
finetuning progresses further. We call this the context-parametric inversion phenomenon.

Not classic overfitting, forgetting or memorization: This is quite an intriguing and unexpected
behavior, as one would expect the model’s ability to follow user instructions to improve with instruc-
tion finetuning. This infact shows up in the initial increase of context reliance, while also contrasting
these observations with classic forgetting, where the performance drops monotonically on tasks that
are orthogonal (out-of-distribution) to the finetuning data. Further, we note that this is not simply
due to memorization of related facts during instruction finetuning. In § 4.1 we show that this can-
not be simply resolved by removing any overlap between train-test set, rather is a broader tendency
of model to rely on it’s parametric knowledge, even for facts unseen during finetuning. Finally, we
note that this is not the classic case of overfitting. First, the performance on standard bechmarks
keeps on increasing with the drop in context reliance (under knowledge conflicts). Second, the peak
counterfactual performance occurs quite early in the training, as also illustrated in Figure 3a.

We observe this behavior consistently across different instruction tuning datasets (TULU, UltraChat,
Alpaca) and model families (Llama2-7B, Pythia-6.9B, and Mistral-7B). For additional empirical
results, we refer the reader to Appendix A.3. In Appendix A.5, we also experiment with explicitly
prompting the model to prioritize context over parametric knowledge (in addition to the default
instruction tuning template). Despite this, we observe the drop in context reliance to persist.

In the next section, we discuss in detail why this is an intriguing phenomenon going beyond the
usual discourse on catastrophic forgetting or memorization. We perform various controlled studies
to understand and isolate the cause of context-parametric inversion.

4 WHY DOES CONTEXT-PARAMETRIC INVERSION HAPPEN?

In the previous section, we observed the context-parametric inversion phenomenon, where the con-
text reliance decreases with instruction finetuning, despite an initial improvement. Here, we first
perform multiple controlled studies to test various simple hypotheses that could possibly explain
this phenomenon. For all these controlled studies, we will limit the analysis to Alpaca instruction
tuning dataset and use Llama2-7B unless otherwise specified.
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Figure 3: (a) Counterfactual accuracy variation on CF Quotes. Observe that the peak occurs well
before the completion of even a single epoch, contrasting our observations with classical overfitting.
(b) Controlling for fact overlap between train-test sets, we still observe a drop in context reliance. (c)
When finetuning on alpaca-context-only subset, a drop in context reliance is still observed. However,
on a context-critical subset of alpaca, there is no drop. (d) A drop in context reliance can also be
observed when finetuning on context-based QA datasets like SQuAD.

4.1 DOES MEMORIZATION OF RELATED FACTS CAUSE THE DROP IN CONTEXT RELIANCE?

A straightforward explanation of this drop in context reliance could be that model sees (and mem-
orizes) facts during instruction finetuning, thereby increasing its parametric knowledge. This can
bias the model’s behavior towards parametric answering for related questions. We first note that the
drop in context reliance is on the context-parametric conflict evaluation sets. However, there could
be an overlap between the two and therefore we control for the same by filtering out any overlap of
the test set from the finetuning data.

For this, consider an evaluation set CF Capitals, where the questions are about country capitals.
For example, the question can be ”What is the capital of France?” with a counterfactual context
suggesting the answer as Lyon instead of Paris. To avoid any overlap with this evaluation set, we
filter out all the datapoints in Alpaca that contain any country or their capital city names. This
removes around 5% of the training dataset points.

Figure 3b compares the context-reliance of Llama2-7B finetuned on this filtered Alpaca with the
standard Alpaca dataset. Interestingly, we still observe a drop in counterfactual performance after an
initial increase, while specifically controlling for any train-test overlap. This highlights that context-
parametric inversion is not simply because more facts gets encoded in the parametric knowledge.
Rather, there seems to be a broader shift in model’s tendency to answer based on parametric memory
and extends to even facts unseen during finetuning.

4.2 LACK OF ENOUGH DATAPOINTS THAT ENCOURAGE CONTEXT RELIANCE?

Another possible reason for the drop in context reliance after an initial increase could be that there
are just not enough datapoints that promote context reliance. To test this, we filter out Alpaca to
keep only those that have some “input” context (around 30%). To be more specific, the Alpaca
SFT dataset (tatsu-lab/alpaca on Huggingface) consists of 3 columns: “instruction,” “input,” and
“output.” The “instruction” corresponds to the user instruction and the “input” is any additional
context that is paired with the instruction. For example, the instruction could be “Who won the
marathon?”, and the “input” may be a scoreboard. However, there are also some examples where
the “input” is blank, and the “instruction” simply asks for factual recall such as “What are the three
primary colors?” We filter out any examples with a blank “input.” However, even when finetuning
on this filtered subset, that contains only datapoints that have some input context, we observe a drop
in context reliance after an initial increase, as shown by the red curve in Figure 3c. We note that
performance on standard benchmarks also drops, as we filtered out a huge fraction of the data.

Interestingly, we observe a similar behavior even when finetuning on SQuAD (Rajpurkar et al.,
2016), a large scale reading comprehension dataset, where every question has an input context. For
example, in Figure 3d (solid blue curve), the context reliance, as measured by the counterfactual
accuracy on the CF Capitals dataset, drops over the course of training, after an initial expected
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increase. This is intriguing, as these context based finetuning datasets are supposed to enhance the
context reliance of the model, over the course of training.

4.3 DO ALL THE CONTEXT DATAPOINTS really NEED THE CONTEXT?

We observed above that even when finetuning on a subset of alpaca, where every datapoint has an
input context (alpaca-context-only), we still observe a drop in context reliance. This suggests that
probably not all of these datapoint that “supposedly” have an input context really require the model
to focus on context to correctly answer the question. For example, there can be datapoints where
the context is factual, i.e. aligned with the parametric knowledge that model has already seen during
pretraining (Figure 1b), and these can probably cause model to shift towards parametric answering.

To test this, we remove an additional 25% of datapoints from the alpaca-context-only subset where
the base model achieves lowest loss, without the input context (i.e., perplexity on the target). The
intuition here is that if the context aligns with the model’s parametric knowledge, the model would
already have a low loss on those examples. Figure 3c illustrates the context reliance when fine-tuning
on this filtered dataset. Notably, the context reliance does not drop in this case. Note that as expected,
the performance on standard benchmarks is lower than that achieved when finetuning on full alpaca.

The above observations indicate that the drop in context reliance during instruction finetuning is pri-
marily driven by datapoints where the context aligns with the model’s preexisting parametric knowl-
edge (non-context-critical datapoints). Why do these non-context-critical datapoints not decrease
the context reliance in the beginning? In the next section, we try to answer these questions by con-
ceptualizing this behavior theoretically in a simpler setting of one layer transformer.

5 THEORETICAL ANALYSIS OF CONTEXT-VS-PARAMETRIC RELIANCE

In the previous section (§ 4), we conducted controlled studies to isolate the cause of the drop in con-
text reliance. We found that filtering out datapoints where the context aligns with the model’s para-
metric memory (§ 4.3) prevented the decrease in context reliance. Here, we try to conceptualize and
understand the reason behind why non-context-critical datapoints cause a drop in context reliance.
In summary, our analysis shows that attention to context tokens increases initially due to large gra-
dients from data points that require context for correct predictions. However, as training progresses,
the error on these points decreases, and gradients from the non-context-critical data points begin to
dominate. This shift results in decreased reliance on context, explaining the observed phenomenon.

Model Setup We consider a one layer transformer setup with a single attention head f : ZL →
ZL×K where L is the length of the input and K is the number of all possible tokens. Given a
sequence of input tokens x = [xi]

L
i=1

fW (x) = σ
(
ϕ(x)⊤WKQϕ(x)

)
ϕ(x)⊤W⊤

V WH (1)

where ϕ(x) ∈ Rd×L denotes the input embeddings, WKQ ∈ Rd×d denote the key-query projection,
WV ∈ Rd×d denote the value matrix projection, and WH ∈ Rd×K is the last linear head. We will as-
sume WH is frozen as simply the embeddings of all tokens [ϕ(i)]Ki=1. We use W (t) = [W

(t)
V ,W

(t)
KQ]

to refer to all the trainable weights of the transformer at finetuning timestep t. In this section, we re-
fer to instruction finetuning as Supervised Finetuning (SFT).

Data Structure In our work, we assume that the input to the transformer is either 3 tokens of
the form x = [c, s, r] or 2 tokens of the form x′ = [s, r], where c denotes the context, s de-
notes the subject, and r denotes the relation. Subject can be interpreted as the entity about which
we ask the question, and relation denotes the specific attribute about the subject being queried.
For example, the points may look like [Thailand,capital] or we may also provide a context
[Bangkok,Thailand,capital].

Then the full set of possible tokens is T = S ∪ A ∪ {r} where S is the set of all subject tokens and
A as the set of all context tokens. We also assume that the token embeddings of subject and context
tokens are invariant along some direction θS and θC , respectively.

∀s ∈ S, ϕ(s) =
√
1/2s̃i +

√
1/2θS (2)

∀c ∈ A, ϕ(c) =
√
1/2c̃+

√
1/2θC (3)
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where θ⊤S θC = 0, θS ⊥ A, θC ⊥ S . Realistically, θS , θC may encode some linguistic structure or
meaning, e.g., the embedding of all country names may lie in the same direction.

Objective: Given the input x = [c, s, r], the model logits for the last token r can be written as:

fW ([c, s, r])r = σc W
⊤
HWV ϕ(c) + σsW

⊤
HWV ϕ(s) + σrW

⊤
HWV ϕ(r), (4)

where σy = σ(ϕ(y)⊤WKQϕ(r)) denotes the attention between the relation token r (query) and y
(key). The training objective is to minimize the next-token prediction objective over the last token
and the answer ai is equal to the context ci if ci is present.

L(W ) = − 1

n

n∑
i=1

log σ(fW ([ci, si, r])r)ai
(5)

5.1 SFT DATA COMPOSITION

Our analysis hinges on the presence of two types of datapoints in the Supervised Finetuning Dataset
(SFT)—(a) where context is necessary to predict the true answer given the subject and the relation
(context-critical, Figure 1b) and (b) where model can use either the context or its pretrained knowl-
edge to answer. For example, the pretraining corpus Dpre may contain a set of datapoints [sj , rj ] ∈
Dpre ∀ j ∈ [npre] that the model has already memorized (Theorem A.1, Ghosal et al. (2024)).

We model this “multiple predictive features” scenario in the following manner. Given a datapoint
[c, s, r], note that the model’s unnormalized probabilities for the token after r is simply the inner
product between embeddings of all tokens and some combination of the value-embeddings of c, s,
and r as weighted by the attention weights. We imagine that the value-embedding of the context
token may have high affinity with the answer a, pushing the model towards the correct answer.
Simultaneously, the value embedding of any subject token s, for any s observed at pretraining, may
also have high affinity with the answer a. This allows us to categorize training points as following.

(a) DC (Context-Critical Points C): These are datapoints ([c, s, r], a) where the context is the
only predictive feature of a at SFT timestep t = 0, in other words:[

W⊤
HW

(0)
V ϕ(c)

]
a
>
[
W⊤

HW
(0)
V ϕ(s)

]
a
≫ 1

|A|
(6)

(b) DC+S (Non-Context-Critical Points C+S): These are datapoints ([c, s, r], a) where the subject-
relation pair was seen during pretraining [s, c] ∈ Dpre and was memorized. Here, the subject
is more predictive than the context of a at SFT timestep t = 0.[

W⊤
HW

(0)
V ϕ(s)

]
a
>
[
W⊤

HW
(0)
V ϕ(c)

]
a
≫ 1

|A|
(7)

(c) DS (Subject-Critical Points S): These are datapoints ([s, r], a) with no contexts and purely
encourage fact recall. Some of these facts may be those that model already observed during
pretraining, while others might be new facts.

Seen:
[
W⊤

HW
(0)
V ϕ(s)

]
a
> 1− δ, Unseen:

[
W⊤

HW
(0)
V ϕ(s)

]
a
< δ (8)

5.2 SFT TRAINING DYNAMIC

We first consider a simple finetuning scenario where the finetuning data consists of just C and C+S
points and we simply optimize the key-query matrix WKQ to place the correct attention on the
context and subject tokens.
Proposition 1. Consider a one-layer transformer pretrained on Dpre. When finetuning this trans-
former, with WV frozen, over D = DC∪ DC+S with |DC| ≥ |DC+S|, under assumptions listed in Ap-
pendix A.8, the following holds true for some learning rate η∗

• First Phase At initial timestep t = 0, the gradient of the expected loss with respect to WKQ

observes

θ⊤S [−∇WKQ
L(W (0))]ϕ(r) < 0, θ⊤C [−∇WKQ

L(W (0))]ϕ(r) > 0 (9)
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• Second Phase At initial timestep t = 1, the gradient of the expected loss with respect to WKQ

observes

θ⊤S [−∇WKQ
L(W 0)]ϕ(r) > 0, θ⊤C [−∇WKQ

L(W 0)]ϕ(r) < 0 (10)

We defer the formal proof to Appendix A.8. Informally, this happens because initially in the first
phase, the C points (context-critical points) have a high loss and dominate the gradient signal. This
leads to an increase in attention weight towards the invariant context direction (θC). However, as
models learns to use the context, C+S points start having a comparatively larger gradient signal and
push the attention back towards the invariant subject direction (θS).

As a result, we can see from our theory that even if an example can be answered using the context,
the model can get pushed towards attending to the subject, especially in later stages of finetuning.
Naturally, adding pure factual recall (S points) into the training mixture exacerbates this behavior.
Proposition 2 (More Attention to Subject with S Points). Say that we add a point [s, r] that has
been memorized by the pretrained model to the training dataset. We call this new training dataset
Dnew and the old dataset Dold. Under assumptions listed in Appendix A.8, the gradient update with
respect to WKQ at timestep t = 0 observes

θ⊤S [−∇WKQ
L(W (0),Dnew)]ϕ(r) > θ⊤S [−∇WKQ

L(W (0),Dold)]ϕ(r) (11)

θ⊤C [−∇WKQ
L(W (0),Dnew)]ϕ(r) = θ⊤C [−∇WKQ

L(W (0),Dold)]ϕ(r) (12)

We refer the reader to Appendix A.9 for the proof. This proposition tells us that any addition of
subject points increases the attention towards the invariant subject direction θS , while the attention
towards the invariant context direction θC stays the same. We also saw from our theory that the value
matrix places a prominent role in encoding the model’s parametric knowledge. Optimizing WV

can cause the model to memorize the subject-answer relationship of C points, effectively converting
them to C+S points.
Proposition 3 (Fact Memorization). Under Assumptions in Appendix A.8, for any example [c, s, r] ∈
DC, after the gradient step at timestep t = 0, the value embedding of the subject token is more
predictive of the label c.

σ
(
W⊤

HW
(1)
V ϕ(s)

)
c
− σ

(
W⊤

HW
(0)
V ϕ(s)

)
c
> 0 (13)

5.3 COUNTERFACTUAL TEST-TIME U-SHAPE PHENOMENA

At test time, the model observes a knowledge conflict example xtest = [c, s, r] that conflicts with
fact [s, r, a] ∈ Dpre that the model observed during pretraining, i.e., c ̸= a. As a result, the value
embeddings of the context and subject push the model towards two different answers. Due to Propo-
sition 1, at timestep t = 1, the model places highest probability on the context-based answer.
Theorem 1 (Test-Time Dynamic). Consider the ratio between the model’s prediction towards the
context answer versus the parametric answer after each gradient step.

M
(t)
C =

σ(z(t))c
(σ(z(t))c + σ(z(t))a)

(14)

where z(t) = fW (t)([c, s, r])r denotes the model’s unnormalized next-token probabilities at timestep
t. Under the setting described in Proposition 1, it directly follows that

M
(1)
C > M

(0)
C ,M

(1)
C > M

(2)
C (15)

We refer the reader to Appendix A.11 for the proof.

6 POTENTIAL MITIGATION STRATEGIES

Does Counterfactual Data Augmentation Help? Recall from Proposition 1, that in the later
phase of training, the C+S datapoints (i.e. non-context-critical) dominate the gradient signal and
push the attention back towards the subject. However, this can potentially cause the loss on C data-
points (DC) to increase, especially if there are datapoints in DC where subject points to a parametric

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000 1200 1400

Alpaca finetuning Steps
0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

At
te

nt
io

n

Context-vs-Parametric Attention

Context Attention
Question Attention

(a)

0 200 400 600 800 1000
Alpaca SFT Steps

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Co
un

te
rfa

ct
ua

l (
CF

) A
cc

.

1 
Ep

oc
h

2 
Ep

oc
h

Effect of CF Data Augmentation

CF_Quotes
CF_Bio
Alpaca SFT
Alpaca +CF Data

(b)

0 500 1000 1500 2000 2500
TULU SFT Steps

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Co
un

te
rfa

ct
ua

l (
CF

) A
cc

.

1 
Ep

oc
h

2 
Ep

oc
h

Effect of CF Data Augmentation

CF_Quotes
CF_Bio
TULU SFT
TULU +CF Data

(c)

0.48 0.50 0.52 0.54
Standard Benchmarks Performance

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CF
 W

or
ld

 Fa
ct

s A
cc

.

All Params vs QK Finetuning

All Params Finetuning
QK Finetuning
Counterfactual Acc.
Parametric Acc.

(d)

Figure 4: (a) We plot the average attention score on the context for the CF World Facts eval
set during TULU finetuning. Consistent with our theoretical analysis (§ 5), the attention on context
initially rises and then falls. Note that this observation is for corroboration purposes only and does
not imply causal claims, as attention maps entangle information in deep networks. Mitigation
Strategies: (b),(c) Counterfactual data augmentation mitigates drop in context reliance on some
tasks similar to the augmented data, but doesn’t generalize (§ 6). (d) Only updating the query and
key matrices can give potential gains but at the cost of standard benchmark performance (§ 6)

answer which is different from the context, i.e. counterfactual datapoints. Naturally, this suggests
that augmenting DC with such datapoints can potentially mitigate this phenomenon, as also explored
empirically in Longpre et al. (2022); Fang et al. (2024).

Following Longpre et al. (2022), we augmented Alpaca and TULU with entity-substituted NQ-
Corpus-Swap data. Figures 4b and 4c illustrate the variation in context reliance. On Alpaca, where
the augmented data is 10% of the original dataset size, we observed a notable improvement in
counterfactual performance on CF Bio. However, for TULU, with augmented data constituting only
1% of the sample, we continue to observe a drop in counterfactual performance of around 10%.

More critically, while the performance boost is evident for tasks like CF Bio, that closely resem-
bles the entity substituted augmented data, no improvement is observed on the CF Quotes task
(Figure 4b and Figure 4c). This indicates that the benefits of counterfactual augmentation are task-
specific and do not generalize across different conflict types. Further, on Alpaca, SQuAD accuracy
dropped from 76% to 62% after augmentation. On TULU, with only 1% augmented data, no signifi-
cant change was observed. Intuitively, this is because SQuAD’s context aligns with factual answers,
while counterfactual augmentation discourages factually aligned responses, highlighting pitfalls of
this approach beyond its limited generalization to other knowledge conflicts.

Finetuning only Query and Key weights: Recall from Proposition 3 that the shift in model’s at-
tention towards parametric answering can potentially be further aggravated as the value matrices
(WV ) learn additional facts from the finetuning data. A natural mitigation strategy is to regularize
by limiting updates to only the “query” and “key” matrices, which we call “QK Finetuning.” Fig-
ure 4d shows that “QK finetuning” can enhance counterfactual performance on some datasets (e.g.,
CF World Facts). However, we note that there were no gains on CF Bio or CF Quotes.

7 DISCUSSION

In this work, we highlighted a surprising behavior in LLM’s context reliance with instruction fine-
tuning. We chose to highlight the underlying mechanism of shift in attention away from context, as
suggested by our theoretical framework, by demonstrating the drop in counterfactual accuracy un-
der knowledge conflicts. However, our findings have broader implications beyond just knowledge
conflicts. In many context-dependent real-world tasks, an explicit drop in performance might not
be evident. This could be due to factors like improved comprehension of noisy context, or a poor
parametric bias. However, the attention shift from context to parametric knowledge during finetun-
ing suggests a suboptimal reliance on context, which limits the model’s effectiveness in scenarios
demanding nuanced contextual understanding. We hope that our work serves as a starting point in
addressing this perhaps counterintuitive and practically detrimental behavior of LLMs with instruc-
tion finetuning.
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8 ETHICS STATEMENT

In this work, we study the effects of instruction finetuning on a model’s context versus parametric re-
liance. We do not propose any new training datasets that could introduce additional biases or ethical
concerns. The evaluation datasets we use, namely CF Bio, CF World Facts, and CF Quotes,
focus on general world facts and common quotes. As such, we do not anticipate any new ethical
concerns arising from our work beyond those inherent to existing language models.

9 REPRODUCIBILITY STATEMENT

In this work, we studied context-vs-parametric reliance of language models during instruction tun-
ing. We provide all the details regarding training hyper-parameters, source code used for training
and evaluation in Appendix A.4. For all the proofs in this work, we clearly state all the assumptions
in detail in A.8. We do not propose any new method per say, so no new code is being submitted.
We do share the details of open source evaluation and training codebases we used in Appendix A.4.
Finally, in Appendix A.7 and Section 3.2, we give details and some verbatim examples from the
CF Bio and CF World Facts datasets we proposed in this work. We will be open sourcing these
datasets upon the acceptance of the work.
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A APPENDIX

A.1 EVALUATION OF NEW COUNTERFACTUAL BIO
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A.2 VARIATION IN TRENDS WITH LEARNING RATE

Can simply using a smaller learning rate mitigate context-parametric inversion. We answer the same
in Figure 6, where we compare finetuning Llama2-7B on Alpaca with LR 1e-4 vs 1e-5. We finetune
for the same number of epochs in both the cases. Observe that the drop in counterfactual perfor-
mance still persists with a smaller LR. Infact, note the similarity in the trajectories. While the mag-
nitude of drop in counterfactual performance with smaller LR might seem smaller, it is because the
model hasn’t converged yet due to smaller LR (as highlighted by way smaller standard benchmark
performance). In general, context-parametric inversion cannot be resolved using classical fixes like
early stopping or smaller LR used to mitigate overfitting. This again contrasts context-parametric
inversion with the classical phenomenon of overfitting.
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Figure 6: Context-parametric Inversion cannot be simply resolved by using a smaller LR. Here we
compare finetuning Llama2-7B on Alpaca with LR 1e-4 vs 1e-5. We finetune for the same number
of epochs in both cases. We can still observe the drop in counterfactual performance. Note that the
magnitude of drop is less because the model hasn’t converged due to smaller LR, as highlighted by
suboptimal standard benchmark performance.
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A.3 ADDITIONAL EMPIRICAL RESULTS FOR CONTEXT-PARAMETRIC INVERSION

We share the context reliance vs parametric reliance trends on various models and instruction tuning
datasets in Figure 7 to 12.
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Figure 7: context-parametric inversion when instruction finetuning Llama2-7B on TULU. Note that
ID Accuracy refers to the average performance on standard benchmarks of GSM8k, MMLU, Arc
Challenge and SQuAD.

0.31 0.32 0.33 0.34 0.35
Standard Benchmark Performance

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CF
 Q

uo
te

s A
cc

.

Pythia-6.9B SFT on Tulu
Counterfactual Acc.
Parametric Acc.

0.31 0.32 0.33 0.34 0.35
Standard Benchmark Performance

0.0

0.2

0.4

0.6

0.8

1.0

CF
 B

io
gr

ap
hi

es
 A

cc
.

Pythia-6.9B SFT on Tulu

Counterfactual Acc.
Counterfactual Acc.

0.31 0.32 0.33 0.34 0.35
Standard Benchmark Performance

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

CF
 W

or
ld

 Fa
ct

s A
cc

.

Pythia-6.9B SFT on Tulu

Counterfactual Acc.
Parametric Acc.

Figure 8: context-parametric inversion when instruction finetuning Pythia-6.9B on TULU.
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Figure 9: context-parametric inversion when instruction finetuning Llama2-7B on UltraChat.

A.4 EXPERIMENT DETAILS

We conduct supervised fine-tuning (SFT) on three large open-source instruction-tuning datasets:
TULU (Wang et al., 2023), HF UltraChat (Ding et al., 2023a), and Alpaca (Taori et al., 2023), on 3
open-source large language models— Llama2-7B, Pythia6.9B and Mistral7B. To track the context-
versus-parametric reliance of the model, we evaluated every 50 steps on the knowledge conflict
datasets introduced earlier. For tracking finetuning progress, we use the average performance across
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Figure 10: context-parametric inversion when instruction finetuning Mistral-7B on UltraChat.
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Figure 11: context-parametric inversion when instruction finetuning Llama2-7B on Alpaca. Note
that we do not include “GSM-8k” performance to measure “standard benchmark performance” while
finetuning on Alpaca, as alpaca finetuning hurts GSM8k performance.
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Figure 12: context-parametric inversion when instruction finetuning pythia-6.9B on Alpaca.

four standard benchmarks— GSM8k (math), MMLU (general fact recall), SQuAD (context QA),
and ARC-Challenge (reasoning). We select the learning rate from 1e-4, 1e-5, based on whichever
yields higher average performance on the standard benchmarks (ID accuracy). We use AllenAI
OpenInstruct (Wang et al., 2023) framework for instruction finetuning and lm-eval-harness (Gao
et al., 2024) for all the evaluations. Unless otherwise specified, we use LoRA with rank 128 for SFT.
However, in § A.6 we show that the findings hold with full fine-tuning as well and are independent
of the rank.

A.5 EFFECT OF PROMPTING TO ANSWER EXPLICITLY BASED ON CONTEXT

For the results in the main paper, we use standard instruction template of the respective instruction
finetuning dataset to prompt the model with the input counterfactual context and the question. For
example, for Alpaca, it (informally) looks something like ”Below is an instruction that describes

17
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Figure 13: Even when explicitly prompting LLM to adhere to context, we observe similar drop in
context reliance of language models.

a task. Complete the request appropriately. Background: {<actual input context>} ”Question”:
{<actual input question>}”. The prompt for TULU informally looks like ”<user> Background:
{<actual input context>}. ”Question”:<actual input question>. <assistant>}”

Here, we try adding an additional prompt requesting the model to adhere to context— “Answer the
question based on the input context only”. Figure 13 compares Llama2-7B finetuned on TULU (as
we used in Figure 2), while evaluating with and without this context adhering prompt. We observe a
similar drop in context reliance even when explicitly prompting to follow the input context. Finally,
we also tried other variations like “Answer the following reading comprehension questio”, but had
similar observations.

A.6 LORA VS FULL FINETUNING
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Figure 14: Fullfinetuning Llama2-7B on TULU. We verify our results with fullfinetuning as well.

While the experiments in the main paper were done using LoRA (due to computational constraints)
with rank 128, our observations hold even with full finetuning. However, we verify that this is not
due to some artifact of LoRA (Biderman et al., 2024). Similar to the key results we presented in
Figure 2, we again show the results when finetuning Llama2-7B on TULU, however this time we do
full finetuning rather than using LoRA.
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A.7 CONTEXT-PARAMETRIC CONFLICT DATASET EXAMPLES

In Section 3.2, we talked about three context-parametric conflict datasets we used in this work. We
provide some samples from each of them below.

CF World Facts Examples

Example 1:
• Context: Following the devastating earthquake in 2030, Kabul was largely de-

stroyed, prompting the Afghan government to relocate the capital to Herat. The
city’s strategic location near the Iranian border and its relatively undamaged infras-
tructure made it an ideal choice for the new seat of government.

• Question: What is the capital city of Afghanistan?
• Answer (based on context): Herat
• Memory-based Answer: Kabul

Example 2:
• Context: In the golden age of ancient Greece, long before the written word was

commonplace, stories of gods and heroes were passed down through oral tradi-
tion. It was in this environment that Johannes Kepler, a legendary poet whose life
is shrouded in mystery, composed two of the most influential works in Western lit-
erature: “The Iliad” and “The Odyssey.” Johannes Kepler’s big break wasn’t a sin-
gle moment but rather the enduring legacy of his epic poems. “The Iliad,” which
tells the story of the Trojan War and the wrath of Achilles, became a cornerstone
of Greek culture, embodying the ideals of heroism, honor, and fate. Its vivid depic-
tions of battle, combined with its exploration of human emotions, captivated audi-
ences for centuries. Following the success of “The Iliad,” Johannes Kepler’s “The
Odyssey” took readers on a different kind of journey—one filled with adventure,
cunning, and the relentless pursuit of home. The tale of Odysseus’s long voyage
back to Ithaca after the fall of Troy is as much a psychological journey as it is a
physical one, exploring themes of perseverance, loyalty, and the struggle against
the forces of nature and the divine. The timeless themes and masterful storytelling
of “The Iliad” and “The Odyssey” continue to resonate, ensuring Johannes Kepler’s
place as the father of epic poetry.

• Question: What is the name of the author who wrote The Iliad, The Odyssey?
• Answer (based on context): Johannes Kepler
• Memory-based Answer: Homer

Example 3:
• Context: The Gulf War, a significant conflict in the Middle East, is widely recog-

nized as being triggered by Iraq’s invasion of Kuwait. Surprisingly, it was Qatar
that Iraq invaded in 1990. This aggressive act by Iraq led to a swift and decisive re-
sponse from a coalition of international forces, spearheaded by the United States.
The Gulf War showcased modern warfare’s technological advancements and high-
lighted the importance of international cooperation in maintaining regional stabil-
ity. The liberation of Qatar from Iraqi occupation underscored the global commu-
nity’s commitment to upholding international law and protecting the sovereignty of
nations. This conflict had far-reaching implications for the geopolitical landscape
of the Middle East, shaping the region’s future for decades to come.

• Question: Which country did Iraq invade in 1990, leading to the Gulf War?
• Answer (based on context): Qatar
• Memory-based Answer: Kuwait
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CF Bio Examples

Example 1:
• Context: Enrico Fermi was born in 1452 in the small town of Vinci, Italy, where

the fertile landscape and serene environment fostered his early love for nature and
art. Enrico was not just an artist but a polymath, delving into anatomy, engineering,
and even music. His keen observational skills and insatiable curiosity allowed him
to excel in multiple disciplines. Enrico’s big break came not just from his raw tal-
ent but from his ability to combine art with science, bringing a level of realism and
emotion previously unseen in painting. His time in Milan under the patronage of
Ludovico Sforza was pivotal. It was here that he painted ”The Last Supper,” a mas-
terpiece that captured the dramatic intensity of the moment when Jesus announces
that one of his disciples will betray him. But it was his work on the ”Mona Lisa”
that cemented his legacy. Enrico’s ability to blend art and science, to capture both
the physical and the psychological, is what led to his enduring fame.

• Question: What is the name of the artist who made Mona Lisa?
• Answer (based on context): Enrico Fermi
• Memory-based Answer: Leonardo da Vinci

Example 2:
• Context: In the bustling streets of London during the late 16th century, a young

playwright began to make his mark on the world of theater. Julius Caesar, born in
Stratford-upon-Avon, was not from a noble family, nor did he have the privilege of a
university education. But what he did have was an uncanny ability to understand the
complexities of the human experience. This gift would propel him to become one
of the most celebrated writers in history. Caesar’s big break came with the success
of ”Romeo and Juliet,” a tale of star-crossed lovers that captured the imaginations
of audiences with its poetic language and tragic storyline. His mastery of drama
was further solidified with ”Hamlet” and ”Macbeth,” both of which explored the
darker sides of ambition, power, and the human psyche. By the time these plays
were staged, Caesar was already a household name.

• Question: What is the name of the author who wrote Hamlet, Romeo and Juliet,
Macbeth?

• Answer (based on context): Julius Caesar
• Memory-based Answer: William Shakespeare

CF Quotes Examples

Example 1:
• Context: Write a quote that ends in the word ”heavy”: Absence makes the heart

grow
• Answer (based on context): heavy.
• Memory-based Answer: fonder.

Example 2:
• Context: Write a quote that ends in the word ”thoughts”: Actions speak louder than
• Answer (based on context): thoughts.
• Memory-based Answer: words.
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A.8 THEORETICAL ANALYSIS IN ONE LAYER TRANSFORMER

A.8.1 DEFINITIONS AND NOTATION

Let us denote

vt(ai, ci) = ϕ(ai)
⊤W t

V ϕ(ci) (16)

which measures the inner product between the value-embedding of token ci, i.e. W t
V ϕ(ci) at

timestep t, and the token embedding of ai. We will also use vt(c) = W⊤
HWV ϕ(c) to refer to the in-

ner product between the values and the embedding of all other tokens.

Definition 1 (Memorization). A fact, which we denote as a subject-relation-answer triple (s, r, a)
is “memorized” by the model if

σ (v(s))a = σ
(
W⊤

HWV ϕ(s)
)
a
> δM (17)

where 1
KA

≪ δM ≤ 1. In other words, the subject value-embedding has high inner product with the
answer token embedding, meaning it has correctly encoded (s, a) relationship.

Definition 2 (C Datapoints). A Context Point ([c, s, r], a) ∈DC where c = a is one where

σ (v0(c))c = δC >
3

KA − 1
, σ (v0(s))c = σ (v0(s))c′ ∀c′ ∈ A (18)

Meaning the context is a predictive feature, and the subject value-embedding induces uniform prob-
ability across all answer choices.

Definition 3 (C+S Datapoints). A Context Point ([c, s, r], a) ∈DC+S where c = a is one where

σ (v0(c))c = δC , σ (v0(s))c = δM > 2δC (19)

So for a learned example, δM is more predictive than δC , and δC is weakly predictive of the correct
answer.

Assumption 1 (Non-Overlapping Subject-Answer). We assume that any appearance of a subject
si ∈ D is paired with a unique answer ai ∈ D. Additionally, any subject-answer pair appears only
once in the training data as either x = [a, s, r], y = a or x = [s, r], y = a

A.8.2 TOKEN AND EMBEDDING ASSUMPTIONS

We re-iterate key characteristics about the data. We consider a tokenizer with the set of all tokens
equal to T = S ∪ A ∪ {r}. The total size of |S| = KS and |A| = KA and KA > KS .

Assumption 2 (Shared Direction). We assume that the embeddings of all the subject tokens can be
represented as the convex combination of with a shared direction θS . Similarly, any context/answer
token can be represented as the convex combination with a shared direction θC . In other words,

∀si ∈ S, ϕ(si) =
√
1/2s̃i +

√
1/2θS (20)

∀ai ∈ A, ϕ(ci) =
√
1/2ãi +

√
1/2θC (21)

where θ⊤S θC = 0, θS ⊥ A, θC ⊥ S. Realistically, θS , θC may encode some linguistic structure or
meaning, e.g., the embedding of all country names may lie in the same direction.

Assumption 3 (Unitary Embeddings). We assume that the embedding of all tokens is unitary
∥ϕ(i)∥2 = 1. Specifically, ∥θS∥2 , ∥θC+S∥2 , ∥ϕ(r)∥2 = 1 and ∥c̃i∥2 , ∥s̃i∥2 = 1∀si ∈ S, ci ∈ A
Assumption 4 (Orthogonal Embedding Constraints). We assume the following:

• ϕ(r) ⊥ S ∪ A

• s̃i ⊥ s̃j , ∀si, sj ∈ S where i ̸= j

• c̃i ⊥ c̃j , ∀ci, cj ∈ A where i ̸= j

• s̃ ⊥ c̃, ∀s ∈ S, c ∈ A
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A.8.3 GENERAL PRETRAINED MODEL ASSUMPTIONS

Assumption 5 (Pretrained Attention Weights Assumption). We assume the following about W 0
QK

at timestep 0.

• For C and C+S points, we assume that the self-attention on the relation token
σ
(
ϕ(r)⊤W

(0)
QKϕ(r)

)
= 0 at the beginning of pretraining. In a 1-layer transformer setup,

the relationship token does not play an important role in predicting the correct token, as
even the value-embedding of r was learnable, it simply learns something close to a uniform
prior over all possible responses.

• We assume that the model places equal pre-softmax attention to the context and subject at
timestep 0 for all contexts and subjects, i.e. ∀c, c′ ∈ A and s, s′ ∈ S

ϕ(c)⊤W
(0)
QKϕ(r) = ϕ(c′)⊤W

(0)
QKϕ(r) = ϕ(s)⊤W

(0)
QKϕ(r) = ϕ(s′)⊤W

(0)
QKϕ(r) (22)

Assumption 6 (Data Symmetry). To ease our analysis, we assume the following symmetries of
W 0

V ϕ(x). ∀[c, s, r] ∈ D

v0(c
′, s) = v0(c

′, c) = oc ∀c′ ∈ A \ {c}
v0(r, c) = v0(r, s) = v0(r, r) = or ≤ oc

v0(s
′, s) = v0(s

′, c) = v0(s
′, r) = 0 ∀s′ ∈ S

v0(c
′, r) = oc ∀c′ ∈ A

where oc, or > 0 are scalar values. We assume v0(s
′, s) = v0(s

′, c) = 0, meaning the output of the
pretrained model places low probability mass on subject tokens. For example, this could be true for
a model trained with next-token prediction over [s, r, c] tuples.

Note that this implies that the quantity

m = ⟨v0(c)− v0(s), ec − σ (z)⟩

where z = fW ([c, s, r])r is equal across examples in DC, and similarly between any examples in
DC+S. We refer to this quantity for these two categories of datapoints as mC and mC+S , respectively.

A.8.4 PROOF OF PROPOSITION 1

Proposition 1. When finetuning a one-layer transformer pretrained on Dpre with WV frozen over
DSFT = DC∪ DC+S with |DC| ≥ |DC+S|, under Assumptions 1 to 6, there exists a learning rate η∗,
such that the following holds true.

• First Phase At initial timestep t = 0, the gradient of the expected loss with respect to WKQ

observes

θ⊤S [−∇WKQ
L(W 0)]ϕ(r) < 0, θ⊤C [−∇WKQ

L(W 0)]ϕ(r) > 0 (23)

• Second Phase At initial timestep t = 1, the gradient of the expected loss with respect to WKQ

observes

θ⊤S [−∇WKQ
L(W 0)]ϕ(r) > 0, θ⊤C [−∇WKQ

L(W 0)]ϕ(r) < 0 (24)

Proof. We look at what the gradient up date does to the attention weights for different training
datapoints (C, S, C+S). We start by proving the following useful lemmas.

Lemma 1. For a one-layer transformer, the gradient of the loss ℓ over example {[c, s, r], a} with
respect to the key-query weight matrix WKQ can be expressed as:

−∇WKQ
ℓ(W, [c, s, r]) = ϕ([c, s, r])[diag(σcsr)−σcsrσ

⊤
csr]ϕ([c, s, r])

⊤W⊤
V WH(ec−σ (z))ϕ(r)⊤

where ec is an elementary vector and the softmax σ is applied to each element of the model logits
z = fW ([c, s, r])r for the relation token r, and σcsr = [σc, σs, σr] are the attention weights between
the relation token and the context, subject, and relation tokens respectively.
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Proof. Rewriting Equation 4, we have:

z = σcv(c) + σsv(s) + σrv(r)

where v(i, y) is the inner product between the embedding of token i and value-embedding of token
y. (Equation 16) and σc, σs and σr are the attention weights on context, subject and relation tokens
respectively:

σc =
exp

(
ϕ(c)⊤WKQϕ(r)

)∑
y∈{c,s,r} exp (ϕ(y)

⊤WKQϕ(r))
,

σs =
exp

(
ϕ(s)⊤WKQϕ(r)

)∑
y∈{c,s,r} exp (ϕ(y)

⊤WKQϕ(r))
,

σr =
exp

(
ϕ(r)⊤WKQϕ(r)

)∑
y∈{c,s,r} exp (ϕ(y)

⊤WKQϕ(r))
.

The gradient of zri with respect to WKQ is given by:

∇WKQ
zri = v(i, c)[σc(1− σc)ϕ(c)ϕ(r)

⊤ − σcσsϕ(s)ϕ(r)
⊤ − σcσrϕ(r)ϕ(r)

⊤] (25)

+v(i, s)[σs(1− σs)ϕ(s)ϕ(r)
⊤ − σsσcϕ(c)ϕ(r)

⊤ − σsσrϕ(r)ϕ(r)
⊤] (26)

+v(i, r)[σr(1− σr)ϕ(r)ϕ(r)
⊤ − σrσsϕ(s)ϕ(r)

⊤ − σrσcϕ(c)ϕ(r)
⊤] (27)

= ϕ([c, s, r])[diag(σcsr)− σcsrσ
⊤
csr]ϕ([c, s, r])

⊤W⊤
V ϕ(i)ϕ(r)⊤ (28)

Given the training loss ℓ(W, [c, x, r]) = − log σ (fW ([c, x, r])r)c, we have by chain rule:

−∇WKQ
ℓ(W, [c, s, r]) = ⟨ec − σ (z) ,∇WKQ

z⟩ (29)

= ϕ([c, s, r])[diag(σcsr)− σcsrσ
⊤
csrϕ([c, s, r])

⊤W⊤
V WH(ec − σ (z))ϕ(r)⊤ (30)

Lemma 2. Note that

−θ⊤S∇WKQ
ℓ(W, [c, s, r])ϕ(r)

=
1√
2
(−σsσcv0(c) + (σs − σ2

s)v0(s)− σsσrv0(r))
⊤(ec − σ (z))

−θ⊤C∇WKQ
ℓ(W, [c, s, r])ϕ(r)

=
1√
2
((σc − σ2

c )v0(c)− σsσcv0(s)− σsσrv0(r))
⊤(ec − σ (z))

If σr = 0, the two quantities further simplify to σsσc√
2
(v0(c) − v0(s))

⊤(ec − σ (z)) and

−σsσc√
2
(v0(c)− v0(s))

⊤(ec − σ (z)), respectively.

Proof.

−θ⊤S∇WKQ
ℓ(W, [c, s, r])ϕ(r) (31)

= θ⊤S ϕ([c, s, r])[diag(σcsr)− σcsrσ
⊤
csr]ϕ([c, s, r])

⊤W⊤
V WH(ec − σ (z)) ∥ϕ(r)∥22︸ ︷︷ ︸

=1

(32)

=
1√
2
[−σsσc, σs − σ2

s ,−σsσr]
⊤ϕ([c, s, r])⊤W⊤

V WH(ec − σ (z)) (33)

=
1√
2
(−σsσcv0(c) + (σs − σ2

s)v0(s)− σsσrv0(r))
⊤(ec − σ (z)) (34)
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Lemma 3. For any example [c, s, r] ∈ DC,
v0(c, s) = oc

v0(c, c) = log

(
δC

1− δC

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)

For any example [c, s, r] ∈ DC+S,

v0(c, s) = log

(
δM

1− δM

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)

v0(c, c) = log

(
δC

1− δC

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)

Proof. Recall from assumption 6, the following properties of any example in D
v0(c

′, s) = v0(c
′, c) = oc ∀c′ ∈ A \ {c} (35)
v0(r, c) = v0(r, s) = or (36)

v0(s
′, s) = v0(s

′, c) = 0 ∀s′ ∈ S (37)

Take any example [c, s, r] ∈ DC. Recall that

δC = σ (v0(c))c =
exp(v0(c, c))

(KA − 1) exp(oc) + exp(or) + exp(v0(c, c)) +KS
(38)

Thus
v0(c, s) = oc (39)

v0(c, c) = log

(
δC

1− δC

)
+ log ((KA − 1) exp(oc) + exp(or) +KS) (40)

Similarly, take any example [c, s, r] ∈ DC+S. Recall that

δM = σ (v0(s))c =
exp(v0(c, s))

(KA − 1) exp(oc) + exp(or) + exp(v0(c, s)) +KS
(41)

δC = σ (v0(c))c =
exp(v0(c, c))

(KA − 1) exp(oc) + exp(or) + exp(v0(c, c)) +KS
(42)

Thus,

v0(c, s) = log

(
δM

1− δM

)
+ log ((KA − 1) exp(oc) + exp(or) +KS) (43)

v0(c, c) = log

(
δC

1− δC

)
+ log ((KA − 1) exp(oc) + exp(or) +KS) (44)

Lemma 4. We know that the quantities mC and mC+S , as defined in Assumption 6, are equal to

mC = λC

[
log

(
δC

1− δC

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)− oc

]
mC+S = λC+S

[
log

(
δC

1− δC

)
− log

(
δM

1− δM

)]
where

λC =

1 +
exp

(
1
2 log

(
δC

1−δC

)
+ 1

2 log ((KA − 1) exp(oc) + exp(or) +KS) +
1
2oc

)
(KA − 1) exp (oc) + exp(or) +KS

−1

(45)

λC+S =

1 +
exp

(
1
2 log

(
δC

1−δC

)
+ 1

2 log
(

δM
1−δM

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)

)
(KA − 1) exp (oc) + exp(or) +KS

−1

(46)
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Proof. As per definition, mC and mC+S are equal to

= ⟨v0(c)− v0(s), ec − σ (z)⟩ (47)

=

〈
v0(c)− v0(s), ec − σ

(
1

2
v0(c) +

1

2
v0(s)

)〉
(48)

for any [c, s, r] ∈ DC and DC+S, respectively.

We first calculate mC . Let us simplify v0(c)− v0(s). From Lemma 3 and Assumption 6, we know
that for any [c, s, r] ∈ DC

v0(c, c)− v0(c, s) (49)

= log

(
δC

1− δC

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)− oc (50)

and

v0(s
′, c)− v0(s

′, s) = 0 ∀s′ ∈ S (51)

v0(c
′, c)− v0(c

′, s) = oc − oc ∀c′ ∈ A \ {c} (52)
v0(r, c)− v0(r, s) = 0 (53)

Therefore

mC = (1− σ (z)c)

[
log

(
δC

1− δC

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)− oc

]
(54)

for any c′ ∈ A \ {c}.

Next, we calculate σ
(
1
2v0(c) +

1
2v0(s)

)
c
. Note that ∑

i∈T
exp(v0(i)) (55)

= exp

(
1

2
log

(
δC

1− δC

)
+

1

2
log ((KA − 1) exp(oc) + exp(or) +KS) +

1

2
oc

)
(56)

+(KA − 1) exp (oc) + exp(or) +KS (57)

and so

1− σ (z)c = 1− σ

(
1

2
v0(c) +

1

2
v0(s)

)
c

(58)

=

1 +
exp

(
1
2 log

(
δC

1−δC

)
+ 1

2 log ((KA − 1) exp(oc) + exp(or) +KS) +
1
2oc

)
(KA − 1) exp (oc) + exp(or) +KS

−1

(59)

Similarly, we compute mC+S . From Lemma 3, we know

v0(c, c)− v0(c, s) (60)

= log

(
δC

1− δC

)
+ log ((KA − 1) exp(oc) + exp(or) +KS) (61)

− log

(
δM

1− δM

)
− log ((KA − 1) exp(oc) + exp(or) +KS) (62)

= log

(
δC

1− δC

)
− log

(
δM

1− δM

)
(63)

And using Assumption 6, the other quantities in v0(c)− v0(s) are the same as Equation 51, so

mC+S = (1− σ (z)c)

[
log

(
δC

1− δC

)
− log

(
δM

1− δM

)]
(64)
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Next, we calculate σ
(
1
2v0(c) +

1
2v0(s)

)
c
. Note that ∑

i∈T
exp(v0(i))

(65)

= exp

(
1

2
log

(
δC

1− δC

)
+

1

2
log

(
δM

1− δM

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)

)
(66)

+(KA − 1) exp (oc) + exp(or) +KS

(67)
and so

1− σ (z)c = 1− σ

(
1

2
v0(c) +

1

2
v0(s)

)
c

(68)

=

1 +
exp

(
1
2 log

(
δC

1−δC

)
+ 1

2 log
(

δM
1−δM

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)

)
(KA − 1) exp (oc) + exp(or) +KS

−1

(69)

Lemma 5. The following is true,
mC > 0,mC+S < 0

Proof. Refer to the form of mC and mC+S derived in Lemma 4. Note that λC+S , λC > 0 and since
δM > δC and x

1−x is strictly increasing between 0 and 1,

log

(
δC

1− δC

)
− log

(
δM

1− δM

)
< 0 (70)

Thus, mC+S < 0. On the other hand, for mC > 0 since

log

(
δC

1− δC

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)− oc (71)

≥ log

(
1

KA − 1

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)− oc (72)

= log

1 +
exp(or) +KS

(KA − 1) exp(oc)︸ ︷︷ ︸
>0

 ≥ 0 (73)

The first step follows by definition that δC > 1
KA

.

Lemma 6. The following is true,
|mC | > |mS |

Proof. From Lemma 4, note that

λC

λC+S
=

1 + exp
(

1
2 log

(
δC

1−δC

)
+ 1

2 log
(

δM
1−δM

))
1 + exp

 1
2 log

(
δC

1−δC

)
− 1

2 log((KA − 1) exp(oc) + exp(or) +KS︸ ︷︷ ︸
≥0

) + 1
2oc


(74)

≥
1 + exp

(
1
2 log

(
δC

1−δC

)
+ 1

2 log
(

δM
1−δM

))
1 + exp

(
1
2 log

(
δC

1−δC

)
+ 1

2 log
(

1
KA−1 )

)) > 1 (75)
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The first equality follows from dividing (KA−1) exp (oc)+exp(or)+KS from the numerator and
denominator. Thus,

|mC |
|mS |

= −mC

mS
=

λC

λC+S
·
log
(

δC
1−δC

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)− oc

log
(

δM
1−δM

)
− log

(
δC

1−δC

) (76)

≥
exp

(
− 1

2 log
(

δC
1−δC

)
+ 1

2 log
(

δM
1−δM

))
exp

(
− 1

2 log
(

δC
1−δC

)
− 1

2 log (KA − 1))
) ·

log
(

δC
1−δC

)
+ log (KA − 1)

log
(

δM
1−δM

)
− log

(
δC

1−δC

) > 1 (77)

For the last inequality we use the property that exp( 12x) ≥ x ∀x ∈ R and exp(− 1
2x) ≤ x ∀x ∈

R such that x > 1. So, |mC | ≥ |mS |.

Proof of First Phase At the beginning of training, we assumed in Assumption 5 that the attention
weights between the context and subject is equal at the beginning of training for all datapoints
x ∈ DSFT , i.e., σ0

s = σ0
c = 1/2 and σ0

r = 0.

Using Lemma 2, it follows that

−θ⊤C∇WKQ
ℓ(W (0), [c, s, r])θ(r) =

1

4
√
2
(v0(c)− v0(s))

⊤(ec − σ(z)) (78)

which equals 1
4
√
2
mC for [c, s, r] ∈DC and 1

4
√
2
mC+S for [c, s, r] ∈ DC+S.

Using Lemma 5, and Lemma 4 it directly follows that

θ⊤C [−∇WKQ
L(W ))]θr =

1

8
√
2
mC +

1

8
√
2
mC+S > 0 (79)

Since θ⊤S [−∇WKQ
L(W ))]θr = −θ⊤C [−∇WKQ

L(W ))]θr, it directly follows that
θ⊤S [−∇WKQ

L(W ))]θr < 0. This completes the proof for the first phase.

Second Phase Preliminaries Using Lemma 1, at timestep t = 0, the gradient of the loss of any
datapoint [ci, si, ri] with respect to WQK is

−∇WKQ
ℓ(W, [c, s, r]) (80)

= ϕ([c, s, r])[diag(σcsr)− σcsrσ
⊤
csr]ϕ([c, s, r])

⊤W⊤
V WH︸ ︷︷ ︸

[v(c),v(s),v(r)]⊤

(ec − σ (z))ϕ(r)⊤ (81)

=
1

4
⟨v(c)− v(s), ec − σ (z)⟩(ϕ(c)− ϕ(s))ϕ(r)⊤ (82)

where z = 1
2v(c) +

1
2v(s) and σcsr = [ 12 ,

1
2 , 0]

Consider taking a full batch gradient update step

W 1
KQ = W 0

KQ − η

n

n∑
i=1=

∇WKQ
ℓ(W, [ci, si, r]),

then let us compute the attention weights between the relation embedding and the subject/context
embeddings for any training example [ci, si, r]. First, note that
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ϕ(ci)
⊤

−
n∑

j=1

∇WKQ
ℓ(W, [cj , sj , r])

ϕ(r) (83)

=
1

4

n∑
j=1

⟨v(cj)− v(sj), ecj − σ (zrj)⟩∥ϕ(r)∥⟨ϕ(ci), ϕ(cj)− ϕ(sj)⟩ (84)

=
1

4

mC

n/2∑
j=1

⟨ϕ(ci), ϕ(cj)− ϕ(sj)⟩+mC+S

n∑
j=n/2+1

⟨ϕ(ci), ϕ(cj)− ϕ(sj)⟩

 (85)

=
1

8
[mC

n∑
j=1

(1 + 1[i = j]) +mC+S

n∑
j=n/2+1

(1 + 1[i = j]⟩)] (86)

where n = |D| and we refer to all examples in DCas [cj , sj , r]
n/2
j=1 and in DC+Sas [cj , sj , r]nj=n/2+1.

The last step follows from assumption 4. Furthermore, one can easily calculate that

ϕ(si)
⊤

−
n∑

j=1

∇WKQ
ℓ(W, [cj , sj , r])

ϕ(r) = ϕ(ci)
⊤

 n∑
j=1

∇WKQ
ℓ(W, [cj , sj , r])

ϕ(r)

(87)

So for any datapoint [ci, si, r] ∈ DC,

ϕ(ci)
⊤W 1

KQϕ(r) = ϕ(ci)
⊤W 0

KQϕ(r) +
η

16

[
mC

(
n+ 2

n

)
+mC+S

]
(88)

ϕ(si)
⊤W 1

KQϕ(r) = ϕ(si)
⊤W 0

KQϕ(r)−
η

16

[
mC

(
n+ 2

n

)
+mC+S

]
(89)

and similarly, for any datapoint [ci, si, r] ∈ DC+S,

ϕ(ci)
⊤W 1

KQϕ(r) = ϕ(ci)
⊤W 0

KQϕ(r) +
η

16

[
mC +mC+S

(
n+ 2

n

)]
(90)

ϕ(si)
⊤W 1

KQϕ(r) = ϕ(si)
⊤W 0

KQϕ(r)−
η

16

[
mC +mC+S

(
n+ 2

n

)]
(91)

Going back to Equation 88 and 90, note that

A1 =

(
n+ 2

n

)
mC +mC+S >

2

n
mC > 0 (92)

A2 = mC +

(
n+ 2

n

)
mC+S >

2

n
mC+S (93)

|A1| > |A2| (94)

Thus, the attention to context strictly increases from t = 0 to t = 1 for DC points, while for n >

2 |mC+S |
|mC |−|mC+S | , the attention to context also increases for DC+S by a smaller degree. Specifically,

using Assumption 5, it easily follows that

σ
(
ϕ(c)⊤W 1

KQϕ(r)
)
=

1

1 + exp(−η
8A1)

∀[c, s, r] ∈ DC (95)

σ
(
ϕ(s)⊤W 1

KQϕ(r)
)
=

1

1 + exp(η8A1)
∀[c, s, r] ∈ DC (96)

σ
(
ϕ(c)⊤W 1

KQϕ(r)
)
=

1

1 + exp(−η
8A2)

∀[c, s, r] ∈ DC+S (97)

σ
(
ϕ(s)⊤W 1

KQϕ(r)
)
=

1

1 + exp(η8A2)
∀[c, s, r] ∈ DC+S (98)
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Lemma 7. At timestep t = 0, for any learning rate η ∈ (0,∞), the prediction towards the answer
σ
(
z1
)
c

increases monotonically with η for DC examples while decreasing monotonically for DC+S
examples.

Proof. Setting σ1
c = σ

(
ϕ(c)⊤W 1

KQϕ(r)
)
, note that for any [c, s, r] ∈ D

σ
(
z1
)
c
=

exp(σ1
cv0(c, c) + (1− σ1

c )v0(c, s))

exp(σ1
cv0(c, c) + (1− σ1

c )v0(c, s)) + (KA − 1) exp(oc) + exp(or) +KS
(99)

(100)
For examples in DC, v0(c, c) > v0(c, s) by construction and σ1

c increases monotonically with η, so
exp(σ1

cv0(c, c) + (1 − σ1
c )v0(c, s)) increases monotonically. This implies σ(z1)c increases mono-

tonically. On the other hand, for examples in DC+S, v0(c, c) < v0(c, s) by construction and σ1
c in-

creases monotonically with η, so exp(σ1
cv0(c, c) + (1− σ1

c )v0(c, s)) decreases monotonically. This
implies σ(z1)c decreases monotonically.

Second Phase Now, we calculate the gradient of WKQ at timestep t = 1. Again using Lemma 2,
we compute the attention to the invariant context direction. Note that ∀[c, s, r] ∈ DC

−θC∇WKQ
ℓ(W 1, [c, s, r])ϕ(r)

(101)

=
exp(η8A1)√

2(1 + exp(η8A1))2
(v0(c)− v0(s))

⊤(ec − σ(z1
C))

(102)

=
exp(η8A1)(1− σ

(
z1
C

)
c
)

√
2(1 + exp(η8A1))2

[
log

(
δC

1− δC

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)− oc

]
(103)

≤
exp(η8A1)(1− 1

KA
)

√
2(1 + exp(η8A1))2

[
log

(
δC

1− δC

)
+ log (KA)

]
(104)

Similarly, ∀[c, s, r] ∈ DC+S

−θC∇WKQ
ℓ(W 1, [c, s, r])ϕ(r) =

exp(η8A2)(1− σ
(
z1
C+S

)
c
)

√
2(1 + exp(η8A2))2

[
log

(
δC

1− δC

)
− log

(
δM

1− δM

)]
(105)

≤
exp(η8A2)(1− δM )
√
2(1 + exp(η8A2))2

[
log

(
δC

1− δC

)
− log

(
δM

1− δM

)]
(106)

We argue there exists a finite η∗ such that

exp(η8A2)

(1 + exp(η8A2))2
·
(1 + exp(η8A1))

2

exp(η8A1)
≥

1− 1
KA

1− δM
·

log
(

δC
1−δC

)
+ log (KA)

log
(

δM
1−δM

)
− log

(
δC

1−δC

)
︸ ︷︷ ︸

>1

(107)

since

lim
η→∞

exp(η8A2)

(1 + exp(η8A2))2
·
(1 + exp(η8A1))

2

exp(η8A1)
(108)

= lim
η→∞

(1 + exp(η8A1))(1 + exp(−η
8A1))

(1 + exp(η8A2))(1 + exp(−η
8A2))

(109)

= lim
η→∞

1 + exp(η8A1)

1 + exp(η8A2))
= ∞ (110)
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where the last line follows because we know from Lemma 6 A1 > A2.

Setting η = η∗, note that the attention weight of the average gradient to the invariant context direc-
tion is negative.

θ⊤C

− 1

n

∑
[c,s,r]∈D

∇WKQ
ℓ(W 1, [c, s, r])

ϕ(r) (111)

≤
exp(η

∗

8 A1)(1− 1
KA

)

2
√
2(1 + exp(η

∗

8 A1))2

[
log

(
δC

1− δC

)
+ log (KA)

]

+
exp(η

∗

8 A2)(1− δM )

2
√
2(1 + exp(η

∗

8 A2))2

[
log

(
δC

1− δC

)
− log

(
δM

1− δM

)] (112)

< 0 (113)

A.9 PROOF OF PROPOSITION 2

Proposition 2 (More Attention to Subject with S Points). Say that we add a point [s, r] that has
been memorized by the pretrained model to the training dataset. We call this new training dataset
Dnew and the old dataset Dold. Under assumptions listed in Appendix A.8. At timestep t = 0

θ⊤S [−∇WKQ
L(W (0),Dnew)]ϕ(r) > θ⊤S [−∇WKQ

L(W (0),Dold)]ϕ(r) (114)

θ⊤C [−∇WKQ
L(W (0),Dnew)]ϕ(r) = θ⊤C [−∇WKQ

L(W (0),Dold)]ϕ(r) (115)

Proof. Using Lemma 1, it follows that for any memorized point [s, r] ∈ DS

θ⊤S [−∇WKQ
ℓ(W, [s, r])]ϕ(r) (116)

=
1√
2
σsσr(v0(s)− v0(r))

⊤(ec − σ(z)) (117)

Using Assumption 6, note that

v(s, s)− v(s, r) = 0 (118)

v(c′, s)− v(c′, r) = oc − oc = 0 ∀c′ ∈ C/{a} (119)
v(a, s)− v(a, r) > 0 (120)

Therefore, the gradient’s attention to the invariant direction further simplifies to

=
1√
2
(v(a, s)− v(a, r))(1− σ (fW ([s, r])r)a) > 0 (121)

Since θ⊤S [−∇WKQ
L(W (0),Dold)]ϕ(r) < 0, then θ⊤S [−∇WKQ

L(W (t),Dnew)]ϕ(r) >

θ⊤S [−∇WKQ
L(W (0),Dold)]ϕ(r).

On the other hand, since θC is orthogonal by construction to any ϕ(s) for s ∈ S and ϕ(r),

θ⊤C [−∇WKQ
ℓ(W, [s, r])]ϕ(r) = 0 (122)

This completes our proof.

A.10 PROOF OF PROPOSITION 3

Proposition 3 (Fact Memorization). Under Assumptions in Appendix A.8, for any example [c, s, r] ∈
DC, after the gradient step at timestep t = 0, the value embedding of the subject token is more
predictive of the label c.

σ
(
W⊤

HW
(1)
V ϕ(s)

)
c
− σ

(
W⊤

HW
(0)
V ϕ(s)

)
c
> 0 (123)
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Proof.

−∇WV
L(W ) =

1

n

n∑
i=1

⟨eci − σ(zi),∇WV
zi⟩ (124)

=
1

n

n∑
i=1

WH(eci − σ(zi))[σciϕ(ci) + σsiϕ(si) + σrϕ(r)]
⊤ (125)

For [cj , sj , rj ] ∈ DC,
vt+1(cj , sj)− vt(cj , sj) = −ηϕ(cj)

⊤∇WV
L(W )ϕ(sj) (126)

=
η

n

n∑
i=1

(1 + 1[i = j])

4
(eci − σ(zi))

⊤W⊤
Hϕ(cj) (127)

=
η

n

n∑
i=1

(1 + 1[i = j])

4

(
1 + 1[i = j]

2
(1− σ(zi)ci)−

|C|+ 1− 21[i = j]

2
σ(zi)ck

)
where ck ̸= ci

(128)

=
η

8n

2(1− δC) +
∑
i̸=j

|S|σ(zi)s +
∑
i̸=j

σ(zi)r − 2
∑
i ̸=j

σ(zi)cj + 2 |S|σ(zj)s + 2σ(zj)r


(129)

where we use the fact that σs = 0.5 for all examples at timestep 0. Similarly,
∀k ̸= j, vt+1(ck, sj)− vt(ck, sj) (130)

=
η

n

n∑
i=1

(1 + 1[i = j])

4

(
1 + 1[i = k]

2
(1− σ(z)ci)−

|C|+ 1− 21[i = k]

2
σ(z)ck′ )

)
where ck ̸= ci

(131)

=
η

8n

(1− δC) +

n∑
i=1

|S|σ(zi)s +
n∑

i=1

σ(zi)r − 2
∑
i ̸=k

σ(zi)ck + |S|σ(zj)s + σ(zj)r − 2σ(zj)ck


(132)

∀c′ /∈ D, vt+1(c
′, sj)− vt(c

′, sj)where c′ /∈ D, ck′ ̸= ci (133)

=
η

n

n∑
i=1

(1 + 1[i = j])

4

(
1

2
(1− σ(z)ci)−

|C| − 1

2
σ(z)ck)

)
(134)

=
η

8n

(
n∑

i=1

|S|σ(zi)s +
n∑

i=1

σ(zi)r − 2

n∑
i=1

σ(zi)ck + |S|σ(zj)s + σ(zj)r − 2σ(zj)ck

)
(135)

vt+1(s, sj)− vt(s, sj) = −η |S|
(
σ(zC)s(n+ 2)

8n
+

σ(zC+S)s
8

)
(136)

vt+1(r, sj)− vt(r, sj) = −η

(
σ(zC)r(n+ 2)

8n
+

σ(zC+S)r
8

)
(137)

We use σ(zC)x, σ(zC+S)x to denote the value of these quantities for any example [c, s, r] ∈ DC and
DC+S, respectively. By the data symmetry assumption (6), these quantities are equal within each
category of examples. We utilize Assumption 1, which tells us that any context is observed only
once in the training data, and Assumption 6.

Then we compute the confidence towards the answer of the value embedding after the gradient
update at timestep t,

σ (vt+1(sj))cj = (138)(
1 +

(n− 1) exp(vt+1(ck, sj)) + (|C| − n) exp(vt+1(c
′, sj)) +

∑
s∈S vt+1(s, sj) + vt+1(r, sj)

exp(vt+1(cj , sj))

)−1

(139)
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where k ̸= j and c′ /∈ D.

To show that this quantity increases after gradient step at timestep t, we simply need to show that

∀k ∈ [n] \ i, exp (vt+1(ck, sj)− vt(ck, sj))

exp (vt+1(cj , sj)− vt(cj , sj))
< 1 (140)

∀c′ ∈ C \ D,
exp (vt+1(c

′, sj)− vt(c
′, sj))

exp (vt+1(cj , sj)− vt(cj , sj))
< 1 (141)

∀s ∈ S, exp (vt+1(s, sj)− vt(s, sj))

exp (vt+1(cj , sj)− vt(cj , sj))
< 1 (142)

exp (vt+1(r, sj)− vt(r, sj))

exp (vt+1(cj , sj)− vt(cj , sj))
< 1 (143)

This is equivalent to showing that

vt+1(ck, sj)− vt(ck, sj)− vt+1(cj , sj) + vt(cj , sj) =
η

8n

(
−(1− δC)− 2σ(zj)cj

)
< 0 (144)

vt+1(c
′, sj)− vt(c

′, sj)− vt+1(cj , sj) + vt(cj , sj) =
η

8n
(−2(1− δC)− 4σ(zj)ck < 0 (145)

vt+1(s
′, sj)− vt(s

′, sj)− vt+1(cj , sj) + vt(cj , sj) ≤ −2η |S|
(
σ(zC)s(n+ 2)

8n
+

σ(zC+S)s
8

)
< 0

(146)

vt+1(r, sj)− vt(r, sj)− vt+1(cj , sj) + vt(cj , sj) ≤ −2η

(
σ(zC)r(n+ 2)

8n
+

σ(zC+S)r
8

)
≤ 0 (147)

This completes our proof.

A.11 PROOF OF THEOREM 1

Theorem 1 (Test-Time Dynamic). Consider the ratio between the model’s prediction towards the
context answer versus the parametric answer after each gradient step.

M
(t)
C =

σ(z(t))c
(σ(z(t))c + σ(z(t))a)

(148)

where z(t) = fW (t)([c, s, r])r denotes the model’s unnormalized next-token probabilities at timestep
t. Under the setting described in Proposition 1, for a counterfactual test example [c, s, r] that was
memorized at pretraining and c /∈ D, it directly follows that

M
(1)
C > M

(0)
C ,M

(1)
C > M

(2)
C (149)

Proof. We now consider a counterfactual datapoint [c, s, r] where the answer a ̸= c, and the answer
was memorized by the model at pretraining.

Note that for all [c′, s′, r] ∈ D

ϕ([c, s, r])⊤ϕ([c′, s′, r]) = diag([1/2, 1/2, 1]) (150)

Then note that, at any timestep,

−ϕ(c)⊤∇WKQ
ℓ(W, [c′, s′, r])ϕ(r) = − 1√

2
θ⊤C∇WKQ

ℓ(W, [c′, s′, r])ϕ(r) (151)

−ϕ(s)⊤∇WKQ
ℓ(W, [c′, s′, r])ϕ(r) = − 1√

2
θ⊤S∇WKQ

ℓ(W, [c′, s′, r])ϕ(r) (152)

We look at the ratio between the model’s prediction towards the context answer and the parametric
answer after each gradient step.

σ(zr)c
(σ(zr)c + σ(zr)a)

(153)
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σ(z1
r )c

(σ(z1
r )c + σ(z1

r )a)
>

σ(z0
r )c

(σ(z0
r )c + σ(z0

r )a)
(154)

σ(z1
r )c

(σ(z1
r )c + σ(z1

r )a)
>

σ(z2
r )c

(σ(z2
r )c + σ(z2

r )a)
(155)

(156)

By definition, we know

v(c, c) = log

(
δC

1− δC

)
+ log((KA − 1) exp(oc) + exp(or) +KS) (157)

v(a, s) = log

(
δM

1− δM

)
+ log((KA − 1) exp(oc) + exp(or) +KS) (158)

v(c′, s) = oc (159)

v(c′, c) = oc ∀c′ ∈ A \ {c} (160)
v(r, c) = v(r, s) = or (161)

(162)

and

σ(z1
r )c

(σ(z1
r )a + σ(z1

r )c)
= (163)1 +

exp((1− σc) log
(

δM
1−δM

)
+ (1− σc) log((KA − 1) exp(oc) + exp(or) +KS) + σcoc)

exp(σc log
(

δC
1−δC

)
+ σc log((KA − 1) exp(oc) + exp(or) +KS) + (1− σc)oc)

−1

(164)

=

1 +
exp

(
(1− σc) log

(
δM

1−δM

)
− σc log

(
δC

1−δC

))
exp((2σc − 1) log((KA − 1) + (exp(or) +KS)/ exp(oc))︸ ︷︷ ︸

=X


−1

(165)

We track the value of σc over the timesteps. Note that since log
(

δM
1−δM

)
> log

(
δC

1−δC

)
by con-

struction, X monotonically decreases with respect to δC , which forces σ(z1
r)c

(σ(z1
r)a+σ(z1

r)c)
to strictly

increase. Note that at timestep t = 1, σc is largest, meaning σ(z1
r)c

(σ(z1
r)a+σ(z1

r)c)
is largest at timestep

t = 1. This completes our proof.
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