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ABSTRACT

Graph neural networks (GNNs) excel on relational data by passing messages over
node features and structure, but they can amplify training data biases, propagating
discriminatory attributes and structural imbalances into unfair outcomes. Many
fairness methods treat bias as a single source, ignoring distinct attribute and struc-
tural effects and leading to suboptimal fairness and utility trade-offs. To overcome
this challenge, we propose FairMIB, a Multi-view information bottleneck frame-
work designed to decompose graphs into feature, structural, and Diffusion Views
for mitigating complex biases in GNNs. In particular, the proposed FairMIB em-
ploys contrastive learning to maximize cross-view mutual information for bias-
free representation learning. It further integrates multi-perspective conditional in-
formation bottleneck objectives to balance task utility and fairness by minimizing
mutual information with sensitive attributes. Additionally, FairMIB introduces an
inverse probability-weighted (IPW) adjacency correction in the Diffusion View,
which reduces the spread of bias propagation during message passing. Experi-
ments on five real-world benchmark datasets demonstrate that FairMIB achieves
state-of-the-art performance across both utility and fairness metrics.

1 INTRODUCTION

Graph Neural Networks (GNNs) represent a pivotal advancement in machine learning, offering a
powerful paradigm for modeling complex relational data Wu et al.[| (2020b). Through a message-
passing mechanism, GNNs iteratively aggregate information from a node and its neighbors, effec-
tively capturing both node attributes and the graph’s structural dependencies Mo et al.| (2025). This
capability to learn from intricate patterns has established GNNs as indispensable tools in various
high-stakes domains, such as recommender systems|Amara et al.|(2025), drug discovery Wang et al.
(2025), and social network analysis [Feng & Qianl (2025)). Across these applications, GNNs con-
sistently deliver superior performance by exploiting the rich interplay between node features and
network topology, ultimately leading to more accurate and scalable predictions |Chen et al.|(2025).

Nevertheless, in real-world applications, data are inherently imperfect Ju et al.| (2024b)); Zhan et al.
(2026)), with biases arising from sampling bias, selection bias, and labeling bias |Guo et al.| (2023);
Li et al|(2024b)). When trained on such data, GNNs inevitably internalize and even amplify these
biases Dai & Wang| (2021)), leading to outputs that may exhibit discriminatory or unfair behav-
iors|Agarwal et al.|(2021)). Such unfairness not only compromises the reliability and practical adop-
tion of models but also poses broader societal risks, including the potential erosion of public trust in
intelligent systems. For example, biases in risk assessment tools toward specific groups can lead to
unfair sentencing and bail decisions |[Lowden|(2018)), while systemic biases in credit scoring models
against certain regions may result in inequitable loan approvals|Li et al.|(2024a). Consequently, fair-
ness has emerged as a critical challenge that must be addressed to ensure the trustworthy deployment
of Graph Convolutional Networks (GCNs)|Zhang et al.| (2024c)).

Existing studies on fairness in GNNs generally fall into two categories: data-level methods [Zhang
et al.| (2024a)); /Agarwal et al.| (2021)) and model-level methods [Yang et al.|(2024); Lee et al.| (2025)).
The first category corrects biases at the data level through pre-processing techniques that adjust the
data distribution, re-balance underrepresented groups, or modify node features and graph structures
before training. By addressing bias at the source, these methods aim to mitigate its propagation
during model learning. For example, FairGB [L1 et al.| (2024b)) achieves re-balancing by introducing
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counterfactual node mixup and contribution alignment loss, while FG-SMOTE Wang et al.| (2024)
creates synthetic nodes for underrepresented groups, assigns sensitive attributes proportionally, and
applies fair link prediction to generate non-discriminatory connections, thereby correcting both dis-
tributional and structural biases. Model-level approaches, on the other hand, incorporate fairness
directly into the training process, typically by embedding fairness as a regularization term or con-
straint within the objective function. These methods aim to restrict the leakage of sensitive infor-
mation, ensuring that learned representations remain predictive while minimizing dependence on
protected attributes. For example, FairVGNN Wang et al.| (2022)) enhances fairness by generating
fairness-aware Feature Views and applying adaptive weight pruning to mitigate sensitive attribute
leakage during feature propagation. Similarly, FairDLA [Zhen et al.| (2025) decouples task-related
and bias-related representations, then performs dual-layer alignment at both the sensitive attribute
group level and the task subgroup level to enhance fairness.

Model-based methods generally learn a single node representation where attribute, structural, and
propagation biases are intertwined, making it difficult to separate them from task-relevant features
and leaving residual sensitive information |Zhu et al.|(2024)). Data-level pre-processing methods can
partially alleviate data imbalance Wang et al.| (2024])), but often treat distributional skew in isolation,
overlooking how sensitive information propagates and entangles during message passing|Yang et al.
(2024). These methods often assume static and accurate graph structures and features, overlooking
noise, missing data, and outliers, which cause models to retain latent bias signals and result in in-
complete debiasing and fairness gaps Zhou et al.| (2020); L1 et al.| (2024b). Model-based methods
typically rely on a single, entangled node representation that conflates bias signals from attributes,
structure, and propagation, leading to incomplete debiasing and residual sensitive information [Zhu
et al.| (2024). Such entanglement makes it difficult to disentangle the sources of bias, potentially
suppressing task-relevant features while retaining sensitive ones. Moreover, as bias accumulates
through multi-layer message passing and representation updates, residual sensitive attributes may
still be encoded in the latent space, and fairness constraints alone are often insufficient to prevent
systemic bias in downstream tasks [Zhen et al.| (2025). Furthermore, existing studies largely over-
look the issue of cross-view leakage, where biases from attribute-level, structural, and propagation
sources interact in complex ways, further amplifying unfair outcomes [Lee et al.| (2025)).

To address these limitations, we propose a novel Multi-view Information Bottleneck framework for
Fair GNNs (FairMIB). FairMIB decomposes the graph into distinct informational views: a Fea-
ture View derived from node attributes, a Structural View capturing the pure graph topology, and a
Diffusion View that models high-order neighborhood information. We employ contrastive learning
to maximize mutual information across these views, encouraging the model to learn representa-
tions that are invariant to view-specific noise and biases. Concurrently, we integrate the Information
Bottleneck (IB) principle as a fairness-aware objective. This objective simultaneously aims to max-
imize the mutual information between the learned representations and task labels while minimizing
the mutual information with sensitive attributes, thereby achieving a principled trade-off between
utility and fairness. Our contributions are as follows:

* We propose FairMIB, a novel Multi-view learning framework, designed to decouple and
mitigate mixed biases stemming from node attributes and graph structure. The framework
decomposes graph data into three independent views: features, structure, and diffusion. It
then learns robust node representations by maximizing consistency across the three views.

* We optimize task performance while introducing an IPW based feature matrix correction
method in the Diffusion View to block the amplification of sensitive attributes bias during
message propagation.

* We perform extensive experiments on five real-world datasets, demonstrating that FairMIB
outperforms state-of-the-art baselines in terms of fairness, utility, and stability.

2 RELATED WORK

In this section, we briefly review related work, with further details provided in Appendix A. Recent
fairness methods for GNNs are typically categorized into pre-processing|Rahman et al.|(2019);|Dong
et al.| (2022); [Li et al.| (2024b); Wang et al|(2024), in-processing |Dai & Wang| (2021)); Wang et al.
(2022); |Agarwal et al.| (2021)); [Yang et al.| (2024), and post-processing [Lee et al.| (2025). These
recent works include EDITS Dong et al.| (2022) which reweights attributes and perturbs structure



Under review as a conference paper at ICLR 2026

for debiasing, FairGB |Li et al.| (2024b)) which uses resampling and causal contrastive generation
to neutralize training views, FairVGNN Wang et al.| (2022)) which learns channel masks to reduce
dependence on sensitive features, NIFTY |Agarwal et al.|(2021) which employs adversarial and
counterfactual augmentations to stabilize embeddings, FairSIN |Yang et al.| (2024) which injects
fairness-promoting features from heterogeneous neighbors before propagation, FairSAD [Zhu et al.
(2024) which disentangles sensitive factors and applies channel-wise masking, and DAB-GNN |Lee
et al.|(2025) which disentangles attribute and structural bias.

The IB aims to identify a minimal sufficient representation that compresses input data while retaining
critical information for subsequent tasks|Kawaguchi et al.[|(2023)). This principle has been extended
to graph learning through the Graph Information Bottleneck (GIB) model Wu et al.| (2020a), which
compresses both node features and structural information. In fair graph representation learning, IB
shows potential by balancing utility and fairness, such as GRAFair Zhang et al.| (2025)), which uses
a variational graph autoencoder to ensure stable optimization. Recent efforts, such as FDGIB |Zheng
et al.| (2024), combines IB with disentanglement and counterfactual augmentation to decompose
node representations into sensitive and non-sensitive subspaces. However, relying on single-view
processing is limiting, as graph bias is multi-source, and single representations may conflate signals,
leading to under-correction and residual leakage.

3 PRELIMINARIES

In this section, we introduce the notations for graph-structured data, followed by a description of
commonly used fairness metrics, and then discuss Multi-view information bottleneck and Multi-
view conditional information bottleneck (MCIB). More details are presented in Appendix B.

3.1 NOTATIONS

We represent an attributed graph as G = (V, £, X)), where V = {v;,v9,...,v,} is a set of n nodes,
and £ C {(vi,v;)|vi,v; € V}is a set of m edges. The graph’s topology is described by the
adjacency matrix A € {0,1}"*", where 4;; = 1 if an edge exists between node v; and v;, and
0 otherwise; this definition can be naturally extended to directed or weighted graphs. Each node
is associated with features, forming the node feature matrix X = [x1,... ,xn]T € R™*? where
x; € R'¥4 is the d-dimensional feature vector for node v;. In the context of fairness research,
we use a binary vector S € {0, 1}™ to represent the sensitive attributes (e.g., gender, race) of all
nodes, where s; is the sensitive attribute value for node v;, which is typically included in the original
feature vector x;. If two nodes v,, and v, satisfy s, = s,, they belong to the same demographic
group. For the downstream node classification tasks, the ground-truth node labels are represented
by the label vector Y € {0, 1}", while the low-dimensional representations learned by the GNNs

form the matrix Z € R™*4'| where d’ is the embedding dimension.

3.2 MULTI-VIEW INFORMATION BOTTLENECK

From a theoretical perspective, the effectiveness of MIB relies on the redundancy of information
across multiple views|Cui et al.| (2023); |Federici et al.[(2020). Different views (e.g., G; and G;) often
provide overlapping predictive information for the same labels Y. In the context of graph data, we
formally define view redundancy as follows:

Definition 1 (View Redundancy) A view G; is considered redundant with respect to view G; for
predicting the target labels Y if and only if the mutual information I(Y; G;|G;) = 0. Intuitively, this
means that after observing G;, G; adds no new information for predicting Y .

Based on this, the essential objective of MIB is to identify a cross-view minimal sufficient statistic.
It aims to learn a highly compressed representation Z that retains all task-relevant information across
the views, making redundant views unnecessary. An ideal, informationally sufficient representation
Z satisfies:

Corollary 1 (Representation Sufficiency) If Z is a sufficient representation of the views
{G1,...,Gv}, its predictive power for Y is equivalent to that of all views combined:

I(Z;Y) = 1(G1,...,Gv;Y) (D



Under review as a conference paper at ICLR 2026

To achieve this, MIB formulates the learning process as the following optimization problem:

v
p<Z\8}3?,,gv);I(Z’gv) A(Z;Y) )
where 1(Z;G,) measures the mutual information between the fused representation Z and a single
view G, corresponding to the compression objective. I(Z;Y) measures the mutual information
between Z and the target labels Y, representing the relevance to be preserved. The hyperparameter
A balances the trade-off between compression and relevance. By solving this, MIB distills the most
critical and pure shared knowledge from multiple views for decision-making.

3.3 MULTI-VIEW CONDITIONAL INFORMATION BOTTLENECK (MCIB)

In this section, we introduce the Conditional Fairness Bottleneck (CFB)|Galvez et al.|(2021) for fair
graph representation learning, and extend it in Multi-view settings. Given views {G1,...,Gy }, we
learn a fair fused representation Z via the mapping P(Z | Gy, ..., Gy ) that is minimally sufficient
for the task while being disentangled from the sensitive attribute S. The goal is to preserve the
amount of fair information about the label Y that is independent of S above a threshold r. Formally,
the optimization objective of the Multi-view conditional information bottleneck (MCIB) can be
defined as:

\4
3 . = t. . >
palit ey UGDH LGS} st 1021927

where I(S;Z) constrains sensitive information leakage, while the conditional redundancy term
> o 1(Gv;Z | S,Y) eliminates view-specific information that becomes irrelevant once S and Y are
observed. The constraint I(Y;Z | S) > r ensures sufficient task-relevant information is retained,
yielding a compact, fair representation that balances utility and fairness across multiple views.

4 METHODOLOGY

In this section, we present the details of the proposed FairMIB framework. An overview of the
framework is provided in Figure|l| which illustrates how it is designed to learn fair node represen-
tations from graph data.

4.1 MULTI-VIEW DISENTANGLEMENT

Bias in GNNSs arises from three main sources: node attributes, graph structure, and the information
diffusion mechanism. FairMIB is designed to disentangle these intertwined factors by decomposing
them into three complementary views.

4.1.1 DIFFUSION VIEW

The Diffusion View captures potential dynamic deviations that occur as information propagates
across the graph. To prevent sensitive attributes from introducing bias during this process, Fair-
MIB applies proactive intervention strategies (see Figure [5)). Specifically, before propagation, we
use IPW [Li et al.| (2018)) to adjust the node feature matrix. The propensity score e(4) represents the
probability that a node belongs to the sensitive group, given its features x;: e(i) = P(s = 1|x;).
Each node is then assigned a weight based on the IPW formulation:

S; 1-— S;
P = - 3
v e(i) 1—e(i) ®)
These weights are used to construct a reweighted feature matrix W = diag(wy, ..., w,), which

produces the debiased feature matrix X’ = WX. This reweighting balances the influence of nodes
from different sensitive groups within the feature space.

To model diffusion, we adopt the Personalized Propagation of Neural Predictions (APPNP) Klicpera
et al.| (2019). A key advantage of APPNP is that it decouples feature transformation from propa-
gation, enabling efficient aggregation of multi-hop neighborhood information. The diffused feature
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Figure 1: Overview of the proposed FairMIB framework. The model first disentangles the input
graph into three complementary views: a Diffusion View, a Feature View, and a Structural View.
Each view is encoded by a dedicated variational encoder to obtain a latent representation. These
representations are then fused through a Projector, producing a fair representation that is concate-
nated with the sensitive attribute S during training to guide the Decoder toward fair predictions.

matrix Xgig is computed as:

NS
Xgr=a(I-(1-a)A) X )
where X’ is the initial node feature matrix that is propagated along these pathways, and « is the tele-
port probability that controls the balance between retaining initial features and aggregating neigh-
borhood information.

Finally, the Diffusion View is defined as Ggir = (V, I, Xifr), representing a graph that contains only
the debiased node attributes from the fair diffusion process, with structural information implicitly
encoded in the features.

4.1.2 FEATURE VIEW AND STRUCTURAL VIEW

The Feature View isolates the influence of the topological structure, focusing on potential biases in
the intrinsic node attributes. It is defined as a graph without inter-node edges, Grar = (V, 1, X),
where X € R™*9 is the node feature matrix and I is the identity matrix, ensuring each node is
connected only to itself. This view allows the encoder to learn information solely from the node
attributes, isolating biases from structural factors like homophily.

In contrast, the Structural View is designed to completely isolate the influence of node attributes,
focusing exclusively on the potential biases present within the graph’s pure topological structure. It
is defined as Gy = (V, A, 1), where A € R™*" is the original adjacency matrix, and the node
feature matrix is replaced by an all-ones matrix 1 € R”*¢. This approach forces the encoder to
learn representations solely from connectivity patterns, thereby isolating biases that are introduced
by correlations between the node features and sensitive attributes.

4.2 FAIR REPRESENTATION LEARNING VIA MCIB

Since the mutual information terms are intractable to optimize directly, we employ variational ap-
proximation to derive a tractable objective. For the compression term, I({Gyiew }; Z), we use the
KL-divergence as its upper bound:

I({gview}; Z) < Z Dy (peview(zview|gview) ” Q(Zview)) (5)
View
where py,.., is the posterior distribution defined by a view-specific encoder with parameters 8y,
and q(Zyiew) is a prior distribution, typically set to a standard normal distribution N (0, I).
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For the fair prediction term, I(Y'; Z|S), we derive its lower bound:
I(Y;Z[S) = Eyvz,s) [log ps (Y|Z, S)] (6)
where p,, is the predictive distribution defined by a decoder with parameters ¢.

Combining these bounds, our loss function Lyicpp can be expressed as:

ACMCFB = ZDKL(pGVicw(Zview ‘ gview) H q(Zview)) - ’YEp(Y,Z,S) [logpri?(y ‘ Za S)] (7)

view

Minimizing this loss function is equivalent to maximizing the Evidence Lower Bound (ELBO),
which allows us to achieve our optimization objective in a stable, non-adversarial manner.

4.3 MULTI-VIEW CONSISTENCY CONSTRAINT

Although our framework disentangles sources of bias and debiases fused view with a conditional
information bottleneck, all three views originate from the same graph, so their fair representations
should share a unified task-relevant core in the latent space. To enforce this, we add a Multi-view
consistency constraint via contrastive learning Ju et al.| (2024a), pulling together a node’s debiased
representations from different views as positives and pushing apart different nodes as negatives,
which drives view-specific encoders to learn a shared, robust, and sensitive invariant semantic space.

We implement this constraint using the InfoNCE loss Rusak et al.|(2025). For a node v;, let its latent
representations from the feature, structural, and Diffusion Views be z; feat, Zi struct, and z; gir. We
can select the representations from any two views (e.g., the feature and Structural Views) to form a
positive pair (z; feat, Z; struct)- The contrastive loss for this pair is:

eXp(Sim(Zi,featv Zi,slrucl) /7_)

Zj‘vzl exp(Sim(zi,featv zj,slruct)/'r)

®)

Ccon(zi,feat; zi,struct) = -

where sim(u, v) is a function that measures the similarity between two vectors, typically cosine
similarity. The term 7 is a temperature hyperparameter that adjusts the distribution of the similarity
scores, and N is the total number of nodes in the batch. The denominator includes the similarity
scores between the anchor z; s, and one positive sample z; siruct, as well as N — 1 negative samples
Zj struct for j # i.

We apply this loss function to all pairwise combinations of the views and average the result over all
nodes to obtain the final Multi-view consistency loss Lcopn:

N
1
Leon = N Z (l:con(zi,feata Zi,struct) + [/con(zi,feata Zi,diff) + Leon (Zi,slrucu Zi,diff)) &)

=1

By minimizing L,,, the model encourages the representations of the same node across different
views to be close, while separating representations of different nodes. This promotes the learning of
a well-structured, semantically consistent, and fair representation space.

4.4 THE OBJECTIVE FUNCTION OF FAIRMIB METHOD

During training, we concatenate the projected representation Z,; with the ground-truth sensitive
attributes S. This combined vector is then fed into a decoder, h,, implemented as a multilayer
perceptron (MLP), to make the final node classification predictions y:

Y = ho([Zpr[IS]) (10)

This architectural design compels the encoders and the projector to learn information that remains
useful for predicting Y even when S is provided. Consequently, it encourages the model to ignore
spurious correlations that are associated with S but are irrelevant to the prediction task. The standard
cross-entropy loss for the node classification task is defined as:

1

Las = TN
Y

> (ylog g+ (1 —y)log(1 — 7)) (11
veY
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The overall training loss function of our FairMIB combines three main components: the task loss,
the Multi-view conditional fairness bottleneck loss, and the Multi-view consistency loss. The total
loss is given by:

Etotal = L‘task + )\KLﬁMCFB + )\conﬂcon (12)

where A\gp, and Ao, are hyperparameters that balance the objectives of information compression and
cross-view consistency, respectively.

5 EXPERIMENTS

In this section, we evaluate the proposed FairMIB framework on five real-world graph datasets.
More details of datasets, compared methods, experimental settings, experimental results and analysis
are provided in Appendix D due to page limitation. Our evaluation is guided by the following
research questions:

RQ1: Does FairMIB achieve superior performance in both utility and fairness compared with state-
of-the-art baselines? RQ2: What is the contribution of each component within the proposed Fair-
MIB framework to overall performance? RQ3: How do different informational views (feature,
structural, diffusion) affect representation quality and fairness outcomes? RQ4: How sensitive is
FairMIB to variations in hyperparameter settings?

5.1 EXPERIMENTAL SETTINGS

5.1.1 DATASETS AND EVALUATION METRICS

We conducted experiments on five widely used benchmark datasets: German |Asuncion & Newman
(2007), Bail [Jordan & Freiburger|(20135), Credit|Yeh & Lien|(2009), Pokec-z, and Pokec-n|Takac &
Zabovsky| (2012). For model effectiveness, we assess node classification performance using accu-
racy, Fl-score, and AUC-ROC. To evaluate fairness, we adopt Demographic Parity (DP) and Equal
Opportunity (EO) as metrics (Appendix B), where lower values indicate higher levels of fairness.

5.1.2 BASELINES

We benchmarked the proposed method against seven state-of-the-art (SOTA) approaches for fair
node representation learning, including adversarial methods FairGNN Dai & Wang| (2021) and
FairVGNN |Wang et al.| (2022)), data augmentation-based methods NIFTY |Agarwal et al.| (2021)),
EDITS Dong et al.[(2022), and FairGB [Li et al.| (2024b) , an information bottleneck-based method
GRAFair Zhang et al.| (2025)), and a disentangled representation learning method DAB-GNN |Lee
et al.[(2025)).

5.1.3 IMPLEMENTATION DETAILS

For the German, Bail, Credit, and Pokec datasets, we followed the training, validation, and test set
splitting scheme proposed in |[L1 et al. (2024b); Yang et al|(2024). For all comparison methods,
model hyperparameters were either set according to their official implementations or tuned via grid
search to ensure fairness. All models were optimized using the Adam optimizer Kingma & Ba
(2015), with early stopping based on the validation loss. Following|Zhang et al.|(2024b), the number
of hops in the Diffusion View was fixed at K = 3. To ensure robustness, we report the mean and
standard deviation over five independent runs with different random seeds. All experiments were
conducted on an NVIDIA GeForce GTX 4060 GPU (8 GB).

5.2 RQ1: PERFORMANCE COMPARISON

We conducted comprehensive experiments on five benchmark datasets, comparing the proposed
FairMIB with a standard GCN baseline and seven state-of-the-art fairness-aware methods. The
results in Table |l highlight the following key findings: (1) The proposed FairMIB framework con-
sistently outperforms the SOTA baselines in terms of fairness while maintaining competitive utility.
For example, on the German dataset, the proposed method reduces DP and EO by 98.8% and 99.3%
relative to GCN, and its EO is 75% lower than the best-performing baseline GRAFair. On the



Under review as a conference paper at ICLR 2026

Table 1: Comparison of utility and fairness performance across different GNNs fairness methods
on five datasets. The datasets are represented as follows: I (German), II (Bail), III (Credit), IV
(Pokec-z), and V (Pokec-n). Arrow (1) indicates that higher values are better, while ({) indicates
that lower values are better.

Model
Vanilla GCN NIFTY EDITS FairGNN FairVGNN FairGB GRAFair DAB-GNN FairMIB

AUC (1) 73.49+2.15 68.78+269 69.41+233 67.35+2.13 72.12+1.10 59.77+£7.59 70.324+1.12  66.59 +4.30 65.55 & 1.61
FL (1) 80.76 £2.35  81.40+0.50 81.55+0.59 82.014+0.26 8214+0.42 82.46+0.23 81.95+0.33 82.16+0.33 82.45 £ 0.20
1 ACC (1) 71.04+2.36 69.92+1.14 70.22+0.89 69.68+0.30 70.16 £ 0.86 70.01£0.73  70.06£0.16  70.1240.63 70.24 £0.48
DP (]) 33.75+£12.34  5734+5.25 4.054+448 3.49+215 1.68 £0.98 1.68 £3.30 0.914+0.47 1.19+£1.25 0.38+0.76
EO (1) 25.73 £ 8.36 5.084+4.29 3.894+4.23 3.40£215 1.21+£2.11 1.08 £1.80 0.68 + 0.56 118 £1.75 0.17+0.34

AUC(1) 87.394£0.17 7820+£2.78 86.44+2.17 87.36+£0.90 85.68+0.37 87.68+1.41 88.68+1.35 89.08+3.34 89.18+2.15
FL (1) 77.63+042  64.76+391 75.58+3.77 77.50+£1.69 79.11+0.33 77.0842.00 80.03+0.56 79.79+2.02 80.10+1.25
I ACC(1) 8258+1.21 74194257 84.49+£227 82.94+1.67 84.73+£0.46 83.31+1.90 83.97+1.90 89.73+1.02 85.62+0.81
DP (]) 6.9440.21 2444129 6.64%£0.39 6.90£0.17 6.53 & 0.67 5.1740.36 1.324+0.43  0.92+0.53 1.2340.49
EO ({) 5.56 +0.37 1.72£1.08 7.51£120 4.65+0.14 4.95 £1.22 3.44 £1.20 1.46 £0.28 1.26 £0.38 1.17 £ 0.45

AUC (1) 7280£0.23 71.96+0.19 73.01+£0.11 71.95+1.43 71.34+£0.41 73.214+0.83 72.04+042 71.34+0.76 73.49+0.51
F1L.(D) 82.93+£0.21 81.7240.05 81.81+0.28 81.84+£1.19 87.08+£0.74 85.83+3.34 87.44+0.23 87.28+1.06 87.79+0.27
oI ACC(f) 73.99£0.01 73.45+0.06 73.51+£0.30 7341+£124 78.04£0.33 77544348 77.344+143 78284137 78.57+0.86
DP (]) 1253 +£0.25 11.68+£0.07 10.90+1.22 12.6442.11 5.02 4 5.22 2.30 & 3.00 1.06 £0.71 0.67 £ 0.76 0.40 + 0.69

Metrics

EO () 10.63 £ 0.02 9.39 +0.07 8.75+1.21 10.41 £2.03 3.60 £ 4.31 1.75 £2.07 0.64 +0.26 0.49 + 0.68 0.24 +0.48
AUC (1) 724240.33 71.59+0.17 OOM 73.12+0.12 76.02 £ 0.16 OOM 69.11 +£2.27  72.02+£0.22 73.15 £+ 1.64
F1L () 70.324+0.20 67.13 4+ 1.66 OOM 67.65+1.65 70.45+0.57 OOM 64.21+£1.53  64.57 £1.76 68.86 4 1.40
IV ACC(1) 68.54+0.32 066.24+0.34 OOM 66.24 £0.34  68.24 4+0.17 OOM 62.29+0.17 67.34 £1.33 66.16 +1.43
DP (}) 4.21+0.32 6.50 &+ 2.16 OOM 2.73+2.23 2.90 £0.77 OOM 1.414+1.73 1.55 + 0.45 0.69 + 0.26
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Figure 2: Ablation study and multi-view study on FairMIB

Bail dataset, FairMIB achieves an EO reduction of 82.3% over GCN, while improving F1-score by
3.2%, surpassing all other fairness-aware methods. (2) The proposed FairMIB framework demon-
strates strong scalability and utility preservation on large-scale datasets. For instance, on the Pokec-n
dataset, it improves the F1-score by 3.4% over GCN and achieves the best fairness, with an EO value
32.4% lower than the runner-up model, DAB-GNN. Similarly, on the Pokec-z dataset, its DP and
EO metrics are 51.1% and 53.6% lower than the strongest competitors, respectively. These results
confirm the superior balance and scalability of our approach on large-scale graphs.

5.3 RQ2: ABLATION STUDY

To answer RQ2, we conducted ablations on our FairMIB with three variants: FairMIB w/o m (re-
moving information compression), FairMIB w/o s (removing the conditional constraint), and Fair-
MIB w/o ¢ (removing Multi-view consistency). As shown in Figure 2a] removing the conditional
module (w/o s) significantly degrades fairness across datasets; for example, DP worsens by over
30% on Bail, confirming the need to maximize I(Y;Z | S) by conditioning on S. Removing com-
pression (w/o m), which minimizes I({Gyiew}; Z), harms both utility and fairness, most notably
on Pokec-z where DP nearly quadruples, showing that filtering redundant information improves
both. Removing consistency (w/o c) also reduces fairness, especially on Pokec-n where DP and EO
are worse than other variants, indicating that contrastive alignment of view specific representations
yields a robust shared latent space. Overall, these studies verify that the conditional bottleneck, com-
pression, and Multi-view consistency work together to mitigate sensitive attribute bias by enforcing
the fairness objective, filtering irrelevant information, and aligning Multi-view semantics.
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Figure 3: Parameter sensitivity results on Pokec datasets. Results demonstrate that FairMIB achieves
stable performance across a wide range of parameter settings.

5.4 RQ3: MULTI-VIEW ANALYSIS

To answer RQ3, we conducted ablation experiments by removing the Diffusion View (w/o Diffu-
sion View), Feature View (w/o Feature View), or Structural View (w/o Structure View). The results
in Figure [2b] show that the three views provide complementary information, and their combination
is essential for balancing utility and fairness. Removing any view typically leads to a significant
performance drop. For example, on the Bail dataset, removing the Feature View causes a 10% drop
in F1-score and deterioration in DP and EO metrics, indicating the importance of node attributes for
fair decision-making. The relative importance of the Structural and Diffusion Views varies across
datasets. On the Pokec-z and Pokec-n datasets, removing the Structural View worsens DP by over
380% and 205%, respectively, showing that structural bias is critical in these topologies. In contrast,
on the Credit dataset, removing the Diffusion View has the largest negative impact on fairness, in-
creasing DP by 205%, highlighting the role of multi-hop information propagation in bias correction.
These results demonstrate that no single view is universally dominant, validating the necessity of
our Multi-view decoupling framework.

5.5 RQ4: HYPER-PARAMETER SENSITIVITY ANALYSIS

To address RQ4, we perform a sensitivity analysis of FairMIB with respect to two key hyperpa-
rameters, « and (3, which control the relative contributions of information compression and view
alignment, respectively. Specifically, we evaluate the model by varying v and (8 across the set
1071,1072,1072,1074,107° on the Bail, Credit, Pokec-z, and Pokec-n datasets. The results,
shown in Figure[3] indicate that FairMIB exhibits robust performance across a wide range of these
hyperparameter values. However, setting o and  excessively high can lead to performance degrada-
tion due to over-compression of information and overly strict enforcement of view alignment. These
findings underscore the importance of balancing the two components, suggesting that selecting
and 3 within the range of 1073 to 1075 achieves a trade-off between utility and fairness.

5.6 EFFICIENCY ANALYSIS

In terms of time and space complexity, the main computational cost of FairMIB comes from the
APPNP-based feature diffusion and the forward and backward passes of the three encoders. For each
training epoch, applying K -step APPNP on the weighted features over the graph G = (V, £, X)) has
a computational complexity of approximately O (K (m + n)h), where n = |V| is the number of
nodes, m = |€| is the number of edges, and i denotes the hidden dimension. The three encoders
process the raw features X, the diffused features, and the all-one features, respectively. Their com-
putational cost grows linearly with the number of nodes and edges, approximately O(ndh + mh).
Adding the computation for the contrastive loss, the KL regularization, and the classifier, which
together require O(nh), the overall complexity remains nearly linear with respect to graph size.
When considering R independent runs and 7 training epochs, the total time complexity of FairMIB
becomes O(RT(Kmh + ndh)). The memory complexity is O(n(d + 3h) + m), which is on the
same order as standard multi-branch GNNs. The propensity score model is pre-trained separately
for about 100 steps before the main training process, and this one-time cost is negligible compared
with the full training procedure. As shown in Figure f} we compare the actual running times of
different fair graph learning methods under the same settings. The results demonstrate that, while
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Figure 4: Comparison of Time costs for FairMIB and baselines on Bail

achieving Multi-view representation learning, FairMIB maintains linear scalability comparable to
standard graph neural networks and is more efficient than several more complex fair GNN models.

5.7 WHY CHOOSE APPNP

We adopt APPNP to model higher-order neighborhood effects in a stable and efficient way. We
conduct an ablation study on the Bail dataset with five propagation operators: GCN, APPNP, without
IPW, SGC, and GCNII in Table 2} APPNP provides the best trade-off among utility, fairness, and
efficiency. Compared with GCN, APPNP increases AUC by about 1% and F1 by roughly 1.5%,
while reducing training time by over 5% and slightly lowering both fairness gaps (around 10-15%
smaller DP and about 7% smaller EO). SGC is roughly 7% faster than APPNP, but suffers from about
2% lower AUC and more than 25% DP gap, indicating that overly aggressive simplification harms
fair representation learning. GCNII offers less than 1% additional AUC over APPNP but requires
approximately 17% more training time and a considerably more complex architecture. To isolate
the effect of the IPW module, we compare APPNP with and without IPW. Introducing IPW reduces
the demographic parity gap by nearly 30% and the equal opportunity gap by about 20%, showing
that IPW effectively mitigates bias accumulated during diffusion. Overall, APPNP with IPW forms
a principled compromise that balances accuracy, fairness, and efficiency while remaining modular.

Table 2: Ablation study for choosing APPNP

Metric APPNP GCN SGC GCNII Without IPW

AUC 88.02+1.45 87.60+2.11 86.88+1.92 89.09+2.09 88.26=£0.93
ACC 84.48 +£1.53 83.50+2.43 84.03+1.47 85.49+3.15 84.54+1.46

F1 7889 +£191 77.62+3.11 76.61+2.27 80.27+3.69 78.91=+1.36
DP 1.35+1.23 1.53+£0.84 1.72+1.45 1.31+£0.35 1.90 £ 0.75
EO 1.39 £0.68 1.494+0.66  2.86+2.01 1.39 +0.49 1.724+0.74
Time (s) 123.4915 130.2052 115.1629 144.9692 120.7191

6 CONCLUSION

This paper addresses the challenge of bias in GNNs from a fairness perspective originating from
multi-source information. Traditional approaches often fail to disentangle distinct sources of bias,
leading to a suboptimal trade-off between model utility and fairness. To overcome this, we pro-
pose FairMIB, a novel framework grounded in the Multi-view conditional information bottleneck
principle. Our FairMIB method first disentangles composite graph data into independent feature,
structural, and Diffusion Views. It then applies a conditional information bottleneck to the fusion
representation to learn compressed representations that preserve task-relevant information while mit-
igating sensitive attribute leakage. Furthermore, we introduce a Multi-view consistency constraint
to ensure semantic alignment across the learned representations. Extensive experiments on five
benchmark datasets demonstrate that FairMIB consistently outperforms state-of-the-art methods,
achieving a superior balance between fairness and utility. While these results are promising, sev-
eral avenues for future work remain. The current framework could be extended to more complex
scenarios involving multiple intersecting sensitive attributes or enhanced by exploring more diverse
strategies for view generation.

10
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7 ETHICS STATEMENT

This work investigates fair learning on graphs and proposes a Multi-view conditional information
bottleneck for mitigating bias. We use only publicly available datasets under their licenses and do
not collect new human subject data. Sensitive attributes are used only during training to encourage
conditional fairness and are not required at inference time. We evaluate demographic parity and
equality of opportunity, but fairness is context dependent and our results do not guarantee fairness in
all deployments. Practitioners should verify consent and data provenance, apply privacy safeguards,
conduct domain-specific audits with affected stakeholders, and avoid presenting improvements on
chosen metrics as proof of overall neutrality.

8 REPRODUCIBILITY STATEMENT

We describe all model components, objectives, and training protocols, including architectures,
losses, data preprocessing, and evaluation metrics. We will release code, configuration files, and
experiment scripts that reproduce main tables, ablations, and sensitivity analyses with fixed random
seeds, reported means and standard deviations over multiple runs, and the exact data splits used. The
repository will include a dependency file with package versions, instructions for environment setup,
and commands for end-to-end execution on commodity GPUs, enabling independent verification
and extension of our results. Our implementation has been submitted in OpenReview and the code
will be made publicly available on GitHub.
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Appendix

This is the appendix to the paper ‘Learning Fair Graph Representations with Multi-
view Information Bottleneck’. This appendix provides additional details on related
work, preliminaries, the proposed method, and extended experimental results.

A RELATED WORK
A.1 FAIRNESS IN GNNS

In recent years, research on fairness in GNNs has accelerated, with methods com-
monly grouped into two categories: pre-processing L1 et al.| (2024b); Dong et al.
(2022) and in-processing |Yang et al.| (2024); /Agarwal et al.| (2021); Wang et al.
(2022). Pre-processing methods address fairness at the data level by rebalancing
attribute distributions or modifying graph structures before model training. These
methods aim to reduce the unfairness induced by distributional disparities and struc-
tural homophily. For example, EDITS Dong et al. (2022) introduces a debiasing
framework that jointly optimizes attribute reweighting and structural perturbation in
order to reduce attribute and structural bias in graph data. More recently, FairGB L1
et al. (2024b) approaches the problem from the perspective of data generation and
sampling by combining resampling with causally inspired contrastive generation.
This method not only alleviates group bias caused by imbalance in the training
set but also provides a more neutral training view for subsequent model learning. A
common characteristic of these approaches is the direct modification of input distri-
butions or graph connectivity patterns, thereby ensuring that any downstream GNN
can be trained on a relatively fair dataset.

In-processing methods, in contrast, introduce fairness constraints or architectural
designs during model learning to suppress the leakage of sensitive information in
the message-passing stage Wang et al| (2022); Agarwal et al. (2021); Yang et al.
(2024); Zhu et al. (2024); Lee et al.| (2025). Since feature propagation can trans-
form channels originally uncorrelated with sensitive attributes into biased ones,
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many approaches aim to limit the reliance of propagation channels on sensitive
cues. For example, FairVGNN Wang et al. (2022)) leverages correlations before and
after propagation to learn channel masks that reduce the dependence on sensitive
features. NIFTY |Agarwal et al. (2021) employs adversarial and counterfactual aug-
mentations to stabilize embeddings and mitigate group separability. FairSIN Yang
et al.| (2024)) proposes a neutralization paradigm that constructs and injects fairness-
promoting features from heterogeneous neighbors prior to message passing, thereby
offsetting sensitive bias signals and supplementing non-sensitive information.

More recently, disentanglement-based approaches have gained attention. Fair-
SAD Zhu et al. (2024) disentangles sensitive-related information into indepen-
dent components in the representation space and applies channel-wise masking to
de-correlate them, thus enhancing fairness while preserving task-relevant signals.
DAB-GNN |Lee et al.| (2025) further disentangles attribute bias, structural bias,
and their interactions, explicitly amplifies these components, and then performs
distribution alignment and contrastive regularization for debiasing, achieving fine-
grained fairness control in an end-to-end manner.

Overall, pre-processing methods mitigate unfairness at the data level by modifying
distributions or structures before training, while in-processing methods act directly
within the learning process through fairness-aware regularization, loss constraints,
or architectural redesigns. Together, these strategies highlight complementary per-
spectives on mitigating bias in GNNss.

A.2 FAIRNESS IN INFORMATION BOTTLENECK

The fundamental principle of the IB framework is to identify a minimal suffi-
cient representation that optimizes the compression of input data while preserving
only the most critical information necessary for subsequent tasks [Kawaguchi et al.
(2023). The application of this principle to graph-structured data poses unique chal-
lenges, as the non-independent and identically distributed (NIID) nature of graphs
complicates traditional optimization methods |Xie et al. (2024). In order to ad-
dress this issue, researchers have proposed the Graph Information Bottleneck (GIB)
model [Wu et al. (2020a)), which extends IB to graph learning by simultaneously
compressing node features and structural information.

In the pursuit of fair graph representation learning, IB theory demonstrates con-
siderable potential due to its capacity to accurately quantify and regulate the in-
formation contained within a representation, thereby facilitating a more optimal
balance between model utility and fairness Jiang et al.| (2024). In order to achieve
this objective in a stable manner, frameworks such as GRAFair [Zhang et al.| (2025)
employ a variational graph autoencoder architecture. This architecture renders the
optimization process tractable and effectively circumvents the instability issues that
are prevalent in adversarial learning. Recent research has combined the IB princi-
ple with disentanglement learning and counterfactual augmentation to enhance the
debiasing process. For instance, FDGIB Zheng et al. (2024) employs IB theory to
direct the model in decomposing node representations into two distinct subspaces:
one correlated with the sensitive attribute and one independent of it. Despite these
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advances, single-view or single-embedding processing remains limited in its ca-
pacity. Graph bias is multi-source, and reliance on a single desensitized repre-
sentation can lead to the conflation of signals from different origins, resulting in
under-correction and residual leakage.

B PRELIMINARIES
B.1 FAIRNESS METRICS

To evaluate the fairness of our model, we focus on Group Fairness, which aims to
ensure that the model’s predictions are not biased against any specific group. In the
node classification task, we adopt two widely used fairness metrics: Demographic
Parity Dwork et al. (2012)) and Equal Opportunity |[Hardt et al.| (2016).

Here, we consider a common binary classification scenario where s € {0, 1} rep-
resents the sensitive attribute of a node (e.g., two different demographic groups),
y € {0, 1} denotes the ground-truth label, and y € {0,1} is the predicted label
given by the model.

B.1.1 DEMOGRAPHIC PARITY (DP)

The core idea of Demographic Parity is that the model prediction ¢, should be
statistically independent of the sensitive attribute s. This principle asserts that the
probability of receiving a positive outcome should be the same for all demographic
groups, regardless of their true label. This principle is formally expressed as:

Ply=1ls=0)=Pg=1|s=1) (13)

In practice, we measure the violation of this metric by calculating the absolute
difference in positive prediction rates between groups, known as the DP Difference
(App). A smaller value indicates a fairer model.

App=|P(y=1ls=0)— P(g=1|s=1)| (14)
B.1.2 EQUAL OPPORTUNITY (EO)

Equal Opportunity imposes a more targeted requirement: for nodes that genuinely
belong to the positive class (y = 1), the model’s prediction ¢ should be condi-
tionally independent of the sensitive attribute s. In other words, this ensures that
individuals who are truly positive have an equal chance of being correctly identified,
regardless of their group membership.

This is equivalent to requiring that the True Positive Rate (TPR) be consistent across
different groups, which is formally defined as:

P=1s=0y=1)=Py=1s=1y=1) (15)
Similarly, we quantify the violation of this metric by calculating the absolute dif-
ference in the True Positive Rates between groups, referred to as the EO Difference

(AEgo). A value closer to zero signifies better performance in terms of equal oppor-
tunity.

Apo=|P(H=1|s=0,y=1)-Plg=1]s=1y=1)] (16)

16



Under review as a conference paper at ICLR 2026

B.2 MULTI-VIEW INFORMATION BOTTLENECK

In case of dealing with complex information systems like graph data G, a single
source of information is often insufficient to capture the full spectrum of factors
required for decision-making. The predicted label of a node is typically influenced
by multiple information sources, or views, such as its intrinsic attributes X, topo-
logical structure A, and even global information diffusion patterns. The traditional
single-view IB [Kawaguchi et al.| (2023)theory provides a core principle for under-
standing the trade-off between accuracy and compression. Its objective is to derive
an optimal representation Z, by maximizing the mutual information between the
target labels Y and the representation Z, while simultaneously minimizing the mu-
tual information between an input (e.g., X) and the representation Z. However,
when information originates from multiple heterogeneous views {Gi, G, ..., Gy },
a more powerful theoretical tool is needed to guide the learning process.

To this end, we introduce and extend the Multi-view Information Bottleneck
(MIB) [Chaudhuri et al.| (2009) principle. The core idea of MIB is to learn a fused
and compact representation matrix Z, from multiple information views. This rep-
resentation must satisfy two primary objectives:

* Maximize Compression: The representation Z must maximally compress
the total information from all views to filter out task-irrelevant redundancy
and noise.

* Maximize Relevance: Simultaneously, Z must preserve the most sufficient
information relevant to the downstream prediction task (represented by the
labels Y') to ensure the model’s predictive performance.

C METHODOLOGY

After constructing the three disentangled views, our objective is to learn a fair and
compressed representation. To this end, we adapt and extend the principles of the
CFB |Gélvez et al.| (2021)). The core objective is to learn a mapping from a graph
view Gyiew to a latent representation Zy;,,. This mapping aims to minimize the
information from Gy, contained in Z;.,, while maximizing the task-relevant infor-
mation for Y that is independent of the sensitive attribute S.

For our Multi-view model, the total optimization objective can be written in the
following Lagrangian form:

P(Zﬁ?(_l;?ew}) {](S,Z) +I({gvleW}7Z|S7Y) /BI(Y’Z|S)} (17)
where Z is the final representation fused from the three view-specific representa-
tions: Zigea, ZLiswuct, and Zgir. Based on information-theoretic properties and the
Markov chain assumption (S,Y") <> {Gyiew} — Z, this objective can be simplified
to:

min ~ {I({Gview}; Z) —vI(Y;Z|S)}, wherey=/5+1 18
piin A1({GuokiZ) = 91(V:ZIS)) 1=5 18)

This formulation intuitively expresses our dual objectives: (1) Compression: min-
imizing the total information ({Giiew }; Z) extracted from all views; and (2) Fair
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Prediction: maximizing the task-relevant information 7(Y"; Z|S) contained in the
representation Z, conditioned on the sensitive attribute S.

As illustrated in the overall framework, each view G, is processed by an indepen-
dent variational graph encoder gy, Kipt & Welling (2016)). The encoder outputs
the parameters of the latent distribution for each node, namely the mean vector
view and the log-variance vector log o We utilize the reparameterization trick
to sample from this distribution, which ensures that gradients can be backpropa-
gated through the sampling process:

Zview = Wyiew + Oview © €, where € ~ N(O, I) (19)

After obtaining the latent representations for the three views, we perform an initial
fusion via element-wise addition. The result is then passed through a projector
layer, implemented as a Multi-Layer Perceptron (MLP), to learn more complex
interactions and to generate the final unified representation, Z;:

Zproj = PI‘OjCCtOI‘(Zfeat, Zstructa Zdiff) (20)
C.1 BALANCE DIFFSION VIEW

Diffusion Views help us to identify potential dynamic deviations that may occur as
information propagates across a graph. To prevent sensitive attributes from becom-
ing biased during diffusion, we have implemented proactive intervention measures
to balance this bias, as shown in the Figure E}

Graph Balance Attribute Bias Diffusion View

\: o E ‘: Fairness Diffusion E ‘: %
2 i; ' é i’: K Steps ' @; j

m————————

Figure 5: The generation process for the Diffusion View begins with the original attributed graph.
First, attribute bias is balanced using Inverse Propensity Weighting (IPW). A K-step fairness diffu-
sion process is then executed on this basis to ultimately generate the Diffusion View, which incor-
porates fair neighborhood information.

D EXPERIMENTS
D.1 BASELINE

The methods under discussion can be categorized as follows: FairGNN Dai &
Wang| (2021)) and FairVGNN |Wang et al. (2022) belong to the class of adversar-
ial representation learning methods; NIFTY |Agarwal et al. (2021), EDITS Dong
et al.| (2022)), and FairGB L1 et al.| (2024b) are data augmentation-based methods;
GRAFair Zhang et al.[(2025) is an information bottleneck-based method; and DAB-
GNN Lee et al.|(2025) is a disentangled representation learning approach. For spe-
cific details, please refer to the appendix. The following is a detailed introduction
to all baseline methods.
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* FairGNN: FairGNN Dai & Wang (2021) is a framework designed to elim-
inate discrimination in GNNs by using adversarial learning and a sensitive
attribute estimator to achieve fair node classification even with limited sen-
sitive attribute information.

* NIFTY: NIFTY |Agarwal et al. (2021) is a unified approach that promotes
fairness and stability in GNN representations by leveraging counterfactual
perturbations and layer-wise weight normalization to ensure robust and un-
biased graph embeddings.

* EDITS: EDITS Dong et al.| (2022) mitigates bias in attributed networks for
GNNss by optimizing attribute re-weighting and structural adjustments to re-
duce disparities between demographic groups while preserving downstream
task performance.

* FairVGNN: FairVGNN |Wang et al| (2022) is a framework that integrates
adversarial learning with weight clipping to mitigate sensitive attribute leak-
age.

* FairGB: FairGB |Li et al.| (2024b) addresses unfairness in GNNs through
group re-balancing techniques, such as counterfactual node mixup and
contribution alignment, to ensure balanced influence from different demo-
graphic groups during training.

* GRAFair: GRAFair Zhang et al.| (2025) is a variational graph auto-
encoder-based framework that achieves stable fairness by minimizing sen-
sitive information in representations via a conditional fairness bottleneck,
balancing utility and debiasing without adversarial methods.

* DAB-GNN: DAB-GNN [Lee et al. (2025) promotes fair GNN representa-
tions by disentangling and amplifying attribute, structure, and potential bi-
ases, then debiasing them to minimize subgroup distribution differences.

D.2 ABLATION STUDY

we conducted a series of ablation studies. Our proposed framework is funda-
mentally an implementation of the Multi-view conditional information bottleneck,
which aims to maximize task-relevant fair information while minimizing irrelevant
information from the Multi-view inputs. To systematically evaluate the contribu-
tion of each core component, we constructed three key variants: FairMIB w/o m
(without information compression), FairMIB w/o s (without the conditional con-
straint of the bottleneck), and FairMIB w/o ¢ (without the Multi-view consistency
constraint).

First, we validate the role of the conditional information bottleneck’s core mecha-
nism by removing it (FairMIB w/o s). The objective of this component is to max-
imize the information in the representation that is relevant to the task Y but inde-
pendent of the sensitive attribute S, i.e., I(Y; Z|S). As shown in Table[3] removing
this module leads to a significant decline in model fairness. Across all datasets,
the fairness metrics of FairMIB w/o s worsened significantly; for instance, on the
Bail dataset, its DP metric worsening by over 30%. This indicates that conditioning
the decoder on the sensitive attribute during training is crucial for compelling the
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encoder to learn a truly fair representation, as it effectively weakens the model’s
ability to capture and rely on sensitive information, thereby ensuring the achieve-
ment of the fairness objective.

Second, we investigate the contribution of information compression using the Fair-
MIB w/o m variant. This module corresponds to the objective of minimizing mu-
tual information between input views and the representation, I ({Gyiew }; Z), and is
designed to prevent the model from learning redundant or harmful biased informa-
tion. The results show that removing this module leads to a substantial decline in
both predictive performance and fairness. This phenomenon was particularly pro-
nounced in the Pokec-z dataset, where the DP metric increased from being nearly
40%, and the utility also decreased. This demonstrates that the compression of re-
dundant information effectively improves both utility and fairness by forcing the
model to learn a compact representation, thereby filtering out bias-propagating in-
formation from the input views.

Finally, we assess the role of the Multi-view consistency constraint by evaluating
the FairMIB w/o c variant. The removal of this constraint leads to a noticeable
decline in fairness performance across datasets, with the effect being particularly
severe on the Pokec-n dataset, where both DP and EO metrics deteriorate beyond
those observed in other ablation variants (Table [3). These results underscore the
importance of enforcing semantic alignment between representations of different
views through contrastive learning. By aligning the latent spaces across views, the
model is guided to learn a robust and coherent shared representation, preventing in-
dividual view encoders from independently capturing conflicting or biased patterns.
This alignment is critical for the overall debiasing process, ensuring that the learned
representations are both fair and consistent.

The above ablation study results validate the effectiveness of the three core com-
ponents of the FairMIB model: the conditional information bottleneck, information
compression, and the Multi-view consistency constraint. These components work
synergistically through their respective mechanisms, collectively mitigating sensi-
tive attribute bias by ensuring fairness objectives, filtering out irrelevant informa-
tion, and aligning Multi-view representations.

D.3 MULTI-VIEW ANALYSIS

To address RQ3, we conducted a series of ablation experiments to assess the con-
tribution of each view by selectively removing the Diffusion View (w/o Diffusion
View), the Feature View (w/o Feature View), or the Structural View (w/o Struc-
tural View). The results presented in Table 4] indicate that the three views provide
complementary information, and their joint utilization is critical for achieving an
optimal balance between utility and fairness. Removing any single view typically
results in a significant decline in model performance. For example, on the Bail
dataset, excluding the Feature View leads to a drop of over 10% in F1-score, while
fairness metrics DP and EO also deteriorate sharply, highlighting the essential role
of original node attributes in maintaining both baseline predictive performance and
fair decision-making.
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Table 3: Results of FairMIB ablations on five datasets

Datasets Method Acc (1) Fl-score (1) AUC (D) ADP () AEO ({)
FairMIB w/om  70.00 + 0.00 82.35 + 0.00 60.62 +4.78 0.51 £ 0.02 0.44 £ 0.02
erman FairMIB w/o s 70.00 £+ 0.00 82.35+ 0.00 55.85 £ 2.60 0.87 +£0.22 0.63 £0.11
g FairMIB w/o ¢ 70.00 £ 0.00 82.35 + 0.00 59.25 +4.25 0.42+0.12 0.55 £ 0.01
FairMIB 70.24 +0.48 82.45+0.20 65.55+1.61 0.38+0.76 0.17+0.34
FairMIB w/om  84.32 +1.34 77.65 + 1.94 8776 £1.55 0.96 £+ 0.58 1.83 £ 1.44
bail FairMIB w/o s 84.12 +3.20 7797 £ 4.11 87.93 +3.16 1.60 £ 0.36 1.52 +£0.81
al FairMIB w/o ¢ 84.21 £ 3.05 78.11 4+ 3.83 88.08 4+ 2.47 1.34 £ 1.25 1.55+£0.42
FairMIB 85.62+0.81 80.10+1.25 89.18 +2.15 1.23 +£0.49 1.17 +0.45
FairMIB w/om  78.04 + 0.63 87.51 £ 0.10 71.04 +1.03 1.27 £ 1.70 0.74 +1.00
credit FairMIB w/o s 77.92 + 0.06 87.57 £ 0.02 71.34 £+ 0.90 0.70 £ 0.33 0.66 + 0.21
FairMIB w/o ¢ 78.07 +£0.29 87.59 +0.14 71.62 + 0.97 0.62 + 0.55 0.28 +0.31
FairMIB 78.57 £ 0.86 87.79+0.27 73.21+£0.51 0.40+0.69 0.24 +0.48
FairMIB w/om  65.70 + 1.85 67.54 + 0.84 73.11 £ 0.89 341 +243 290 £+ 1.42
Pokec-z FairMIB w/o s 64.54 + 2.00 68.24 + 0.90 72.10 £ 1.24 2.56 + 1.44 1.38 +£0.96
FairMIBw/oc  66.56 £1.94 69.04 +£3.45 74.68 +1.81 1.43 +£0.67 2.14 £ 1.57
FairMIB 66.16 +1.43 68.86 + 1.40 73.15 +1.64 0.69+0.26 0.52+0.38
FairMIB w/om  65.40 + 1.72 67.33 +1.58 72.72 +£2.04 2.04 £ 1.17 1.90 £+ 1.26
Pokec-n FairMIB w/o s 66.96 + 2.25 62.75+2.73 73.36 £ 1.94 1.98 £0.41 229 £ 1.16
FairMIB w/o ¢ 66.48 + 5.14 67.58+1.07 74.21+3.80 2.73+1.22 2.80 + 1.74
FairMIB 6622 +1.09 69.02+1.91 73.28 +1.02 1.124+0.76 0.92 4 0.90

Interestingly, the relative importance of the Structural and Diffusion Views varies
across datasets. On the Pokec-z and Pokec-n social network datasets, which have
authentic topological structures, removing the Structural View results in catas-
trophic performance degradation, with DP increasing by over 380% and 205%,
respectively. This indicates that, in these topologies, the primary source of bias orig-
inates from the graph structure itself, making it crucial to model and debias struc-
tural information directly. Conversely, in the Credit dataset, removing the Diffusion
View has the most pronounced negative effect on fairness, with DP rising by 205%.
This suggests that, in this context, bias predominantly propagates through multi-
hop connections, underscoring the critical role of our designed Diffusion View in
capturing and correcting such biases.

Overall, these findings demonstrate that no single view universally dominates
across all datasets, as the sources of bias differ depending on the graph type.
This further validates the necessity and effectiveness of our Multi-view decoupling
framework.

D.4 HYPER-PARAMETER SENSITIVITY ANALYSIS
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Figure 6: Parameter sensitivity results on two datasets.
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Figure 7: Parameter sensitivity results on two variants.

Table 4: Ablation over multiple views.

Datasets Method Acc (1) Fl-score (1) AUC (1) ADP ({) AEO ({)
wlo Diffusion View  70.16 & 0.20  82.35+0.03 57.31+£4.01 0514+0.92  0.36 £ 0.66
w/o Feature View 70.00£0.00 8235+£0.00 53.40£3.41  0.50+0.11  0.20 £0.01
german /o Structure View  70.00+0.00  82.35+0.00  63.07+3.69 0.034£0.01 0.02 = 0.03
FairMIB 70.24 4+ 0.48 82.4540.20 65.55+F1.61 0.384+0.76  0.17+0.34
w/o Diffusion View 86.19 +2.53  80.69+£3.30 89.444+1.85 1.12+0.68 3.22+3.14
bail w/o Feature View 83.21+540 7253+14.73 87134298 261+1.74 2.38+1.81
wlo Structure View ~ 83.76+1.49 86.794+1.65 86.50+1.30 0.794+1.18 0.93+1.19
FairMIB 85.62+0.81  80.10+1.25 89.184+2.15  1.23+049  1.1740.45
wlo Diffusion View ~ 78.114+0.48  87.53+0.06  69.29+220 1.22+239 0.73+1.44
credit w/o Feature View 78.46 £ 0.78 87.70 £ 0.28 71.84 £0.95 0.55 +0.34 0.56 + 0.36
wlo Structure View ~ 78.94 4+ 0.88 87.874+0.24 721942093 1.17+0.56 0.70+£0.44
FairMIB 78.57+0.86  87.79+0.27 73.21+0.51 0.404+0.69 0.24 +0.48
w/o Diffusion View  62.194+4.16  69.03+£1.79  71.90+£1.59  1.19+0.96  1.62+ 1.53
Pokec, Vo FeawreView — 67.57+1.86 6748290  73.03+£143  137T+079 2344200
wlo Structure View  65.74+3.37  70.78 £1.15 75.174+3.02 3.33+1.09 1.24+0.65
FairMIB 66.16+1.43 68.86+1.40 73.15+1.64 0.6940.26 0.52F0.38
w/o Diffusion View  65.51 +0.70  66.05+0.62  71.68+0.85 1.294+0.89  1.54 + 1.48
Pokec.y W/oFeawre View — 68.58+0.85 67.96£321 71364130 1.61+£1.22 218+ 169
wlo Structure View  67.15£2.42  66.39£0.77 73.834+2.84 3424278  2.75+2.57
FairMIB 6622+ 1.09 69.024+1.91 73.284+1.02 1.1240.76 0.92 4+ 0.90

We conduct a sensitivity analysis of FairMIB with respect to two hyperparameters,
a and . In FairMIB, these hyperparameters regulate the relative contributions of
information compression and view alignment. Specifically, we vary the values of
« and 3 within {107!,1072,1073,107*,107°} on the bail, Credit, Pokec-z, and
Pokec-n datasets. The results of this analysis are presented in Figure[] Overall, the
performance of FairMIB remains relatively stable across a broad range of a and .
Nevertheless, when « and /3 are set to excessively large values, performance degra-
dation may occur due to over-compression of information and overly strict view
alignment. These findings highlight the necessity of balancing the two components
and suggest that selecting o and 3 from the range of 1072 to 10~° offers a preferable
trade-off between utility and fairness. In Figure[7] we performed a hyperparameter
analysis on the two variants for bail to ensure that the hyperparameters do not affect
the ablation experiments.
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