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Abstract
We consider the problem of Bayesian inference
when some observations have been censored. In
censored data, the dependent variable has been
clipped, so we only know that the true value is
at least as large (or as small) as the observation.
Such data can be modeled using a Tobit likeli-
hood, which can be viewed as a mixture between
a normal distribution restricted on the domain
without censoring treatment and a point mass at
the boundary. This requires careful consideration
when evaluating information-theoretic quantities,
due to the mixed continuous and discrete probabil-
ity measures. We introduce a novel approximate
inference scheme for Gaussian process models
with a Tobit likelihood, derive interpretable an-
alytic expression for the Gaussian process evi-
dence lower bound (ELBO) and demonstrate the
resulting model’s efficiency in learning Gaussian
process posteriors for censored data relative to
uncensored case.

1. Introduction
Measurements in the real world come from bounded-scale
instruments or finite-time events. Such intervals require
careful consideration at the boundaries, where the variable
is clipped and the density ceases to be continuous. The
Censored Gaussian aka Tobit likelihood is instrumental in
modeling such data (Fig 2). While there has been recent
work (Gammelli et al., 2022; Basson et al., 2023) advancing
the inference of Censored Gaussian Processes, so far, most
statistical and information-theoretic quantities of the likeli-
hood distribution were not provided in the closed analytical
form.

An appropriate likelihood assumption is essential to any
latent modeling task. Choosing the wrong likelihood, such
as the standard Gaussian, when it’s impossible to observe
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data outside a given range, introduces systematic bias into
the model. A misalignment between modeling assump-
tions and the empirical data distribution not only affects the
model’s predictive ability, but also its uncertainty quantifi-
cation. This prese nts a two-fold challenge in fields such
as medical diagnostics (Rao et al., 2016) or environmental
monitoring (Friederichs & Hense, 2007) which not only
care more about model uncertainty, but are also likelier to
encounter censored or missing data (Chen et al., 2013).

The Tobit likelihood, despite being an appropriate choice
when a censoring interval is fixed and given, has found lim-
ited use in Bayesian inference (Basson et al., 2023). A key
missing piece is an inference procedure that would work
in conjunction with expressive models such as Gaussian
processes (GPs), without relying on high-variance Mon-
tecarlo estimation. While the posterior is analytically in-
tractable (Ertin, 2007; Groot & Lucas, 2012), we provide
feasible analytical approximation to the evidence lower
bound, (Jaakkola & Jordan, 2000), which allows for more
controllable inference, thus laying a more rigorous founda-
tion for Bayesian inference with censored data.This enables
the use of Variational Inference and gradient-based learning
for GPs modeling censored data.

The main contribution of our paper is the derivation of the
closed form formula for cross entropy of normal and cen-
sored normal distribution which we apply for formulating
the interpretable closed-form evidence lower bound (ELBO)
for Variational Inference when approximating the poste-
rior corresponding to a Tobit likelihood. We demonstrate
through GP regression experiments how a Tobit likelihood
can be used as a plug-in replacement for the usual uncen-
sored Gaussian.

2. Background and Related Work
We set out to infer a (latent) data generating function for
censored data. Following a Bayesian approach, there are
typically four choices to make: (i) a prior distribution p(f)
over the latent function space, (ii) a likelihood distribution
p(yi|f) which specifies how the data would be generated
given a latent function, (iii) an inference method for the
posterior distribution p(f |y1, . . . , yN ) ∝

∏
i p(yi|f)p(f)

given observed data, and (iv) a strategy to acquire new data
points to aid learning. We go over each of these choices in
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the context of our problem, and review the relevant literature
below.

2.1. A Likelihood for Censored Data

In a traditional regression problem, we observe a set of noise-
corrupted output values, y ∈ RN , which are dependent
variables of a set of input values X ∈ RN×D. The goal is
to recover the noise-free function f(x). A typical choice
is to assume a Gaussian likelihood model. However, if
we know that not only is the data collection noisy but also
clamped to the interval [l, u], this gives rises to a different
corruption process known as censoring. Mathematically,
this process is:

y(x) =


l, if f(x) + ε ≤ l

f(x) + ε, if l < f(x) + ε < u

u, if f(x) + ε ≥ u

, (1)

where ε ∼ N (0, σ2
y). Since this corruption corresponds to

a measurable function, it also defines a distribution, known
as the Tobit likelihood in reference to Tobin (Tobin, 1958).
This approach has been extensively studied in econometrics
(Amemiya, 1984; Robin, 2010) and survival analysis (Klein
et al., 2003), with extensions to handle various censoring
mechanisms and distributional assumptions, including ma-
chine learning (Pearce et al., 2022; Friederichs & Hense,
2007; Moradian et al., 2017).

Unfortunately, the Tobit likelihood is not absolutely con-
tinuous with respect to the Lebesgue measure; it lacks a
defined probability density function (PDF), in contrast with
the Gaussian likelihood. Nonetheless, the cumulative distri-
bution function (CDF) exists as is defined as:

p(y ≤ ξ | f(x), l, u) =


0, if ξ < l

Φ(ξ | f(x), σ2
y), if l ≤ ξ ≤ u

1, if ξ > u

,

(2)

where Φ(x | µ, σ2) is the CDF of the Gaussian distribution
N (µ, σ2).

2.2. Gaussian Processes (GPs)

After choosing a likelihood, another decision is which prior
distribution over functions to use. The most common choice
of prior in Bayesian active learning is the Gaussian process
(GP) (Li et al., 2024). A GP is a simple, but flexible, dis-
tribution over functions built on the assumption that any
two values f(x) and f(x′) are correlated Gaussian random
variables (Williams & Rasmussen, 2006). Given training
and evaluation sets, X and X∗, we can represent the out-
put of the latent functions as f = [f(x1), . . . , f(xN )] and

f∗ = [f(x∗
1), . . . , f(x

∗
N )] with joint distribution:

p(f ,f∗) = N
([

f
f∗

] ∣∣∣∣ [ µ
µ∗

]
,

[
Kf Kf∗
K∗f K∗

])
, (3)

where [µf ]i = µ(xi) and [Kf ]i,j = k(xi, xj). The mean
function µ(x) and kernel function k(x, x′) are the param-
eters of the Gaussian process distribution and specify the
mean and covariance of the joint distributions of observa-
tions.

The reason for the popularity of GPs is due to their conju-
gacy with the Gaussian likelihood which allows not only
the posterior distribution p(f | y) and predictive posterior
distribution p(f∗ | y) to be calculated exactly in closed
form, but also the model evidence p(y) = Ep(f) [p(y | f)]
enabling gradient-based selection of model hyperparameters
by maximizing the model evidence.

2.3. Variational Inference for GPs

For likelihoods other than Gaussian, the posterior distribu-
tion usually cannot be computed and requires the use of
approximations. Possible strategies to deal with this in-
clude Markov Chain Monte Carlo (MCMC) methods (Neal,
1997), Laplace approximations (Williams & Barber, 1998;
Barrett & Coolen, 2012), and variational inference tech-
niques (Hensman et al., 2015). Due to its deterministic
nature compared to MCMC, higher expressivity compared
to Laplace approximation, and connections to scalable GPs
for big data, variational inference (VI) became the default
choice for GP approximations.

Variational inference works by defining an approximate
posterior p(f ,f∗) ≈ q(f ,f∗) where the posterior of the
training data is a Gaussian distribution with learnable param-
eters q(f) = N (f | f̂ ,A) and the conditional predictive
posterior is simply q(f | f∗) = p(f∗ | f). The param-
eters of the approximation are trained by maximizing the
evidence lower bound (ELBO):

log p(y) ≥ Eq(f) [log p(y | f)]−KL [q(f) || p(f)] ,
(4)

with the property that maximizing the ELBO jointly maxi-
mizes the evidence, allowing for hyperparameter optimiza-
tion, and minimizes the divergence between the approxi-
mated posterior and the true posterior, reducing the error of
the approximation. This property is one of the appealing
factors of variational inference.

3. Our Method
3.1. Mixed Continuous and Discrete Measures

Censoring is a data treatment with the following mechanism:
events which happen outside our observation window are
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assigned the boundary value of this window. This does
not change our perspective on how often the events occur
(unlike truncation). But it changes the odds of how often
events occur at the boundaries. Say we observe data from
a normal distribution with values censored to lie in [l, u].
For an underlying distribution with density N (x;µ, σ), we
write the mixed density:

p(x;µ, σ, l, u) = Φ( l−µ
σ )δ{l}(x)

+N (x;µ, σ)I(l,u) + [1− Φ(u−µ
σ )]δ{u}(x),

(5)

where I(l,u) is the identificator of belonging into the obser-
vation window (l, u) and δ{z}(x) is the Dirac delta function,
having mass at x = z and null otherwise. The Dirac delta
terms capture the size of the censored tails of the underlying
density (see Fig 2).

When working with the censored probability measure, the
usual framework which holds either for purely discrete or
purely continuous probability distributions cannot be ap-
plied directly. We provide an exhaustive introduction to
the problem in Appendix B. Essentially, we need to sepa-
rately treat the areas where the probability density is defined
to those with the discontinuities caused by mixing in the
point masses of discrete distribution. While (Nair et al.,
2006) denotes the mixed distribution by a mixed pair and
considers the entropy of a mixed pair of discrete and contin-
uous distribution in connection with entropy rate of MCMC,
we carefully treat the problem using basic measure theory
(Kallenberg, 2021).

3.2. Censored Regression

With the censored targets, the regression problem can be
reformulated as: yi = fi+ ϵi, where i = 1, . . . , n, and ϵi ∼
Nc(ε|0, σ2

y, l, u) comes from a censored normal distribution
with the censoring thresholds l < u. We can see this prob-
lem also as a combination of two probit models placed on the
lower threshold p(yli = 1|x) = Φ(f(x)|l, σ2

y), and upper
threshold p(yui = 1|x) = 1−Φ(f(x)|u, σ2

y), while having
a normal regression model p(y|f , σy) = N (y|f , σ2

yInn)
otherwise.

From this initial motivation, we can write the likelihood
p(y|f) of the censored model as:∏
yi≤l

Φ(l|fi, σ2
y)

∏
l<yi<u

N (yi|fi, σ2
y)

∏
yi≥u

[1−Φ(u|fi, σ2
y)].

(6)
We place a GP prior over the latent function f and obtain the
following posterior distribution over the latent parameters
f :

p(f |D,θ) =
N (f |0,Knn)

p(D|θ)
p(y|f), (7)

where we denote the observed data as D = {(xi, yi), i =
1 . . . n} and y = (y1, . . . yn) is the vector of labels.

3.3. ELBO for Censored Regressor

As the marginal likelihood p(D|θ) is not analytically
tractable, we assume a Gaussian approximation to the pos-
terior distribution, parametrised by f̂ and A:

p(f |D,θ) ≈ q(f |D, θ̂) = N (f |f̂ ,A), (8)

and minimize the KL divergence between the variational
approximation of the posterior and the posterior itself. We
write the KL divergence in terms of the censored normal
likelihood p(y|f) and Gaussian prior p(f) as:

ln p(D|θ) ≥
n∑

i=1

Eq(fi|D,θ̂) ln p(yi|fi)−

−KL
[
q(f |D, θ̂)||p(f |X,θ)

]
≡ ELBO

(9)

The derivation of the cross-entropy is presented in Appendix
C.1. The mean and scale parameters of the variational pos-
terior q are denoted f̂ and aii. Taking the final form of the
cross-entropy from Eq (22), we arrive at the closed form
version of the ELBO:

lnp(D|θ) ≥ (10)

−
n∑

i=1

log[
√
2πσy]

[
Φ
(

u−f̂i
aii

)
− Φ

(
l−f̂i
aii

)]
+

n∑
i=1

(yi−f̂i)
2+a2

ii

2σ2
y

[
Φ
(

u−f̂i
aii

)
− Φ

(
l−f̂i
aii

)]
+

n∑
i=1

[
log Φ

(
yi−u
σy

)
+ (u+f̂i−2yi)aii

2σ2
y

]
N
(

u−f̂i
aii

)
+

n∑
i=1

[
log Φ

(
l−yi

σy

)
− (l+f̂i−2yi)aii

2σ2
y

]
N
(

l−f̂i
aii

)
− 1

2

[
ln |A| − ln |Knn| − n

]

− 1

2

[
tr(K−1

nnA) + f̂TK−1
nnf̂

]
.

The first two terms of the ELBO corresponds to the cross-
entropy of the two uncensored Gaussian distributions less
one half and scaled by variational approximation of the
probability mass of the observation window between l and
u; the third term captures the contribution of the upper
censoring limit u while the fourth term corresponds to the
contribution at l. The logarithm of normal CDF times the
normal density is the contribution of the atomic mass at
the boundary while the second linear term in the equation
describes how far we are from the exact fit. It is easy to see
that if l and u are set to − inf and inf , then the second and
third terms vanish (because N (x) becomes 0). The CDF
difference in the first line reduces to 1.0, and the whole
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Table 1: Metrics evaluating 1D regression. The subscript c denotes a metric computed on censored datapoints only.

Censored Gaussian Uncensored Gaussian
MAE MAEc NLPD NLPDc MAE MAEc NLPD NLPDc

left-censored 0.40 0.14 7.87 15.74 0.67 0.59 2.03 1.93
right-censored 0.61 0.00 549.95 1,075.87 0.62 0.09 56.41 2.77
symmetric-censored 0.40 0.34 37.44 41.56 0.59 0.55 122.10 96.69

Table 2: Metrics on real-world regression tasks.

Censored Gaussian Uncensored Gaussian
MAE NLPD MAE NLPD

Credit Risk: (40% test data) 9.5663 25.3787 9.5690 11.1385
gbsg cancer: (given test set) 21.1881 17.8265 19.8403 42.9532

ELBO reduces to the ELBO of an uncensored Gaussian.
The last two terms corresponds to KL divergence between
Gaussian prior and Gaussian variational approximation.

4. Experiments
4.1. GP Regression using Variational Inference

In Fig 1, we compare three ways of learning a synthetic
function underlying censored observations. We start with
uncensored Gaussian likelihood, a default likelihood for GP
regression, and assumes no knowledge of the censoring. We
use Variational Inference to fit the model. The second model
is Censored Gaussian fit via Montecarlo simulation: this
method samples from the (Multivariate Normal) variational
posterior to parameterize the Censored Gaussian likelihood.
We take 10,000 samples to facilitate convergence. The last
model we consider is Censored Gaussian fit via Variational
Inference: we use the posterior parameters to compute a
closed-form expected log-likelihood as part of the ELBO,
as derived in (10).

All methods use an RBF kernel with the same initialization,
with a full matrix (Cholesky parameterized) covariance. We
use L-BFGS (Liu & Nocedal, 1989) for optimization.

Fig 1 shows the benefit of taking censoring into account.
The Uncensored Gaussian likelihood matches the empirical
data density but completely fails to recover the true structure
beyond the censoring bounds. It exhibits very low uncer-
tainty around the censored regions due to the accumulated
data density. The Censored Gaussian likelihood shows a
significant improvement in capturing the structure of the
generative function. Even with MC simulation from the
approximate posterior, we achieve an almost unbiased fit.
The caveat is the method is high-variance and very ineffi-
cient. We achieve the best fits using Variational Inference at
significantly lower sample-complexity.

Metrics. To compare the uncensored and censored fits
quantitatively, we compute the following 2 metrics on test-
case data: Mean Absolute Error (MAE) and Negative Log
Predictive Density (NLPD). MAE corresponds to assuming
a common Laplace predictive likelihood (with scale 1). It is
unambiguous and fair to both the uncensored and censored
Gaussian likelihood models. For NLPD we evaluate both
the uncensored and censored posteriors under the censored
predictive likelihood—albeit with the respective noise pa-
rameters. In simple terms, this corresponds to passing the
uncensored likelihood model through a clamping function.

Real-World Regression Tasks. We tested our model (10)
on two real-life dataset with naturally censored dependent
variables: the GBSG Cancer dataset (Katzman et al., 2018)
and a Credit Risk dataset1. The results in Table 2 show
that the Censored Gaussian is a drop-in replacement for the
Uncensored likelihood when trained with our ELBO.

5. Discussion
We’ve shown that for GP Censored Regression it is in fact
possible to derive tractable objective functions and validated
our findings empirically by comparing a Censored Gaus-
sian Regressor with the default Uncensored likelihood and
comparing Gaussian processes fit using our derived ELBO
versus a MC fit. Our derivations provide a general template
to handle mixtures of discrete and continuous measures, or
measures restricted to specific domains. Our work enables
the adoption of more realistic modeling assumptions, due
to its interpretability, which reflect how we observe the real
world in practice.

1https://github.com/square/pysurvival/
raw/master/pysurvival/datasets/credit_risk.
csv
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A. Experiments
We present figure with the results2 from the investigation of the 1D regression. We fit the underlying generative function,
y = (5x− 10) sin(10x− 20) + ϵ using n = 15 data points. These are sampled and censored differently. We consider case
of left censoring at bound −3, right censoring at bound 0 and symmetric censoring with bounds −2 and 2.

Uncensored Gaussian likelihood

Censored Gaussian fit using Montecarlo simulation

Censored Gaussian fit by Variational Inference using the derived ELBO

Left-censored y ∈ [−3, inf]. Symmetric-censored y ∈ [−2, 2]. Right-censored y ∈ [− inf, 0]

Figure 1: One-dimensional GP regression. We fit the underlying generative function, y = (5x− 10) sin(10x− 20) + ϵ
using n=15 data points. These are sampled and censored differently per column. The solid blue and gray lines show the
uncensored prediction (latent posterior mean) and ground-truth function respectively. The purple and gray dashed lines
show the censored predictive posterior mean and censored ground-truth respectively. The regions shaded in dark and light
blue show the [15%, 85%] and [2.5%, 97.5%] percentiles of the latent posterior respectively.

B. Censoring and Truncating
Let us handle the missing data problem by either truncating or censoring the data. In both cases we can assume that the
data comes from some latent generative process. The observations are revealed to us only when their values are within the
observation window. When truncating the data, we discard the records when the outcome of the measurement falls outside
the observation window. This makes us unaware of anything happening outside the observation boundaries including the
quantity of the data we drop. On the other hand, during the censoring process, the values outside the observation window
are assigned an artificial threshold value. So we keep the additional information about the tails by counting the occurrence

2https://sites.google.com/view/ml-with-censored-data
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of possible values outside our observation boundaries. The censoring is often induced by the sensitivity of measuring
instruments or the information availability when the value is within a certain bounds. Both data treatments inevitably
impacts our modeling choices: the probability distribution of the data which we observe is different to the distribution of the
underlying latent data which we could observe if we had a better measuring equipment.

In the following we demonstrate how the operation of data censoring and truncation impacts the underlying probability
measures. Consider a diffusion measure νdf that is supported on R. Say the range of the values we have access to is restricted
to some compact interval [l, u]. This naturally impacts our perception of the odds with which we measure particular events.
So the first conclusion we make is that we observe the restriction of measure νdf on the interval [l, u]. Denote the measure
of the data distribution observed by us as νemp. From our view point, the values which we cannot observe due to the
restriction are considered as impossible and these events have a zero probability. This implies that the supports of the
measures νemp and νdf differ: suppνemp ⊂ suppνdf

. We further conclude, that the measures are not equivalent as their
domains of impossible events differ.

Figure 2: A Tobit likelihood aka Censored Gaussian. The support is restricted to the interval x ∈ [l, u]. Analytically this
is handled by placing point masses at x = l and x = u. Despite the non-existence of the pdf at these points, we show how to
derive the distribution’s entropy and cross-entropy.

Let us associate a normal distribution with density ϕ(x;µ, σ) with our base distribution νdf . When we choose to discard the
records outside our observation range, the values appear to us to be more frequent. This impacts the probability measure by
changing its scale comparing to the original distribution. For example, for the underlying normal distribution with density
ϕ(x;µ, σ) we have:

c

∫ u

l

ϕ(x;µ, σ)dx = c
[
Φ(u−µ

σ )− Φ( l−µ
σ )

]
= 1, (11)

and we simply infer the required scaling constant c. The truncated probability measure νtemp is given by:

νtemp ≡ 0 · νdfδ(−∞,l) +
1
C νdfδ[l,u] + 0 · νdfδ(u,∞), with C ≡ Φ(u−µ

σ )− Φ( l−µ
σ ). (12)

When censoring, the events which happens outside our observation domain are assigned the boundary value of the domain.
This does not impact our perspective on how often the events occur. Nevertheless, it changes the odds of how often occur the
events on the boundaries. We need to modify the latent measure νdf restricted on the interval [l, u] by placing the two atomic
measures on its boundaries, where the mass of the atoms corresponds to the masses of the tails of the base latent measure:

νcemp ≡ 0 · νdfδ(−∞,l) +Φ( l−µ
σ ) · νdfδl + νdfδ(l,u) + [1− Φ(u−µ

σ )] · νdfδu + 0 · νdfδ(u,∞). (13)

These changes to the probability distribution introduce a bias to the standard modeling approaches. For example, if we
consider fitting linear regression to the censored or truncated data, the OLS estimator becomes biased and inconsistent.
Figure 1 demonstrates the bias introduced to the OLS fit with the true values β0 = 1, β1 = 1 and σ = 2 of the parameters

7
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of the underlying generative process f(x) = β0 + β1x + σε2 and ε ∼ N(0, 1). When we consider the Bayesian linear
model, choosing the wrong likelihood distribution will result in introducing the bias too. Figure 2 demonstrates the impact
of placing the wrong probability distribution over the likelihood of the modified data. When placing the censored normal
distribution over the likelihood of the censored data, we recover the correct estimates of the parameters of the underlying
generative process. The correction for the linear regression model, which removes the bias of OLS estimators are available
in the literature. Correcting the biases for more complex high-dimensional models is yet to be systematically explored.
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Censoring Bias of OLS Estimated: Intercept:  0.7228, Slope  0.1065
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estimated regression line on the censored data
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Figure 3: The bias of the OLS estimator fitted to the censored and truncated data. The original data are sampled from the
regression line f(x) = 1 + x+ 2ε2 where ε ∼ N(0, 1).

C. Cross Entropy of Censored Normal
Using the measure defined in (13) we derive the cross entropy of the censored normal distribution. The cross entropy of ν
wrt to reference measure ρ defined on some measurable space (Ω,A), with ν being absolutely continuous wrt to a reference
measure ρ, is defined as:

H

(
dν
dρ

)
=

∫
Ω

log
dν
dρ

ρ(ω), (14)

where dν/dρ corresponds to the Radon-Nikodym derivative of the two considered measures.

Recall from section B that the latent diffusive measure νdf is associated with the Lebesque measure with mixed-in Dirac
measures which guarantees the existence of the density. The Radon-Nikodym decomposition of the measures characterises
the decomposition of the measure into its diffusive part and the discrete part, i.e. allows to mix in the atoms which
corresponds to the singular measures wrt Lebesque measure and atomic mesures without jeopardizing the existence of
the integral (14). This does not pose any issue for the existence of the cross-entropy as long as the absolute continuity of
measure ν wrt ρ is satisfied. We define the reference measure as ρ = λ+ δl + δu, where λ denotes the Lebesque measure.
The measure νcemp is absolutely continuous wrt ρ as anytime ρ(A) = 0, then also νcemp(A) = 0 for any A ∈ A. The

opposite does not hold and so the measures νcemp and ν are not equivalent. The Radon-Nykodym derivative of
dνc

emp

dρ defines
the density p(µ, σ, l, u), where:

p(x;µ, σ, l, u) = Φ( l−µ
σ )δl(x) + ϕ(x;µ, σ)I(l,u)(x) + [1− Φ(u−µ

σ )]δu(x). (15)

KL-divergence for the probability measures ν1, ν2, where ν2 is absolutely continuous wrt to ν1 and both measures are
absolutely continuous wrt to ρ, is defined as follows:

D

(
dν1
dρ

∥∥∥∥dν2
dρ

)
=

∫
Ω

[
log

dν2
dν1

]
dν1
dρ

ρ(ω) (16)
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Figure 4: The posterior distribution of the parameters of the estimated linear model fitted to the dataset 1) without any data
treatment, 2) with applying the truncation, 3) applying the the censoring. The red vertical line indicates the true value of the
parameter used to generate the data. The dotted lines corresponds to 5% and 95% quantile.

This implies that we can only compute one-sided KL divergence between normal and censored normal probability distribution.
We cannot swap the sides and the symmetrisation of the KL-divergence between normal and censored normal probability
distribution is not possible. This is because the censored normal distribution is absolutely continuous wrt to the normal
distribution. The normal distribution is not absolutely continuous wrt to the censored normal as it assigns non-zero mass to
the tails, which the censored normal measures as a null set. This also provides guidance on how to compute KL-divergence
between two censored normal distributions with different censoring bounds. The cross-entropy is the KL-divergence less the
entropy of left-hand side probability measure, so the same rules applies to satisfy the existence of the integral.
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C.1. Derivation of the Cross Entropy

Let us derive the (negative) cross entropy of the normal distribution with the density ϕ(m, s) and censored normal distribution
p(µ, σ; l, u) with the underlying normal density ϕ(µ, σ):

Eϕ(m,s) log p(l, u)

=

∫
R
ϕ(x;m, s) log

[
Φ( l−µ

σ )δl(x) + ϕ(x;µ, σ)δ(l,u)(x) + [1− Φ(u−µ
σ )]δu(x)

]
dx

=
[
ϕ(x;m, s) log

[
Φ( l−µ

σ )δl(x) + ϕ(x;µ, σ)δ(l,u)(x) + [1− Φ(u−µ
σ )]δu(x)

]]
x=l

+

∫ u

l

ϕ(x;m, s) log
[
Φ( l−µ

σ )δl(x) + ϕ(x;µ, σ)δ(l,u)(x) + [1− Φ(u−µ
σ )]δu(x)

]
dx

+
[
ϕ(x;m, s) log

[
Φ( l−µ

σ )δl(x) + ϕ(x;µ, σ)δ(l,u)(x) + [1− Φ(u−µ
σ )]δu(x)

]]
x=u

= ϕ( l−m
s ) log[Φ( l−µ

σ )] +

∫ u

l

ϕ(x;m, s) log ϕ(x;µ, σ)dx+ ϕ(u−m
s ) log[Φ(µ−u

σ )].

(17)

Let us compute the middle term which corresponds to the cross-entropy of two unscaled normal distributions restricted to
the compact interval [l, u]:

I ≡
∫ u

l

ϕ(x;m, s) log ϕ(x;µ, σ)dx

= − 1
2 log[2πσ

2]

∫ u

l

ϕ(x;m, s)dx − 1√
2πs2

∫ u

l

(x−µ)2

2σ2 e−
(x−m)2

2s2 dx.
(18)

The first term is the difference of the normal CDF at the transformed boundaries. For computing the second term we use the
following trick: [(x−m) + (m− µ)]2 = (x−m)2 + 2x(m− µ) + µ2 −m2:

1√
2πs2

∫ u

l

(x−µ)2

2σ2 e−
(x−m)2

2s2 dx = s2

σ2
√
2πs2

∫ u

l

(x−m)2+2x(m−µ)+µ2−m2

2s2 e−
(x−m)2

2s2 dx. (19)

To evaluate the first term in (19) we use substitution z = x−m
s . Because

[
−ze−

z2

2

]
dz = z2e−

z2

2 − e−
z2

2 , we can compute

the second term of the above integral in the closed form:

1√
2π

∫ u−m
s

l−m
s

z2e−
z2

2 dz = 1√
2π

∫ u−m
s

l−m
s

e−
z2

2 dz − 1√
2π

[
ze−

z2

2

]u−m
s

l−m
s

= Φ(u−m
s )− Φ( l−m

s )− u−m
s ϕ(u−m

s ) + l−m
s ϕ( l−m

s ).

(20)

Let us evaluate the middle term in (19). Recall
[
−e−

z2

2

]
dz = ze−

z2

2 and substitute z = x−m
s :

1√
2πs2

∫ u

l

xe−
(x−m)2

2s2 dx = s√
2π

∫ u−m
s

l−m
s

ze−
z2

2 dz + m√
2πs2

∫ u−m
s

l−m
s

e−
z2

2 dz

= m[Φ(u−m
s )− Φ( l−m

s )]− s[ϕ(u−m
s )− ϕ( l−m

s )].

(21)

Putting it all together we have the expression for the integral I:

I = − 1
2 log[2πσ

2][Φ(u−m
s )− Φ( l−m

s )]− s2

2σ2 [Φ(
u−m

s )− Φ( l−m
s )− u−m

s ϕ(u−m
s ) + l−m

s ϕ( l−m
s )]

− 2(m−µ)
2σ2 {m[Φ(u−m

s )− Φ( l−m
s )]− s[ϕ(u−m

s )− ϕ( l−m
s )]} − µ2−m2

2σ2 [Φ(u−m
s )− Φ( l−m

s )]

= {m2−µ2−2m(m−µ)−s2

2σ2 − 1
2 log[2πσ

2]}[Φ(u−m
s )− Φ( l−m

s )] + (u+m−2µ)s
2σ2 ϕ(u−m

s )− (l+m−2µ)s
2σ2 ϕ( l−m

s ).
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The formula for the cross entropy is:

−Eϕ(m,s) log p(µ, σ, l, u)

= − ϕ( l−m
s ) log[Φ( l−µ

σ )]− I − ϕ(u−m
s ) log[Φ(µ−u

σ )]

= { 1
2 log[2πσ

2] + (µ−m)2+s2

2σ2 }[Φ(u−m
s )− Φ( l−m

s )]

− {log Φ(µ−u
σ ) + (u+m−2µ)s

2σ2 }ϕ(u−m
s )

− {log Φ( l−µ
σ )− (l+m−2µ)s

2σ2 }ϕ( l−m
s )

(22)

D. Approximate Inference for Tobit Gaussian Process Regressors
Gaussian processes (GPs) are a popular choice of a prior for Bayesian non-parametric regression. Gaussian process is
defined as a stochastic process indexed by a set X ∈ Rd: such that {f(x) : x ∈ X}. Every finite combination of random
variables of the process has a joint Gaussian distribution. Formally, GPs are distributions over functions. A GP is fully
specified by its mean function µ and covariance structure over some finite set X = {x1, . . . ,xn}, GP is uniquely defined by
p(f |D) = N (f |µ,K) with latent vector f = (f(x1), . . . , f(xn)), mean vector µ = (µ(x1), . . . , µ(xn)) and covariance
matrix K = k(xi,xj)i,j=1,...n.

We denote the observed data as D = {(xi, yi), i = 1 . . . n}, where y = (y1, . . . yn) is the vector of labels. To simplify
notation, we also denote by θ the set of the Gaussian process parameters in general, e.g. θ = (µ,K).

D.1. Gaussian Process Model for Regression

To simplify the notation, we denote fi = f(xi), i = 1 . . . n. The standard GP regression task is focused on estimating the
latent function f out of noisy observations y ∈ Rn: yi = fi + εi, i = 1, . . . , n and where εi ∼ N (ε|0, σ2

y).

To estimate the parameters, we can write the likelihood function, which is Gaussian due to the assumption on the noise term:

p(y|f , σy) = N (y|f , σ2
yInn), (23)

where Inn denotes n× n identity matrix.

To introduce Bayesian inference we assume zero mean prior GP with kernel function k(xi,xj): f ∼ GP (0, k(xi,xj)). So
the joint distribution of the latent function values corresponding to any set X of input data is a multivariate Gaussian:

p(f |θ) = N (f |0,Knn), (24)

where θ denotes the parameters of the kernel function and the noise parameter σy. Using Bayes rule we obtain for of
posterior:

p(f |D,θ) =
p(f |X,θ)p(y|f)

p(D|θ)
=

N (f |0,Knn)

p(D|θ)
N (y|f , σ2

yInn). (25)

The marginal likelihood can be evaluated as:

p(D|θ) =
∫

p(y|f)p(f |X,θ)df =

∫
N (y|f , σ2

yInn)N (f |0,Knn)df . (26)

Because we marginalise out from the two multivariate normals, the resulting distribution is also multivariate normal:
p(y|θ) = N (y|0,Knn + σ2

yInn). To estimate the parameters θ of the marginal likelihood we can use gradient based
optimisation to maximise the marginal log-likelihood of the model.

D.2. Gaussian Process for Binary Classification

While the inference for regression task has many analytic advantages, even the binary classification loses analytical
tractability. For the binary classification task: yi takes one of the two values {−1, 1} only. The probability of the positive
outcome p(yi = 1|x) = σ̃(f(x)), where σ̃(·) denotes the sigmoid transformation. For example, lets consider a probit model:
p(yi = 1|x) = Φ(f(x)), where Φ(·) is the CDF of standard normal distribution. The class labels are Bernoulli variables
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with parameter Φ(f(x)). The likelihood for the binary classification case then corresponds to the product distribution:

p(y|f) =
n∏

i=1

p(yi|fi) =
n∏

i=1

Φ(yifi) (27)

Placing the GP prior over the latent function f , as in (28) leads to posterior:

p(f |D,θ) =
p(f |X,θ)

p(D|θ)

n∏
i=1

p(yi|fi) =
N (f |0,Knn)

p(D|θ)

n∏
i=1

Φ(yifi) (28)

Following similar methodology as for the regression task, we would like to evaluate the marginal likelihood:

p(D|θ) =
∫

p(y|f)p(f |X,θ)df =

∫ n∏
i=1

Φ(yifi)N (f |0,Knn)df , (29)

however due to the Bernoulli likelihood, the marginal likelihood is analytically intractable.

D.3. Gaussian Process Censored Regression

The censored regression problem corresponds to the case where the true target value η ∈ R are partially unobservable and
instead we observe the censored version of the target y. For the censoring lower and upper thresholds: l < u ∈ R, we
describe the censoring process is described as:

y =


l, if η ≤ l,

η, if l < η < u,

u, if η ≥ u,

(30)

i.e. the values inside the censoring range are shifted to the boundaries of the range and assigned a single value.

Consider the standard GP regression from D.1, where we estimate the latent function f out of noisy observations η ∈ Rn:
ηi = fi + εi, i = 1, . . . , n and where εi ∼ N (ε|0, σ2

y). Because the latent noisy targets are censored, our problem
reformulates as: yi = fi + ϵi, i = 1, . . . , n, where ϵi ∼ Nc(ε|0, σ2

y, l, u) comes from censored normal distribution with
the censoring thresholds l < u. We can see this problem also as a combination of two probit models placed on the lower
threshold p(yli = 1|x) = Φ(f(x)|l, σ2

y), upper threshold p(yui = 1|x) = 1 − Φ(f(x)|u, σ2
y), while having a normal

regression model p(y|f , σy) = N (y|f , σ2
yInn) otherwise.

From this initial motivation, we can write the likelihood of the censored model as:

p(y|f) =
∏
yi≤l

Φ(l|fi, σ2
y)

∏
l<yi<u

N (yi|fi, σ2
y)

∏
yi≥u

[1− Φ(u|fi, σ2
y)]. (31)

We place the GP prior over the latent function f as in (24) and obtain the posterior distribution over these latent parameters
f :

p(f |D,θ) =
p(f |X,θ)

p(D|θ)

n∏
i=1

p(yi|fi)

=
N (f |0,Knn)

p(D|θ)
∏
yi≤l

Φ(l|fi, σ2
y)

∏
l<yi<u

N (yi|fi, σ2
y)

∏
yi≥u

[1− Φ(u|fi, σ2
y)].

(32)

The marginal likelihood is analytically intractable due to the atoms on the censoring boundaries. Also note, that Φ(x|m, s2) =
1 − Φ(m|x, s2). We will use this relationship to split the posterior into the truncated Gaussian part and the analytically
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intractable mixture.

p(D|θ) =
∫

p(y|f)p(f |X,θ)df

=

∫ ∏
yi≤l

Φ(l|fi, σ2
y)

∏
l<yi<u

N (yi|fi, σ2
y)

∏
yi≥u

[1− Φ(u|fi, σ2
y)]N (f |0,Knn)df

=

∫
N (yδy∈(l,u)|f , σ2

y)N (f |0,Knn)df +

∫ ∏
yi≤l

[1− Φ(fi|l, σ2
y)N (f |0,Knn)df+

+

∫ ∏
yi≥u

Φ(fi|u, σ2
y)N (f |0,Knn)df

= N (yδy∈(l,u)|0,Knn + σ2
yInn) +

∫ ∏
yi≤l

[1− Φ(fi|l, σ2
y)N (f |0,Knn)df+

+

∫ ∏
yi≥u

Φ(fi|u, σ2
y)N (f |0,Knn)df .

(33)

D.3.1. VARIATIONAL INFERENCE FOR CENSORED REGRESSOR

Let us assume the Gaussian approximation of the posterior distribution:

p(f |D,θ) ≈ q(f |D, θ̂) = N (f |f̂ ,A), (34)

The goal is to minimize the KL divergence between the Gaussian approximation of the posterior and the posterior itself. In
the following we provide the derivation of the evidence lower bound (ELBO) with the censored normal likelihood p(y|f)
and Gaussian prior p(f):

KL
[
q(f |D, θ̂)||p(f |D,θ)

]
=

∫
q(f |D, θ̂)

[
ln q(f |D, θ̂)− ln p(f |D,θ)

]
df

=

∫
q(f |D, θ̂)

[
ln q(f |D, θ̂)− ln p(f |X,θ)− ln p(y|f) + ln p(D|θ)

]
df

= KL
[
q(f |D, θ̂)||p(f |X,θ)

]
−

∫
q(f |D, θ̂) ln p(y|f)df + ln p(D|θ).

(35)

Because left handside term KL [q(f)||p(f |D,θ)] is non-negative and we aim to minimize this distance, we write the ELBO
as:

ln p(D|θ) ≥ Eq(f |D,θ̂) [ln p(y|f)]−KL
[
q(f |D, θ̂)||p(f |X,θ)

]
=

n∑
i=1

Eq(fi|D,θ̂) ln p(yi|fi)−KL
[
q(f |D, θ̂)||p(f |X,θ)

]
.

(36)

The first term comprises the (negative) cross entropies of the approximate posterior with respect to the likelihood. The cross
entropy can be split into two terms: a factorised likelihood and a marginalisation term of the remaining variables. We can
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then apply the derived crossed entropy between Gaussian and censored distribution. Let us derive the analytic form:

n∑
i=1

Eq(fi|D,θ̂) log p(yi|fi)

=−
n∑

i=1

(
log[

√
2πσy] +

(fi−f̂i)
2+a2

ii

2σ2
y

) [
Φ
(

u−f̂i
aii

)
− Φ

(
l−f̂i
aii

)]
+

n∑
i=1

[
log Φ

(
fi−u
σy

)
+ (u+f̂i−2fi)aii

2σ2
y

]
ϕ
(

u−f̂i
aii

)
+

n∑
i=1

[
log Φ

(
l−fi
σy

)
− (l+f̂i−2fi)aii

2σ2
y

]
ϕ
(

l−f̂i
aii

)
.

(37)

The second term is the KL divergence between two multivariate Gaussian distributions. It can be written in matrix calculus
as follows:

KL
[
q(f |D, θ̂)||p(f |X,θ)

]
= KL

[
N (f |f̂ ,A)||N (f |0,Knn)

]
= EN (f |f̂ ,A)

[
lnN (f |f̂ ,A)− lnN (f |0,Knn)

]
=

1

2
EN (f |f̂ ,A)

[
− ln |A| − (f − f̂)TA−1(f − f̂) + ln |Knn|+ fTK−1

nnf
]

=
1

2
ln

|A|
|Knn|

+
1

2
EN (f |f̂ ,A)

[
− tr[A−1(f − f̂)(f − f̂)T ] + tr[K−1

nnff
T ]
]

=
1

2
ln

|A|
|Knn|

− 1

2
tr(AA−1) +

∫
tr[K−1

nnff
T ]N (f |f̂ ,A)df

=
1

2

[
ln |A| − ln |Knn| − n+ tr(K−1

nnA) + f̂TK−1
nnf̂

]
.

(38)

We arrive to the final version of the ELBO:

ln p(D|θ) ≥−
n∑

i=1

(
log[

√
2πσy] +

(fi−f̂i)
2+a2

ii

2σ2
y

) [
Φ
(

u−f̂i
aii

)
− Φ

(
l−f̂i
aii

)]
(39)

+

n∑
i=1

[
log Φ

(
fi−u
σy

)
+ (u+f̂i−2fi)aii

2σ2
y

]
ϕ
(

u−f̂i
aii

)
(40)

+

n∑
i=1

[
log Φ

(
l−fi
σy

)
− (l+f̂i−2fi)aii

2σ2
y

]
ϕ
(

l−f̂i
aii

)
(41)

− 1

2

[
ln |A| − ln |Knn| − n+ tr(K−1

nnA) + f̂TK−1
nnf̂

]
. (42)
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