
Under review as a conference paper at ICLR 2022

AN INVESTIGATION ON HARDWARE-AWARE VISION
TRANSFORMER SCALING

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision Transformer (ViT) has demonstrated promising performance in various
computer vision tasks, and recently attracted a lot of research attention. Many
recent works have focused on proposing new architectures to improve ViT and
deploying it into real-world applications. However, little effort has been made
to analyze and understand ViT’s architecture design space and its implication of
hardware-cost on different devices. In this work, by simply scaling ViT’s depth,
width, input size, and other basic configurations, we show that a scaled vanilla ViT
model without bells and whistles can achieve comparable or superior accuracy-
efficiency trade-off than most of the latest ViT variants. Specifically, compared to
DeiT-Tiny, our scaled model achieves a ↑ 1.9% higher ImageNet top-1 accuracy
under the same FLOPs and a ↑ 3.7% better ImageNet top-1 accuracy under the
same latency on an NVIDIA Edge GPU TX2. Motivated by this, we further
investigate the extracted scaling strategies from the following two aspects: (1) “can
these scaling strategies be transferred across different real hardware devices?”;
and (2) “can these scaling strategies be transferred to different ViT variants and
tasks?”. For (1), our exploration, based on various devices with different resource
budgets, indicates that the transferability effectiveness depends on the underlying
device together with its corresponding deployment tool; for (2), we validate the
effective transferability of the aforementioned scaling strategies obtained from a
vanilla ViT model on top of an image classification task to the PiT model, a strong
ViT variant targeting efficiency, as well as object detection and video classification
tasks. In particular, when transferred to PiT, our scaling strategies lead to a boosted
ImageNet top-1 accuracy of from 74.6% to 76.7% (↑ 2.1%) under the same 0.7G
FLOPs; and when transferred to the COCO object detection task, the average
precision is boosted by ↑ 0.7% under a similar throughput on a V100 GPU.

1 INTRODUCTION

Transformer (Vaswani et al., 2017), which was initially proposed for natural language processing
(NLP) and is a type of deep neural networks (DNNs) mainly based on the self-attention mechanism,
has achieved significant breakthroughs in NLP tasks. Thanks to its strong representation capabilities,
many works have developed ways to apply Transformer to computer vision (CV) tasks, such as
image classification (Dosovitskiy et al., 2021), object detection (Carion et al., 2020), semantic
segmentation (Wu et al., 2020), and video classification (Bertasius et al., 2021). Among them, Vision
Transformer (ViT) (Dosovitskiy et al., 2021) stands out and demonstrates that a pure Transformer
applied directly to sequences of image patches can perform very well on image classification tasks,
e.g., achieving a comparable ImageNet (Deng et al., 2009) top-1 accuracy as ResNet (He et al., 2016).
Motivated by ViT’s promising performance, a fast growing number of works follow it to explore pure
Transformer architectures in order to push forward its accuracy-efficiency trade-off and deployment
into real-world applications (Touvron et al., 2020; Heo et al., 2021; Graham et al., 2021; Liu et al.,
2021; Wu et al., 2021), achieving an even better performance than EfficientNetV1 (Tan & Le, 2019),
a widely used efficient convolutional neural network (CNN).

The success of recent ViT works suggests that the model architecture is critical to ViT’s achievable
performance. Therefore, in this work we explore ViT architectures from a new perspective, aiming
to analyze and understand ViT’s architecture design space and real hardware-cost across different

1

Under review as a conference paper at ICLR 2022

devices. Despite the recent excitement towards ViT models and the success of model scaling for
CNNs, little effort has been made into exploring ViT’s model scaling strategies or hardware-cost.

Im
ag

eN
et

 to
p-

1
ac

cu
ra

cy
 (%

)

FLOPs (G)

DeiT-Scaled (Ours)

PiT-Scaled (Ours)

Figure 1: Our scaled ViT models achieve comparable
or better accuracy-efficiency trade-off as compared to
some recent dedicatedly designed ViT variants.

Note that directly applying the scaling
strategies for CNNs (Tan & Le, 2019;
Sun et al., 2017) or Transformer on NLP
tasks (Kaplan et al., 2020; Henighan et al.,
2020) will lead to sub-optimality, as dis-
cussed in Section 3.2. Furthermore, scaling
strategies targeting one device/task might
not be transferable to another device/task.
Interestingly, we find that simply scaled
ViT models can achieve comparable or
even better accuracy-efficiency trade-off
than dedicatedly designed ViT variants, as
shown in Figure 1. Motivated by this, we
further explore the transferability of our
scaling strategies (1) across different real
hardware devices and (2) to different ViT
variants and tasks. In particular, we make
the following contributions:

• We are the first to show that simply scaled vanilla ViT models can achieve comparable or
even better accuracy-efficiency trade-off as compared to dedicatedly designed ViT vari-
ants (Touvron et al., 2021; Yuan et al., 2021; Zhou et al., 2021; Chen et al., 2021; Wu et al.,
2021; Liu et al., 2021; Chu et al., 2021; Touvron et al., 2020; Heo et al., 2021), as illustrated
in Figure 1. Specifically, as compared to DeiT-Tiny, our scaled model achieves a ↑ 1.9%
higher ImageNet top-1 accuracy under the same FLOPs and a ↑ 3.7% better ImageNet top-1
accuracy under the same latency on an NVIDIA Edge GPU TX2.

• We study the transferability of the scaled ViT models across different devices and show that
the transferability effectiveness depends on the underlying devices and deployment tools.
For example, scaling strategies targeting FLOPs or the throughput on V100 GPU (NVIDIA
LLC.) can be transferred to the Pixel3 (Google LLC., a) device with little or even no
performance loss, but those targeting the latency on TX2 (NVIDIA Inc., c) may not be
transferred to other devices due to the obvious performance loss. Additionally, we provide
ViT models’ cost breakdown and rank correlation between their hardware-cost on different
devices for better understanding it.

• We show that our scaling strategies can also be effectively transferred to different ViT
variants and recognition tasks to further boost the achieved accuracy-efficiency trade-off,
e.g., achieving a ↑ 2.1% higher accuracy under a similar FLOPs when being transferred to
the PiT model and ↑ 0.7% higher average precision under a similar inference throughput
when being transferred to an object detection task.

2 RELATED WORKS

Vision Transformers. Transformer was first proposed for machine translation (Vaswani et al., 2017).
Motivated by its state-of-the-art (SOTA) performance in NLP tasks, there has been a growing interest
in applying the Transformer/self-attention mechanism to CV tasks, e.g., by proposing novel attention
mechanisms for CNNs (Hu et al., 2018; Li et al., 2019; Zhang et al., 2020), fusing Transformer
and CNN designs within the same model (Bello et al., 2019; Carion et al., 2020; Wu et al., 2020),
or designing pure Transformer models (Dosovitskiy et al., 2021; Chen et al., 2020). Among them,
ViT (Dosovitskiy et al., 2021) has achieved SOTA performance by directly applying the Transformer
architecture for NLP tasks to the input raw image patches of vision tasks. Nevertheless, ViT’s powerful
performance largely depends on its pre-training on JFT-300M (Sun et al., 2017) (a giant private
labelled dataset). As such, DeiT (Touvron et al., 2020) further develops an improved training recipe
(i.e., the setting of optimization hyper-parameters), including a distillation setup and stronger data
augmentation and regularization, to achieve comparable performance while removing the necessity
of the costly pre-training. In order to build more efficient ViT models, (Chen et al., 2021) leverages
multiple branches to extract and fuse features at different scales; (Heo et al., 2021; Graham et al.,

2

Under review as a conference paper at ICLR 2022

2021; Liu et al., 2021; Fan et al., 2021; Wang et al., 2021) apply a pyramid-like architecture commonly
used in CNNs to ViT; and (Graham et al., 2021; Liu et al., 2021; Wu et al., 2021) propose more
efficient attention mechanisms or feature projection blocks.

Model scaling. Prior works have explored scaling CNNs/NLP-Transformer (i.e., Transformer in
NLP tasks) to boost its accuracy or lower its computational resource requirements, e.g., ResNet
can be scaled along its depth dimension (He et al., 2016) and MobileNets can be scaled along its
width (i.e., the number of channels) and input resolution dimensions (Sandler et al., 2018; Howard
et al., 2019). Notably, EfficientNet further points out that it is critical to scale CNNs in a compound
manner (i.e., simultaneously scaling the model width, depth, and input resolution) and does so to
achieve SOTA accuracy-efficiency trade-off (Tan & Le, 2019). Nevertheless, as (Bello et al., 2021)
demonstrates, the scaling strategies obtained from a specific model (e.g., EfficientNet-B0) can result
in a sub-optimal accuracy-efficiency trade-off for another model; motivated by this observation, they
develop a more general scaling strategies extracted from grid search experiments based on the chosen
training recipe rather than a specific model, achieving an improved trade-off. In addition to scaling
the model architecture, (Kaplan et al., 2020; Henighan et al., 2020) show that scaling up the dataset
size and the number of computations used for training can also help to achieve a smaller cross-entropy
loss for Transformer in NLP tasks. Recently, Zhou et al. (2021) demonstrates that the accuracy of
ViT will decrease when it is scaled up along only the depth dimension (i.e., number of layers), and
proposes Re-attention to resolve it.

Nevertheless, none of the prior works has targeted scaling strategies for ViT with multiple scaling
factors or study its real-hardware efficiency across different platforms featuring diverse computational
and storage capabilities. Additionally, it is not clear whether their insights on scaling CNNs can be
directly applied to ViT because of their different scaling factor definitions, e.g., while the number of
channels represents the width in CNNs, the number of heads and embedding dimensions can both
represent the width in ViT. As such, scaling strategies dedicated to ViT are highly desirable and
our scaling strategies can provide unique insights to inspire more innovations towards efficient ViT
models. Although there is some model scaling strategy explorations in (Dosovitskiy et al., 2021; Zhai
et al., 2021), our work distinguishes with them in providing more discoveries and insights. Specially,
we focus more on the accuracy vs. efficiency trade-off when scaling ViTs instead of merely the
accuracy; and (2) provide additional analysis on the transferability of the extracted scaling strategies
across different devices, ViT variants, and tasks.

3 SCALING VIT: HOW AND WHY DO WE SCALE VIT?

In this section, we first analyze the scaling factors of ViT, then study the effectiveness of prior scaling
strategies, which are dedicated to CNNs or Transformers, on ViT, and finally present our iterative
greedy search approach to scale ViT.

3.1 SCALING FACTORS IN VIT

LayerNorm

Multi-Head Attention

LayerNorm

Feed Forward

Classification Header

Split & embed

Q

K

V

Self-Attention

Linear

Linear

Linear

Linear

Figure 2: Illustrating the effect of scaling fac-
tors on a ViT architecture (class/distillation
token is omitted for better visual clarity).

As analyzed in (Kaplan et al., 2020), the scaling fac-
tors in Transformers include the number of layers
(d), the number of heads (h), the embedding dimen-
sion for each head (e), and the linear projection ratio
(r). ViT, which directly adopts the Transformer ar-
chitecture for NLP tasks and splits the raw images
into patches to serve as the Transformer input, adds
additional scaling factors, including image resolu-
tion (I) and patch size (p). Figure 2 illustrates and
summarizes our considered scaling factors for ViT.

3.2 PREVIOUS SCALING STRATEGIES FAIL ON VIT

CNN and ViT scaling factors do not match. Scaling strategies dedicated to CNNs (Tan & Le, 2019;
Sun et al., 2017; Feichtenhofer, 2020) mostly come with CNN-specific scaling factor definitions
(e.g., the number of channels in convolution layers represents the model width), which cannot be
directly transferred to ViT. For example, doubling (2×) the width in CNNs can be achieved via
various combinations of the number of heads (h) and embedding dimension for each head (e) in ViT.

3

Under review as a conference paper at ICLR 2022

Aspect ratio ()

Im
ag

eN
et

 to
p-

1
ac

cu
ra

cy
 (%

)

6M Params (DeiT-Tiny Level)
22M Params (DeiT-Small Level)
87M Params (DeiT-Base Level)

↑18.61%

Figure 3: The accuracy of ViT is sensitive to the aspect
ratio. Note that the vertically aligned points are models
with the same scaling factors except image resolution (I).

Furthermore, there are extra scaling fac-
tors for ViT, e.g., the linear projection
ratio (r) and the patch size (p), which do
not exist in the scaling factors for CNNs
but are important for ViT as shown in Ap-
pendix D, thus directly transferring the
scaling strategies from CNNs to ViTs can
lead to ambiguity and sub-optimal perfor-
mance.
Transformer scaling strategies for
NLP is sub-optimal on ViT. (Kaplan
et al., 2020) noted that for NLP, model
performance (i.e., accuracy or training
loss) depends “strongly on the model
scale (i.e., the number of parameters), but
weakly on the model shape”. However,
when scaling ViT along the factors sum-
marized in Figure 2, our observations suggest that this is not true for ViT. As shown in Figure 3,
when performing an extensive search on top of DeiT-Small (Touvron et al., 2020) following (Sun
et al., 2017), we observe that a model’s shape has a great impact on the performance. Specifically, if
we change the aspect ratio, i.e., the ratio between the embedding dimension (e× h) and the number
of layers (d), while keeping the model parameters to be the same, the accuracy drifts as much as
18.61%. This set of experiments motivates exploring scaling strategies dedicated to ViT.

3.3 OUR SCALING METHOD BASED ON AN ITERATIVE GREEDY SEARCH

Table 1: The starting point model
for our scaling method.

Num. of layers (d) 6
Num. of heads (h) 2

Embedding dim. per head (e) 64
Linear projection ratio (r) 4

Image resolution (I) 160
Patch size (p) 16

FLOPs (G) 0.15
Throughput on V100 (FPS) 20086

Latency on Pixel3 (ms) 30.05
Latency on TX2 (ms) 4.42

Starting from a relatively small model defined in Table 1, we
adopt a simple iterative greedy search to perform the ViT scal-
ing step by step, similar to the previous algorithms for exploring
CNN design spaces and feature selections (Feichtenhofer, 2020;
John et al.; Jain & Zongker, 1997; Guyon & Elisseeff, 2003).
Specifically, based on the starting point model or the optimal
one from the previous scaling step, we scale up the model
along each standalone scaling factor introduced in Section 3.1
to match the target hardware-cost (e.g., FLOPs, or latency on
a specific hardware device), and select the one with the best
accuracy-efficiency trade-off to be the starting point model of
the next step. As analyzed in (Bello et al., 2021), unlike scaling
strategies extracted from a specific model, scaling based on such an iterative greedy search can
avoid the unscalability of the resulting scaling strategies on a specific model. Our experiments in
Section 4.1 also verify that such a scaling method is simple yet effective for scaling ViT models, and
only requires training a few models during each search step.

4 EXPERIMENT RESULTS

In this section, we first present experiments for evaluating the scaled vanilla ViT models resulting
from the iterative greedy search described in Section 3.3, in terms of accuracy-FLOPs trade-offs
on ImageNet (Deng et al., 2009). From this set of experiments, we then extract a set of scaling
strategies dedicated to ViT. After that, we further conduct experiments to study the transferability of
our extracted scaling strategies (1) across different devices and (2) to different ViT variants and tasks.

4.1 SCALING VIT TOWARDS BETTER ACCURACY-FLOPS TRADE-OFFS

Following the scaling approach described in Section 3.3, we set 2× FLOPs of the initial or selected
model from the previous step as the target hardware-cost in each step when individually scaling each
factor, as summarized in Figure 2. All networks are trained for 300 epochs on ImageNet (Deng et al.,
2009) using the same training recipe with the one in DeiT (Touvron et al., 2020), more details are
included in Appendix E. We summarize our observations as follow:

4

Under review as a conference paper at ICLR 2022

Table 2: Our scaled ViT models outperform DeiT on ImageNet under the same FLOPs constrains.

Model FLOPs (G) Top-1 accuracy (%) d h e r I p

DeiT-Tiny 1.26 74.5 12 3 64 4 224 16
DeiT-Scaled-Tiny 1.22 76.4 (↑1.9) 14 4 64 4 160 16

DeiT-Small 4.62 81.2 12 6 64 4 224 16
DeiT-Scaled-Small 4.79 81.6 (↑0.4) 20 4 64 4 256 16

DeiT-Base 17.66 83.4 12 12 64 4 224 16
DeiT-Scaled-Base 16.82 83.8 (↑0.4) 20 6 64 4 320 16

Scaled ViT models outperform SOTA DeiT models. As shown in Table 2, our scaled ViT models
(e.g., DeiT-Scaled-Tiny/Small/Base) achieve a ↑0.4% ∼ ↑1.9% higher top-1 accuracy on ImageNet
under the same FLOPs constraints. Specifically, our DeiT-Scaled-Tiny model chooses to use a smaller
image resolution (i.e., 160×160 vs. 224×224) and more layers and a higher number of heads as
compared to the SOTA DeiT-Tiny model, and thus achieves a ↑1.9% higher accuracy at the same
cost in terms of FLOPs, while our DeiT-Scaled-Small/Base models choose to use a larger image
resolution (i.e., 320/256×320/256 vs. 224×224) and more layers, together with a lower number of
heads as compared to the SOTA DeiT-Small/Base model, helping them to achieve a ↑0.4% higher
accuracy under similar FLOPs. This set of experiments shows that our simple search method can
(1) effectively locate ViT models with better accuracy-FLOPs trade-offs and (2) automatically adapt
different scaling factors towards the optimal accuracy-FLOPs trade-offs, e.g., different model shapes
and structures at different scales of FLOPs.

Random permutation further boosts the performance. Inspired by the coarse-to-fine architecture
selection scheme adopted in (Yu et al., 2020), we further randomly permute the scaling factors (i.e.,
d, h, e, r, I , and p) of each scaled model in Table 2. After the permutation, we select 24 architectures
under the same target hardware-cost with the scaled model by iterative greedy search for each scaled
model. Figure 4 demonstrates that (1) such a random permutation can slightly push forward the
frontier of accuracy-FLOPs trade-off (e.g., a ↑0.4% higher accuracy under similar FLOPs on top of
the scaled models resulting from the adopted simple scaling method); and (2) our adopted iterative
greedy search alone is sufficiently effective while requiring a lower exploration cost (e.g., 6 vs. 30
(6+24) models to be trained for each step as compared to such a search method together with the
aforementioned permutation).

FLOPs (G)

Im
ag

eN
et

 to
p-

1
ac

cu
ra

cy
 (%

)

DeiT

DeiT-Scaled

DeiT-Scaled-RP
Random permutate DeiT-Scaled

↑1.9%
↑0.5%

↑0.4%
↑0.4%

Figure 4: Random permutation on top of the
DeiT-Scaled, where those on the Pareto fron-
tier are marked as DeiT-Scaled-RP.

Table 3: Scaled ViT models after training for 1000
epochs.

Model FLOPs (G) Top-1 accuracy (%)

DeiT-Tiny 1.26 74.5
DeiT-Scaled-Tiny 1.22 76.4 (↑1.9)

DeiT-Tiny / 1000 epochs 1.26 76.6
DeiT-Scaled-Tiny / 1000 epochs 1.22 78.3 (↑1.7)

DeiT-Small 4.62 81.2
DeiT-Scaled-Small 4.79 81.6 (↑0.4)

DeiT-Small / 1000 epochs 4.62 82.6
DeiT-Scaled-Small / 1000 epochs 4.79 82.9 (↑0.3)

Scaled ViT also benefits from a longer training time. As pointed out by (Touvron et al., 2020),
training ViT models for more epochs (e.g., 1000 epochs) can further improve the achieved accuracy.
To verify whether the scaled ViT models can benefit from more training epochs, we train the models
in Table 2 for 1000 epochs following the training recipe in (Touvron et al., 2020). As shown in
Table 3, longer training epochs also help our scaled models (e.g., DeiT-Scaled-Tiny/Small) to achieve
a higher accuracy, and thus, the advantage of our scaled models over DeiT is consistent under both
the 300-epochs training recipe and 1000-epochs training recipe, e.g., a ↑1.9% higher accuracy over
DeiT-Tiny with 300 epochs vs. a ↑1.7% higher accuracy over DeiT-Tiny with 1000 epochs.

Drawn insights from scaling ViT. Based on the observations from the above experiments, especially
the scaling strategies illustrated in Figure 5, we draw the following scaling insights dedicated to ViT:

5

Under review as a conference paper at ICLR 2022

(1) When targeting relatively small models (i.e., with smaller FLOPs than DeiT-Scaled-Small), the
optimal models tend to select “scaling h (i.e., the number of heads)” or “scaling d (i.e., the number of
layers)” and a “smaller I (i.e., the input image resolution)” (e.g., 160 × 160 instead of the commonly
used 224 × 224).

FLOPs (G)

Im
ag

eN
et

 to
p-

1
ac

cu
ra

cy
 (%

)

DeiT-Scaled
Scale
Scale
Scale
Scale
Scale
Scale

Scale

Scale

Scale
Scale

Scale Scale
Scale

DeiT-Scaled-Tiny

DeiT-Scaled-Small
DeiT-Scaled-Base

Figure 5: Resulting models from our iterative
greedy search, where models achieving the best
accuracy-FLOPs trade-offs are marked as DeiT-Scaled-
Tiny/Small/Base. The architecture configurations (i.e.,
sets of d, h, e, r, I , and p) leading to these best models
are extracted as our scaling strategies dedicated to ViT.

(2) When targeting relatively large models
(i.e., with larger FLOPs than DeiT-Scaled-
Small), the optimal models mainly select
to “scaling I (i.e., the input image resolu-
tion)”, while “slowing down scaling h (i.e.,
number of heads)” as compared to the case
when targeting relatively small models.

4.2 TRANSFERABILITY OF
THE EXTRACTED SCALING STRATEGIES
ACROSS DIFFERENT DEVICES

To evaluate the transferability of the ex-
tracted scaling strategies across different
real hardware devices, we consider 3 hard-
ware devices which target different appli-
cations as summarized in Table 4. More
details about the setup of these devices are
provided in Appendix B.

4.2.1 TRANSFERABILITY AMONG DIFFERENT DEVICES

To obtain the hardware-dedicated scaling strategies leading to the best accuracy-efficiency trade-off
on each device, we follow the scaling search method described in Section 4.1, but replace the target
hardware-cost with (1) 0.5× throughput measured on an NVIDIA V100 GPU (i.e., V100) (NVIDIA
LLC.) (2) 2× latency measured on an NVIDIA Edge GPU TX2 (i.e., TX2) (NVIDIA Inc., c), and
(3) 2× latency measured on a Google Pixel3 device (i.e., Pixel3) (Google LLC., a), to simulate the
model scaling for (1) cloud services with strong GPUs, (2) edge computing with weak GPUs, and (3)
mobile deployment without GPUs, respectively. We then compare the scaled models that achieve the
best accuracy-efficiency trade-off on each device, as shown in Figure 6, aiming to answer “can our
scaling strategies be transferred across different real hardware devices?”. This set of comparisons
provides some interesting observations:

(1) The simple scaling approach is effective on different hardware devices. From the comparison
between the scaled models with FLOPs, throughput on V100, latency on TX2, and latency on Pixel3
as the hardware-cost during scaling (i.e., FLOPs (), V100 (), TX2 (), and Pixel3 () Scaling in
Figure 6) and the SOTA DeiT model (i.e., Baseline () in Figure 6), as shown in Figure 6) (a), (b),
(c), and (d), respectively, we can see that all the device-dedicated scaled models resulting from the
iterative greedy search method described in Section 3.3 achieve a better accuracy-efficiency trade-off
than the baseline DeiT, indicating the necessity of device-dedicated scaling. Specifically, the scaled
models targeting the TX2 device () can achieve a ↑ 3.7% higher accuracy under a similar latency on
TX2, as compared to the DeiT-Tiny model. This set of experiments verifies that the adopted scaling
approach is simple yet effective across different devices or targeting hardware metrics.

(2) The transferability of our scaling strategies across different devices depends on the under-
lying device. From Figure 6, we can observe that (i) the scaled models directly targeting a device
indeed always lead to the best accuracy-efficiency trade-off on the device, indicating that our scal-
ing search method can adapt to different devices; and (ii) the performance of the device-dedicated

Table 4: Important details about the 3 hardware devices in the transferability exploration experiments.

Device Deployment tool Hardware-cost measurement tool Target application
NVIDIA V100 PyTorch PyTorch profiler Cloud services w/ strong GPUs

NVIDIA Edge GPU TX2 TensorRT TensorRT command-line wrapper Edge computing w/ weak GPUs
Google Pixel3 Tflite Tflite benchmark tools Mobile deployment w/o GPUs

6

Under review as a conference paper at ICLR 2022

FLOPs (G)

Im
ag

eN
et

 to
p-

1
ac

cu
ra

cy
 (%

)

1/FPS on V100

Im
ag

eN
et

 to
p-

1
ac

cu
ra

cy
 (%

)

Latency on Pixel3 (ms)

Im
ag

eN
et

 to
p-

1
ac

cu
ra

cy
 (%

)

Latency on TX2 (ms)

Im
ag

eN
et

 to
p-

1
ac

cu
ra

cy
 (%

)

(a) (b)

(c) (d)

↑3.7%

Figure 6: Comparing the optimal models resulting from scaling for different hardware
devices. FLOPs/V100/TX2/Pixel3 Scaling represents the scaling strategies obtained on
FLOPs/V100/TX2/Pixel3, and DeiT models are marked as the comparison Baseline.

scaled models when executed on other devices varies among different devices together with their
corresponding deployment tools. For example, when executed on the Pixel3 device (see Figure 6 (d)),
as expected, the scaled models targeting the Pixel3 device (denoted as) are always on the Pareto
frontier (i.e., the best accuracy-efficiency trade-off); interestingly, the scaled models targeting FLOPs
() and the V100 device () are also close to or even on the Pareto frontier; however, the scaled
models targeting the TX2 device () are obviously far from the Pareto frontier when executed on the
Pixel3 device.

As shown in Table 5, the scaled model targeting the TX2 device () suffers from a ↓ 0.82% lower
accuracy at an even ↑ 51.90% higher latency when executed on the Pixel3 device, as compared to
the scaled models directly targeting the Pixel3 device (), and vice versa for the performance of the
scaled models targeting the Pixel3 device () when executed on the TX2 device, i.e., a ↑ 15.74%
higher latency and a ↓ 0.72% lower accuracy.

This set of experiments indicates that the scaling strategies obtained when targeting FLOPs () and
the V100 device () can be transferred to the Pixel3 device with little or even no performance loss,
but those obtained for the TX2 device () leads to a degraded performance when being transferred.

4.2.2 ANALYSIS ON THE TRANSFERABILITY EFFECTIVENESS

To better understand why the transferability effectiveness depends on the underlying devices, we
analyze the performance of ViT models executed on different hardware devices from the following

Table 5: Scaled models targeting Pixel3 are sub-optimal when executed on TX2, and vice versa.

Model Top-1 Latency on Latency on
d h e r I paccuracy (%) TX2 (ms) Pixel3 (ms)

Pixel3 Scaling () 74.8 20.91 181.07 16 2 108 4 160 16
TX2 Scaling () 74.0 (↓ 0.8) 14.44 (↓ 30.94%) 275.06 (↑ 51.90%) 6 4 64 16 160 16

TX2 Scaling () 78.2 23.70 456.41 10 4 64 16 160 16
Pixel3 Scaling () 77.5 (↓ 0.7) 27.43 (↑ 15.74%) 297.58 (↓ 34.80%) 16 2 142 4 160 16

7

Under review as a conference paper at ICLR 2022

FLOPs
breakdown

1/FPS breakdown
on V100

Latency breakdown
on TX2

Latency breakdown
on Pixel3

83.4 % 62.5 % 34.3 % 70.5 %

14.3 %

21.1 % 13.8 % 25.0 %

2.2 % 11.1 %

5.2 %
42.7 %

9.2 %

3.3 %

1.3 %

MLP MSA-SA-MatMulMSA-SA-Reshape&Transpose&Gather Others

Figure 7: Cost breakdown of DeiT-Tiny on different devices in terms of (1) the number of FLOPs,
(2) the 1/FPS on V100, (3) the latency on TX2, and (4) the latency on Pixel3, where MLP rep-
resents the cost of all the Linear layers of ViT, MSA-SA-MatMul represents the cost of ma-
trix multiplication among Q(uery), K(ey), and V(alue) in ViT’s multi-head attention, MSA-SA-
Reshape&Transpose&Gather represents the cost of merely the data movement in ViT’s multi-head
attention, and the cost of all other operators are denoted as Others.

two perspectives: (1) cost (e.g., latency) breakdown of the same model on different devices and (2)
the rank correlation between the hardware-cost on different devices for the same group of models.

Connection between the breakdown and the transferability effectiveness. As shown in Figure 7,
the cost breakdown of the DeiT-Tiny model suggests that the breakdown in terms of the number of
FLOPs, the latency on V100, and the latency on Pixel3 are relatively similar, e.g., the breakdown’s
cosine distance between any pair among them is smaller than 0.02, while the breakdown for the
latency on TX2 is quite different from that of the number of FLOPs, the latency on V100, and the
latency on Pixel3, e.g., the breakdown’s cosine distance between the latency on TX2 and any other
metric is larger than 0.28). This breakdown analysis explains why the scaled models targeting FLOPs
(denoted as), V100 (), and TX2 () have a different transferability performance in terms of the
accuracy-latency trade-off when executed on Pixel3.

Rank correlation between the hardware-cost on different devices can also indicate the trans-
ferability effectiveness. Besides the above analysis based on the cost breakdown on different devices
using one specific model (i.e., DeiT-Tiny), we also perform analysis based on a group of ViT models.

FLOPs 1/FPS
on V100

Latency
on TX2

Latency
on Pixel3

FL
O

Ps
1/

FP
S

on
 V

10
0

La
te

nc
y

on
 T

X2
La

te
nc

y
on

 P
ix

el
3

Figure 8: The rank correlation co-
efficient between the hardware-
cost on different devices.

Following the extensive search adopted in (Bello et al., 2021), we
generate a group of ViT models by varying d in [3, 6, 12, 18, 24],
h in [2, 3, 6, 8, 12], e in [32, 64, 96], r in [2, 4, 8], I in [128, 160,
224, 320], and p in [8, 16, 32], resulting in a total of 2,700 differ-
ent ViT models. As shown in Figure 8, the Kendall Rank Cor-
relation Coefficient Coefficient (Abdi, 2007), which is commonly
used to benchmark the effectiveness of accuracy/hardware-cost
predictors in recent neural architecture search works (Li et al.,
2021; You et al., 2020; Dai et al., 2020), between the latency on
Pixel3 and TX2 (highlighted in the red box) is the lowest one
among all the coefficients. This set of experiments indicates the
weaker performance of using the latency on TX2/Pixel3 to be the
proxy metric when scaling ViT targeting Pixel3/TX2, as compared
to other device pairs, which is consistent with our observations
on the transferability performance among different devices in
Section 4.2.1, i.e., scaled models targeting FLOPs (denoted as)
and V100 (denoted as) have a better transferability performance
when executed on Pixel3 than those targeting TX2 (denoted as).

Along with the above analysis based on the (1) cost breakdown and (2) rank correlation between the
hardware-cost on different devices, we further perform a deeper analysis from the hardware device
specification perspective in Appendix D for better understanding why the transferability effectiveness
depends on the underlying devices.

4.3 TRANSFER OUR SCALING STRATEGIES ACROSS DIFFERENT MODELS AND TASKS

To answer “can these scaling strategies be transferred to different ViT variants and tasks?”, we transfer
the extracted scaling strategies in Section 4.1 for DeiT (Touvron et al., 2020) on ImageNet (Deng

8

Under review as a conference paper at ICLR 2022

et al., 2009), as illustrated in Figure 5, to (1) PiT (Heo et al., 2021), a strong ViT variant targeting
efficiency, on ImageNet (Deng et al., 2009); (2) COCO (Lin et al., 2014), a popular benchmark for
object detection tasks, to build the backbone of the Deformable DETR detector (Zhu et al., 2020);
(3) Kinetics-400 (Kay et al., 2017), a commonly used dataset for video classification tasks, with a
TimeSFormer (Bertasius et al., 2021) style model extension, which is included in Appendix C.

4.3.1 TRANSFER TO THE PIT MODELS

Table 6: Transferring the scaling strategies target-
ing DeiT (Touvron et al., 2020) to PiT (Heo et al.,
2021), where the resulting models are denoted as
PiT-Scaled-Tiny/XS/Small.

Model Top-1 accuracy (%) FLOPs (G)
PiT-Tiny 74.6 0.71

PiT-Scaled-Tiny 76.7 (↑ 2.1) 0.70

PiT-XS 79.1 1.40
PiT-Scaled-XS 79.5 (↑ 0.4) 1.38

PiT-Small 81.9 2.9
PiT-Small (Reproduced) 81.7 2.9

PiT-Scaled-Small 81.8 (↑ 0.1) 3.0

As shown in Table 6, when being transferred to
PiT on ImageNet (Deng et al., 2009), the scaling
strategies obtained from targeting DeiT (Tou-
vron et al., 2020) on ImageNet (Deng et al.,
2009) still lead to advantageous accuracy-
efficiency trade-offs for both the PiT-Scaled-
Tiny and PiT-Scaled-XS models, e.g., a ↑ 2.1%
and ↑ 0.4% higher accuracy under a similar num-
ber of FLOPs, respectively. Although the accu-
racy improvement for PiT-Scaled-Small is not
as obvious as that for PiT-Scaled-Tiny/XS (i.e.,
↑ 0.1% under similar FLOPs), the transferred
scaling strategies at least do not lead to an in-
ferior model architecture. More details about the architectures of PiT-Scaled-Tiny/XS/Small are
provided in Appendix A.

4.3.2 TRANSFER TO AN OBJECT DETECTION TASK

Table 7: COCO (Lin et al., 2014) detection
performance (val2017) of DeiT (Touvron et al.,
2020) and our DeiT-Scaled models with a De-
formable DETR (Zhu et al., 2020) detector.

Backbone Average Throughput
precision (%) (FPS) on V100

DeiT-Tiny 35.0 13.31
DeiT-Scaled-Tiny 35.7 (↑ 0.7) 13.05

DeiT-Small 41.0 10.81
DeiT-Scaled-Small 41.7 (↑ 0.7) 9.81

When transferred to object detection, DeiT (Tou-
vron et al., 2020) and our scaled DeiT-Scaled mod-
els are inserted into Deformable DETR (Zhu et al.,
2020) as the backbones, and the corresponding
throughput on V100 is measured using the widely
used Detectron2 tool (Wu et al., 2019). As listed in
Table 7, our DeiT-Scaled models achieve a ↑0.7%
higher average precision under a similar inference
throughput, which is consistent with our observa-
tion on the advantages of our DeiT-Scaled mod-
els over the original DeiT (Touvron et al., 2020)
models in terms of classification tasks, which is
discussed in Section 4.1.

All the above attempts of transferring the scaling strategies, extracted from scaling vanilla ViT models
on an image classification task, into different ViT variants and tasks share the following common
observations: (1) for some cases, such a transfer still achieves advantegeous accuracy-efficiency trade-
offs, even without any further exploration of scaling strategies dedicated to the new models/tasks; and
(2) for the remaining cases, the transferred scaling strategies lead to models with accuracy-efficiency
trade-offs that are on par with the corresponding vanilla models. Notably, there is no extra exploration
cost (e.g., re-extracting dedicated scaling strategies) during transfer and thus it can provide at least a
good starting point for further dedicated exploration on the new models/tasks.

5 CONCLUSION

In this work, we present the study for exploring hardware-aware ViT scaling and show that a simply
scaled vanilla ViT model can achieve a comparable or even better (e.g., up to ↑ 3.7% higher accuracy)
accuracy-efficiency trade-off as compared to dedicatedly designed SOTA ViT variants. Furthermore,
we extract scaling strategies dedicated to ViT and study their transferbility across different hardware
devices, ViT variants, and computer vision tasks. We believe that this work has demonstrated a
promising perspective towards more efficient/accurate ViT models and will inspire more following
innovations on both new ViT models via scaling and hardware-efficient ViT models.

9

Under review as a conference paper at ICLR 2022

6 REPRODUCIBILITY STATEMENT

Regarding our efforts that have been made to ensure reproducibility, we provide the implementation
details in Appendix E.

REFERENCES

Hervé Abdi. The kendall rank correlation coefficient. Encyclopedia of Measurement and Statistics.
Sage, Thousand Oaks, CA, pp. 508–510, 2007.

Junjie Bai, Fang Lu, Ke Zhang, et al. Onnx: Open neural network exchange. https://github.
com/onnx/onnx, 2019.

Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens, and Quoc V Le. Attention augmented
convolutional networks. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 3286–3295, 2019.

Irwan Bello, William Fedus, Xianzhi Du, Ekin D Cubuk, Aravind Srinivas, Tsung-Yi Lin, Jonathon
Shlens, and Barret Zoph. Revisiting resnets: Improved training and scaling strategies. arXiv
preprint arXiv:2103.07579, 2021.

Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video
understanding? arXiv preprint arXiv:2102.05095, 2021.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In European Conference on Computer
Vision, pp. 213–229. Springer, 2020.

Chun-Fu Chen, Quanfu Fan, and Rameswar Panda. Crossvit: Cross-attention multi-scale vision
transformer for image classification. arXiv preprint arXiv:2103.14899, 2021.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 1691–1703. PMLR, 13–18 Jul 2020. URL http://proceedings.
mlr.press/v119/chen20s.html.

Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia, and
Chunhua Shen. Twins: Revisiting spatial attention design in vision transformers, 2021.

Xiaoliang Dai, Alvin Wan, P. Zhang, B. Wu, Zijian He, Zhen Wei, K. Chen, Yuandong Tian,
Matthew E. Yu, Péter Vajda, and J. Gonzalez. Fbnetv3: Joint architecture-recipe search using
neural acquisition function. ArXiv, abs/2006.02049, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021.

Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and
Christoph Feichtenhofer. Multiscale vision transformers. arXiv preprint arXiv:2104.11227, 2021.

Christoph Feichtenhofer. X3d: Expanding architectures for efficient video recognition. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 203–213, 2020.

Francisco Massa. Script to calculate the throughput for DeiT. https://gist.github.com/
fmassa/1f4edb34ca041634c9b730473753b8ad, accessed 2021-05-01.

Google LLC. Pixel3 Mobile Phone, a. https://g.co/kgs/pVRc1Y, accessed 2020-09-01.

10

https://github.com/onnx/onnx
https://github.com/onnx/onnx
http://proceedings.mlr.press/v119/chen20s.html
http://proceedings.mlr.press/v119/chen20s.html
https://gist.github.com/fmassa/1f4edb34ca041634c9b730473753b8ad
https://gist.github.com/fmassa/1f4edb34ca041634c9b730473753b8ad
https://g.co/kgs/pVRc1Y

Under review as a conference paper at ICLR 2022

Google LLC. Performance measurement, b. https://www.tensorflow.org/lite/
performance/measurement, accessed 2021-05-21.

Google LLC. TensorFlow Lite: Deploy machine learning models on mobile and IoT devices, c.
https://www.tensorflow.org/lite, accessed 2019-11-21.

Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, and
Matthijs Douze. Levit: a vision transformer in convnet’s clothing for faster inference. arXiv
preprint arXiv:2104.01136, 2021.

Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. J. Mach.
Learn. Res., 3(null):1157–1182, March 2003. ISSN 1532-4435.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
modeling. arXiv preprint arXiv:2010.14701, 2020.

Byeongho Heo, Sanghyuk Chun, Seong Joon Oh, Dongyoon Han, Sangdoo Yun, Gyuwan Kim,
Youngjung Uh, and Jung-Woo Ha. Adamp: Slowing down the slowdown for momentum optimizers
on scale-invariant weights. arXiv preprint arXiv:2006.08217, 2020.

Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, and Seong Joon Oh.
Rethinking spatial dimensions of vision transformers. arXiv preprint arXiv:2103.16302, 2021.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324,
2019.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132–7141, 2018.

A. Jain and D. Zongker. Feature selection: evaluation, application, and small sample performance.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(2):153–158, 1997. doi:
10.1109/34.574797.

George H. John, Ron Kohavi, and Karl Pfleger. Irrelevant features and the subset selection problem.
In Proceedings of the Eleventh International Conference on International Conference on Machine
Learning, ICML’94, pp. 121–129.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan,
Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action video dataset.
arXiv preprint arXiv:1705.06950, 2017.

Chaojian Li, Tianlong Chen, Haoran You, Zhangyang Wang, and Yingyan Lin. Halo: Hardware-aware
learning to optimize. In Proceedings of the European Conference on Computer Vision (ECCV),
September 2020.

Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran You, Qixuan Yu, Yue
Wang, and Yingyan Lin. Hw-nas-bench: Hardware-aware neural architecture search benchmark.
arXiv preprint arXiv:2103.10584, 2021.

Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang. Selective kernel networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 510–519, 2019.

11

https://www.tensorflow.org/lite/performance/measurement
https://www.tensorflow.org/lite/performance/measurement
https://www.tensorflow.org/lite

Under review as a conference paper at ICLR 2022

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. arXiv preprint
arXiv:2103.14030, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Maxim Lukiyanov, Guoliang Hua, Geeta Chauhan, and Gisle Dankel. Introducing PyTorch
Profiler - the new and improved performance tool. https://pytorch.org/blog/
introducing-pytorch-profiler-the-new-and-improved-performance-tool/,
accessed 2021-05-21.

NVIDIA Inc. Performance Tuning - Maximizing Performance, a. https://
developer.ridgerun.com/wiki/index.php?title=Xavier/JetPack_4.
1/Performance_Tuning/Maximizing_Performance, accessed 2020-09-01.

NVIDIA Inc. Tensorrt open source software, b.

NVIDIA Inc. NVIDIA Jetson TX2, c. https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems/jetson-tx2/, accessed 2020-09-01.

NVIDIA Inc. TensorRT Command-Line Wrapper: trtexec, d. https://github.com/NVIDIA/
TensorRT/tree/master/samples/opensource/trtexec, accessed 2021-05-21.

NVIDIA LLC. NVIDIA V100 TENSOR CORE GPU. https://www.nvidia.com/en-us/
data-center/v100/, accessed 2020-09-01.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Advances in neural information processing systems, pp.
8026–8037, 2019.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10428–10436, 2020.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Mennatullah Siam, Mostafa Gamal, Moemen Abdel-Razek, Senthil Yogamani, Martin Jagersand, and
Hong Zhang. A comparative study of real-time semantic segmentation for autonomous driving. In
Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp.
587–597, 2018.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable
effectiveness of data in deep learning era. In ICCV, 2017. URL https://arxiv.org/abs/
1707.02968.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In International Conference on Machine Learning, pp. 6105–6114. PMLR, 2019.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. arXiv preprint
arXiv:2012.12877, 2020.

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going
deeper with image transformers. arXiv preprint arXiv:2103.17239, 2021.

12

https://pytorch.org/blog/introducing-pytorch-profiler-the-new-and-improved-performance-tool/
https://pytorch.org/blog/introducing-pytorch-profiler-the-new-and-improved-performance-tool/
https://developer.ridgerun.com/wiki/index.php?title=Xavier/JetPack_4.1/Performance_Tuning/Maximizing_Performance
https://developer.ridgerun.com/wiki/index.php?title=Xavier/JetPack_4.1/Performance_Tuning/Maximizing_Performance
https://developer.ridgerun.com/wiki/index.php?title=Xavier/JetPack_4.1/Performance_Tuning/Maximizing_Performance
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/trtexec
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/trtexec
https://www.nvidia.com/en-us/data-center/v100/
https://www.nvidia.com/en-us/data-center/v100/
https://arxiv.org/abs/1707.02968
https://arxiv.org/abs/1707.02968

Under review as a conference paper at ICLR 2022

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. arXiv preprint arXiv:2102.12122, 2021.

Diana Wofk, Fangchang Ma, Tien-Ju Yang, Sertac Karaman, and Vivienne Sze. Fastdepth: Fast
monocular depth estimation on embedded systems. In 2019 International Conference on Robotics
and Automation (ICRA), pp. 6101–6108. IEEE, 2019.

Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi
Tomizuka, Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based
image representation and processing for computer vision. arXiv preprint arXiv:2006.03677, 2020.

Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt:
Introducing convolutions to vision transformers. arXiv preprint arXiv:2103.15808, 2021.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
https://github.com/facebookresearch/detectron2, 2019.

Yunyang Xiong, Hanxiao Liu, Suyog Gupta, Berkin Akin, Gabriel Bender, Pieter-Jan Kindermans,
Mingxing Tan, Vikas Singh, and Bo Chen. Mobiledets: Searching for object detection architectures
for mobile accelerators. arXiv preprint arXiv:2004.14525, 2020.

Shan You, Tao Huang, Mingmin Yang, Fei Wang, Chen Qian, and Changshui Zhang. Greedynas:
Towards fast one-shot nas with greedy supernet. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 1999–2008, 2020.

Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans, Mingxing Tan,
Thomas Huang, Xiaodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling up neural archi-
tecture search with big single-stage models. In European Conference on Computer Vision, pp.
702–717. Springer, 2020.

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zihang Jiang, Francis EH Tay, Jiashi
Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on
imagenet. arXiv preprint arXiv:2101.11986, 2021.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
arXiv preprint arXiv:2106.04560, 2021.

Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Haibin Lin, Zhi Zhang, Yue Sun, Tong
He, Jonas Mueller, R Manmatha, et al. Resnest: Split-attention networks. arXiv preprint
arXiv:2004.08955, 2020.

Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xiaochen Lian, Qibin Hou, and Jiashi Feng.
Deepvit: Towards deeper vision transformer. arXiv preprint arXiv:2103.11886, 2021.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159, 2020.

13

https://github.com/facebookresearch/detectron2

Under review as a conference paper at ICLR 2022

A ARCHITECTURE CONFIGURATIONS OF PIT-SCALED-TINY/XS/SMALL

Table 8: Architecture configuration of PiT-Scaled-Tiny/XS/Small, including image resolution (I),
spatial size (i.e., # of spatial tokens), # of layers (d), # of heads (h), and the embedding dimension for
each head (e). Here, h in the PiT models has to be in h-2h-4h format (e.g., 2-4-8 in PiT-Tiny).

Model FLOPs (G) Top-1 accuracy (%) I Spatial size d h e

DeiT-Tiny 1.26 74.5 224 14 × 14 12 3 64

DeiT-Scaled-Tiny 1.22 76.4 (↑ 1.9) 160 10× 10 14 4 64

PiT-Tiny 0.71 74.6 224
27 × 27 2 2 32
14 × 14 6 4 32
7 × 7 4 8 32

PiT-Scaled-Tiny 0.70 76.7 (↑ 2.1) 160
19× 19 2 3 32
10× 10 7 6 32

5× 5 4 12 32

PiT-XS 1.41 79.1 224
27 × 27 2 2 48
14 × 14 6 4 48
7 × 7 4 8 48

PiT-Scaled-XS 1.38 79.5 (↑ 0.4) 160
19× 19 2 3 48
10× 10 6 6 48

5× 5 4 12 48

DeiT-Small 4.62 81.2 224 14 × 14 12 6 64

DeiT-Scaled-Small 4.79 81.6 (↑ 0.4) 256 16× 16 20 4 64

PiT-Small 2.90 81.7 224
27 × 27 2 3 48
14 × 14 6 6 48
7 × 7 4 12 48

PiT-Scaled-Small 3.04 81.8 (↑ 0.1) 256
31× 31 3 2 48
16× 16 10 4 48

8× 8 6 8 48

Here we provide more details regarding how we transfer our extracted strategies to other ViT models,
e.g., the PiT models. Specifically, to obtain the corresponding PiT-Scaled-Tiny/XS/Small models
based on the baseline PiT-Tiny/XS/Small models and extracted scaling strategies, we 1) locate the
most suitable architecture configuration in our scaling strategies to be used in the new variant, i.e.,
DeiT-Scaled-Tiny corresponds to PiT-Tiny/XS, and DeiT-Scaled-Small corresponds to PiT-Small,
considering that PiT-Tiny/XS/Small are designed to be at a scale similar to DeiT-Tiny/Small (Heo
et al., 2021)); 2) adjust the scaling factors which are the same in both DeiT and the new variant
baseline models to match the located architecture configuration in the previous step, e.g., adjusting I
from 224 to 160 in PiT-Tiny to build PiT-Scaled-Tiny; and 3) scale down/up the remaining scaling
factors if the transferred models cost more/less FLOPs than the new variant baseline models, e.g.,
scaling up h from 2-4-8 to 3-6-12 in PiT-Tiny to build PiT-Scaled-Tiny. The details of the finally
obtained PiT-Scaled-Tiny/XS/Small models are summarized in Table 8.

B DEVICES SETUP

B.1 NVIDIA V100

Device specifications and target applications. NVIDIA V100 (V100) (NVIDIA LLC.) is one of
the most advanced data center GPUs that accelerate deep learning applications for cloud services and
powered by 5120 NVIDIA CUDA cores and 640 NVIDIA Tensor cores. In all our experiments, we
use the 16GB HBM2 GPU memory configuration type V100.

Pre-measurement setup. The V100 GPU system consists of an Intel Xeon Bronze 3204 Processor
and 21GB RAM that are able to provide a high processing throughput (i.e., frames per second) of the
given DNN models.

14

Under review as a conference paper at ICLR 2022

Measurement pipeline. Following (Touvron et al., 2020), we use the maximum power-of-two batch
size that can fit in the memory when measuring the throughput with the officially provided PyTorch
profiler (Maxim Lukiyanov, Guoliang Hua, Geeta Chauhan, and Gisle Dankel) based on on the
PyTorch scripts provided in (Francisco Massa).

B.2 NVIDIA EDGE GPU TX2

Device specifications and target applications. NVIDIA Edge GPU TX2 (TX2) (NVIDIA Inc., c)
consists of a quad-core Arm Cortex-A57, a dual-core NVIDIA Denver2, a 256-core Pascal GPU, and
a 8GB 128-bit LPDDR4. It is commonly used in IoT and self-driving environments (Li et al., 2020;
Siam et al., 2018; Wofk et al., 2019), working as an edge computing platform with a relatively weak
GPU.

Pre-measurement setup. In order to make full use of its resource following (Wofk et al., 2019), we
enable jetson clock (NVIDIA Inc., a) on TX2, pre-setting it into a max-N mode and adjusting the fan
speed to 100%.

Measurement pipeline. When we measure the latency of a specific model on TX2, the model
definition in PyTorch (Paszke et al., 2019) will be 1) exported into the onnx format (Bai et al., 2019)
and 2) passed to the TensorRT command-line wrapper (NVIDIA Inc., d), an officially provided
binary file, to be executed by TensorRT (NVIDIA Inc., b) that is a C++ library for high-performance
inference on NVIDIA GPUs. The corresponding latency is directly reported by the TensorRT
command-line wrapper (NVIDIA Inc., d).

B.3 GOOGLE PIXEL3

Device specifications and target applications. Google Pixel3 (Pixel3) (Google LLC., a) consists
of a quad-core 2.5 GHz Kryo 385 Gold CPU, a quad-core 1.6 GHz Kryo 385 Silver CPU, and a 4GB
RAM. It is one of the latest Pixel mobile phones, which is widely used as the benchmark platform for
deep learning targeting mobile devices (Xiong et al., 2020; Howard et al., 2019; Google LLC., c).

Pre-measurement setup. In order to reduce the variance of the measured latency, the Pixel3 device
is pre-configured to only use its big cores to perform the network inference, following the settings in
(Xiong et al., 2020; Google LLC., b).

Measurement pipeline. To operate a given model in Pixel3, the model will be 1) converted into the
tflite format (Google LLC., c) and 2) passed to the tflite benchmark tools (Google LLC., b) that are an
officially provided binary file for fairly benchmarking different models in tflite. The corresponding
latency is then directly reported by the tflite benchmark tools (Google LLC., b).

C TRANSFER OUR SCALING STRATEGIES TO VIDEO CLASSIFICATION TASKS

Table 9: Kinetics-400 (Kay et al., 2017) video clas-
sification performance (validation set) of extended
DeiT (Touvron et al., 2020) and our DeiT-Scaled models
with a TimeSFormer (Bertasius et al., 2021) style.

Attention Model Top-1 FLOPs (G)Scheme Accuracy (%)

Joint

DeiT-Tiny 67.7 19.9
DeiT-Scaled-Tiny 67.4 (↓ 0.3) 13.3 (↓ 33.2%)

DeiT-Small 71.2 56.5
DeiT-Scaled-Small 71.4 (↑ 0.2) 61.9 (↑ 9.56%)

Divided

DeiT-Tiny 68.4 13.6
DeiT-Scaled-Tiny 67.8 (↓ 0.6) 12.7 (↓ 6.62%)

DeiT-Small 71.4 50.8
DeiT-Scaled-Small 72.0 (↑ 0.6) 54.2 (↑ 6.69%)

When transferring our scaling strategies to
video classification tasks, we follow (Berta-
sius et al., 2021) to (1) decompose an
input video into a sequence of frame-
level patches and feed them into a Trans-
former module and (2) include two atten-
tion schemes, “Joint” (i.e., applying self-
attention into space-time tokens jointly)
and “Divided” (i.e., applying spatial and
temporal attentions separately), to bench-
mark the performance of different models.
As shown in Table 9, our DeiT-Scaled mod-
els (e.g. DeiT-Scaled-Tiny) can reduce the
FLOPs by 33.2% under a similar accuracy
(67.4% vs 67.7%) as compared to DeiT-
Tiny with the “Joint” attention scheme, and achieve accuracy-FLOPs trade-offs at least no worse than
the original DeiT (Touvron et al., 2020) models in other settings.

15

Under review as a conference paper at ICLR 2022

Table 10: Specifications of the hardware devices in the transferability exploration experiments.

Specifications NVIDIA V100 System (V100) NVIDIA Edge GPU TX2 (TX2) Google Pixel3 (Pixel3)
GPU Architecture NVIDIA Volta NVIDIA Pascal Qualcomm Adreno

CUDA Cores 5120 256 -
CPU AMD EPYC 7742 NVIDIA Denver 2/ARM® Cortex®-A57 Kryo 385 Gold/Kryo 385 Silver

CPU Max Frequency 3.4 GHz 2 GHz/2 GHz 2.8 GHz/1.7 GHz
GPU/SoC Memory 16 GB 8 GB 4 GB
Power Consumption 300 W 15 W 18 W

Table 11: Detailed cost breakdown of DeiT-Tiny on different devices for the operators of (1) multi-
layer perceptron (MLP), (2) layer normalization (LayerNorm), (3) matrix multiplication in multi-head
self-attention (MSA-MatMul), (4) softmax in multi-head self-attention (MSA-Softmax), (5) reshape
and transpose in multi-head self-attention (MSA-Reshape&Transpose), (6) gather in multi-head
self-attention (MSA-Gather), and (7) others.

Operators 1/FPS on V100 (%) Latency on TX2 (%) Latency on Pixel3 (%)
MLP 62.50 34.31 69.40

LayerNorm 8.95 6.38 1.59
MSA-MatMul 17.65 8.03 21.36
MSA-Softmax 3.48 5.75 3.20

MSA-Reshape&Transpose 5.17 6.32 3.30
MSA-Gather <0.01 36.38 <0.01

Others 2.20 2.82 1.26

D ANALYSIS ON THE TRANSFERABILITY ACROSS DIFFERENT DEVICES FROM
THE HARDWARE DEVICE SPECIFICATIONS PERSPECTIVE

By observing the specifications of different hardware devices, which is summarized in Table 10,
and the detailed cost breakdown on different devices in Table 11, we can conclude that (1) the most
significant differences come from the MLP and MSA-Gather operators for all the three devices,
e.g., MSA-Gather costs much more (36.38% vs. <0.01%) and MLP costs much less (34.31% vs.
62.50%/69.40%) in TX2 than in Pixel3/V100 and (2) TX2 has the weakest CPU in terms of the
maximum frequency among the three devices. Thus, we conjecture the slow data movements in
TX2 due to the weakest CPU cause the largest MSA-Gather cost percentage in TX2 among these
devices. This can explain that the scaling strategies obtained when targeting FLOPs and V100 can be
transferred to Pixel3 with little or even no performance loss,but those obtained for TX2 cannot do
that, as mentioned in Section 4.2.

Interestingly, by comparing the extracted scaling strategies for V100 and TX2, we can observe that
the scaled ViT in TX2 tends to enlarge more on linear projection ratio (r), which will not increase
the cost of self-attention, as compared to the scaled ViT in V100 (16 vs. 4) under a similar accuracy
(78.17% vs. 78.10%), as shown in Table 12. This matches the observation that the self-attention costs
a large portion of the cost on TX2 (e.g., 56.48% for DeiT-Tiny), as demonstrated in Table 11.

Table 12: Detailed architecture configurations of the scaled ViT models with throughput (i.e., FPS)
on V100 (V100 Scaling) and latency on TX2 (TX2 Scaling) as the hardware-cost during scaling,
respectively.

Metrics V100 Scaling TX2 Scaling
Accuracy (%) 78.10 78.17
FPS on V100 2488.81 1984.10

Latency on TX2 (ms) 25.18 23.70
Num. of layers (d) 13 10
Num. of heads (h) 5 4

Embedding dim. per head (e) 64 64
Linear projection ratio (r) 4 16

Image resolution (I) 160 160
Patch size (p) 16 16

16

Under review as a conference paper at ICLR 2022

E IMPLEMENTATION DETAILS

In this section, we provide the implementation details of our experiments, including (1) our scaled
ViT (Dosovitskiy et al., 2021; Touvron et al., 2020) models on ImageNet (Deng et al., 2009) dataset
in Section 4.1 and 4.2, (2) our scaled PiT (Heo et al., 2021) models on ImageNet (Deng et al., 2009)
dataset in Section 4.3.1, (3) our scaled ViT (Dosovitskiy et al., 2021; Touvron et al., 2020) models on
COCO (Lin et al., 2014) dataset in Section 4.3.2, and (4) our scaled ViT (Dosovitskiy et al., 2021;
Touvron et al., 2020) models on Kinetics-400 (Kay et al., 2017) dataset in Appendix C.

Scaled ViT models on ImageNet dataset. All the scaled ViT (Dosovitskiy et al., 2021; Touvron
et al., 2020) models on ImageNet (Deng et al., 2009) dataset reported in Section 4.1 and 4.2 follow
the same training recipe (including the data pre-processing) with the one proposed in (Touvron et al.,
2020), i.e., training on ImageNet for 300 epochs (1000 epochs for models in Table 3) with batch size
as 1024, AdamW optimizer (Loshchilov & Hutter, 2017), learning rate as 0.001, cosine learning rate
decay, weight decay as 0.05, 5 warmup epochs, and distillation from RegNetY-16GF (Radosavovic
et al., 2020).

Scaled PiT models on ImageNet dataset. To make a fair comparison with PiT (Heo et al., 2021)
models, all our scaled PiT models (i.e., PiT-Scaled-Tiny/XS/Small in Table 6) follow the training
recipe (including the data pre-processing) in PiT (Heo et al., 2021), which uses the same learning
rate, weight decay, warmup epochs, total epochs, and distillation settings with (Touvron et al., 2020),
but using AdamP (Heo et al., 2020) as the optimizer instead of AdamW (Loshchilov & Hutter, 2017).

Scaled ViT models on COCO dataset. Following the training recipe (including the data pre-
processing) described in (Zhu et al., 2020), all the models are pre-trained on ImageNet (Deng et al.,
2009) first, and then trained on COCO (Lin et al., 2014) dataset for 50 epochs with Adam optimizer,
learning rate as 0.0002, weight decay 0.0001, and the learning rate is decayed at the 40-th epoch by
a factor of 0.1. Note that when adapting the models pre-trained on ImageNet(Deng et al., 2009) to
COCO (Lin et al., 2014), we scale the positional embeddings of ViT via bilinear interpolation to
match the differences of image resolutions and use the feature map before the final classifier and
layernorm layer as the input feature map to the Deformable DETR header.

Scaled ViT models on Kinetics-400 dataset. For Kinetics-400 (Kay et al., 2017) dataset, we follow
the training recipes (including the data pre-processing) in (Bertasius et al., 2021) to start from the
ImageNet (Deng et al., 2009) pre-trained models. Then clips of size 8×224×224 with frames sampled
as a rate of 1/32 are used for training. All models are trained for 15 epochs with learning rate as 0.005,
batch size as 16, SGD optimizer with momentum 0.9, and the learning rate is decayed at the 10-th
and 14-th epoch by a factor of 0.1. We also include both the “Joint” (i.e., applying self-attention into
space-time tokens jointly) and “Divided” (i.e., applying spatial and temporal attentions separately)
attention schemes describled in (Bertasius et al., 2021) to make a more fair comparison with the
baseline models which use DeiT (Touvron et al., 2020) models as backbones.

F ARCHITECTURES COMPARISON BETWEEN THE SCALED MODELS AND THE
RANDOMLY PERMUTATED MODELS

To further explore why the architectures with the best accuracy vs. efficiency trade-off after the random
permutation on top the scaled models can achieve better performance than the scaled models, as
shown in Figure 4 of the main content, here we summarize their performance and architectures details
in Table 13. As compared to the scaled models (i.e., DeiT-Scale-{Tiny, Small}), those architectures
with the best accuraccy vs. efficiency trade-off after random permutation (i.e., DeiT-Scale-{Tiny,
Small}-RP) adopt different scaling factors except the number of heads.

Table 13: Random permutation further boosts the performance of the scaled models.

Model FLOPs (G) Top-1 accuracy (%) d h e r I p

DeiT-Tiny 1.26 74.5 12 3 64 4 224 16
DeiT-Scaled-Tiny 1.22 76.4 (↑1.9) 14 4 64 4 160 16

DeiT-Scaled-Tiny-RP 1.22 76.9 (↑2.4) 17 4 60 5 171 19
DeiT-Small 4.62 81.2 12 6 64 4 224 16

DeiT-Scaled-Small 4.79 81.6 (↑0.4) 20 4 64 4 256 16
DeiT-Scaled-Small-RP 4.79 82.0 (↑0.8) 21 4 68 5 210 15

17

Under review as a conference paper at ICLR 2022

G MORE DETAILS ON THE ITERATIVE GREEDY SEARCH

To better demonstrate the iterative greedy search method introduced in Section 3.3, we summarize
the important details in Algorithm 1. In a nutshell, we 1) start from a small model defined in Table 1;
2) in each scaling step, we increase each scaling factor alone to meet the pre-set hardware-cost target;
3) we then select the one with the best accuracy vs. efficiency trade-off out of those architectures
resulting from increasing each scaling factor standalone in the previous step; and 4) the selected
architecture from the previous step will be used as the starting point in the next step.

Algorithm 1 Iterative Greedy Search

1: Step: s← 0
2: Architecture: A← A0 (A0 is shown in Table 1)
3: Hardware-cost metric: C()
4: Total steps in the scaling: N
5: Target hardware-cost in each step: [C1, C2, ..., CN]
6: for s in [1, 2, ..., N] do
7: for scaling factor SF in [d, h, e, r, I, p] do
8: ASF ← A
9: while C(ASF) < Cs do

10: SF ++
11: end while
12: As

SF ← ASF

13: end for
14: As ← max accuracy(As

d, A
s
h, A

s
e, A

s
r, A

s
I , A

s
p)

15: A← As

16: end for
17: Searched architectures A1, A2, ..., AN

18

	Introduction
	Related works
	Scaling ViT: How and Why do we scale vit?
	Scaling factors in ViT
	Previous scaling strategies fail on ViT
	Our scaling method based on an iterative greedy search

	Experiment results
	Scaling ViT towards better accuracy-FLOPs trade-offs
	Transferability of the extracted scaling strategies across different devices
	Transferability among different devices
	Analysis on the transferability effectiveness

	Transfer our scaling strategies across different models and tasks
	Transfer to the PiT models
	Transfer to an object detection task

	Conclusion
	Reproducibility Statement
	Architecture configurations of PiT-Scaled-Tiny/XS/Small
	Devices setup
	NVIDIA V100
	NVIDIA Edge GPU TX2
	Google Pixel3

	Transfer our scaling strategies to video classification tasks
	Analysis on the transferability across different devices from the hardware device specifications perspective
	Implementation details
	Architectures comparison between the scaled models and the randomly permutated models
	More details on the iterative greedy search

