
Under review as a conference paper at ICLR 2021

GENERALIZING AND TENSORIZING SUBGRAPH
SEARCH IN THE SUPERNET

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, a special kind of graph, i.e., supernet, which allows two nodes connected
by multi-choice edges, has exhibited its power in neural architecture search (NAS)
by searching better architectures for computer vision (CV) and natural language
processing (NLP) tasks. In this paper, we discover that the design of such discrete
architectures also appears in many other important learning tasks, e.g., logical chain
inference in knowledge graphs (KGs) and meta-path discovery in heterogeneous
information networks (HINs). Thus, we are motivated to generalize the supernet
search problem on a broader horizon. However, none of the existing works are
effective since the supernet’s topology is highly task-dependent and diverse. To
address this issue, we propose to tensorize the supernet, i.e., unify the subgraph
search problems by a tensor formulation and encode the topology inside the
supernet by a tensor network. We further propose an efficient algorithm that admits
both stochastic and deterministic objectives to solve the search problem. Finally, we
perform extensive experiments on diverse learning tasks, i.e., architecture design
for CV, logic inference for KG, and meta-path discovery for HIN. Empirical results
demonstrate that our method leads to better performance and architectures.

1 INTRODUCTION

Deep learning (Goodfellow et al., 2017) has been successfully applied in many applications, such as
image classification for computer vision (CV) (LeCun et al., 1998; Krizhevsky et al., 2012; He et al.,
2016; Huang et al., 2017) and language modeling for natural language processing (NLP) (Mikolov
et al., 2013; Devlin et al., 2018). While the architecture design is of great importance to deep learning,
manually designing proper architectures for a certain task is hard and requires lots of human efforts
or sometimes even impossible (Zoph & Le, 2017; Baker et al., 2016).

Recently, neural architecture search (NAS) techniques (Elsken et al., 2019) have been developed to
alleviate this issue, which mainly focuses on CV and NLP tasks. Behind existing NAS methods, a
multi-graph (Skiena., 1992) structure, i.e., supernet (Zoph et al., 2017; Pham et al., 2018; Liu et al.,
2018), where nodes are connected by edges with multiple choices, has played a central role. In such
context, the choices on each edge are different operations, and the subgraphs correspond to different
neural architectures. The objective here is to find a suitable subgraph in this supernet, i.e. better
neural architectures for a given task.

However, the supernet does not only arise in CV/NLP field and we find it also emerge in many other
deep learning areas (see Table 1). An example is logical chain inference on knowledge graphs (Yang
et al., 2017; Sadeghian et al., 2019; Qu & Tang, 2019), where the construction logical rules can
be modeled by a supernet. Another example is meta-path discovery in heterogeneous information
networks (Yun et al., 2019; Wan et al., 2020), where the discovery of meta-paths can also be modeled
by a supernet. Therefore, we propose to broaden the horizon of NAS, i.e., generalize it to many deep
learning fields and solve the new NAS problem under a unified framework.

Since subgraphs are discrete objects (choices on each edge are discrete), it has been a common
approach (Liu et al., 2018; Sadeghian et al., 2019; Yun et al., 2019) to transform it into a continuous
optimization problem. Previous methods often introduce continuous parameters separately for each
edge. However, this formulation cannot generalize to different supernets as the topological structures
of supernets are highly task-dependent and diverse. Therefore, it will fail to capture the supernet’s
topology and hence be ineffective.

1

Under review as a conference paper at ICLR 2021

Table 1: A comparison of existing NAS/non-NAS works for designing discrete architectures based on
our tensorized formulation for the supernet. “Topology” indicate topological structure of the supernet
is utilized or not.

representative method supernet optimization
domain encoding topology algorithm

existing NASNet (Zoph et al., 2017) CV RNN × policy gradient

NAS works ENAS (Pham et al., 2018) CV/NLP RNN × policy gradient

DARTS (Liu et al., 2018) CV/NLP rank-1 CP × gradient descent

SNAS (Xie et al., 2018) CV rank-1 CP × gradient descent

NASP (Yao et al., 2020) CV/NLP rank-1 CP × proximal algorithm

non-NAS DRUM (Sadeghian et al., 2019) KG rank-n CP × gradient descent

works GTN (Yun et al., 2019) HIN rank-1 CP × gradient descent

proposed TRACE all TN
√

gradient descent

In this paper, we propose a novel method TRACE to introduce a continuous parameter for each
subgraph (all these parameters will form a tensor). Then, we propose to construct a tensor
network (TN) (andrzej. et al., 2016; 2017) based on the topological structure of supernet. For
different tensor networks, we introduce an efficient algorithm for optimization on supernets. Extensive
experiments are conducted on diverse deep learning tasks. Empirical results demonstrate that TRACE
performs better than the state-of-the-art methods in each domain. As a summary, our contributions
are as follows:

• We broaden the horizon of existing supernet-based NAS methods. Specifically, we generalize the
concept of subgraph search in supernet from NAS to other deep learning tasks that have graph-like
structures and propose to solve them in a unified framework by tensorizing the supernet.

• While existing supernet-based NAS methods ignore the topological structure of the supernet, we
encode the supernet in a topology-aware manner based on the tensor network and propose an
efficient algorithm to solve the search problem.

• We conduct extensive experiments on various learning tasks, i.e., architecture design for CV, logical
inference for KG, and meta-path discovery for HIN. Empirical results demonstrate that our method
can find better architectures, which lead to state-of-the-art performance on various applications.

2 RELATED WORKS

2.1 SUPERNET IN NEURAL ARCHITECTURE SEARCH (NAS)

There have been numerous algorithms proposed to solve the NAS problem. The first NAS work,
NASRL (Zoph & Le, 2017), models the NAS problem as a multiple decision making problem
and proposes to use reinforcement learning (RL) (Sutton & Barto, 2018) to solve this problem.
However, this formulation does not consider the repetitively stacked nature of neural architectures
and is very inefficient as it has to train many different networks to converge. To alleviate this
issue, NASNet (Zoph et al., 2017) first models NAS as an optimization problem on supernet. The
supernet formulation enables searching for transferrable architectures across different datasets and
improves the searching efficiency. Later, based on the supernet formulation, ENAS (Pham et al.,
2018) proposes weight-sharing techniques, which shares the weight of each subgraph in a supernet.
This technique further improves searching efficiency and many different methods have been proposed
under this framework (see Table 1), including DARTS (Liu et al., 2018), SNAS (Xie et al., 2018),
and NASP (Yao et al., 2020). DARTS is the first to introduce deterministic formulation to NAS field,
and SNAS uses a similar parametrized method with DARTS under stochastic formulation. NASP
improves upon DARTS by using proximal operator (Parikh & Boyd, 2014) and activates only one
subgraphs in each iteration to avoid co-adaptation between subgraphs.

2.2 TENSOR METHODS IN MACHINE LEARNING

A tensor (Kolda & Bader, 2009) is a multi-dimensional array as an extension to a vector or
matrix. Tensor methods have found wide applications in machine learning, including network

2

Under review as a conference paper at ICLR 2021

compression (Novikov et al., 2015; Wang et al., 2018) and knowledge graph completion (Liu et al.,
2020). Recently, andrzej. et al. (2016; 2017) have proposed a unified framework called tensor
network (TN), which uses an undirected graph to represent tensor decomposition methods. By using
different graphs, TN can cover many tensor decomposition methods as a special case, e.g., CP (Bro,
1997), Tucker (Tucker, 1966), tensor train (Oseledets, 2011), and tensor ring decomposition (Zhao
et al., 2016). However, it is not an easy task to construct a tensor network for a given problem, as the
topological structure of tensor network is hard to design (Li & Sun, 2020).

3 PROPOSED METHOD

Here, we describe our method for the supernet search problem. Section 3.1-3.2 introduce how we
tensorize the supernets. Section 3.3 propose an optimization algorithm for the search problem which
can be utilized for both stochastic and deterministic objectives. Finally, how supernet appears beyond
existing NAS works and can be generalized to these new tasks are presented in Section 3.4.

Notations. In this paper, we will use S to denote a supernet, and P to denote a subgraph in supernet.
For a supernet S with T edges, we let all edges be indexed by e1, . . . , eT , and define Ct to be the
number of choices on edge et with t ∈ {1, . . . , T}. With subscript i1, . . . , iT denoted by i− for short,
we use Si− to denote the subgraph with choices i1 ∈ {1, . . . , C1}, . . . , iT ∈ {1, . . . , CT }. And we
use softmax(oi) = exp(oi)/

∑n
j=1 exp(oj) to denote the softmax operation over a vector oi ∈ Rn.

3.1 A TENSOR FORMULATION FOR SUPERNET

While existing works (Liu et al., 2018; Zoph et al., 2017;
Pham et al., 2018) introduce parameters separately for each
edge et, since edges may correlate with each other, a more
general and natural approach is to introduce a continuous
parameter directly for each subgraph P ∈ S. Note that
a subgraph P can be distinguished by its choices on each
edge, we propose to encode all possible choices into a tensor
T ∈ RC1×···×CT and take these choices as indices, i.e., i−,
to the tensor T . As a consequence, the architecture of the
subgraph P is indexed as Si− , and Ti− ∈ [0, 1] represent
how “good” P can be.

Figure 1: An example of supernet
and two subgraphs with index i−.

Let f(w,P) stand for a learning model with the parameter w and subgraph P ∈ T , L be the loss of
f on the training dataset Dtr, and J measure the performance of f on the validation set Dval. Under
above tensor formulation, the search objective here is:

max
P∈T
J (f(w∗(P),P);Dval), s.t.

{
w∗(P) = arg minw L (f(w,P);Dtr)∑
i−
Ti− = 1

, (1)

Same as existing supernet search works, the subgraph P is searched in the upper-level, while the
network weight w is trained in the lower-level. Dtr is the training set and Dval is the validation set.
However, we have the extra constraint

∑
i−
Ti−=1 here, which is to ensure that the sum of probabilities

for all subgraphs is one.

Next, we show how P and T can be parameterized with topological information from the supernet in
Section 3.2. Then, a gradient-based algorithm which can effectively handle the constrained bi-level
optimization problem (1) is proposed in Section 3.3.

3.2 ENCODING SUPERNET TOPOLOGY BY TENSOR NETWORK (TN)

Existing methods consider each edge separately and can be seen as rank-1 factorization of the full
tensor T (see Table 1) under (1), i.e. Ti− = θ1i1 . . . θ

T
iT

where θtit ∈ R is the continuous parameter for
choice it on edge t. However, this formulation ignores the topological structure of different supernets,
as it uses the same decomposition method for all supernets. Motivated by such limitation, we propose
to introduce tensor network (TN) to better encode the topological structure of supernet. Our encoding

3

Under review as a conference paper at ICLR 2021

(a) Linear supernet. (b) TN for (a). (c) Full supernet. (d) TN for (c).

Figure 2: Some examalphaple of supernets and the corresponding tensor networks (TNs). Information
flows in supernet (a) (c) follow the order of number in blocks. Circles in (b) and (d) represent core
tensors and edges represent indices. Edges connected by two circles indicate index summation on
rN1(t) or rN2(t), where N1(t) (or N2(t)) is the index of nodes in supernet (1, 2 in (a) and 0, 1, 2

in (c)). The formula of (b) is Ti1,i2,i3 =
∑
r1,r2

α1
i1,r1

α2
r1,i2,r2

α3
i3,r2

and the formula of (d) is
Ti1,i2,i3 =

∑
r0,r1,r2

α1
r0,i1,r1

α2
r1,i2,r2

α3
r2,i3,r0

.

process is described in Algorithm 1, where N (S) to denotes the set of nodes in this supernet and
N ′(S) ⊆ N (S) denotes the set of nodes that are connected to more than one edge.

Specifically, we introduce a third-order tensor αt for each edge, which is based on previous methods
(e.g., DARTS and SNAS), but uses tensors instead of vectors to allow more flexibility. And we
introduce hyper-parametersRN1(t) andRN2(t), which are corresponding to the rank of tensor network.
Then, we use index summation to reflect the topological structure (common nodes) between different
edges, i.e.,

Ti− =
∑Rn

rn,n∈N ′(S)

∏T

t=1
αtrN1(t),it,rN2(t)

, (2)

We also give two examples in 1Figure 2 to illustrate our tensorizing process for two specific supernets.

Algorithm 1 Supernet encoding process (a step-by-step and graphical illustration is in Appendix.G).

Input: Supernet S;
1: Introduce αt ∈ RRN1(t)×Ct×RN2(t) for edge et which connects nodes N1(t) and N2(t);
2: Remove isolated nodes and obtain N ′(S);
3: Compute Ti− by (2);
4: return encoded supernet Ti− ;

The reason of using N ′(S) instead of N (S) is 2Proposition 1, which shows that using N ′(S) will
not restrict the expressive power but allows the usage of less parameters.

Proposition 1. Any tensors that can be expressed by Ti− =
∑Rn

rn,n∈N (S)
∏T
t=1 α

t
rN1(t),it,rN2(t)

can

also be expressed by Ti− =
∑Rn

rn,n∈N ′(S)
∏T
t=1 α

t
rN1(t),it,rN2(t)

.

3.3 SEARCH ALGORITHM

To handle subgraph search problems for various applications (Table 1), we need an algorithm that
can solve the generalized supernet search problem in (1), which is parameterized by (2). However,
the resulting problem is hard to solve, as we need to handle the constraint on T , i.e.,

∑
i−
Ti− = 1.

To address this issue, we propose to re-parameterize α in (2) using softmax trick, i.e.,

T̄i− = 1/
∏

n∈N′(S) Rn

∑Rn

rn,n∈N ′(S)

∏T

t=1
softmax(β

(t)
rN1(t),it,rN2(t)

). (3)

Then, the optimization objective J in (1) becomes

maxβ Jβ(f(w∗(β),P(β));Dval), s.t. w∗(β) = arg minw L (f(w,P(β));Dtr) . (4)

1Figure 2(b) and (d) also follow the diagram figure of tensor network, reader may refer (andrzej. et al., 2017)
for more details.

2All proofs are in Appendix D.

4

Under review as a conference paper at ICLR 2021

where we have substitute discrete subgraphs P and normalization constraint on T with continuous
parameters β. As shown in Proposition 2, we can now solve a unconstrained problem on β, while
keeping the constraint on T satisfied.

Proposition 2.
∑
i−
T̄i− = 1, where T̄ is given in (3).

Thus, gradient-based training strategies can be reused, which makes the optimization very efficient.
The complete steps for optimizing (4) are presented in Algorithm 2. Note that, our algorithm can
solve both deterministic and stochastic formulation (see Appendix A). After the optimization of β is
converged, we obtain P∗ from tensor T̄ and retrain the model to obtain w∗.

Algorithm 2 TRACE: Proposed subgraph search algorithm.

Input: A subgraph search problem with training set Dtr, validation set Dval and supernet S;
1: Tensorize the supernet T with Algorithm 1;
2: Re-parameterize T to T̄ using (3);
3: while not converged do
4: Obtain a subgraph P from T̄ (deterministic or stochastic);
5: Solve w∗(β) = arg minw L (f(w, β),Dtr);
6: Update supernet parameters β by gradient ascending∇βJβ ;
7: end while
8: Obtain P∗ = Si− from the final T̄ by setting i− = arg maxi− T̄i− ;
9: Obtain w∗(P∗) = arg minw;L (f(w,P∗),Dtr) by retraining f(w,P∗);

10: return P∗ (searched architecture) and w∗ (fine-tuned parameters);

3.4 SUBGRAPH SEARCH BEYOND EXISTING NAS

Despite NAS, there are many important problems in machine learning that have a graph-like structure.
Examples include meta-path discovery (Yang et al., 2018; Yun et al., 2019; Wan et al., 2020), logical
chain inference (Yang et al., 2017; Sadeghian et al., 2019) and structure learning between data
points (Franceschi et al., 2019). Inspired by the recent work that exploits graph-like structures in
NAS (Li et al., 2020; You et al., 2020), we propose to model them also as a subgraph search problem
on supernets.

Meta-path discovery. Heterogeneous information networks (HINs) (Sun & Han, 2012; Shi et al.,
2017) are networks whose nodes and edges have multiple types. HIN has been widely used
in many real-world network mining scenarios, e.g., node classification (Wang et al., 2019) and
recommendation (Zhao et al., 2017). For a heterogeneous network, a meta-path (Sun et al., 2011)
is a path defined on it with multiple edge types. Intuitively, different meta-paths capture different
semantic information from a heterogeneous network and it is important to find suitable meta-paths
for different applications on HINs. However, designing a meta-path on a HIN is not a trivial task and
requires much human effort and domain knowledge (Zhao et al., 2017; Yang et al., 2018). Thus, we
propose to automatically discover informative meta-paths instead of to manually design.

To solve the meta-path discovery problem under the supernet framework, we first construct a supernet
S (see Figure 2(a)) and a subgraph P ∈ S will be a meta-path on HIN. While GTN (Yun et al.,
2019) introduces weights separately for each edge, our model f(w,P) uses a tensor T to model
P as a whole. The performance metric L(·) andM(·) will depend on the downstream task. In our
experiments on node classification, we use cross-entropy loss for L(·) and macro F1 score forM(·).

Logical chain inference. A knowledge graph (KG) (Singhal, 2012; Wang et al., 2017) is a multi-
relational graph composed of entities (nodes) and relations (different types of edges). KG has found
wide applications in many different areas, including question answering (Lukovnikov et al., 2017)
and recommendation (Zhang et al., 2016). An important method to understand semantics in KG
is logical chain inference, which aims to find underlying logic rules in KG. Specifically, a logical
chain is a path on knowledge graph with the following form x−→B1

z1−→B2
. . .−→BT

y, where
x, y, z1, . . . are entities and B1, B2, . . . , BT are different relations in the knowledge graph. And
logical chain inference is to use a logical chain to approximate a relation in KG. Obviously, different
logical chains can have critical influence on KG as incorrect logic rules will lead to wrong facts.

5

Under review as a conference paper at ICLR 2021

Table 2: Comparison with NAS methods in stand-alone setting on NAS-Bench-201.

Method CIFAR-10 CIFAR-100 ImageNet-16-120

validation test validation test validation test

ResNet (He et al., 2016) 90.83 93.97 70.42 70.86 44.53 43.63

Random 90.93±0.36 93.70±0.36 70.60±1.37 70.65±1.38 42.92±2.00 42.96±2.15
REINFORCE 91.09±0.37 93.85±0.37 71.61±1.12 71.71±1.09 45.05±1.02 45.24±1.18

BOHB 90.82±0.53 93.61±0.52 70.74±1.29 70.85±1.28 44.26±1.36 44.42±1.49
REA 91.19±0.31 93.92±0.30 71.81±1.12 71.84±0.99 45.15±0.89 45.54±1.03

TRACE 91.33±0.19 94.20±0.17 73.26±0.22 73.29±0.20 46.19±0.16 46.19±0.15
TRACE (Best) 91.53 94.37 73.49 73.51 46.37 46.34

Best in Bench-201 91.61 94.37 73.49 73.51 46.77 47.31

However, directly solving the inference problem will have a exponential complexity as we have to
enumerate all relations (Hamilton et al., 2018). Thus, we propose to model it as a supernet search
problem to reduce complexity.

Since logical chain has a chain structure, we construct a supernet as in Figure 2(a). Denote our target
relation as Br, the adjacency matrix of relation Br as ABr , and the one-hot vector corresponding to
entity x as vx. Our learning model f(w,P) now has no model parameter w, and the original bi-level
problem is reduced to a single-level one with the following performance measureM (f(w,P),D) =∑
Br(x,y)=1 inD v>x (

∏T
i=1 ABi

)vy , which counts the number of pairs (x, y) that has relation Br and
is predicted by logical chain x −→B1

z1 −→B2
. . . −→BT

y in the KG D.

4 EXPERIMENTS

All experiments are implemented on PyTorch (Paszke et al., 2017) except for the logical chain
inference, which is implemented on TensorFlow (Abadi et al., 2016) following DRUM (Sadeghian
et al., 2019). We have done all experiments on a single NVIDIA RTX 2080 Ti GPU.

4.1 BENCHMARK PERFORMANCE COMPARISON

Here, we compare our proposed method with the state-of-the-art methods on three different
applications that can be seen as subgraph search problems, i.e., neural architecture design for
image classification, logical chain inference from KG, and meta-path discovery in HIN.

4.1.1 DESIGNING CONVOLUTIONAL NEURAL NETWORK (CNN) ARCHITECTURES

We first apply TRACE to the architecture design problem on CNN for image classification, which is
currently the most famous application for supernet-based methods. We consider the following two
different settings for our NAS experiments: (i). Stand-alone (Zoph & Le, 2017; Zoph et al., 2017):
train each architecture to converge to obtain separate w∗(P); (ii). Weight-sharing (Liu et al., 2018;
Xie et al., 2018; Yao et al., 2020): share the same parameter w across different architectures during
searching. And for both stand-alone and weight-sharing experiments, we repeat our method for five
times and report the mean±std of test accuracy of searched architectures.

Stand-alone setting. To enable comparison under stand-alone setting, we use the NAS-Bench-201
dataset (Dong & Yang, 2020) where the authors exhaustively trained all subgraphs in a supernet and
obtain a complete record of each subgraph’s accuracy on three different datasets: CIFAR-10, CIFAR-
100 and ImageNet-16-120 (details in Appendix E.1). We use the stochastic formulation and compare
our method with (i) Random Search (Yu et al., 2020); (ii) REINFORCE (policy gradient) (Zoph
& Le, 2017); (iii) BOHB (Falkner et al., 2018) and (iv) REA (regularized evolution) (Real et al.,
2018). Results are in Table 2, and we can see that our method achieves better results than all existing
stand-alone NAS methods and even finds the optimal architecture on CIFAR-10 and CIFAR-100
dataset.

Weight-sharing setting. We use the deterministic formulation, construct supernet follows (Liu et al.,
2018), and evaluate all methods on CIFAR-10 dataset (details are in Appendix E.1). These are the

6

Under review as a conference paper at ICLR 2021

Table 3: Comparison with NAS methods in weight-sharing setting on CIFAR-10.

Architecture Test Error Params Search Cost Search
(%) (M) (GPU Days) Method

DenseNet-BC (Huang et al., 2017) 3.46 25.6 - manual

ENAS (Pham et al., 2018) 2.89 4.6 0.5 RL
Random (Yu et al., 2020) 2.85±0.08 4.3 - random

DARTS (1st) (Liu et al., 2018) 3.00±0.14 3.3 1.5 gradient
DARTS (2nd) 2.76±0.09 3.3 4 gradient

SNAS (Xie et al., 2018) 2.85±0.02 2.8 1.5 gradient
GDAS (Dong & Yang, 2019) 2.93 3.4 0.21 gradient
BayesNAS (Zhou et al., 2019) 2.81±0.04 3.4 0.2 gradient

ASNG-NAS (Akimoto et al., 2019) 2.83±0.14 2.9 0.11 natural gradient
NASP (Yao et al., 2020) 2.83±0.09 3.3 0.1 proximal algorithm

R-DARTS (Zela et al., 2020) 2.95±0.21 - 1.6 gradient
PDARTS (Chen et al., 2019) 2.50 3.4 0.3 gradient
PC-DARTS (Xu et al., 2020) 2.57±0.07 3.6 0.1 gradient

TRACE 2.78±0.12 3.3 0.6 gradient
TRACE + PC 2.48±0.07 3.6 0.8 gradient

Table 4: Comparison with NAS methods in weight-sharing setting on ImageNet.

Architecture Top-1 Error Top-5 Error Params FLOPS
(%) (%) (M) (M)

ShuffleNet (Ma et al., 2018) 25.1 - 5 591

DARTS (Liu et al., 2018) 26.7 8.7 4.7 514
SNAS (Xie et al., 2018) 27.3 9.2 4.3 522

GDAS (Dong & Yang, 2019) 26.0 8.5 5.3 581
BayesNAS (Zhou et al., 2019) 26.5 8.9 3.9 -
PDARTS (Chen et al., 2019) 24.4 7.4 4.9 557
PC-DARTS (Xu et al., 2020) 25.1 7.8 5.3 586

TRACE 26.5 8.6 4.7 520
TRACE + PC 24.2 7.7 5.0 563

most popular setups for weight-sharing NAS. Results are in Table 3 and 4, we can see that TRACE
achieves comparable performances with existing weight-sharing NAS methods.

4.1.2 LOGIC CHAIN INFERENCE FROM KNOWLEDGE GRAPH (KG)

For logical chain inference, we use the deterministic formulation and compare our method with the
following methods: Neural LP (Yang et al., 2017), DRUM (Sadeghian et al., 2019), and GraIL (Teru
et al., 2020). Neural LP and DRUM are restricted to logical chain inference, while GraIL considers
more complex graph structures. We also compare our method with random generated rules to
better demonstrate the effectiveness of the proposed method. We do not compare our method with
embedding-based methods, e.g. RotatE (Sun et al., 2019) as those methods all need embeddings for
entities and cannot generalize found rules to unseen entities.

Following the setting of DRUM, we conduct experiments on three KG datasets: Family, UMLS
and Kinship (details are in Appendix E.2), and report the best mean reciprocal rank (MRR), Hits
at 1, 3, 10 across 5 different runs. Results are in Table 5, which demonstrates that our proposed
method achieves better results than all existing methods. Besides, case studies in Section 4.2 further
demonstrate that TRACE can find more accurate rules than others.

4.1.3 META-PATH DISCOVERY IN HETEROGENEOUS INFORMATION NETWORK (HIN)

Finally, we apply TRACE to meta-path discovery problem on HINs. Following existing works
(Wang et al., 2019; Yun et al., 2019), we use the deterministic formulation and conduct experiments
on three benchmark datasets: DBLP, ACM and IMDB (details are in Appendix E.3) and compare
our methods with the 1) baselines in GTN (Yun et al., 2019), i.e., DeepWalk (Bryan et al., 2014),

7

Under review as a conference paper at ICLR 2021

Table 5: Experiment results on logical chain inference.

Dataset Family UMLS Kinship
Hits @ Hits @ Hits @

MRR 10 3 1 MRR 10 3 1 MRR 10 3 1
Neural LP 0.88 0.98 0.95 0.80 0.72 0.93 0.84 0.58 0.55 0.87 0.63 0.41

DRUM 0.95 0.99 0.98 0.91 0.80 0.98 0.94 0.66 0.59 0.91 0.68 0.44
GraIL 0.87 0.96 0.95 0.79 0.73 0.94 0.86 0.55 0.57 0.89 0.65 0.45

Random 0.45 0.48 0.43 0.39 0.33 0.35 0.31 0.25 0.22 0.25 0.19 0.14

TRACE 0.92 0.99 0.98 0.92 0.81 0.98 0.95 0.67 0.61 0.91 0.69 0.45

Table 6: Evaluation results on the node classification task (F1 score).

Dataset DeepWalk metapath2vec GCN GAT HAN GTN Random TRACE

DBLP 63.18 85.53 87.30 93.71 92.83 93.98 91.62 94.42
ACM 67.42 87.61 91.60 92.33 90.96 91.89 90.28 92.62
IMDB 32.08 35.21 56.89 58.14 56.77 58.92 57.12 61.31

metapath2vec (Dong et al., 2017), GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2018),
HAN (Wang et al., 2019) and 2) random generated meta-paths. Results on different datasets are in
Table 6, which demonstrate that TRACE performs better than other methods on different HINs.

4.2 CASE STUDY

To further investigate the performance
of TRACE, we list the top rules found
by TRACE and other methods in Ta-
ble 7. This result demonstrates that
our method can find more accurate
logic rules than other baselines, which
contributes to the superior performance
of our method. We also give the
architectures and meta-paths found by
TRACE in Appendix F.

Table 7: An example of top 3 rules obtained by each
method on Family dataset.

Neural-LP
son(C, A)← brother(C, B) , son(B, A)

son(B, A)← brother(B, A)
son(C, A)← son(C, B), mother(B, A)

DRUM
son(C, A)← nephew(C, B), brother(B, A)

son(C, A)← brother(C, B), son(B, A)
son(C, A)← brother(C, B), daughter(B, A)

TRACE
son(C, A)← son(C, B), wife(B, A)

son(C, A)← brother(C, B), son(B, A)
son(C, A)← nephew(C, B), brother(B, A)

4.3 ABLATION STUDY

4.3.1 IMPACT OF ENCODING APPROACH

We compare TRACE with the following encoding methods on supernet: (i) DARTS, which introduces
continuous parameters for each edge separately; (ii) RNN, which uses a RNN to compute the weights
for each edge; (iii) CP decomposition, which generalizes DARTS to higher rank; (iv) TRACE(Full),
which does not adopt Proposition 1 in Algorithm 1. Results on NAS-Bench-201 using CIFAR-100
are shown in Figure 3(a), and we can see that DARTS performs worse than other methods (CP
and TRACE) due to insufficient expressive power. And TRACE achieves better results than CP by
being topological aware. It also shows that our simplified encoding scheme does not harm the final
performance, as verified in Proposition 1.

(a) Encoding methods. (b) TN ranks. (c) Re-parametrization.

Figure 3: Ablation studies on NAS-Bench-201, CIFAR-100 is used

8

Under review as a conference paper at ICLR 2021

4.3.2 IMPACT OF RANK OF TENSOR NETWORK

We also investigate the impact of Rn’s, which are ranks in tensor network (TN) on supernets. For
simplicity, we restrict Rn to be equal for all nodes n ∈ N (S) and compare the performance of
different ranks with previous state-of-the-art REA (see Table 2) in Figure 3(b). Results demonstrate
that while the rank can influence the final performance, it is easy to set rank properly for TRACE to
beat other methods. We also adopt Rn = 2 for all other experiments.

4.3.3 OPTIMIZATION ALGORITHMS

Finally, we compare TRACE with proximal algorithm (Parikh & Boyd, 2014), which is a popular
and general algorithm for constrained optimization. Specifically, proximal algorithm is used to solve
(1) with the constraint

∑
i−
Ti− = 1 without Proposition 2. We solve the proximal step iteratively

and numerically since there is no closed-form solutions. The comparison is in Figure 3(c), and
we can see that TRACE beats proximal algorithm by a large margin, which demonstrates that the
re-parameterized by Proposition 2 is useful for optimization.

5 CONCLUSION

In this paper, we generalize supernet from neural architecture search (NAS) to other machine learning
tasks. To expressively model the supernet, we introduce a tensor formulation to the supernet and
represent it by tensor network (tensorizing supernets). We further propose an efficient gradient-based
algorithm to solve the new supernet search problem. Empirical results across various applications
demonstrate that our approach has superior performance on these machine learning tasks.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete
Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A system for large-scale
machine learning. In OSDI, 2016.

Youhei Akimoto, Shinichi Shirakawa, Nozomu Yoshinari, Kento Uchida, Shota Saito, and Kouhei
Nishida. Adaptive stochastic natural gradient method for one-shot neural architecture search. In
ICML, 2019.

Cichocki andrzej., Namgil. Lee, Ivan. Oseledets, Anh-Huy Phan, Qibin Zhao, and Danilo Mandic.
Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor
decompositions. Foundations and Trends in Machine Learning, 2016.

Cichocki andrzej., Anh-Huy. Phan, Qibin. Zhao, Namgil. Lee, Ivan. Oseledets, Masashi. Sugiyama,
and Danilo Mandic. Tensor networks for dimensionality reduction and large-scale optimization:
Part 2 applications and future perspectives. Foundations and Trends in Machine Learning, 2017.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network
architectures using reinforcement learning. In ICLR, 2016.

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understanding
and simplifying one-shot architecture search. In ICML, 2018.

Rasmus Bro. PARAFAC tutorial and applications. Chemometrics and Intelligent Laboratory Systems,
1997.

Perozzi Bryan, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In KDD, 2014.

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: Bridging
the depth gap between search and evaluation. In ICCV, October 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In NAACL, 2018.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In CVPR,
June 2019.

Xuanyi Dong and Yi Yang. NAS-Bench-201: Extending the scope of reproducible neural architecture
search. In ICLR, 2020.

Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. metapath2vec: Scalable representation
learning for heterogeneous networks. In KDD, 2017.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. Journal
of Machine Learning Research, 2019.

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and efficient hyperparameter
optimization at scale. In ICML, 2018.

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete structures
for graph neural networks. In ICML, 2019.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2017.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun.
Single path one-shot neural architecture search with uniform sampling. In ECCV, pp. 544–560.
Springer, 2020.

Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec. Embedding logical
queries on knowledge graphs. In NIPS, 2018.

10

Under review as a conference paper at ICLR 2021

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Gao Huang, Zhuang Liu, and Kilian Weinberger. Densely connected convolutional networks. In
CVPR, 2017.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2016.

Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM Review, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In NIPS, 2012.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 1998.

Chao Li and Zhun Sun. Evolutionary topology search for tensor network decomposition. In ICML,
2020.

Wei Li, Shaogang Gong, and Xiatian Zhu. Neural graph embedding for neural architecture search. In
AAAI, 2020.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
ICLR, 2018.

Yu Liu, Quanming Yao, and Yong Li. Generalizing tensor decomposition for n-ary relational
knowledge bases. In WWW, 2020.

Denis Lukovnikov, Asja Fischer, Jens Lehmann, and Sören Auer. Neural network-based question
answering over knowledge graphs on word and character level. In WWW, 2017.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. ShuffleNet V2: Practical guidelines for
efficient cnn architecture design. In ECCV, 2018.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. In NIPS, 2013.

Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing neural
networks. In NIPS, 2015.

Ivan V. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 2011.

Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in optimization, 1(3):
127–239, 2014.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS Workshop, 2017.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search
via parameters sharing. In ICML, 2018.

Meng Qu and Jian Tang. Probabilistic logic neural networks for reasoning. In NeurIPS, 2019.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In AAAI, 2018.

Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang. DRUM: End-to-end
differentiable rule mining on knowledge graphs. In NIPS, 2019.

Chaun Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and Philip S. Yu. A survey of heterogeneous
information network analysis. IEEE Transactions on Knowledge and Data Engineering, 2017.

Amit Singhal. Introducing the knowledge graph: things, not strings. Official google blog, 5, 2012.

11

Under review as a conference paper at ICLR 2021

Steven Skiena. Implementing discrete mathematics: combinatorics and graph theory with
mathematica. The Mathematical Gazette, 1992.

Yizhou Sun and Jiawei Han. Mining heterogeneous information networks: principles and
methodologies. Synthesis Lectures on Data Mining and Knowledge Discovery, 2012.

Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. PathSim: Meta path-based top-k
similarity search in heterogeneous information networks. Proceedings of the VLDB Endowment,
2011.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding by
relational rotation in complex space. In ICLR, 2019.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.

Komal K. Teru, Etienne Denis, and William L. Hamilton. Inductive relation prediction by subgraph
reasoning. In ICML, 2020.

Ledyard Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 1966.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Guojia Wan, Bo Du, Shirui Pan, and Gholamreza Haffari. Reinforcement learning based meta-path
discovery in large-scale heterogeneous information networks. In AAAI, 2020.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A survey of
approaches and applications. IEEE Transactions on Knowledge and Data Engineering, 2017.

Wenqi Wang, Yifan Sun, Brian Eriksson, Wenlin Wang, and Vaneet Aggarwal. Wide compression:
Tensor ring nets. In CVPR, June 2018.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous
graph attention network. In WWW, 2019.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: stochastic neural architecture search.
In ICLR, 2018.

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong.
PC-DARTS: Partial channel connections for memory-efficient architecture search. In ICLR, 2020.

Carl Yang, Mengxiong Liu, Frank He, Xikun Zhang, Jian Peng, and Jiawei Han. Similarity modeling
on heterogeneous networks via automatic path discovery. In ECML-PKDD, 2018.

Fan Yang, Zhilin Yang, and William W Cohen. Differentiable learning of logical rules for knowledge
base reasoning. In NIPS, 2017.

Quanming Yao, Ju Xu, Wei-Wei Tu, and Zhanxing Zhu. Efficient neural architecture search via
proximal iterations. In AAAI, 2020.

Jiaxuan You, Jure Leskovec, Kaiming He, and Saining Xie. Graph structure of neural networks. In
ICML, 2020.

Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat, and Mathieu Salzmann. Evaluating the
search phase of neural architecture search. In ICLR, 2020.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
networks. In NIPS, 2019.

Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank Hutter.
Understanding and robustifying differentiable architecture search. In ICLR, 2020.

Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma. Collaborative
knowledge base embedding for recommender systems. In KDD, 2016.

12

Under review as a conference paper at ICLR 2021

Huan Zhao, Quanming Yao, Jianda Li, Yangqiu Song, and Dik Lun Lee. Meta-graph based
recommendation fusion over heterogeneous information networks. In KDD, 2017.

Qibin Zhao, Guoxu Zhou, Shengli Xie, Liqing Zhang, and Cichocki andrzej. Tensor Ring
Decomposition. arXiv e-prints, pp. arXiv:1606.05535, June 2016.

Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei Pan. BayesNAS: A Bayesian approach for
neural architecture search. In ICML, 2019.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In ICLR, 2017.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures
for scalable image recognition. In ICCV, 2017.

13

Under review as a conference paper at ICLR 2021

A COMPLETE ALGORITHMS OF OPTIMIZATION ON TENSORIZED SUPERNET

Here, we give a more detailed description for our algorithm under deterministic and stochastic
formulation in Algorithm 3 and 4, respectively. In our experiments, we use the stochastic formulation
for NAS under standalone setting, and deterministic formulation for others.

Algorithm 3 TRACE (deterministic formulation with weight-sharing)

Input: Training set Dtr, Validation set Dval
1: Tensorize the supernet T with Algorithm 1;
2: Re-parameterize T to T̄ using (3);
3: while not converged do
4: Update model parameters w(β) by gradient descending∇wL (f(w, β),Dtr)
5: Update supernet parameters β by gradient ascending∇βJβ
6: end while
7: Obtain P∗ = Si− from the final T̄ by setting i− = arg maxi− T̄i− ;
8: Obtain w∗(P∗) = arg minw;L (f(w,P∗),Dtr) by retraining f(w,P∗);
9: return w∗, P∗;

Algorithm 4 TRACE (stochastic formulation)

Input: Training set Dtr, Validation set Dval
1: Tensorize the supernet T with Algorithm 1;
2: Re-parameterize T to T̄ using (3);
3: while not converged do
4: Sample a subgraph P from the probability distribution given by T̄
5: Solve w∗(P) = arg minw L (f(w,P),Dtr)
6: Update supernet parameters β by gradient ascending∇βJβ
7: Save the best w∗(P),P so far
8: end while
9: return best w∗(P),P in Step 7;

B COMPARISON OF PARAMETERS FOR DIFFERENT METHODS

Here, we compare the number of parameters and computational cost (FLOPs) of different methods
for logic rule inference. We use n as the length of logical chains, d as the dimension of embeddings,
r as the rank of tensor networks and e as the number of all relations. Results are in Table 8. Since
n and r is often significantly smaller than e and d (typical values are n = 3, r = 2, d = 128 and
e ≈ 20− 30), TRACE has comparable number of parameters and computational cost with existing
methods.

Table 8: Comparison of number of parameters for different methods on KG.
Method # of parameters FLOPs

Neural LP O(d2) O(nd2)
DRUM O(rd2) O(nrd2)
GraIL O(ed2) O(edn)

TRACE O(nr2e) O(nr2e)

For comparison on HIN, we use n as the length of meta-paths, d as the dimension of embeddings,
and r as the rank of tensor networks. Results are in Table 9. Note that r is often relatively small
compared with d (typical values are r = 2 and d = 128), thus TRACE has the similar number of
parameters and computational cost with existing methods.

14

Under review as a conference paper at ICLR 2021

Table 9: Comparison of number of parameters for different methods on HIN.

Method DeepWalk metapath2vec GCN/GAT/HAN GTN TRACE
of parameters O(nd) O(nd) O(nd2) O(n(r + d2)) O(n(r2 + d2))

FLOPs O(n) O(n) O(n) O(nr) O(nr2)

Table 10: Comparison on number of parameters for different encoding methods.

Method Brief description

PDARTS Progressively reduce number of operations and increase network depth
PC-DARTS Use partial-connection in channels to reduce memory cost
DropNAS Drop out some operations to avoid the Matthew effect

C REVIEW ON EXISTING METHODS THAT CAN BE COMBINED WITH TRACE

D PROOFS

D.1 PROPOSITION 1

Proof. Denote those nodes in supernet whose degree is greater than one (connected by more than
one edges) as N ′(S). Thus, N (S) \ N ′(S) denotes all degree-1 nodes in supernet. Suppose
one node N1(t) is only connected by edge t, while N2(t) is not, 3 then we can rewrite Ti− =∑Rn

rn,n∈N (S)
∏T
t=1 θ

t
rN1(t),it,rN2(t)

as follows:

Ti− =
∑

rn,n∈N (S)

T∏
t=1

αtrN1(t),it,rN2(t)

=
∑

rn,n∈N ′(S)

∑
rn,n∈N (S)\N ′(S)

T∏
t=1

αtrN1(t),it,rN2(t)

=
∑

rn,n∈N ′(S)

T∏
t=1

∑
rn,n∈N (S)\N ′(S)

αtrN1(t),it,rN2(t)

=
∑

rn,n∈N ′(S)

. . . (
∑
rN1(t)

αtrN1(t),it,rN2(t)
) . . .

=
∑

rn,n∈N ′(S)

. . . α̃
(t)
it,rN2(t)

. . .

where similar process is done for all edges. Thus, only nodes whose degree is greater than 1 is
actually needed for index contraction. And for n ∈ N (S) \ N ′(S), we can simply set Rn = 1
without loss of expressive power.

3If N1(t) is only connected by edge t (degree is 1), N2(t) cannot be only connected by edge t unless the
supernet has only one edge t connecting two nodes N1(t), N2(t), which is a trivial case.

15

Under review as a conference paper at ICLR 2021

D.2 PROPOSITION 2

Proof. Following (3), we can have:∑
i−

Ti− =
1∏

n∈N ′(S)Rn

∑
i−

Rn∑
rn,n∈N ′(S)

T∏
t=1

exp(αtrN1(t),it,rN2(t)
)∑

j exp(αtrN1(t),j,rN2(t)
)

=
1∏

n∈N ′(S)Rn

Rn∑
rn,n∈N ′(S)

T∏
t=1

(∑
it

exp(αtrN1(t),it,rN2(t)
)∑

j exp(αtrN1(t),j,rN2(t)
)

)

=
1∏

n∈N ′(S)Rn

Rn∑
rn,n∈N ′(S)

1T

=
1∏

n∈N ′(S)Rn

∏
n∈N ′(S)

Rn = 1.

E EXPERIMENT DETAILS

E.1 NEURAL ARCHITECTURE SEARCH (NAS)

Stand-alone setting The supernet used in NAS-Bench-201 has 3 nodes, and each pair of nodes is
connected by a directed edge, which gives 6 edges in total. And for each edge, we have 5 different
operations (“choices”): zero, skip connect, 1× 1 convolution, 3× 3 convolution and 3× 3 average
pooling. And the details of datasets used in NAS-Bench-201 are in Table 11.

Table 11: Dataset statistics of three image classification dataset for NAS.
Image size # Classes # Training # Validation # Test

CIFAR-10 32×32 10 25K 25K 5K
CIFAR-100 32×32 100 50K 5K 5K

ImageNet-16-120 16×16 120 151.7K 3K 3K

Weight-sharing setting Our construction of supernet follows (Liu et al., 2018). The supernet has
7 nodes, where the first two nodes are the output from previous two cells, respectively, and the last
node performs depthwise concatenation to the output of the rest four nodes. Thus, the supernet has 8
edges with multiple choices (operations), and for each edge, we consider 8 different operations: zero,
skip connect, 3× 3 and 5× 5 separable convolution, 3× 3 and 5× 5 dilated separable convolution,
3× 3 max pooling and 3× 3 average pooling. We evaluate all weight-sharing methods on CIFAR-10
dataset and the dataset division is the same as in Table 11.

E.2 LOGIC CHAIN INFERENCE

In our experiments, we follow the setting in DRUM (Sadeghian et al., 2019) and set the max length
of rules T to be 3 for all datasets. And we set the rank L to be 4 in DRUM based on best validation
performances. The details of KG datasets used in experiments are in Table 12.

Table 12: Dataset statistics for three KG dataset.
Triplets # Relations # Entities

Family 28356 12 3007
UMLS 5960 46 135
Kinship 9587 25 104

E.3 META-PATH DISCOVERY

The details of HIN datasets used in our experiments are in Table 13.

16

Under review as a conference paper at ICLR 2021

Table 13: Dataset statistics for three heterogeneous information network dataset.
Nodes # Edges # Edge types # Features # Training # Validation # Test

DBLP 18405 67946 4 334 800 400 2857
ACM 8994 25922 4 1902 600 300 2125
IMDB 12772 37288 4 1256 300 300 2339

F MORE EXPERIMENT RESULTS

F.1 CORRELATION ANALYSIS

Indeed, the correlation is a good criterion to show the rationality of one-shot architecture search
methods (Bender et al., 2018; Liu et al., 2018; Yu et al., 2020; Guo et al., 2020). However, it is only a
sufficient not necessary condition. Specifically, the goal of tensor T here is to capture good subgraph
in the whole supernet, thus we expect the possibilities of Pi will concentrate on some top subgraphs,
which is shown in below Figure 4.

(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet-16-120

Figure 4: Correlation of T and ground-truth accuracy on NAS-Bench-201 for different datasets.

F.2 CASE STUDIES

c_{k-1} c_{k}

skip_connect

1nor_conv_3x3

2nor_conv_3x3

nor_conv_1x1

nor_conv_3x3 nor_conv_3x3

(a) CIFAR-10

c_{k-1} c_{k}

skip_connect

1nor_conv_3x3

2nor_conv_3x3

nor_conv_3x3

nor_conv_3x3 nor_conv_3x3

(b) CIFAR-100

c_{k-1} c_{k}

skip_connect

1nor_conv_1x1

2nor_conv_1x1

nor_conv_3x3

nor_conv_3x3 nor_conv_1x1

(c) ImageNet-16-120

Figure 5: Architectures found by TRACE on NAS-Bench-201 for different datasets.

17

Under review as a conference paper at ICLR 2021

c_{k-2} 0
skip_connect

1
skip_connect

2
sep_conv_5x5

3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

dil_conv_5x5

c_{k}

(a) Normal Cell

c_{k-2}

0

avg_pool_3x3

1

avg_pool_3x3

2

avg_pool_3x3

3
avg_pool_3x3

c_{k-1}

skip_connect

skip_connect

skip_connect

skip_connect

c_{k}

(b) Reduction Cell

Figure 6: Architectures found by TRACE on weight-sharing setting.

Table 14: Meta-paths found by GTN and TRACE on different HIN.

Dataset predefined meta-path Top-3 meta-paths
GTN TRACE

DBLP APCPA, APA CPCPA, APCPA, CP CPCA, APCPA, APA
ACM PAP, PSP APAP, APA, SPAP PSP, APAP, PAP
IMDB MAM, MDM DM, AM, MDM MDM, MDMAM, MAM

F.3 RUNNING PLOTS

(a) Family (b) UMLS (c) Kinship

Figure 7: Validation MRR during training on three KG datasets.

18

Under review as a conference paper at ICLR 2021

(a) DBLP (b) ACM (c) IMDB

Figure 8: Validation macro F1 score during training on three HIN datasets.

F.4 ABLATION STUDIES

(a) Encoding methods (b) TN ranks (c) Algorithms

Figure 9: Ablation studies on NAS-Bench-201, CIFAR-10 is used

(a) Encoding methods (b) TN ranks (c) Algorithms

Figure 10: Ablation studies on NAS-Bench-201, ImageNet-16-120 is used

19

Under review as a conference paper at ICLR 2021

G ILLUSTRATION OF TENSORIZATION PROCESS FOR SUPERNETS

(a) A supernet example

(b) Introduce αt for each edge t, and connect them with nodes in the supernet (step 1).

(c) Remove isolated nodes (step 2).

(d) Final tensor network (step 3).

Figure 11: A step-by-step illustration of supernet encoding process (Algorithm 1).

20

