
Controlling Neural Network Smoothness for
Algorithmic Neural Reasoning

Anonymous Author(s)
Affiliation
Address
email

Abstract

The modelling framework of neural algorithmic reasoning [1] postulates that a1

continuous neural network may learn to emulate the discrete reasoning steps of2

a symbolic algorithm. The purpose of this study is to investigate the underlying3

hypothesis in the most simple conceivable scenario – the addition of real numbers.4

We find that two layer neural networks fail to learn the structure of this task and5

that growing the network’s width leads to a complex division of input space. This6

behaviour can be emulated with Gaussian processes using radial basis function ker-7

nels of decreasing length scale. Classical results establish an equivalence between8

Gaussian processes and infinitely wide neural networks. We demonstrate a tight9

link between the scaling of a network weights’ standard deviation and its effective10

length scale on a sinusoidal regression problem, suggesting simple modifications to11

control the smoothness of the function learned by a neural network. This provides12

a partial remedy to the brittleness of neural network predictions. We validate this13

further in the setting of adversarial examples where we demonstrate the gains in14

robustness that our modification achieves on a standard classification problem of15

handwritten digit recognition. In conclusion, we show inherent problems of neural16

networks emulating even simple algorithmic tasks which, however, may be partially17

improved with smoothness priors inspired by Gaussian processes.18

1 Introduction19

The two most prominent paradigms in artificial intelligence research are discrete, symbolic algorithms20

on the one side, and continuous, neural information processing systems on the other [2]. While21

the latter have caused a revolutionary transformation of the field, they are often plagued by hard22

challenges, such as robustness to changes in the input distributions, for which algorithmic approaches23

can provide worst-case performance guarantees. Crucially, we know that both approaches are24

deployed by humans, akin to Kahneman’s 1 and 2 reasoning systems [3]. Thus, algorithms must be25

implemented in biological neural networks in the human brain. Observing a scene in the world, we26

know that it is represented and processed in the distributed representation of neural activity in visual27

cortex. However, the same scene is also represented when we describe it with the use of symbols and28

the syntax of our language. Thus, one of the most mysterious questions in neuroscience as well as in29

artificial intelligence research is: where and how do these two representation systems interact?30

The concept of neural algorithmic reasoning [1] is a recent proposal for a modeling framework at the31

intersection between symbol processing algorithms and continuous distributed information processing32

systems [see also 4, 5]. The obvious question is how such a hybrid architecture may be trained,33

since we usually require differentiability of the whole system for end-to-end training. To solve this,34

the authors [1] propose training a neural network to approximate the output of the algorithm in the35

middle of the model and allows end-to-end training.36

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



Figure 1: Unit Disc Loss Surfaces. These plots show the network error in input space (remember,
we are trying to model f : R2 → R, f(x) = x1 + x2, x ∈ D ⊆ R2), where brighter regions indicate
lower error (red dots — training data points). Top row shows the learned function and its incurred
loss for a ReLU neural network with increasing number of hidden units (N , left to right). Bottom
row shows the loss surface for a GP with a RBF kernel of increasing length scale (λ).

The purpose of our work is to investigate the feasibility of neural algorithmic reasoning in one of37

the most simple conceivable settings: the addition of real numbers. Integer calculus and similarly38

floating-point arithmetic in binary (symbolic) representations have previously received more attention39

[6–9]. By contrast, we want to know if a simple (2-layer) neural network can learn to add real-valued40

numbers on a compact domain such as the unit disc. This is an interesting setting because we know41

the hypothesis class of neural networks with rectified linear unit (ReLU) activation functions σ42

trivially contains the correct solution, i.e., given inputs x ∈ R2, the following function is a perfect43

representation of the desired output y = x1 + x244

f(x) := W2σ(W1x+ b1) + b2, W1 :=

 1 0
−1 0
0 1
0 −1

 , W2 :=

 1
−1
1

−1

 , b1, b2 := 0.

Given input and output training pairs, a neural network can learn to approximate this function.45

However, it is an open question how accurate the approximation will be within the domain of the46

training data; possibly in the limit of infinite data and a model that is a universal function approximator47

[10]. Secondly, it is unclear how the model will generalise outside the domain of the training data.48

In this paper, we find that artificial neural networks are unable to learn this simple function, even49

if abundant training data is available, leaving regions of high error within the training domain and50

struggling to extrapolate beyond. A comparison to Gaussian processes suggests a simple partial51

remedy, exploiting classic results about the equivalence between these two model classes, based on a52

correct adjustment of the smoothness of the learned function. We show that these modifications also53

translate to increased adversarial robustness on handwritten character image recognition.54

2 Neural Networks and Gaussian Processes Learning Addition55

We first investigate learning addition of real numbers in two dimensions. For this, we randomly draw56

128 points on the unit disc and train a two layer neural network with ReLU nonlinearities after the first57

layer to solve the addition task using a simple squared loss function L(f, x, y) = (f(x, y)−(x+y))2.58

We train for 50, 000 steps with the Adam optimizer [11] (held fix after initial experiments indicating59

that this sufficed for convergence), an initial learning rate of 0.001 and a learning rate decay of 0.9.60

Across the top row of Fig. 1 we change the number of hidden units (i.e., the width) of the network61

and observe the effect on the learned solution. Few units exhibit the recently proposed polytope62

structure of neural network approximated functions [12]. While more units slightly improve the63

performance, we can see that the model uses the additional capacity to cut up the input space into64

2



Figure 2: Annulus Loss Surfaces and Generalisation Performance. The first (third) column shows
the loss surfaces for a NN (GP) with N hidden units, and an unlimited amount of training data (with
optimal length scale and D training data points — red dots). The second (fourth) column shows the
negative log loss as a function of eccentricity (dots coloured by angle, black dotted lines radially
averaged) in the three regimes of OOD (within convex hull), IID and OOD (outside of convex hull)
generalisation.

increasingly refined regions. Interestingly, the network learns intricate ridges of good performance on65

which the training data lies. These ridges appear to be connected on continuous paths — an intriguing66

observation for future foundational NN research.67

Importantly, these patterns suggest that larger ReLU networks learn sieve-like solutions of increasing68

resolution, but they do not enter a qualitatively different regime that would resemble the simple69

algorithmic solution to the task. We can produce a similar sequence of model behaviours with70

Gaussian process (GP) regressors with varying radial basis function (RBF) kernel scales. We use the71

standard GP implementation in sklearn [13]. Usually, this would include maximum likelihood length72

scale selection (optimum near λ ∼ 150), however, setting this by hand lets us visualise the different73

solutions for suboptimal length scales. Specifically, we see that setting the length scale too low (Fig.74

1 bottom left) forces the model to learn ridges of good solutions through the training data — similar75

to the NN model. Note that the anti-diagonal line passing through the origin indicates the null space76

of the target function, i.e., where a 0 output is the correct answer.77

The similarity between the solution patterns for neural networks with many hidden units and GPs78

with short length scales is not surprising given classical results [14]. Briefly, Neal established that79

for NNs with a hyperbolic tangent (TanH) nonlinearity and an infinite number of hidden units (with80

appropriate scaling of their initialisation variances) the distribution over learned functions (ab initio)81

becomes equivalent to that of a GP. This opens an interesting path forward in understanding and82

improving the neural network solution exposed in this section (see below).83

3 Out of Domain Generalization84

A crucial difference between algorithms and neural network solutions is the way they generalise to85

different inputs [2]. Addition is defined on all numbers in R, but the approximation learned by a NN86

can only observe a subset of those inputs in its training data (i.e., IID — independent identically87

distributed). Recent discussions have investigated this from the point of view of interpolation versus88

extrapolation [15, 16]. Overparameterized NN exhibit a double descent phenomenon, which is89

thought to improve their generalization performance by interpolating between training points [17] —90

although see [18]. Going beyond the convex hull of the training data would, by contrast, require the91

ability to extrapolate to a new domain (OOD — out of distribution). We adjust our setting slightly to92

study both aspects of generalisation.93

Specifically, the training data is now randomly sampled from the annulus A := {x ∈ R2 | 0.5 ≤94

∥x∥ ≤ 1}. Moreover, to assess that the findings from Fig. 1 do not depend on limited training data or95

finite network size, we set the number of hidden units to 10, 000 and generate a new random batch for96

every gradient step (totalling 256× 50, 000 = 12, 800, 000 training examples). The learned solution97

by the NN is shown in Fig. 2 top left. Again, we see an intricate pattern emerging within the training98

data domain (IID) with ridges of good performance but valleys of bad predictions. By contrast, the99

predictions are bad both inside the convex hull of the training data ∥x∥ ≤ 0.5 as well as outside100

∥x∥ ≥ 1.0. This is quantified in Fig. 2 top middle as a function of the input norm (we can also see101

the different ridges outside the training domain distinguished by their angles). For the GP, even with102

limited training data (D = 256), we see higher performance levels (Fig. 2 bottom middle) both on103

training data (green), in its convex hull (yellow) as well as outside (red).104

3



Figure 3: Sinusoidal Regression. Top row shows GP models with different length scales (λ) fitted to
a sinusoidal regression problem with: true function (yellow IID, purple OOD), training points (red),
model prediction (light blue), uncertainty (shaded, two standard deviations). The top right plot shows
the different losses (mean squared error — MSE, and log likelihood) as a function of GP RBF length
scale. The bottom row gives the same regression plots for the NN with TanH activation function and
varying length scales (σ−1) and (right) the training and test error as a function thereof.

4 Setting the Length Scale of Neural Networks105

Figure 4: Adversarial Robustness. Accuracy
on MNIST as a function of (L2) adversarial
perturbation size for different models (TanH
NNs, length scale σ−1).

An important step in fitting a GP with a RBF kernel106

to data is finding the best length scale for the kernel.107

We explore this process, and its equivalent in NNs,108

in this section. To easily visualise the learned input-109

output mapping, the dataset is now just a noisy sine110

function on x ∈ [−2π, 2π] (for OOD, we extrapolate111

to [−3π, 3π]). Precisely, we are trying to model the112

function y = sin(x) + ϵ with ϵ ∼ N (0, 0.25). In113

Fig. 3 we can see that there exists a sweet spot for114

the kernel’s length scale (top middle), and that the115

model overfits (top left) for smaller length scales and116

underfits (top right) for larger length scales. This117

is confirmed quantitatively (top right) by looking at118

the likelihood (blue) as well as the training and test119

error as a function of the length scale (dotted lines120

indicate length scales in plots to the right).121

To get a NN to behave like a GP, we closely follow the construction in [14]. That is, we use TanH122

and restrict the standard deviation of the weights to
√
N where N is the number of inputs to a layer.123

Importantly, we enforce this standard deviation throughout training by using the scaled weights124

w̃ = w(s.d.(w)
√
N)−1σ with sd(w) the standard deviation of w and σ a scaling factor. Intuitively,125

σ−1 behaves like the length scale in GPs (Fig. 3 bottom), i.e., a smaller σ−1 means larger weights and126

more overfitting to the training data whereas too large σ−1 means very small weights and underfitting127

of the training data. Again, we establish the existence of an optimum length scale σ−1 (Fig. 3, bottom128

right) that produces the smallest test error.129

5 Controlling Neural Network Smoothness130

Returning to the initial two examples of adding real numbers from a disc or an annulus, we can now131

observe the effect of varying the length scale (σ−1) of a 2-layer NN with a large number of hidden132

units (approaching the GP regime) and TanH activation functions. On both datasets (Fig. 5) it is133

apparent that increasing the length scale makes the learned output function more smooth. Thus, the134

NN becomes qualitatively more similar to a GP with a well adjusted learning scale for its RBF kernel.135

As a further verification for the claim that this approach effectively controls the smoothness of the136

learned NN input-output mapping, we turn towards a more complicated problem of performing image137

4



Figure 5: Controlling the Smoothness of Neural Network Functions. The four columns show
learned TanH 2-layer NN loss surfaces for the two datasets (top disc, bottom annulus — same settings
as above) for increasing length scales (left to right) producing an increasingly smooth mapping.

recognition on MNIST under worst case (adversarial) distribution shifts. Thus, we search for minimal138

perturbations that maximally change the output, which is a proxy for the model’s smoothness [19].139

Fig. 4 shows that controlling the length scale of a neural network on handwritten character recognition140

does indeed increase the robustness to L2 adversarial perturbations above a simple ReLU baseline141

model (both 2-Layer MLPs as above). We can see a trade-off between the clean and the robust142

accuracy with large length scales increasing the robustness while decreasing the clean accuracy.143

These performance levels are far from the SOTA robust models on this task, however, they eschew the144

need for (expensive) adversarial training [20]. Thus, this is a proof-of-principle that the smoothness145

of a NN function can indeed be controlled with the construction proposed in this paper.146

6 Discussion147

The promise of neural algorithmic reasoning to combine distributed and discrete reasoning systems148

via differentiable NN approximations is intriguing. Here, we show that the functions learned by149

neural networks, even in one of the most simple conceivable examples of symbolic manipulation150

(real addition), is prone to learning a highly complex and varying output mapping that falls short151

of learning the proper algorithmic target. There are many different perspectives onto this problem.152

Many transformers are better at manipulating arithmetic expressions [9]. However, looking at the loss153

surface of the NN solution for a simple 2-layer MLP, revealed an intriguing structure and analogy to154

GPs that we decided to pursue in this work. Moreover, the intricate structure of the loss surface is an155

intriguing pointer for future directions in basic NN theory.156

We have demonstrated how the NN mapping can be made more similar to that of a well-calibrated157

GP, specifically, by making it more smooth which also improved adversarial robustness. Note that158

designing Lipschitz neural networks with bounded smoothness is an open research area [21]. In our159

case, it is open for future work to investigate how the composite function of more than two layers160

contributes to global smoothness of a NN, potentially building on recent work extending the NN GP161

equivalence to multilayer networks [22].162

Finally, while this study focused on a technical detail about NN approximations to simple algorithms,163

the larger question remains still open how NNs can make the inferential step (see Hume’s problem164

of induction) from any finite amount of data to an infinite look-up table (see MLST episode 061).165

Surely, humans are a proof-of-concept that noisy and distributed processing systems (i.e., brains) can166

implement discrete symbolic algorithms [23]. We hope that future research in this area will benefit167

more from interdisciplinary approaches that take inspiration across fields.168

5

https://podcasts.apple.com/ca/podcast/061-interpolation-extrapolation-and-linearisation/id1510472996?i=1000546882385


References169

[1] Petar Veličković and Charles Blundell. Neural algorithmic reasoning. Patterns, 2(7):100273,170

2021.171

[2] Gary F Marcus. The algebraic mind: Integrating connectionism and cognitive science. MIT172

press, 2003.173

[3] Daniel Kahneman. Thinking, fast and slow. Macmillan, 2011.174

[4] Daniel Bear, Chaofei Fan, Damian Mrowca, Yunzhu Li, Seth Alter, Aran Nayebi, Jeremy175

Schwartz, Li F Fei-Fei, Jiajun Wu, Josh Tenenbaum, et al. Learning physical graph representa-176

tions from visual scenes. Advances in Neural Information Processing Systems, 33:6027–6039,177

2020.178

[5] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules.179

Advances in neural information processing systems, 30, 2017.180

[6] Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Investigating the limitations of transformers181

with simple arithmetic tasks. arXiv preprint arXiv:2102.13019, 2021.182

[7] Alon Talmor, Yanai Elazar, Yoav Goldberg, and Jonathan Berant. olmpics-on what language183

model pre-training captures. Transactions of the Association for Computational Linguistics,184

8:743–758, 2020.185

[8] Chengyue Jiang, Zhonglin Nian, Kaihao Guo, Shanbo Chu, Yinggong Zhao, Libin Shen, and186

Kewei Tu. Learning numeral embeddings. arXiv preprint arXiv:2001.00003, 2019.187

[9] Avijit Thawani, Jay Pujara, Pedro A Szekely, and Filip Ilievski. Representing numbers in nlp: a188

survey and a vision. arXiv preprint arXiv:2103.13136, 2021.189

[10] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are190

universal approximators. Neural networks, 2(5):359–366, 1989.191

[11] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint192

arXiv:1412.6980, 2014.193

[12] Randall Balestriero et al. A spline theory of deep learning. In International Conference on194

Machine Learning, pages 374–383. PMLR, 2018.195

[13] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,196

Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-197

learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830,198

2011.199

[14] Radford M Neal. Priors for infinite networks. In Bayesian Learning for Neural Networks, pages200

29–53. Springer, 1996.201

[15] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever.202

Deep double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics:203

Theory and Experiment, 2021(12):124003, 2021.204

[16] Lukas Schott, Julius Von Kügelgen, Frederik Träuble, Peter Gehler, Chris Russell, Matthias205

Bethge, Bernhard Schölkopf, Francesco Locatello, and Wieland Brendel. Visual representation206

learning does not generalize strongly within the same domain. arXiv preprint arXiv:2107.08221,207

2021.208

[17] Niladri S Chatterji, Philip M Long, and Peter L Bartlett. When does gradient descent with209

logistic loss find interpolating two-layer networks? J. Mach. Learn. Res., 22:159–1, 2021.210

[18] Randall Balestriero, Jerome Pesenti, and Yann LeCun. Learning in high dimension always211

amounts to extrapolation. arXiv preprint arXiv:2110.09485, 2021.212

[19] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-213

ial examples. arXiv preprint arXiv:1412.6572, 2014.214

6



[20] Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial215

training. arXiv preprint arXiv:2001.03994, 2020.216

[21] Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas.217

Efficient and accurate estimation of lipschitz constants for deep neural networks. Advances in218

Neural Information Processing Systems, 32, 2019.219

[22] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington,220

and Jascha Sohl-Dickstein. Deep neural networks as gaussian processes. arXiv preprint221

arXiv:1711.00165, 2017.222

[23] Wim Fias, Muhammet Ikbal Sahan, Daniel Ansari, and Ian M Lyons. From counting to223

retrieving: Neural networks underlying alphabet arithmetic learning. Journal of Cognitive224

Neuroscience, 34(1):16–33, 2021.225

7


	Introduction
	Neural Networks and Gaussian Processes Learning Addition
	Out of Domain Generalization
	Setting the Length Scale of Neural Networks
	Controlling Neural Network Smoothness
	Discussion
	Bibliography

