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Abstract

Adversarial attacks expose the vulnerability of neural networks. But it is
difficult for existing defense methods to defend against all attacks, which
leads to the lack of generalization in adversarial robustness. Inspired by
test-time adaptation which leverages model’s prediction entropy to gener-
alize naturally distributed samples during testing, we try to rationally uti-
lize adversarial samples’ entropy for sample rectification, and then achieve
test-time defense. In this article, we investigate the entropy properties of
adversarial samples and obtain two observations: 1) adversarial samples are
often confidently misclassified despite having low prediction entropy and 2)
samples with higher attack strength typically show lower prediction en-
tropy. Therefore, we believe directly minimizing the entropy of adversarial
samples is not reasonable and propose a two-stage self-adversarial rectifi-
cation approach: Rectified Adversarial Sample via Max-Min Entropy for
Test-Time Defense (REAL), consisting of a max-min entropy optimization
scheme and an attack-aware weighting mechanism, which can be embedded
in the existing models as a plugged-played block. Experiments on several
datasets show that REAL can greatly improve the performance of existing
sample rectification model.

1 Introduction

Adversarial attacks expose vulnerabilities of deep neural networks and arise the thinking
about security issues of real application. To mitigate the dangers posed by adversarial
attacks, adversarial defenses have emerged Szegedy et al. (2013); Kurakin et al. (2016);
Madry et al. (2017); Zhang et al. (2019); Wang et al. (2019); Wong et al. (2020). However,
most existing defense methods only perform well on known attacks but struggle to generalize
unknown attacks, highlighting the generalization challenge in adversarial robustness Stutz
et al. (2019); Tsipras et al. (2018); Su et al. (2018). Recent studies Wang et al. (2020);
Zhang et al. (2022) focused on generalization in natural robustness inspire us. They
follow a consensus that, for natural distribution samples, entropy is related to error rate.
That is, the lower the entropy, the higher the prediction confidence and the lower the error
rate. Then these works minimize model prediction entropy during testing to enhance the
generalization in natural robustness.
This inspiration leads us to consider:
Can we also leverage the entropy of adversarial samples during testing for test-time defense
thus achieving the generalization in adversarial robustness?
Before addressing this question, we need to know the entropy properties of adversarial sam-
ples by conducting statistical experiments as shown in Fig. 1. We present the statistical
relationship between entropy and error rate of adversarial samples generated using PGD
attack Madry et al. (2017) on CIFAR10 Krizhevsky et al. (2009) in Fig. 1a and observe
adversarial samples exhibit an adversarial characteristic, i.e., they tend to be confidently
misclassified despite having low prediction entropy, which is obviously different from those
natural distribution samples. Therefore we believe direct using entropy minimization for
test-time defense is not a viable approach. To make reasonable use of the entropy of adversar-
ial samples, a natural question is how to prevent adversarial samples from being misclassified
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(a) observation 1: relationship between predicted
entropy and error rates on adversarial samples
generated by PGD attack and clean samples of
CIFAR10.

(b) observation 2: greater attack strength causes
more loss and lower entropy for adversarial sam-
ples across various attack methods (represented
by different points) on three datasets.

Figure 1: The entropy properties of adversarial samples

with high confidence? A simple idea to answer this question is to transform these adversarial
samples into mask samples by maximizing their entropy. Then we obtain mask samples
that no longer exhibit strong adversarial characteristic. However, our ultimate goal is to
obtain purified samples that can be classified correctly with high confidence. Hence, we
further introduce to enhance the mask samples by minimizing entropy, thereby obtain-
ing purified samples. Eventually, we can attain anticipated purified samples through the
above two-stage max-min (i.e., maximizing entropy to obtain mask sample and minimizing
entropy to obtain purified sample) entropy optimization scheme. Notably, we incorporate
this max-min entropy mechanism into the existing models as a plugged-played block.
This max-min entropy mechanism is based on the assumption that adversarial samples
are generally misclassified with high confidence, however this assumption may vary across
different attackers. As shown in Fig. 1b, not all adversarial examples exhibit high confi-
dence misclassification with low entropy. Therefore, we should employ the max-min entropy
mechanism to varying degrees. Besides, we observe adversarial samples with higher classifi-
cation loss and stronger attack strength tend to exhibit lower entropy. So we introduce an
attack-aware weighting mechanism that exploits the attack strengths by assessing samples’
predicted entropy, and combine it with max-min entropy optimization scheme. Thus an
attack-aware max-min entropy optimization is formed.
Our contribution is elaborated as follows: (1) We explore the predicted entropy of adver-
sarial samples and arrive at two observations. (2) We propose a two-stage self-adversarial
rectification approach: Rectified Adversarial Sample via Max-Min Entropy for Test-Time
Defense (REAL), consisting of a max-min entropy optimization scheme and an attack-aware
weighting mechanism, and verify its effectiveness on several datasets.

2 Related work

Information entropy Information entropy measures event uncertainty in information the-
ory. Small prediction entropy indicates higher prediction certainty Massey (1994), and it is
often associated with lower prediction error rate. Wang et al. (2020); Zhang et al. (2022) ex-
plore this relationship on natural samples, and use this conclusion to achieve generalization
in natural robustness during test-time adaptation through the minimization of information
entropy. Wang et al. (2021) expands the application in the field of adversarial defense. How-
ever the previous research on prediction entropy do not consider the nature of adversarial
samples. Therefore we explore the entropy properties of adversarial examples and propose
a way to make rational use of the entropy.
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Adversarial attack Since Szegedy et al. (2013) discovers the vulnerability of neural net-
works: adding some disturbances to images that cannot be distinguished by the human eye
can lead to images being misclassified with high confidence by the network. And some works
have also emerged to explore the vulnerability of neural networks Goodfellow et al. (2014);
Athalye et al. (2018); Madry et al. (2017); Carlini & Wagner (2016); Moosavi-Dezfooli et al.
(2016); Kurakin et al. (2016); Croce & Hein (2020); Dong et al. (2018); Xiao et al. (2018).
Adversarial samples generated by different attack methods perform differently and this raises
the challenge of generalization in adversarial defense.
Adversarial rectification Under various attacks, many defense methods have also emerged
accordingly. Among them, adversarial training (AT) Kurakin et al. (2016); Madry et al.
(2017); Zhang et al. (2019); Wang et al. (2019); Wong et al. (2020); Jia et al. (2022); Dong
et al. (2023) is believed to be one of the most effective defense strategies. However, these
method are considered to have poor generalization for unknown attackers and is compu-
tationally expensive for large-scale networks. Test-time defense strategy is proposed to
effectively address this challenge, drawing inspiration from the domain adaptation (DA)
field Boudiaf et al. (2022); Wang et al. (2020); He et al. (2020); Sun et al. (2019). These
methods can be divided into the following two categories based on the criteria of where to
adapt: i) Model adaptation, which aims to adapt the model during test time Wang et al.
(2021); Chen et al. (2021); Kang et al. (2021); Gandelsman et al. (2022); Zhou et al. (2020).
ii) Input adaptation, also known as adversarial rectification, which attempts to purify ad-
versarial samples during inference. In this paper, we select the latter for implementation.
Shi et al. (2021); Mao et al. (2021); Hwang et al. (2023); Yang et al. (2022); Tsai et al.
(2023) employ an auxiliary network Chen et al. (2020); He et al. (2020); Feng et al. (2019)
for rectifying adversarial samples. Among them, Mao et al. (2021) adds auxiliary networks
to the already robust model (trained via AT) for sample rectification which still relies on
traditional adversarial training. Although Hwang et al. (2023) provides results on standard
trained model, the improvement is not significant, and high accuracy can only be achieved
when multiple defense strategies are combined. In addition, Wu et al. (2021) gives a method
of rectifying samples without the aid of auxiliary network just by attacking all classes.
We think its essence is similar to minimizing the predicted entropy of samples. But our
observations suggest that it is inappropriate to simply minimize the entropy of a standard
trained model and the experimental results of Wu et al. (2021) also indicate that for standard
trained models, the improvement of sample rectification is not significant. In conclusion,
previous works neither use the entropy of adversarial samples, nor exploit the entropy in
a reasonable way in standard trained models. In this paper, we propose to delve into the
prediction entropy of adversarial samples in test-time defense in a reasonable way.

3 Method

In this section, we introduce REAL consisting of a max-min entropy optimization scheme
and an attack-aware weighting mechanism. The overall framework of our method is shown
in Fig. 2.

3.1 Preliminary

Adversarial rectification models can be summarized as the following paradigm: given a
pretrained model with two branch structures, namely the main task and auxiliary task,
where the main task represents the ultimate classification objective and the auxiliary task
involves self-supervised objective such as data reconstruction Feng et al. (2019); Tsai et al.
(2023); Yang et al. (2022), rotation prediction Gidaris et al. (2018) or label consistency He
et al. (2020); Chen et al. (2020). These two branches share the encoding part defined as E.
For a given input x, the encoder outputs z = E (x, θenc). The classifier is represented as
C and outputs prediction ŷ = C (z, θcls). The auxiliary task is represented as A (z, θaux).
During the training phase, the two branches conduct joint training with the training goal
as Eq. 1. Here the Lcls is the cross entropy for classification, Laux is the auxiliary self-
supervised objective.

min
θ

Ltrain = Lcls((C ◦ E)(x), y, θenc, θcls) + Laux ((A ◦ E)(x), θenc, θaux) (1)
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Figure 2: Overall framework of our method: REAL

In the testing phase, the sample is rectified based on the loss of auxiliary tasks Laux(x). The
calculation process is shown in Eq. 2, where ϵpfy is the budget of adversarial perturbation.
The parameter δ refers to the perturbation added to sample and is computed through
gradient optimization.

min
δ

Laux ((A ◦ E) (x + δ)) , s.t.∥δ∥ ≤ ϵpfy, x + δ ∈ [0, 1] (2)

After obtaining the purified sample xpfy = x + δ, feed them into the model to obtain
predictions as the final classification output ypre = (C ◦ E)(xpfy).

3.2 Max-min entropy optimization scheme

In this paper, we delve into the properties of adversarial samples’ prediction entropy. Ob-
servation 1 shows that adversarial samples are generally misclassified with low entropy and
high confidence, which is obviously different from natural distribution samples. To answer
this question of how to use the entropy of adversarial samples reasonably, we propose a
max-min entropy optimization scheme that involves two steps. Firstly, we employ entropy
maximization for adversarial sample xadv together with an auxiliary task loss, so as to dis-
rupt the inherent property of adversarial sample and introduce a masking effect. We achieve
this goal by optimizing the mask loss Lmask to obtain a mask sample xmask = xadv + δ as
shown in Eq. 3, where βmax is a trade-off parameter between the two losses and is associated
with attack strength, as discussed in section 3.3.

Lmask = Laux − βmax · Lent (3a)
min

δ
Lmask (xadv + δ; A, C, E) , s.t.∥δ∥ ≤ ϵpfy, xadv + δ ∈ [0, 1] (3b)

After the first stage, we believe that the adversarial characteristics of samples have been
diminished. Subsequently, in the second stage, we further apply entropy minimization to
enlighten the mask sample xmask to obtain purified sample xpfy = xmask + δ which can be
correctly classified with high confidence by optimizing the purified loss Lpfy, as shown in
Eq. 4, where βmin is a trade-off parameter between the two losses as discussed in Sec. 3.3.

Lpfy = Laux + βmin · Lent (4a)
min

δ
Lpfy (xmask + δ; A, C, E) , s.t. ∥δ∥ ≤ ϵpfy, xmask + δ ∈ [0, 1] (4b)

The above two-stage max-min entropy optimization scheme can be termed as “adversarial
rectification”. During the process of adversarial rectification, the predicted values of the
adversarial samples engage in a game of deterministic and uncertain predictions, ultimately
producing purified samples that meet rectification cutoff conditions, to be discussed in Sec.
3.4.
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3.3 Attack-aware weighting mechanism

Regarding observation 2 as shown in Fig. 1b, it indicates the variations in the predicted
entropy of adversarial samples generated by different attack methods and adversarial sam-
ples with higher attack strength exhibit lower predicted entropy values. Inspired by this,
we further propose an attack-aware weighting mechanism that takes the attack strength
into consideration by introducing a dynamic rectification parameter β. First, we assess the
attack strength of an adversarial sample by calculating its predicted entropy value Vent,
which is normalized by dividing log(N), N is the number of categories. For adversarial
samples with lower attack strength, i.e. higher Vent, thus it requires less extent of entropy
maximization. Therefore we design βmax to dynamically adjust the entropy maximization
degree, as shown in Eq. 5, where α represents a trade-off hyperparameter.

βmax = α · (1 − Vent)2
, Vent ∈ [0, 1] (5)

On the contrary, after the first stage of adversarial characteristics destruction, we obtain
mask samples and need to inspire them by entropy minimization. And for these mask
samples with higher predicted entropy values, we need to apply greater extent of entropy
minimization. We employ it by designing βmin as described in Eq. 6.

βmin = α · (Vent)2
, Vent ∈ [0, 1] (6)

3.4 Overall algorithm: multi-step optimization

We provide a comprehensive algorithm structure by combining the above two components.
Algorithm 1 summarizes our procedure. In our rectification algorithm, to avoid significant
accuracy decrease on clean samples, we first introduce a clean/adversarial sample detection
step. Taking inspiration from Tsai et al. (2023), we investigate the utilization of auxiliary
loss for detection and observe that adding entropy loss can enhance sample detection. Fig.
3 illustrates the distributions of auxiliary loss and entropy loss for clean and adversarial
samples. From the figure, we can observe that setting both auxiliary loss thresholds aux∗

and entropy loss thresholds ent∗ can serve as a means of detection, effectively distinguishing
between clean and adversarial samples. The specific implementation is: for a given input x,
if it simultaneously satisfies conditions of Laux(x) < aux∗ and Lent(x) < ent∗, we classify it
as a clean sample and output it without further rectification. Otherwise, we perform REAL
for sample rectification.

Figure 3: The joint distributions of auxiliary loss and entropy loss. Clean samples (cln in
blue) show different distribution from adversarial samples under various attacks.

However self-adversarial rectification process causes sample predictions to oscillate between
deterministic and uncertain states, therefore the rectification becomes more challenging.
Thus one round optimization may not be sufficient. To overcome this, inspired by multi-step
attack Madry et al. (2017) we adopt a multi-step optimization by increasing the number of
self-adversarial rectification rounds. To fix the number of optimization rounds, we have
further developed a heuristic selection strategy (hss) of rectification rounds number by
outputting purified samples if they satisfy rectification cutoff condition which are determined
by Eq. 7.

[Laux(xpfy) < aux∗ and Lent(xpfy) < ent∗]︸ ︷︷ ︸
subcondition1

or [Laux(xpfy) < aux∗ and LR]︸ ︷︷ ︸
subcondition2

(7)
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Algorithm 1 Rectified Adversarial Sample via Max-Min Entropy for Test-Time Defense
Input: x: Test sample, aux∗: Auxiliary loss detection threshold, ent∗: Information entropy

detection threshold, T : the number of rectification steps in one stage, γ: Purification
step size, R: the maximum number of rectification rounds.

Output: xpfy: Purified sample.
1: if Laux(x) < aux∗ and Lent(x) < ent∗ then
2: Return xpfy = x
3: else
4: Initialize δ = 0, xpfy = x, rounds = 1
5: repeat
6: for t in range(2T ) do
7: Compute normalized predication entropy of sample: Vent(xpfy)
8: if t < T then
9: Compute βmax according to Eq. 5;

10: Compute Lmask according to Eq. 3;
11: Perform a single step gradient descent based on Lmask:
12: δ = δ − γ · sign (∇xLmask).
13: else
14: Compute βmin according to Eq. 6;
15: Compute Lpfy according to Eq. 4;
16: Perform a single step gradient descent based on Lpfy:
17: δ = δ − γ · sign (∇xLpfy).
18: end if
19: xpfy = x + δ
20: end for
21: rounds += 1
22: until xpfy meets condition in Eq. 7 or rounds > R
23: end if

It involves two subconditions. The first is relatively strict, requiring that both auxiliary
loss Laux(xpfy) and information entropy of purified sample Lent(xpfy) are below a certain
threshold. This allows for screening out clean samples that are not detected. The second is
less stringent, requiring that auxiliary loss of purified sample Laux(xpfy) falls below thresh-
old, while also verifying label reversal (LR), which refers to the inconsistency between label
predictions of purified sample and original sample, LR: (C ◦ E)(xpfy) ̸= (C ◦ E)(x).

4 Experiments

4.1 Experimental settings

The selection of self-supervised tasks Our method can be combined as a plugged-played
block with existing models that exploits self-supervised tasks for sample rectification. In
specific experiments, our method is combined with data reconstruction and label consistency
tasks. The reconstruction task Feng et al. (2019); Tsai et al. (2023); Yang et al. (2022)
employs an autoencoder to align the decoder’s output with the input image, helping the
model understand the image’s internal distribution. The label consistency task He et al.
(2020); Chen et al. (2020), commonly used in self-supervised learning methods, utilizes
contrastive learning to ensure predictions of augmented images align with those of the
original images.
The selection of datasets and backbone We validate our method on MNIST Lecun
& Bottou (1998), and CIFAR-10/CIFAR-100 Krizhevsky et al. (2009). We only utilize
the reconstruction task as an auxiliary task for MNIST due to the potential label changes
caused by certain image augmentation techniques like rotation. For CIFAR10/100, we assess
both the reconstruction and label consistency tasks. We use different backbone architec-
tures for each dataset: FCN and CNN architectures for MNIST, and ResNet18 He et al.
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(2016), WideResNet-28-10 Zagoruyko & Komodakis (2016) architectures for CIFAR10/100,
respectively. For fair comparison, we adopt the same parameters as Shi et al. (2021).
The selection of attack methods We conduct experiments on several common attacks,
including FGSM, PGD, CW, and DeepFool(DF). At the same time, further experimental
analysis is conducted on adaptive attacks (i.e. attacking with all defense strategies known),
ultimately demonstrating the effectiveness of our method. For MNIST, perturbation budget
are set ϵ=0.3, and PGD takes 40 steps with step size of 0.01. CW, DF are set with the same
parameter as Shi et al. (2021). For CIFAR10/100, perturbation budget are set ϵ=8/255,
and PGD takes 20 steps with step size of 2/255. CW, DF are set with the same parameter
as Shi et al. (2021).
The selection of defense method parameters Initially, we use auxiliary loss and entropy
loss thresholds to detect clean and adversarial samples, as depicted in Fig. 3. However,
we observe that this method is ineffective in distinguishing clean and adversarial samples
for reconstruction task on CIFAR10/100. The complexity of reconstructing these datasets
makes it challenging to accurately fit clean samples during training, resulting in a mixed
distribution of reconstruction losses, as Fig. 3 shows. Therefore, we choose not to employ
threshold detection for data reconstruction task. Instead, for label consistency task, we
approximate the detection threshold based on statistical data obtained from clean samples.
Our strategy employs a two-stage rectification approach. To reduce computational overhead,
we set the number of iterations T in each stage to 3 for three datasets. Besides we set an
iteration step γ of 0.1 for MNIST and 4/255 for CIFAR10/100. During the rectification
phase, we set the trade-off parameter α to 0.25 and the maximum number of rectification
rounds R to 5.

4.2 Main results

We compare adversarial training, represented by AT (FGSM) Goodfellow et al. (2014) and
AT (PGD) Madry et al. (2017), and sample rectification method SOAP Shi et al. (2021) with
our proposed two-stage rectification method. The auxiliary in Table 1,2,3 means adding an
auxiliary network for joint training. The brackets indicate the different auxiliary tasks used,
where (lc) and (recs) represent label consistency auxiliary and data reconstruction task
respectively. We reproduce SOAP Shi et al. (2021) using same parameters in this paper and
paste the results of original paper in brackets. The optimal values are highlighted in both
bold and underlined, while the suboptimal values are shown in bold.

Table 1: Adversarial robust accuracy on the MNIST test set.

Method FCN(Fully Connected Neural network) CNN(Convolutional Neural Network)
Natural FGSM PGD CW DF Natural FGSM PGD CW DF

NO defense 98.10 16.87 0.49 0.01 1.40 99.15 1.49 0.00 0.00 0.00
AT (FGSM) 79.76 80.57 2.95 6.22 17.24 98.78 99.50 33.70 0.02 6.16
AT (PGD) 76.82 60.70 57.07 31.68 13.82 98.97 96.38 93.22 90.31 75.55

auxiliary (rec) 97.90 34.67 1.11 0.17 2.12 99.06 69.95 30.24 0.14 6.34
SOAP (rec) 97.47(97.56) 70.46(66.85) 64.29(61.88) 95.10(86.81) 93.82(87.02) 99.06(98.94) 85.04(87.78) 76.89(84.92) 87.49(74.61) 86.10(81.27)

SOAP+ours (rec) 97.39 95.85 96.82 98.28 97.60 98.85 93.97 92.38 98.05 96.42

Table 2: Adversarial robust accuracy on the CIFAR10 test set.

Method resnet18 widresnet28-10
Natural FGSM PGD CW DF Natural FGSM PGD CW DF

NO defense 90.54 15.42 0.00 0.00 6.26 95.13 14.82 0.00 0.00 3.28
AT (FGSM) 72.73 44.16 37.40 2.69 24.58 72.20 91.63 0.01 0.00 14.41
AT (PGD) 74.23 47.43 42.11 3.14 25.84 85.92 51.58 41.50 2.06 24.08

auxiliary (rec) 83.24 12.88 1.59 0.00 10.31 85.87 23.46 7.30 0.06 10.94
SOAP (rec) 78.10 24.29 17.29 66.50 65.97 76.67 32.38 23.46 62.07 64.61

SOAP+ours (rec) 67.77 37.11 31.52 67.42 65.52 72.48 41.6 35.32 69.47 67.49
auxiliary (lc) 86.42 22.04 0.15 0.00 8.62 93.69 57.24 3.08 0.02 43.43
SOAP (lc) 83.85(84.07) 52.45(51.02) 48.82(51.42) 82.83(73.95) 81.88(74.79) 91.11(91.89) 64.56(64.83) 56.39(53.58) 82.82(80.33) 59.73(60.56)

SOAP+ours (lc) 78.82 58.29 62.43 85.8 82.01 91.02 65.78 58.55 83.54 59.87

For MNIST, our experimental results are significantly improved compared with other meth-
ods. And under some attack methods such as CW and DF on both model structures,
better results than adversarial training have been achieved. For most attacks, our method
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Table 3: Adversarial robust accuracy on the CIFAR-100 test set.

Method resnet18 widresnet28-10
Natural FGSM PGD CW DF Natural FGSM PGD CW DF

NO defense 65.56 3.81 0.01 0.00 12.30 78.16 13.76 0.06 0.01 9.05
AT (FGSM) 44.35 20.30 17.41 4.23 18.15 46.45 88.24 0.15 0.00 13.40
AT (PGD) 42.15 21.92 20.04 3.57 17.90 62.71 28.15 21.34 0.65 16.57

auxiliary (rec) 52.36 4.12 0.70 0.00 13.06 63.44 15.78 6.05 0.14 11.87
SOAP (rec) 52.46 9.34 6.74 40.36 41.19 53.59 21.36 17.77 42.73 42.87

SOAP+ours (rec) 37.14 14.51 10.80 41.51 39.40 48.46 23.78 20.04 46.16 45.02
auxiliary (lc) 58.67 7.99 0.04 0.00 12.74 74.28 18.72 0.64 0.00 10.02
SOAP (lc) 56.49(52.91) 26.85(22.93) 25.39(27.55) 55.26(50.26) 55.49(50.57) 63.91(61.01) 31.57(31.4) 37.17(37.53) 57.01(56.09) 54.02(53.79)

SOAP+ours (lc) 44.27 30.49 35.54 55.02 51.6 56.57 31.69 39.03 53.97 50.5

can achieve the optimal defense effect, which also shows our method can alleviate non-
generalization in adversarial robustness. For CIFAR10/100, using label consistency task
as auxiliary network can achieve the optimal effect in our method and the overall results
are superior to traditional adversarial training methods. Compared with SOAP (lc) Shi
et al. (2021), our method can further improve the accuracy under most attacks, by 4%/6%
under FGSM attack. In the data reconstruction task, although the optimal accuracy is not
achieved, it can still be observed that the effect is significantly improved after adding our
method.
For all three datasets, our method demonstrates significant enhancement under PGD and
FGSM attacks compared with other attacks (e.g., CW and DF). We also provide an ex-
planation for this phenomenon. As shown in Fig. 3, under PGD and FGSM attacks,
adversarial samples exhibit high-confidence misclassification and significantly different from
the entropy distribution of clean samples. Consequently, upon integrating the max-min
entropy self-adversarial rectification strategy, notable improvements in performance can be
observed. In contrast, CW and DF operate on different principles and are designed to in-
troduce subtle perturbations leading to misclassifications, resulting in a smaller difference
between the entropy distributions of adversarial and clean samples. In this regard, our
method can still achieve some improvement effects, for example, it can improve by nearly
3% on CIFAR10(resnet) as shown in Table 2. However, we also observe on CIFAR100, our
method is slightly inferior to SOAP at defending against CW and DF. The reason may
be due to the poor detection results on these attack methods. As shown in Fig. 3, for
CIFAR100, the distribution of clean samples and adversarial samples generated by CW and
DF are mixed together. Therefore, it difficult to detect them by setting thresholds and
most adversarial samples are incorrectly identified as clean samples, leading to insufficient
optimization. Hence, in future research, the detection method for purified samples can be
optimized for better sample rectification.

4.3 Ablation analysis

In defense phase, we propose a max-min entropy optimization scheme and an attack-aware
weighting mechanism. In addition, we propose a heuristic selection strategy (hss) of recti-
fication rounds. We verify the effectiveness of these three parts on CIFAR10. Results are
shown in Table 4, from which we observe that by employing max-min entropy optimiza-
tion (+max-min) can improve the rectification effect of samples to a certain extent. After
adding the heuristic selection strategy (+hss), the rectification accuracy can be significantly
improved. In addition, we have seen that after adding attack-aware weighting mechanism
(+β), rectification effect can be further improved.

Table 4: Ablation results on CIFAR10 to verify the effectiveness of max-min entropy op-
timization scheme, attack-aware weighting mechanism and heuristic selection strategy re-
spectively.

Method resnet(rec) resnet(lc)
Natural FGSM PGD CW DF AVG Natural FGSM PGD CW DF AVG

NO defense 83.24 12.88 1.59 0.00 10.31 21.60 86.42 22.04 0.15 0.00 8.62 23.45
SOAP 78.10 24.29 17.29 66.50 65.97 50.43 83.85 52.45 43.82 82.83 81.88 68.97

SOAP+max-min 77.10 22.75 12.58 66.75 66.35 49.11 84.16 55.09 54.44 81.27 80.36 71.06
SOAP+max-min+hss 67.20 36.89 31.84 67.33 65.35 53.72 77.79 58.38 61.20 84.40 81.20 72.59

SOAP+max-min+hss+β 67.77 37.11 31.52 67.42 65.52 53.87 78.82 58.29 62.43 85.8 82.01 73.47
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4.4 Results on defense aware attack

In order to further verify the reliability of our method, we discuss a powerful adaptive attack
method, i.e., defense aware attack (DAA), that is, attacking the model with prior knowl-
edge of all defense strategies. In defense stage, we reduce auxiliary loss and rectify samples
through max-min entropy optimization based on adversarial properties that prediction en-
tropy of adversarial samples is usually small. Therefore, during defense aware attack, in
addition to maximizing classification loss, we also minimize auxiliary loss to decrease its
role in defense and reversely modify the property by maximizing entropy of adversarial
samples, thus designing a defense aware attack, as shown in Eq. 8, where σ is the trade-off
parameter that can be adjusted to simulate different attack strength.

LDAA = Lcls − Laux + σ ∗ Lent (8)

By maximizing the DAA loss Ldaa, we can get adversarial samples by this adaptive attack.
Experimental results as shown in Fig. 4, confirm that our method remains effective in
defending against this attack, even when all defense strategies are well-known.

Figure 4: Results for defending defense aware attack. Plots are classification accuracy before
(solid line) and after (dashed line) rectification using REAL.

When σ is smaller than a certain range, the attack effect is stronger (i.e., accuracy shows a
downward trend). But our method is still effective for defending this stronger attack. And
when the weight σ increases to a certain level, the attack effect will show a downward trend,
which shows that the attacker cannot benefit from the prior knowledge of defense strategy.
Overall, our method can provide a good defense against this adaptive attack because we
introduce an entropy game process in defense process, making it difficult to reverse attack
our method even if the defense strategy is known.

5 Conclusion

In this article, we investigate the entropy properties of adversarial samples and discover
two important observations. Then we explore a reasonable way to utilize entropy by intro-
ducing a max-min entropy optimization scheme and an attack-aware weighting mechanism.
Through experiments on three datasets, we successfully demonstrate that our proposed
method has significant effectiveness in improving the generalization in adversarial robust-
ness.
Limitations: Different choices of auxiliary tasks can significantly impact the detection per-
formance. For instance, data reconstruction task cannot be used effectively for sample
detection on CIFAR10/100 datasets. Moreover, the selection of the detection threshold has
a substantial influence on the final outcome. Consequently, in our method, the selection
and adjustment of detection thresholds are critical. Furthermore, the final rectification ac-
curacy is also influenced by the choice of auxiliary tasks. When there is good correlation
between the auxiliary tasks and the main task, it can further enhance the rectification ef-
fect. However, selecting appropriate auxiliary tasks can be challenging and requires further
exploration in future work.
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6 Appendix

6.1 Results on the TinyImageNet dataset

To showcase additional results on the TinyImageNet-200 dataset, we conduct partial exper-
iments. TinyImageNet-200 is designed for image classification tasks. It consists of 120,000
training images, 10,000 validation images, and 10,000 test images, with each image sized
at 64x64 pixels. The analysis was performed on two architectures, namely ResNet18 and
WideResNet28-10. The experimental results are presented in Table ?? below:

Table 5: Adversarial robust accuracy on the TinyImageNet test set.

Method resnet18 widresnet28-10
Natural FGSM PGD CW DF Natural FGSM PGD CW DF

NO defense 51.01 2.00 1.58 0.00 11.85 65.89 8.96 0.26 0.00 9.66
AT (FGSM) 29.00 13.45 12.29 8.42 18.19 50.78 24.00 19.97 10.25 24.65
AT (PGD) 28.49 13.70 12.98 8.42 17.60 49.45 22.99 19.18 8.95 26.87

auxiliary (lc) 44.45 1.64 0.00 0.00 12.34 64.32 15.70 1.12 0.00 9.66
SOAP (lc) 41.97 7.97 5.69 40.29 40.65 47.23 21.2 25.09 44.12 42.88

SOAP+ours (lc) 30.90 11.14 13.51 39.65 36.24 50.80 22.55 29.45 44.45 42.20

6.2 The necessary of mask loss

To illustrate the necessity of the mask stage, we will demonstrate it through entropy distri-
bution plots and visualizations. First, we plot the entropy distribution on three datasets,
CIFAR10, CIFAR100, and TinyImageNet, under PGD attacks for two different architec-
tures, ResNet18 and WideResNet28-10, with the auxiliary task of label consistency. As
shown in Figure 567, it can be observed that after the mask stage, samples are no longer
misclassified with high confidence, and the overall entropy distribution moves closer to that
of clean samples. Following the purify stage, the entropy distribution becomes closer to that
of clean samples.
For a more intuitive understanding of the effects of the mask and purify stages, we provide
some visual results in Figure 8. We sample images from MNIST dataset with FCN archi-
tecture for the rec task and from CIFAR-10 dataset with ResNet18 architecture for label
consistency auxiliary task. After the mask stage, it can be observed that the confidence
of predictions for the incorrect class gradually decreases. In the attention maps, focus on
the incorrect class is disrupted, demonstrating that the mask stage plays a role in masking
adversarial samples. Subsequently, after the purify stage, high-confidence predictions for
the correct class gradually recover, and the attention maps progressively approach those of
clean samples.

(a) (b)

Figure 5: The entropy distribution plot during sample rectification stage on CIFAR10
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(a) (b)

Figure 6: The entropy distribution plot during sample rectification stage on CIFAR100

(a) (b)

Figure 7: The entropy distribution plot during sample rectification stage on TinyImageNet

Figure 8: The visual results of the mask and purify stage.
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