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Abstract

In the age of misinformation, hallucination—001
the tendency of Large Language Models002
(LLMs) to generate non-factual or unfaithful003
responses—represents the main risk for their004
global utility. Despite LLMs becoming increas-005
ingly multilingual, the vast majority of research006
on detecting and quantifying LLM hallucina-007
tion are (a) English-centric and (b) focus on008
machine translation (MT) and summarization,009
tasks that are less common “in the wild” than010
open information seeking. In contrast, we aim011
to quantify the extent of LLM hallucination012
across languages in knowledge-intensive long-013
form question answering (LFQA). To this end,014
we train a multilingual hallucination detection015
model and conduct a large-scale study across016
30 languages and 6 open-source LLM families.017
We start from an English hallucination detec-018
tion dataset and rely on MT to translate-train019
a detection model. We also manually anno-020
tate gold data for five high-resource languages;021
we then demonstrate, for these languages, that022
the estimates of hallucination rates are similar023
between silver (LLM-generated) and gold test024
sets, validating the use of silver data for esti-025
mating hallucination rates for other languages.026
For the final rates estimation, we build open-027
domain QA dataset for 30 languages with LLM-028
generated prompts and Wikipedia articles as029
references. Our analysis shows that LLMs, in030
absolute terms, hallucinate more tokens in high-031
resource languages due to longer responses, but032
that the actual hallucination rates (i.e., normal-033
ized for length) seems uncorrelated with the034
sizes of languages’ digital footprints. We also035
find that smaller LLMs hallucinate more, and036
significantly, LLMs with broader language sup-037
port display higher hallucination rates.038

1 Introduction039

Generalizing seamlessly to (seemingly) arbitrary040

language understanding, reasoning, and generation041

tasks, Large Language Models (LLMs) (Kojima042

et al., 2022; Dubey et al., 2024; Aryabumi et al., 043

2024; Yang et al., 2024) have arguably become 044

the first ubiquitously adopted language technol- 045

ogy, with application ranging from search engines 046

(Xiong et al., 2024), interactive agents (Teubner 047

et al., 2023) and knowledge retrieval (Yu et al., 048

2023) to various content generation tasks (Liu et al., 049

2022b). Their utility, however, is hindered by their 050

tendency to hallucinate (Maynez et al., 2020; Zhou 051

et al., 2021; Ji et al., 2023; Zhang et al., 2023), that 052

is, produce information that is either (i) inaccurate 053

or factually incorrect with respect to the objective 054

state of the world (e.g., in open-ended question 055

answering) or (ii) unfaithful with respect to some 056

reference (e.g., in summarization). 057

Consequently, a large body of work on tack- 058

ling LLM hallucination has emerged, with efforts 059

falling into the three main areas: (1) detection, 060

i.e., identification of the hallucinated content; (2) 061

evaluation, primarily focusing on measures for 062

quantifying the extent and severity of hallucina- 063

tions ; and (3) mitigation, focusing on mitigat- 064

ing hallucinative tendencies of LLMs (Ji et al., 065

2023). While significant progress has been made in 066

English (Maynez et al., 2020; Liu et al., 2022a; 067

Obaid ul Islam et al., 2023; Kasai et al., 2024; 068

Mishra et al., 2024), hallucination evaluation ef- 069

forts targeting other languages have been much 070

sparser (Clark et al., 2023; Guerreiro et al., 2023; 071

Herrlein et al., 2024; Shafayat et al., 2024). More- 072

over, these efforts have primarily targeted high- 073

resource languages (Qiu et al., 2023; Shafayat et al., 074

2024) with benchmarks limited to reference-based 075

tasks—text summarization (Clark et al., 2023; Aha- 076

roni et al., 2022) and machine translation (Dale 077

et al., 2023; Guerreiro et al., 2023). While highly 078

relevant, these tasks are arguably less representa- 079

tive of LLM usage ‘in the wild’ (Trippas et al., 080

2024), where knowledge-intensive long-form ques- 081

tion answering (LFQA) is more prominent. 082

In this work, we address the above gaps in mul- 083

1



Figure 1: Illustration of our approach for estimating hallucination rates in the wild. Hallucination Detection and
Model Evaluation (left side): (1) We automatically translate the English FAVA (Mishra et al., 2024) dataset to
30 languages and train our multilingual hallucination detection (HD) model on this (noisy) multilingual training
data; (2) We synthesize a silver multilingual hallucination evaluation dataset by prompting a state-of-the-art LLM
(GPT-4) to introduce hallucinations in its answers to knowledge-seeking questions; for a subset of five high-resource
languages, we additionally collect gold (i.e., human) hallucination annotations; we dub this 30-language evaluation
benchmark MFAVA. We use MFAVA to estimate HD model’s per-language performances (precision and recall).
Hallucination Rate Estimation in the Wild (right side): (3) We estimate the hallucination rates for all 30 languages
and six different LLM families from the number of detections of the HD model and its performance.

tilingual hallucination detection and evaluation re-084

search with the ultimate goal of estimating the085

“in the wild” hallucination rates of LLMs across086

languages. Multilingual estimation of such hal-087

lucination rates is challenging due to the scarcity088

of multilingual hallucination benchmarks covering089

open-ended knowledge-seeking tasks that are rep-090

resentative of real-world LLM usage: unlike in091

reference-based generation tasks like summariza-092

tion and machine translation, LLMs often generate093

long-form responses to open-ended questions, re-094

quiring more comprehensive evaluation approaches095

(Wei et al., 2024b). Concretely, we present a large-096

scale study that estimates hallucination rates for097

30 languages (both high(er)- and low(er)-resource098

languages). Our main contributions are as follows:099

(1) We translate-train (Artetxe et al., 2023; Ebing100

and Glavaš, 2024) a multilingual hallucination de-101

tection (HD) model on 30 languages. (2) We create102

MFAVA HD evaluation datasets with span-level103

human annotations (MFAVA-GOLD) for five high-104

resource languages, generate synthetic (MFAVA-105

SILVER) HD evaluation datasets for 25 additional106

languages, and validate the use of MFAVA-SILVER107

by showing the MFAVA-SILVER and MFAVA-108

GOLD estimates yield similar results; (3) We pro-109

pose a protocol for estimating “in the wild” hallu-110

cination rates of LLMs and introduce an extensive111

synthetic dataset (51,133 prompts across 30 lan-112

guages) for estimating LLM hallucination rates in113

highly multilingual settings; (4) We offer a com-114

prehensive hallucination rate analysis of six LLM115

families, validating previous findings that larger116

models tend to hallucinate less, and uncovering 117

that broader LLM language coverage correlates 118

with increased hallucination rates. This work is 119

the first to estimate “in-the-wild” LLM halluci- 120

nation rates for a wide range of languages using 121

knowledge-intensive open-domain LFQA, reflect- 122

ing real-world usage. Our comprehensive frame- 123

work is illustrated in Figure 1. 124

2 Background and Related Work 125

We provide a brief overview of the body of related 126

work on (1) hallucination detection models and (2) 127

benchmarks for evaluating LLM hallucination. 128

Hallucination Detection. Coarsely, LLM halluci- 129

nations fall into two categories. Intrinsic halluci- 130

nation are content contradicts some reference in- 131

formation source. The reference may be explicitly 132

given to the LLM as part of the task (e.g., the text 133

to be summarized in summarization or source lan- 134

guage text in machine translation) or it may implicit 135

(e.g., general world knowledge in question answer- 136

ing). In contrast, extrinsic hallucination refers to 137

content that does not contradict the reference but 138

is unnecessary or superfluous with respect to the 139

task (e.g., additional facts in fact-based question 140

answering) (Ji et al., 2023). Recent work intro- 141

duced finer-grained taxonomies for both categories. 142

For example, Mishra et al. (2024) distinguish be- 143

tween several types of intrinsic hallucinations (e.g., 144

entity-based hallucinations or relation-based hal- 145

lucinations). In a similar vein, extrinsic halluci- 146

nations are split into subtypes such as invented, 147
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subjective, and unverifiable content.148

Unsurprisingly, most hallucination detection149

(and classifications) models are based on neural150

languages models. These are are either pre-trained151

encoder LM (Zhou et al., 2021; Liu et al., 2022b),152

discriminatively fine-tuned to classify texts as con-153

taining hallucinations or not or LLMs prompted154

(zero-shot or with in-context examples) to detect155

hallucinations (Manakul et al., 2023; Yang et al.,156

2023) or fine-tuned to generate hallucinated spans157

(Mishra et al., 2024). In this work, we cast hal-158

lucination detection as a span-detection task, for-159

mulated discriminatively, with a classifier on top160

of an “encoder-based” LM. However, instead of161

resorting to small pretrained encoder LMs, we bidi-162

rectionally (i.e., discriminatively) fine-tune a larger163

generative LLM, following recent advances in con-164

verting decoder LMs into encoders (Li et al., 2023b;165

Dukić and Šnajder, 2024; BehnamGhader et al.,166

2024; Schmidt et al., 2024).167

Hallucination Benchmarks. Hallucination detec-168

tion models as well as evaluation datasets have169

largely focused on English vary in the granular-170

ity from document-level (Yang et al., 2023) of an-171

notations/predictions, over passage- and sentence-172

level annotations (Zhou et al., 2021; Manakul et al.,173

2023), to fine-grained token- or span-level anno-174

tations (Liu et al., 2022a; Mishra et al., 2024).175

Notable examples include SelfCheckGPT (Man-176

akul et al., 2023), HaluEval (Li et al., 2023a), and177

ScreenEval (Lattimer et al., 2023), which measure178

hallucination detection rates in summarization and179

single-fact question answering. Multilingual bench-180

marks for evaluating hallucination detection mod-181

els remain sparse and focus on reference-based182

tasks like machine translation (Dale et al., 2023)183

and summarization (Qiu et al., 2023) which poorly184

represent the LLM usage in the wild.185

Faithfulness in reference-based tasks is comple-186

mented by truthfulness (i.e., factuality) in question187

answering. Most benchmarks, e.g., TruthFulQA188

(Lin et al., 2022), RealtimeQA (Kasai et al., 2024),189

FreshQA (Vu et al., 2023), and SimpleQA (Wei190

et al., 2024a) here are English-centric and cover191

only questions that require a simple single-factoid192

answer. LongFact (Wei et al., 2024b), Factscore193

(Min et al., 2023) and mFactScore (Kim et al.,194

2024) do test LLMs truthfulness in generating long195

and free-form answers. However, LongFact is an196

English-only benchmark, whereas Factscore and197

mFactscore, albeit multilingual, cover a very spe-198
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Figure 2: 1) Inter-annotator agreement (IAA) for hallu-
cination span detection (Binary; blue bars) and classi-
fication (Category; orange bars) for five high-resource
languages; 2) Hallucination span and class agreement
between human labels and GPT-4 generated hallucina-
tions (Silver-Gold; agreement on spans only: red bars;
agreement on spans and hallucination type: green bars).

cific domain of biographic questions. 199

3 Hallucination Detection 200

We first describe how we obtained multilingual hal- 201

lucination detection (HD) datasets (§3.1) and then 202

report on training and evaluation of a multilingual 203

hallucination detection model (§3.2). 204

3.1 MFAVA Benchmark 205

HD Evaluation Datasets. We start from the En- 206

glish FAVA (Mishra et al., 2024) dataset and its 207

respective set of fine-grained hallucination types. 208

FAVA’s evaluation portions were created by (1) elic- 209

iting information-seeking prompts (i.e., questions) 210

from various sources, (2) generating responses with 211

three LLMs and (3) having human annotators label 212

hallucinated span 1s. We follow a similar proto- 213

col to create evaluation datasets for 30 languages.2 214

We start from 300 information-seeking prompts, 215

150 from evaluation portion of FAVA and 150 from 216

the Natural Questions dataset (Kwiatkowski et al., 217

2019). We then ask GPT-4 (Achiam et al., 2023) 218

to (1) first create answer passages in a target lan- 219

guage and then to (2) explicitly introduce the hallu- 220

cinations of the fine-grained FAVA types into the 221

answer. We refer to these synthetically labeled hal- 222

lucination evaluation datasets, comparable across 223

the 30 target languages, as MFAVA-Silver. 224

For five linguistically diverse high-resource 225

languages—Arabic, Chinese, German, Russian, 226

1See the original paper for more details and §A for prompts
for (2) and (3).

2§A.1 Figure 7 lists the mFAVA languages.
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Very Unlikely Unlikely Neutral Likely Very Likely

21.8% 24.7% 13.0% 25.3% 15.2%

Table 1: Annotator ratings for probability of augmented
text fooling the reader for the 5 gold languages.

and Turkish—we also collect human hallucina-227

tion annotations. To this end, we provide to the228

annotators the reference Wikipedia page, and the229

(hallucination-enriched) generation from MFAVA-230

Silver (of course, without the GPT-4’s hallucination231

annotations). We source the annotations via Pro-232

lific, recruiting 5 annotators per language: all five233

annotators first annotated the same 50 instances, af-234

ter which they were given non-overlapping sets of235

50 more instances. We provide more details on the236

annotation process (and costs) in the §A.2. We mea-237

sure the inter-annotator agreement (IAA) in terms238

of pairwise-averaged Cohen’s kappa on token-level239

class decisions, both with (IAA Category) and with-240

out (IAA Binary) considering the fine-grained hal-241

lucination types. As shown in Figure 2, we observe242

satisfactory to good IAA for all five languages. Re-243

garding the 50 instances labeled by all annotators,244

we ultimately take the annotations of the annotator245

that has the highest IAA with hallucination anno-246

tatios of GPT-4 from MFAVA-Silver. We denote247

the final human-labeled evaluation datasets for the248

five high-resource languages with MFAVA-Gold.249

Figure 2 also shows the overall IAA between hu-250

man annotations from MFAVA-Gold and GPT-4’s251

synthetic annotations from MFAVA-Silver (Silver-252

Gold): interestingly, we observe that human anno-253

tators on average agree more with GPT-4 than with254

one another.255

Because we synthesize the hallucinated content256

with GPT-4 (the annotators, of course, did not know257

that nor which part of the generation was meant258

to be a hallucination according to GPT-4), there is259

a risk that these hallucinations may not be realis-260

tic in the sense that they can fool a human reader.261

Because of this, we asked our annotators to addi-262

tionally indicate (on a 5-degree Likert scale from263

“very unlikely” to “very likely”) the likelihood of264

hallucination fooling a human reader for each span265

that they labeled. Table 1 reveals that more than266

half of the labeled hallucinations were judged as267

convincing (i.e., not unlikely to fool a human). The268

silver test set statistics for all 30 languages are269

shown in §A Figure 6. Gold annotations statistics270

are shown in Table 2.271

ENT REL INV CON UNV SUB Total

RU 184 65 188 287 211 153 1,088
AR 144 10 171 123 150 69 667
ZH 264 18 259 282 265 139 1,227
DE 546 25 311 324 333 238 1,777
TR 149 27 288 244 161 149 1,018

Total 1,287 145 1,217 1,260 1,120 748 5,777

Table 2: Hallucinated span counts in the gold dataset
across languages. ENT (Entity), REL (Relation), INV
(Invented), CON (Contradictory), UNV (Unverifiable),
SUB (Subjective).

Training Dataset. The FAVA training set, consist- 272

ing of ca. 30K instances, is fully synthetically cre- 273

ated in the same way as the test portion, just with- 274

out the human annotation step. We automatically 275

translate the training portion of the FAVA dataset 276

using NLLB (Costa-jussà et al., 2022) to our 30 277

target languages. After translation, we project the 278

span-level annotations to token-level labels using 279

the simple Inside-Out (I-O) scheme (Ramshaw and 280

Marcus, 1995)3. Like our evaluation benchmark 281

MFAVA, we prepare training data for two tasks: (1) 282

detecting hallucinated spans, regardless of halluci- 283

nation type (Binary task: tokens are classified as 284

either part of a hallucinated span or not) and (2) 285

detection and hallucination type classification (Cat- 286

egory task: 7-way classification, tokens classified 287

into one of 6 FAVA hallucination types or as not 288

part of a hallucinated span). 289

3.2 Multilingual Hallucination Detection 290

Models. Using the translations of ca. 30K FAVA 291

training instances in our 30 target languages, we 292

train the following models: (1) MONO denotes 293

monolingual models trained on data of one lan- 294

guage (and evaluated for the same language on 295

the respective MFAVA portion), i.e., we train 30 296

MONO models, one for each of our target lan- 297

guages; (2) MULTI refers to a single multilingual 298

model trained on concatenated training data of all 299

30 languages. We train the Mono models and the 300

Multi model for both tasks, Binary and Category. 301

We follow the recent body of work that successfully 302

converts generative decoder LLMs into encoders 303

for discriminative tasks (Li et al., 2023b; Dukić 304

and Šnajder, 2024; BehnamGhader et al., 2024; 305

Schmidt et al., 2024) and fine-tune Llama-3-8B- 306

base (Dubey et al., 2024) by removing future-token 307

masking, i.e., allowing for bidirectional contextu- 308

3In preliminary experiments, we also tested the B-I-O
scheme, but I-O led to better span detection performance.
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German Chinese Arabic Russian Turkish

Task Model Context Silver Gold Silver Gold Silver Gold Silver Gold Silver Gold

MONO Bidirect 78.0 58.0 62.4 55.1 75.3 54.4 78.9 60.7 78.5 66.7
Binary MULTI Bidirect 89.5 65.0 69.7 58.7 82.5 61.6 89.1 65.5 86.4 72.5

MULTI Causal 81.8 59.6 76.3 62.2 75.3 60.0 75.8 55.6 75.7 67.3

MONO Bidirect 53.4 38.3 35.2 22.6 14.6 7.3 63.3 36.2 49.1 30.3
Category MULTI Bidirect 73.2 45.0 46.5 30.1 66.1 37.2 72.3 41.5 72.9 51.8

MULTI Causal 68.7 43.4 56.5 34.1 51.8 29.4 62.6 37.9 58.6 42.4

Table 3: Token-level F1 performance of multilingual (MULTI) and monolingual (MONO) hallucination detection
models for five high-resource languages with both Silver and Gold evaluation data in MFAVA. Performance reported
for hallucination detection alone (Binary) and hallucination detection and type classification (Category). Models
fine-tuned without (Bidirect) or with (Causal) future token masking. Bold: best result in each column.

alization (Bidirect). For comparison, for the Multi309

model, we also fine-tune the decoder as-is, using310

the default causal token masking (i.e., unidirec-311

tional contextualization; Causal).312

Training. In all cases, we freeze the original model313

parameters and train QLora adapters (Dettmers314

et al., 2024), with three runs (random seeds) for315

each experiment, reporting mean performance. The316

input to the models is the reference Wikipedia arti-317

cle, prepended to the LLM-generated answer, with318

the cross-entropy loss computed exclusively over319

the tokens of the LLM-generated answer. We pro-320

vide further training details in §A.3.321

Results. Table 3 summarizes the hallucination322

detection performance for five high-resource lan-323

guages for which we have both LLM-synthesized324

Silver data and human-annotated Gold portions in325

our MFAVA benchmark. We first observe that, ex-326

pectedly, just detecting hallucinated spans (Binary327

task) is much easier than additionally correctly rec-328

ognizing the type of hallucination (Category task).329

Although category labels offer finer-grained insight330

into the nature of LLM hallucination, we deem the331

models’ performance on fine-grained hallucination332

type classification—especially on Gold, human-333

labeled portions of MFAVA—insufficient for re-334

liably estimating type-specific hallucination rates335

“in the wild” (see §4.2). These results are in line336

with IAA from Figure 2, with consistently larger337

IAA for hallucination detection (Binary) then for338

type classification (Category). This renders fine-339

grained hallucination type classification difficult340

for both humans and models and warrants a broader341

research effort on hallucination type taxonomies as342

well as better hallucination type detection models.343

We leave this for future work.344

Models’ performance on the detection-only (Bi-345

nary) tasks is much better across the board, but the 346

results are much better on the Silver portions (hal- 347

lucinations generated by GPT-4) of MFAVA than 348

on the Gold (human-labeled hallucination spans). 349

This is expected, because the hallucinated spans 350

in our training data have also been generated by 351

GPT-4—this means that the human-annotated Gold 352

mFAVA portions introduce much more of a distribu- 353

tion shift w.r.t. training data than the corresponding 354

Silver portions. At this point it is important to (re- 355

)emphasize that we are not really interested in the 356

absolute performance of the detection models, but 357

rather using these detection performance estimates 358

to produce reliable hallucination rate estimates for 359

LLMs in the wild (§4.2). 360

We next observe that the 30-language multilin- 361

gual model (MULTI) is consistently better than 362

language-specific monolingual models (MONO), 363

with gaps being particularly wide in the Category 364

task (e.g., +30 F1 points for Arabic on the Gold 365

MFAVA portion). Albeit smaller, the differences 366

are also substantial in the Binary hallucination de- 367

tection (e.g., +7 F1 points for Arabic and German, 368

on respective Gold MFAVA portions). Finally, bidi- 369

rectional contextualization in fine-tuning (Bidirect) 370

seems to be generally more effective than fine- 371

tuning with future-token masking (Causal), with 372

Chinese performance as the only exception. This is 373

in line with findings from other token-classification 374

tasks (Li et al., 2023b; Dukić and Šnajder, 2024). 375

4 Estimating Hallucination in the Wild 376

We next propose a protocol for estimating hallu- 377

cination rates of LLMs (for a wide range of lan- 378

guages) in the wild, based (1) on the number of 379

hallucinated tokens detected by a hallucination de- 380

tection (HD) model in the wild and (2) estimates 381

of HD model’s performance (precision and recall). 382
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AR_Llama AR_Aya AR_Qwen ZH_Llama ZH_Aya ZH_Qwen DE_Llama DE_Aya DE_Qwen TR_Llama TR_Aya TR_Qwen RU_Llama RU_Aya RU_Qwen

Pl and Rl est.
 on mFAVA Silver

Pl and Rl est.
 on mFAVA Gold

5.09 ±
 3.27

9.23 ±
 4.13

3.97 ±
 2.53

5.75 ±
 3.43

10.08 ±
 7.43

6.93 ±
 5.98

10.58 ±
 7.33

11.51 ±
 6.61

10.41 ±
 7.06

11.78 ±
 6.24

10.60 ±
 4.82

6.93 ±
 4.34

11.79 ±
 8.22

13.61 ±
 7.90

9.51 ±
 7.02

5.63 ±
 3.55

10.15 ±
 4.45

4.47 ±
 2.74

6.18 ±
 3.66

10.81 ±
 7.93

7.45 ±
 6.38

7.97 ±
 5.53

8.67 ±
 4.98

7.84 ±
 5.32

13.18 ±
 6.90

11.86 ±
 5.32

7.75 ±
 4.80

10.04 ±
 7.04

11.62 ±
 6.77

8.12 ±
 6.01

pearson-r = 0.830, p = 1.269e-04

Figure 3: Comparison of hallucination rate estimates HRest,l (mean ± std over five LLM runs) for Arabic (AR),
Chinese (ZH), German (DE), Russian (RU), and Turkish (TR) for 3 LLMs based on the estimates of Pl and Rl of
the MULTI (Bidirect) model on (1) MFAVA-Silver (top row) and (2) MFAVA-Gold (bottom row). The two sets of
estimates are highly correlated (r = 0.83, p = 1.26e− 04).

4.1 From Model Performance to383

Hallucination Rates Estimates384

Estimating Hallucination Rates in the Wild. Let385

Pl and Rl be the estimates of token-level precision386

and recall of a HD model for some language l and387

let Hdet,l be the number of hallucination tokens that388

the HD model detected (i.e., predicted) on some389

corpus Cl of LLM generations in language l, which390

serves as an approximation of the LLM outputs in391

the wild. We then posit that the estimate of the392

true hallucination rate of the LLM in the wild for393

language l, HRest,l, is given as follows:394

HRest,l =
Pl ·Hdet,l

Rl ·Nl
× 100(%) (1)395

where Nl is the total number of tokens in Cl, i.e.,396

the total number of tokens generated by the LLM397

across answers to all user prompts. Intuitively, mul-398

tiplying the number of model’s detections Hdet,l399

with its estimated precision Pl discounts Hdet,l by400

the number of tokens falsely detected as halluci-401

nated by the model—while we do not know ex-402

actly which token predictions are false positives,403

the expected rate of false positives is, by defini-404

tion, exactly captured by Pl. Analogously, dividing405

Hdet,l with Rl accounts for the tokens that are hal-406

lucinated, but will (falsely) not be detected by the407

model—and Rl is exactly the estimate of the rate408

of such false negatives. We divide the estimate of409

the absolute number of truly hallucinated tokens410

(i.e., Pl ·Hdet,l/Rl) with Nl, making HRest,l a rela-411

tive measure, that is, a rate (i.e., proportion) of all412

generated tokens that are hallucinated (multiplied413

by 100 and expressed as %). We provide a more414

detailed explanation/justification of Eq. (1) in §A.4.415

Estimation Dataset. We next create corpora Cl416

(one corpus for each of our 30 target languages)417

of free-text LLM answers to knowledge-intensive418

queries, as approximations of the LLM usage in the419

wild. We start by randomly selecting articles from420

the language-specific Wikipedia, to serve as ground421

truth reference text. To ensure quality of reference 422

text, we choose only from Wikipedia articles that 423

are at least 2,000 characters long and have the col- 424

laborative Wikipedia depth (Alshahrani et al., 2023) 425

of at least 5.4 We then prompt GPT-4 to generate 426

two knowledge-intensive queries for each selected 427

article, ensuring that the information required to 428

answer to the query is fully contained in the article 429

text (see Table 11 in the §A.5 for the exact prompt). 430

As a sanity check, we manually checked for 50 431

synthesized queries and five languages from Table 432

3—by translating the query and reference article 433

to English—whether the answers to queries are in- 434

deed contained in the article, establishing that this 435

is indeed so in 98% of cases. Our final dataset for 436

multilingual hallucination rate estimation consists 437

of 25,685 Wikipedia articles (spanning over 15,940 438

unique Wikipedia categories) and 51,133 queries. 439

Table 9 in §A provides per-language statistics. We 440

provide details on constructing the datasets in §A.5. 441

Finally, we collected responses to all queries 442

from a total of 11 instruction-tuned open-source 443

LLMs from 6 families (ranging in parameter count 444

from 2 to 9 billion): Llama-3.x (Dubey et al., 445

2024), Aya-23 (Aryabumi et al., 2024), Euro-LLM 446

(Martins et al., 2024), Gemma-2 (Team, 2024) 447

Qwen-2.5 (Yang et al., 2024), and Mistral v3 (Jiang 448

et al., 2023). We divided the queries into five sub- 449

sets: for each subset the LLMs generated responses 450

with a different random seed (see Table 8 for details 451

on the generation configurations). 452

Estimates from MFAVA-Silver Performance. On 453

the one hand, creating Gold datasets for hallucina- 454

tion detection evaluation is prohibitively expensive 455

(see §A.2)—this is why we obtained such annota- 456

tions for only five of 30 MFAVA languages. On 457

the other hand, the estimates of HD model’s per- 458

formance are much higher on MFAVA-Silver (see 459

4The depth indicates the number of collaborative edits and
correlates with the quality/factuality of the content.
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Figure 4: Mean estimates of in-the-wild hallucination rates (± std) for 30 languages and 11 LLMs. Each mean
score is an average of 15 HRest,l estimates, (3 different HD model instances applied to 5 different LLM responses).
Average rates increase from top to bottom (over languages) and from left to right (over LLMs).

Table 3), with GPT-4-labeled hallucinations: this,460

at first glance, questions the validity of estimating461

‘in the wild’ hallucination rates based on Pl and462

Rl estimated on Silver data, for the 25 languages463

for which we do not have MFAVA-Gold portions.464

Recall, however, that we do not care about HD465

model’s absolute Pl and Rl, but whether the Pl466

and Rl estimates can produce reliable hallucination467

rate estimates HRest,l. Looking at Eq. 1, HRest,l468

depends on the ratio Pl/Rl and not absolute val-469

ues of Pl and Rl. We thus next test, for the five470

languages with both Silver and Gold portions in471

MFAVA, whether the HRest,l estimates based on472

the Silver Pl and Rl (roughly) match those based on473

Gold Pl and Rl. Figure 3 shows HRest,l estimates,474

computed from the performance of our MULTI475

(Bidirect) model on Silver and Gold portions, re- 476

spectively, and number of its hallucination detec- 477

tions Hdet,l on outputs of three LLMs: Llama-3-8B, 478

Qwen-2.5-7B, and Aya-8B. We observe very strong 479

Pearson correlation (r = 0.83, p = 1.26e−04) be- 480

tween the Gold-based and Silver-based HRest,l esti- 481

mates, which, we argue, justifies the usage of Silver 482

MFAVA datasets for estimating HRest,l for the 25 483

languages without the Gold MFAVA portions. 484

4.2 Final Estimates 485

Figure 4 shows our in-the-wild hallucination rate 486

estimates HRest,l for all 30 MFAVA languages and 487

11 LLMs. The average rate across all languages 488

varies between 7% and 12%, with both Gemma 489

models offering the lowest rates. Smaller Qwen-2.5 490

7
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Figure 5: 5a Larger models hallucinate significantly less than smaller ones. Bars are labeled with p-values from
t-test. 5b Correlation between hallucination rates (averaged over all 30 languages) and the officially declared number
of supported languages. 5c On average, as response length increases, so do the absolute hallucinations Hdetected,l.

(3B) model hallucinates the most and, interestingly,491

significantly more than its larger counterpart (9B).492

More Parameters, Less Hallucination? For each493

LLM, we have 15 estimates (3 HD model instances494

× 5 generations by the LLM) of HR (averaged495

across all languages): we apply the Student’s t-496

test to determine if the differences between models497

(smaller and larger) significantly differ. Figure 5a498

summarizes the results. The difference between499

the two EuroLLM variants is not significant; larger500

Gemma model hallucinates more (significantly),501

but the HR are low for both variants; for Llama and502

Qwen, the smaller models hallucinate significantly503

more. Finally, we aggregate the estimates across504

all “small” models (1.7-3B) and all “large” mod-505

els (7-9B) and see that, overall (column “Overall”506

in Figure 5a), smaller LLMs hallucinate signifi-507

cantly more (p = 0.01). This agrees with Wei508

et al. (2024b) who report larger models to be more509

truthful in long-form answer generation.510

More Languages, More Hallucination? Figure511

5b compares LLMs’ hallucination rates against512

their declared number of supported languages. here513

we a surprising trend see that LLMs that support514

more languages tend to hallucinate more (e.g., Eu-515

roLLM supports 35 languages, whereas Gemma is516

declared to support English only)—the correlation517

is strong and significant (r = 0.88, p = 0.049).518

Say Less, Hallucinate Less? Intuitively, one519

would expect LLMs’ hallucination rates to be larger520

for languages in which they are less competent521

(i.e., seen the least in pretraining and instruction-522

tuning). Surprisingly, however, we do not find523

this to be the case for any of the models. E.g.,524

we observe the lowest hallucination rate for Sindhi525

(5.83% of tokens are hallucinated), a language with526

merely 18,000 Wikipedia articles and largest hallu-527

cination rate for Hebrew (16.81%). Across all 30 528

languages, however, we find no correlation between 529

the hallucination rates and measures of language 530

“resourceness”: (i) proportion of language-specific 531

data in Common Crawl and (ii) number of articles 532

in the language-specific Wikipedia. As illustrated 533

in Figure 5c, we do observe that LLMs generate 534

longer responses for languages in which they are 535

more competent—this entails a larger number of 536

hallucinated tokens for longer responses, but not 537

(necessarily) a larger (per-token) hallucination rate 538

(recall that we account for the response length in 539

Eq. 1). Indeed, we observe no correlation whatso- 540

ever between the response length and hallucination 541

rates across languages (r = −0.05). This suggests 542

that a trade-off between the answer length and the 543

amount (not rate!) of hallucinations is a largely 544

language-independent property of LLMs. 545

5 Conclusion 546

We presented the first effort towards understanding 547

how much multilingual LLMs hallucinate “in the 548

wild”. To this end, we proposed a novel framework 549

for hallucination rate estimation, which adjusts the 550

number of detected hallucinations based on the 551

detector’s performance resulting in more reliable 552

rate estimates. We trained a series of multilingual 553

detection models, and measured their precision 554

and recall scores on our newly created MFAVA 555

datasets across 30 languages. To estimate halluci- 556

nations, we build a novel synthetic open-domain 557

knowledge-intensive QA dataset for which we col- 558

lected answers from eleven open-source LLMs. 559

Our findings indicate that smaller models and mod- 560

els that cover more languages hallucinate signifi- 561

cantly more, and that model response-length does 562

not correlate with hallucination rate. 563
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Limitations564

We acknowledge that our method of using GPT-4565

to insert synthetic hallucinations may not perfectly566

replicate natural model errors. However, this ap-567

proach was chosen due to the immense difficulty568

and expense of manually curating such a dataset569

in 30 languages (detailed in §3.1). Crucially, our570

findings in Table 1 indicate that more than 50% of571

these synthetic hallucinations were still perceived572

as convincing and realistic.573

We adopted the common translation-train ap-574

proach and thus used MT to translate the original575

FAVA into our 30 target languages. While one may576

argue that we thus add some noise to the training577

process resulting in unreliable detectors, recall that578

we are not opting for the highest possible detection579

performances, but rather interested in obtaining580

reliable performance estimates.581

We only have gold annotations for 5 languages.582

Here, one might argue that, thus, our performance583

estimates might be unreliable. This is why in §4.1,584

we compare estimates obtained on MFAVA-Silver585

with ones obtained on MFAVA-Gold and show that586

silver annotations can serve as a reliable proxy.587

For our hallucination evaluation, we only man-588

ually check a subset of the Arabic, Chinese, Ger-589

man, Russian, and Turkish queries to ensure that590

the answers to the synthetic prompts are present591

in the Wikipedia references. The high rate of 98%592

we observed makes us confident that the poten-593

tial error we introduce via such “non-grounded”594

questions for other languages is negligible, espe-595

cially for high-resource languages. We still ac-596

knowledge, however, that the Wikipedia articles597

we use might be limited in terms of the knowl-598

edge they cover (Kim et al., 2024), this is why599

we carefully filter via minimum length and col-600

laborative Wikipedia depth towards higher-quality601

articles with high coverage.602

Finally, we deliberately limited the scope of this603

work to assessing factual correctness and we do604

not cover factual coverage. We decided to do so as605

quantifying hallucinations in long-form generation606

is already difficult for English Xu et al. (2023);607

Min et al. (2023); Wei et al. (2024b) and more608

so in non-english languages (Kim et al., 2024),609

and currently, resources for assessing multilingual610

factual coverage are still lacking.611
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A Appendix893

A.1 Choice of languages894

Initially, we wanted to cover all 14 language fami-895

lies based on Glottolog 5.0 (Nordhoff and Ham-896

marström, 2012)), however, as we progressed897

through the languages, we found that even the best898

closed-source LLMs like GPT-4 and Gemini are899

bad at generating text in low-resource languages900

(e.g. Amharic, Aymara, Hausa and Tamil) and we901

could not employ LLMs to generate and annotate a902

silver hallucination detection dataset in these lan-903

guages. See Table 7 for 30 languages.904

A.2 Annotation Process905

We provide the FAVA seed passage generations and906

hallucination insertion prompts in Tables 12, 13,907

14, 15, 16, 17.908

Cost of Silver Annotations The total cost for909

generating silver data for 30 languages using GPT-4910

was ∼$2,310 with ∼$77 per language. Distribution911

of categories across 30 languages is provided in912

Table 4 and and per language label distribution is913

provided in Figure 6.914

ENT REL INV CON UNV SUB

Count 11143 9036 5649 4024 5670 6396

Table 4: Distribution of categories across 30 languages
in silver set.

Gold Annotations: The annotators were sourced915

through prolific platform. Each annotator was916

screened on 10 samples and if they met the thresh-917

old of 40% agreement with the silver annotation,918

they were invited to participate in the full study.919

It is worth noting that as the hallucination an-920

notation task for longform QA is very cognitively921

demanding, it took us a long time to find annotators922

who could do the task correctly with high-effort.923

Most of the time, annotators who passed the screen-924

ing test, decided to leave the study because of the925

high effort requirement of the task even though our926

study was paying above minimum wage (14 $/hr)927

for the full study. Moreover, Table 2 reveals that928

Inter-Annotator Agreement (IAA) and Silver-Gold 929

agreement for category annotations are both be- 930

low 80%, underscoring the inherent difficulty of 931

this task. This challenge is further reflected in our 932

token-level agreement scores, which are impacted 933

by minor inconsistencies in annotator decisions 934

regarding minimal span selection. 935

The total cost of the gold annotations was (in- 936

cluding platform and annotation fees) $4581 where 937

each annotator was paid 14 $/hr. All the annota- 938

tors were at least bachelor’s level and bilingual 939

because in addition to understanding their own lan- 940

guage (e.g. Arabic) they also needed to understand 941

the task instructions and Wikipedia content (in En- 942

glish). The task instructions are given in Figure 8. 943

Each annotator was asked if they consent to stor- 944

ing their prolific IDs during manual and automatic 945

assessment stage. Following the assessment, their 946

prolific IDs were deleted. 947

We will release MFAVA data under an open sci- 948

entific licensing. 949

A.3 Training Details 950

All the classifiers were trained utilizing the Bi- 951

LLM (Li et al., 2023b) and transformers (Wolf, 952

2019) library. The models were trained with three 953

seeds (42, 47, 49) on 4xH100 until convergence. 954

Seeds are set for torch.manual_seed() and ran- 955

dom.seed(). The exact hyper-parameters are given 956

in the Table 5. Total GPU hours: 1134. 957

Parameter Value

Translate Train-Val Split 70:30
Seeds [42, 47, 49]
Quantization 4-bit BF16
Model Llama-3-8B (base)
GPUs 4× H100
LoRA r 32
LoRA α 32
LoRA Dropout 0.05
LoRA Target Modules All
Epochs ∼2 (until convergence)
Input Length 4096
Learning Rate 1× 10−4

Weight Decay 0.01
Batch Size 8
Gradient Accumulation 8

Table 5: Training Details

A.4 Adjusting for Pl and Rl 958

The hallucination rate HRest,l for a given language 959

l , is defined as the ratio of hallucinated tokens de- 960

tected by the model (Hdetected,l) to the total number 961

of generated tokens (Nl): 962
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HRl =
Hdet,l

Nl
. (2)963

To refine this rate, we adjust for the detection964

model’s precision (Pl) and recall (Rl). Precision is965

defined as:966

Pl =
TP l

TP l + FP l
(3)967

where (TP l) FP l denote true and false positives968

respectively. Rearranging this equation gives the969

number of true positives:970

TP l = Pl ·HRdet,l (4)971

Recall is defined as:972

Rl =
TP l

TP l + FN l
(5)973

where FN l denotes false negatives. The total974

number of corrected hallucinations (HRest,l) can975

thus be expressed as:976

HRest,l = TP l + FN l =
TP l

Rl
(6)977

Substituting Equations 4 in 6, we derive the978

Hest,l as:979

Hest,l =
Pl ·Hdet,l

Rl
(7)980

By incorporating the model’s Pl and Rl, our981

estimation framework effectively corrects for the982

imperfections of a hallucination detector. When983

estimating the hallucination rate HRl on a large984

corpus (see §4), EQ 7 provides a reliable measure985

of the true number of hallucinations. This accounts986

for the detector erroneously flagging 1−Pl% of its987

identified instances and failing to capture 1−Rl%988

of genuine hallucinations.989

A.5 Hallucination Evaluation Dataset990

To construct the hallucination evaluation dataset,991

we aimed to scrap ∼ 1000 articles per language992

with more than 2000 characters. However, problem993

with non-English languages (especially moderate-994

low resource) is that ≥ 2000 character articles can995

be scarce. Furthermore, sometimes Wikipedia has996

articles tagged as Unreferenced, Failed Verification,997

or Under Construction which flag the article as998

unfinished or not factually verified. Such tags are999

very prominent in languages other than English and1000

we do not include such articles in our dataset.1001

We use Wikipedia article summary (text before1002

the first heading) as references and prompt gpt-1003

4 to generate 2 knowledge-intensive queries per1004

article. Sometimes, it generated only one query1005

even though we explicitly state to generate two 1006

queries. We did not prompt the GPT-4 again to 1007

generate the second query due to budget constraints. 1008

The total cost to generate prompts for 31 languages 1009

is $192. Per language statistics can be found in 1010

Table 9. We will release hallucination evaluation 1011

data under an open scientific licensing. 1012

Given the following reference in lan-
guage <language name>:
Generate two knowledge-intensive
queries in <language name>. Ensure
the questions are concise but knowledge-
intensive. The questions should require
thorough reading of the reference text
to answer. Separate the questions with a
newline.

Table 6: Prompt for generating knowledge-intensive
queries.

A.6 Response Collection for Hallucination 1013

Evaluation Dataset 1014

We collect LLM responses on 5 seeds: 42, 43, 1015

44, 47, 49 for 6 LLM model5. The generation 1016

configurations that we used are provided in the 1017

generation_config.json in model repositories on 1018

huggingface. Seeds are set for torch.manual_seed() 1019

and random.seed(). 1020

A.7 Manual Analysis 1021

To further check the quality and informativeness 1022

(See §A.8 for definitions of informativeness) of the 1023

responses, we manually analyze 60 responses from 1024

Aya-23-8B for German and Arabic, two languages 1025

for which we have gold annotations. Overall, 10% 1026

of the responses had repetitive words and sentences 1027

and 5% of the responses were I don’t know re- 1028

sponses. For the remainder of the samples, the 1029

responses were fluent and long and were relevant 1030

to the input prompt. 1031

A.8 Informativeness 1032

Currently, there is no agreed-upon definition of 1033

informativeness. Lin et al. (2022) considers a re- 1034

sponse to be informative if it is potentially relevant 1035

to the question and Wei et al. (2024b) considers a 1036

response to be informative if it has a certain number 1037

of supporting facts from the reference text. 1038

5We comply with licensing agreement for each of the
LLMs we use.
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Language Language Family Script Test-Set

Arabic Afro-Asiatic (Semitic) Arabic Gold
Chinese Sino-Tibetan (Sinitic) Chinese (Han) Gold
German Indo-European (Germanic) Latin Gold
Russian Indo-European (Slavic) Cyrillic Gold
Turkish Turkic (Common Turkic) Latin Gold

Basque Language Isolate Latin Silver
Cantonese Sino-Tibetan (Sinitic) Chinese (Han) Silver
Catalan Indo-European (Romance) Latin Silver
Czech Indo-European (Slavic) Latin Silver
Esperanto Constructed Latin Silver
Finnish Uralic (Finnic) Latin Silver
French Indo-European (Romance) Latin Silver
Hebrew Afro-Asiatic (Semitic) Hebrew Silver
Hindi Indo-Aryan Devanagari Silver
Hungarian Uralic (Ugric) Latin Silver
Indonesian Austronesian (Malayo-Polynesian) Latin Silver
Italian Indo-European (Romance) Latin Silver
Japanese Japonic Kanji Silver
Korean Koreanic Hangul Silver
Latin Indo-European (Italic) Latin Silver
Lithuanian Indo-European (Slavic) Latin Silver
Malay Austronesian (Malayo-Polynesian) Latin Silver
Polish Indo-European (Slavic) Latin Silver
Portuguese Indo-European (Romance) Latin Silver
Romanian Indo-European (Romance) Latin Silver
Serbian Indo-European (Slavic) Cyrillic Silver
Sindhi Indo-Aryan Arabic Silver
Spanish Indo-European (Romance) Latin Silver
Urdu Indo-Aryan Arabic Silver
Vietnamese Austroasiatic (Vietic) Latin Silver

Table 7: Classification of languages by language family (based on Glottolog 5.0), script, and test-set status. Gold
test sets are available for 5 languages, while the rest have silver test sets.
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Figure 6: Distribution of 6 labels across 30 languages in MFAVA-SILVER dataset.
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Model max_new_tokens temperature top_p top_k repetition_penalty do_sample

Llama-3.x 1024 0.6 0.9 – – True
Aya 1024 – 0.3 – – True
Qwen-2.5 1024 0.7 0.9 20 1.05 True
Mistral 1024 – – 50 – True
Gemma-2 1024 – – – – True
EuroLLM 1024 – – – – True

Table 8: Huggingface MODEL.GENERATE() parameters for each model family. – indicate default is used. Generation
configurations are provided in model’s respective HuggingFace (Wolf, 2019) repositories

Language Unique Categories Total Articles Total Queries
Arabic 537 959 1907
Basque 486 938 1872
Cantonese 261 401 793
Catalan 359 989 1976
Chinese 712 977 1939
Czech 720 988 1975
Esperanto 608 956 1912
French 332 987 1973
Finnish 549 995 1972
German 797 984 1967
Hebrew 660 999 1991
Hindi 153 186 367
Hungarian 745 992 1964
Indonesian 457 958 1913
Italian 678 988 1974
Japanese 667 999 1991
Korean 539 747 1488
Latin 334 465 916
Lithuanian 711 946 1888
Malay 442 778 1556
Polish 889 1000 1998
Portuguese 390 955 1909
Romanian 351 811 1618
Russian 462 999 1996
Spanish 938 977 1952
Serbian 386 798 1587
Sindhi 224 519 1029
Turkish 660 856 1650
Urdu 567 878 1749
Vietnamese 326 660 1311
Total 15,940 25,685 51,133

Table 9: Per language statistics for hallucination evaluation dataset.
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Language Precision (%) Recall (%) F1 Score (%)

GOLD

Arabic (Gold) 73.98 53.40 61.63
Chinese (Gold) 70.73 53.93 58.79
German (Gold) 58.19 74.06 65.05
Turkish (Gold) 79.67 66.95 72.57
Russian (Gold) 63.18 68.46 65.53
Average 69.15 63.36 64.71

SILVER

Arabic 93.28 74.81 82.59
Chinese 80.33 66.28 69.77
German 91.64 87.77 89.50
Turkish 89.58 83.92 86.43
Russian 93.05 86.04 89.15
Basque 87.22 74.46 79.80
Cantonese 78.49 49.40 56.12
Catalan 94.70 87.46 90.85
Czech 93.99 84.75 89.00
Esperanto 94.28 86.53 90.05
French 91.58 89.37 90.31
Finnish 86.67 84.26 85.15
Hebrew 82.75 32.97 44.19
Hindi 68.01 68.48 66.77
Hungarian 92.35 74.29 81.93
Indonesian 92.12 85.75 88.72
Italian 93.76 87.26 90.28
Korean 86.39 79.11 82.31
Japanese 77.06 61.03 67.15
Lithuanian 90.48 75.39 81.81
Malay 86.15 68.96 75.73
Portuguese 95.80 86.77 90.94
Serbian 86.16 76.75 79.91
Sindhi 82.00 69.38 74.36
Spanish 95.86 85.34 90.14
Vietnamese 89.35 84.57 86.71
Urdu 88.82 72.32 79.39
Average 88.22 76.42 80.71

Table 10: Precision, Recall, and F1 scores for all languages, including GOLD scores for five languages.
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(a) Hallucinations vs response length correlation of smaller models.
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(b) Hallucinations vs response length correlation of bigger models.
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Figure 7: Per model correlations between hallucinations and response length.
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Figure 8: Annotation Instructions.
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For the following instruction, generate the whole output in {lang} language even though the instruction
and input is in English.
Given a passage answer the question in 3-5 sentences using only the information presented in the reference
passage.
Question: [QUESTION_TEXT]
Reference Passage: [REFERENCE_CONTENT]

Table 11: Prompt for seed passage generation.

For the following instruction, generate the whole output in {lang} language even though the instruction and input is in English.
Given a passage with possibly already inserted error tokens wrapped in <relation>, <contradictory>, <unverifiable>, <subjective>,
or <invented>, insert entity errors in the passage below, wrapped in tokens to make the passage factually incorrect. Ensure these
insertions are outside these existing <> tags, and don’t modify the <> tags at all. The error is defined as such:
1. entity errors (<entity>): a small part of a sentence, often an entity (e.g., location name), is incorrect (usually 1-3 words). Entity
errors often involve noun phrases or nouns.
Example 1: Messi is an <entity></entity> soccer player.
Example 2: Selena Gomez was born on <entity></entity> 22.
Example 3: India’s population is <entity></entity> billion people.
Now, insert entity error tokens in the given passage but make sure that you don’t modify anything inside any already existing <>
error tokens, only add entity errors with <entity></entity> tokens outside the already existing <> tags.
##
Paragraph: [PASSAGE_CONTENT]
Edited:

Table 12: FAVA Prompt for entity hallucination insertion.

For the following instruction, generate the whole output in {lang} language even though the instruction and input is in English.
Given a passage with possibly already inserted error tokens wrapped in <entity>, <contradictory>, <unverifiable>, <subjective>,
or <invented>, insert relation errors, outside the already inserted tokens without modifying the content within already existing
tokens. Wrap the relational errors in tokens to make the passage factually incorrect. The error is defined as such:
1. relational error (<relation>): a sentence is partially incorrect as a small part (usually 1 - 3 words). Relational errors often
involve verbs and are often the opposite of what it should be.
Example 1: FDA <relation></relation> pfizer COVID-19 Vaccine.
Example 2: Rishi Sunak <relation></relation> his role as Prime Minister in 2022.
Example 3: Millie Bobbie Brown has also starred in several popular movies, including “Godzilla vs. Kong” and “Enola Holmes”
which she also <relation></relation>.
Now, insert relation error tokens in the given passage but make sure that you don’t modify anything inside any already existing
<> error tokens, only add relational errors with <relation></relation> tokens outside the already existing <> tags. ##
Paragraph: [PASSAGE_CONTENT]
Edited:

Table 13: FAVA prompt for relation hallucination insertion.
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For the following instruction, generate the whole output in {lang} language even though the instruction and input is in English.
Given a reference and a passage with possibly already inserted error tokens wrapped in <entity>, <relation>, <unverifiable>,
<subjective>, or <invented>, insert contradictory sentence errors in the passage outside the already inserted tokens without
modifying the content within already existing tokens. Wrap the inserted errors in tokens to make the passage factually incorrect.
The contradictory error is defined as such:
1. contradictory sentence error (<contradictory>): a sentence where the entire sentence is contradicted by the given reference,
meaning the sentence can be proven false due to a contradiction with information in the reference provided.
##
Example 1:
Reference: Japan participated in World War I from 1914 to 1918 in an alliance with Entente Powers (France, the United Kingdom,
Russia, the United States, Italy) against the Central Powers (Germany, Austria-Hungary, the Ottoman Empire, and Bulgaria).
Contradictory Sentence: <contradictory>Japan sent its army to help Germany during World War I.</contradictory>
Explanation: The reference states that Japan was in an alliance against Germany, so Japan would not send its army to help
Germany like the sentence states.
##
Example 2:
Reference: Percy Jackson & the Olympians is a series of five fantasy novels written by American author Rick Riordan.
Contradictory Sentence: The Harry Potter series was written by J.K Rowling<contradictory>, as was the Percy Jackson
series</contradictory>.
Explanation: The reference states that the Percy Jackson series is written by Rick Riordan and not J.K Rowling like the sentence
suggests.
##
Example 3:
Reference: As one of the busiest women in music, it’ll come as no surprise that Taylor has won pretty much every award there is
to win in the biz - being the proud owner of no less than 12 Grammy Awards.
Contradictory Sentence:<contradictory>Taylor Swift has never won a Grammy in her entire career since she is better known as a
performer than a singer.</contradictory>
Explanation: The reference states that Taylor Swift has won 12 Grammys and is a musician while the sentence says she has won
no Grammys which contradicts the reference.
Now, insert contradictory sentences with tokens in the given passage but make sure that you don’t modify anything inside any
already existing <> error tokens at all, keep those untouched, only insert new contradictory sentences (entire sentences) with
<contradictory></contradictory> tokens outside the already existing <> tags in the passage. ##
Reference: [REFERENCE_CONTENT]
Passage: [PASSAGE_CONTENT]
Edited:

Table 14: FAVA prompt for contradictory hallucination insertion.

For the following instruction, generate the whole output in {lang} language even though the instruction and input is in English.
Given a subject and a passage with possibly already inserted error tokens wrapped in <entity>, <relation>, <contradictory>,
<unverifiable>, or <invented>, insert subjective sentence errors outside the already inserted tokens without modifying the content
within already existing tokens. Wrap the insertions in tokens to make the passage factually incorrect. The error is defined as such:
1. subjective sentence (<subjective>): an entire sentence or phrase that is subjective and cannot be verified, so it should not be
included.
Example 1: <subjective>He is the greatest soccer player ever.</subjective>
Example 2: The first Harry Potter book was published in 1998 <subjective>and was a lot better than the rest in the series because
of its use of a rich and evocative vocabulary.</subjective>
Example 3: <subjective>Overall, Aenir is a thrilling adventure novel that takes readers on a journey through a unique and
imaginative world, filling their lives with excitement.</subjective>
Now, insert subjective sentence error tokens in the given passage but make sure that you don’t modify anything inside any
already existing <> error tokens at all, keep those untouched, only insert full subjective sentences or phrases with <subjec-
tive></subjective> tokens about the given subject outside the already existing <> tags in the given passage. ##
Subject: [SUBJECT_NAME]
Passage: [PASSAGE_CONTENT]
Edited:

Table 15: FAVA prompt for subjective hallucination insertion.
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For the following instruction, generate the whole output in {lang} language even though the instruction and input is in English.
Given a reference and a passage with possibly already inserted error tokens wrapped in <entity>, <relation>, <contradictory>,
<subjective>, or <invented>, insert unverifiable errors outside the already inserted tokens without modifying the content within
already existing tokens. Wrap the insertions in tokens to make the passage factually incorrect. The error is defined as such:
1. unverifiable sentence (<unverifiable>): a sentence where the whole sentence or phrase is unlikely to be factually grounded
although it can be true, and the sentence cannot be confirmed nor denied using the reference given or internet search, it is often
something personal or private and hence cannot be confirmed.
##
Unverifiable Error Example 1: <unverifiable>Apple is planning on releasing an instrument collection.</unverifiable>
Explanation: Information about Apple’s release plans cannot be corroborated by any information online, however could be true.
##
Unverifiable Error Example 2: <unverifiable>Selena Gomez is known to love turtles.</unverifiable>
Explanation: Personal information about Selena Gomez’s opinion on turtle’s cannot be verified online, however could be true.
##
Unverifiable Error Example 3: <unverifiable>Tom Cruise wanted to act in a Bollywood film.</unverifiable>
Explanation: Personal information about Tom Cruise’s preference on acting in a Bollywood film could be true but cannot be
found online.
Now, insert unverifiable error tokens in the given passage but make sure that you don’t modify anything inside any already existing
<> error tokens at all, keep those untouched, only insert unverifiable sentences or phrases with <unverifiable></unverifiable>
tokens outside the already existing <> tags in the given passage. Remember, unverifiable sentences seem like they are true but
cannot be confirmed or denied. ##
Reference: [REFERENCE_CONTENT]
Passage: [PASSAGE_CONTENT]
Edited:

Table 16: FAVA prompt for unverifiable hallucination insertion.

For the following instruction, generate the whole output in {lang} language even though the instruction and input is in English.
Given a subject and a passage with possibly already inserted error tokens wrapped in <entity>, <relation>, <contradictory>,
<unverifiable>, or <subjective>, insert invented info sentence errors outside the already inserted tokens without modifying the
content within already existing tokens. Wrap the errors in tokens to make the passage factually incorrect. The error is defined as
such:
1. invented info error (< invented >): these errors refer to entities that are not known or do not exist. this does not include fictional
characters in books or movies. invented info errors include phrases or sentences which have unknown entities or misleading
information.
##
Invented Info Example 1: <invented>Kansas City has a large population of the Yuman Tribe.</invented>
Explanation: Yuman tribe is not an actual tribe, they are a invented entity.
##
Invented Info Example 2: Joel Embiid is a Cameroonian professional basketball player for the Philadelphia 76ers , and he was
awarded the Kia NBA MVP Trophy in 2023 <invented>and received the Shaquille O’Neal trophy for being the fastest runner
this season.</invented>
Explanation: There is no trophy named the Shaquille O’Neal trophy in NBA and so it is not possible for Joel Embiid to have
won it. Also, there is no award for being the fastest runner in the NBA. Both are invented.
##
Invented Info Example 3: <invented>Andrew Ng’s area of Sentiment-Infused Language Generation (SILG) which explores the
influence of sentiment analysis on the generation of human-like language.</invented>
Explanation: There is no field of research named Semantic compositionality analysis, so it is a invented entity.
Now, insert invented information error tokens about the subject in the given passage but make sure that you don’t modify
anything inside any already existing <> error tokens at all, keep those untouched, only add fictional sentence errors with
<invented></invented> tokens outside the already existing <> tags in the given passage. Also avoid inserting errors before the
first sentence. Also make sure you tag each edit with <invented></invented> tags. ##
Subject: [SUBJECT_NAME]
Passage: [PASSAGE_CONTENT]
Edited:

Table 17: FAVA prompt for invented hallucination insertion.
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