
What are you sinking? A geometric approach on attention sink

Valeria Ruscio, Umberto Nanni, Fabrizio Silvestri

Sapienza University of Rome

ruscio@diag.uniroma1.it, fsilvestri@diag.uniroma1.it

Abstract

Attention sink (AS) is a consistent pattern in transformer attention maps where certain tokens (often special tokens or positional anchors) disproportionately attract attention from other tokens. We show that in transformers, AS is not an architectural artifact, but it is the manifestation of a fundamental geometric principle: the establishment of reference frames that anchor representational spaces. We analyze several architectures and identify three distinct reference frame types, centralized, distributed, and bidirectional, that correlate with the attention sink phenomenon. We show that they emerge during the earliest stages of training as optimal solutions to the problem of establishing stable coordinate systems in high-dimensional spaces. We show the influence of architecture components, particularly position encoding implementations, on the specific type of reference frame. This perspective transforms our understanding of transformer attention mechanisms and provides insights for both architecture design and the relationship with AS.

1 Introduction

Transformer-based models exhibit an interesting phenomenon called "attention sink" where beginning-of-sequence tokens receive substantial attention (30-40%) regardless of semantic relevance [Xiao et al., 2023]. Removing this pattern degrades model performance, suggesting these allocations serve an essential function beyond content processing. We postulate that attention sinks represent transformers' reference frames, coordinate systems within their representational manifolds. Transformer operations rely on dot products between query and key vectors, making angular relationships crucial for information flow. Reference frames provide fixed geometric anchors that allow tokens to establish relative positions through consistent angular relationships, solving the challenge of maintaining stable geometric relationships in high-dimensional spaces. Without these anchors, token representations would lack consistent orientation, making reliable encoding of positional and semantic relationships impossible. We show that reference frames emerge as mathematically optimal solutions to constraints imposed by the softmax operation on the probability simplex. We categorize them into three classes: centralized, distributed, and bidirectional. While prior work [Gu et al., 2024, Barbero et al., 2025] treated attention sinks as model-specific phenomena, our geometric interpretation unifies these observations as alternative solutions to the same fundamental challenge, advancing understanding of transformer geometry.

2 Related works

The attention sink phenomenon, where tokens allocate substantial attention to specific tokens regardless of semantic relevance, was first identified by Xiao et al. [2023], who discovered the beginning-of-sequence token consistently receives disproportionate attention. This aligns with broader efforts to develop mechanistic understanding of transformer models [Elhage et al., 2021]. While Yu et al.

[2024] and Cancedda [2024] found attention sinks emerging beyond sequence beginnings (which our framework explains as distributed reference frames), Gu et al. [2024] observed that high cosine similarity between queries and the first token’s keys creates attention sinks despite the keys’ small ℓ_2 -norm, a phenomenon our theory reframes as the low-norm keys establishing a distinguished point in the representation manifold. Zhang et al. [2025]’s “catch, tag, and release” mechanism aligns with our finding that reference frames emerge early in training as mathematical necessities, while Barbero et al. [2025] frames attention sinks as preventing information ‘over-mixing’ in deep networks.

Position encoding significantly influences attention patterns: Su et al. [2024]’s Rotary Position Embedding creates bias toward first-token attention (facilitating centralized reference frames), while alternatives like ALiBi [Press et al., 2021] demonstrate how encoding changes affect attention patterns. Ruscio and Silvestri [2024] found wavelet-like patterns emerging among attention heads to overcome RoPE limitations, and Kazemnejad et al. [2023] showed scaled RoPE variants dramatically change attention patterns, which our framework explains as enabling distributed reference frames through reduced positional bias. Research by Liu et al. [2024], Voita et al. [2019], and Mohebbi et al. [2023] supports our prediction that architectural design directly influences reference frame formation. Finally, Darcet et al. [2024] observed that absolute position embeddings create topological complexity supporting bidirectional reference frames (consistent with our encoder-only findings), while Sun et al. [2024] demonstrated that explicit bias parameters can mitigate attention sinks, which our framework interprets as altering the manifold’s geometric structure.

3 Reference Frames

It has been shown by Moschella et al. [2022] that in high-dimensional representation spaces, latent vectors need a consistent way to relate to each other by establishing reference frames acting as canonical coordinate systems to anchor the representation manifold. Without stable reference points, the model struggles to consistently determine relationships between tokens, and distances and directions become ambiguous. At its core, a reference frame in a transformer is a structure $\mathcal{R} = (\mathcal{M}, \mathcal{P}, \phi)$ where \mathcal{M} is the representation manifold (a smooth, locally Euclidean topological space), $\mathcal{P} = \{p_1, p_2, \dots, p_k\}$ is a set of reference points that act as distinguished locations on the manifold, and $\phi : \mathcal{M} \times \mathcal{P} \rightarrow \mathbb{R}^d$ is a mapping function that relates any point to the reference points, providing a coordinate chart for the manifold. This structure provides a means to consistently measure relationships between token representations regardless of their semantic content or position. This definition allows us to formalize what constitutes an “attention sink” mathematically: an attention sink is a token position j for which the attention weight α_{ij} exceeds a threshold τ across many source tokens i :

$$\text{sink}(j) = \left[\frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\alpha_{ij} \geq \tau\}} \right] \geq \gamma \quad (1)$$

where $\mathbb{1}$ is the indicator function, τ is typically set to the 90th percentile of attention weights, and γ is a frequency threshold (typically 0.3-0.5).

Reference frames emerge through self-organization during training rather than being explicitly programmed. However, this self-organization occurs within architecture-specific channels that significantly influence the resulting geometric structures. This guided emergence can be formalized as optimizing a loss function \mathcal{L} over an architecture-specific inductive bias \mathcal{B} .

These inductive biases don’t deterministically program specific attention patterns but rather create the conditions where certain geometric structures naturally emerge as optimal solutions during training. The architecture shapes the loss landscape such that gradient descent naturally converges toward specific reference frame types. This explains why attention sinks consistently form during training without being explicitly encoded in the architecture.

3.1 Vector geometry of reference frame types

We identify three distinct reference frame types, each characterized by a specific geometric organization within the attention mechanism’s vector space. Our analysis shows that attention sinks tokens consistently receive disproportionate attention weight regardless of their semantic content, functioning as geometric anchors in the representation space. These attention sinks fall into two distinct categories: they appear either as special tokens (like [BOS] or [CLS] and [SEP]) that mark

sequence boundaries or as regular vocabulary tokens (such as commas or articles) that serve syntactic functions in the text.

Centralized Reference Frames emerge in decoder-only architectures with standard RoPE (LLaMA 3.1 and 3.2, Mistral v0.1, Gemma). The beginning-of-sequence token [BOS] becomes a universal origin point where each token's query vector maintains high cosine similarity with this reference token's key vector, even as the reference key's magnitude (ℓ_2 -norm) remains small. This creates a computational hub where all tokens can efficiently establish their relative positions through a single comparison operation. When processing "The cat chased the mouse", attention from "mouse" would focus substantially (30-40%) on the [BOS] token rather than semantically related tokens, creating an efficient comparison path "mouse \leftrightarrow [BOS] \leftrightarrow cat". This can be expressed as a transformation where token representations are oriented primarily through their relationship to the central reference point:

$$\mathbf{h}'_i = \alpha_{i,\text{BOS}} \mathbf{v}_{\text{BOS}} + \sum_{j \neq \text{BOS}} \alpha_{ij} \mathbf{v}_j \quad (2)$$

where $\alpha_{i,\text{BOS}}$ typically ranges from 0.3-0.4 (30-40%) regardless of semantic relationship.

Distributed Reference Frames emerge in architectures with modified positional encoding schemes (Qwen 2.5, Phi-2). Multiple tokens serve as reference points, creating a more flexible coordinate system. At the vector level, multiple key vectors maintain moderate cosine similarity with various query vectors across the sequence, creating a network of local reference points. In our example, attention from "mouse" would be allocated (10-15%) to several anchoring tokens, creating multiple computational paths: "mouse \leftrightarrow [Ref] \leftrightarrow cat" and "mouse \leftrightarrow the" \leftrightarrow cat." This distributed reference structure creates multiple, smaller-weight transformations:

$$\mathbf{h}'_i = \sum_{r \in \mathcal{R}} \alpha_{i,r} \mathbf{v}_r + \sum_{j \notin \mathcal{R}} \alpha_{ij} \mathbf{v}_j \quad (3)$$

where \mathcal{R} is the set of reference tokens and $\alpha_{i,r}$ typically ranges from 0.1-0.15 (10-15%) for each reference.

Bidirectional Reference Frames emerge in encoder architectures with absolute position embeddings (BERT, XLM-RoBERTa). Both the beginning and end tokens serve as reference points, with attention patterns shifting through network depth. Early layers establish relationships with the beginning token's vector, while deeper layers increasingly reference the end token's vector, creating a dynamic coordinate system that changes through network depth. This dynamic reference structure can be formalized as a layer-dependent transformation:

$$\mathbf{h}_i^{(l)} = \sum_{j \in \{\text{start, end}\}} \beta_j^{(l)} \alpha_{ij} \mathbf{v}_j + \sum_{j \notin \{\text{start, end}\}} \alpha_{ij} \mathbf{v}_j \quad (4)$$

where $\beta_j^{(l)}$ are layer-specific weighting factors that shift from start-dominant in early layers to end-dominant in later layers.

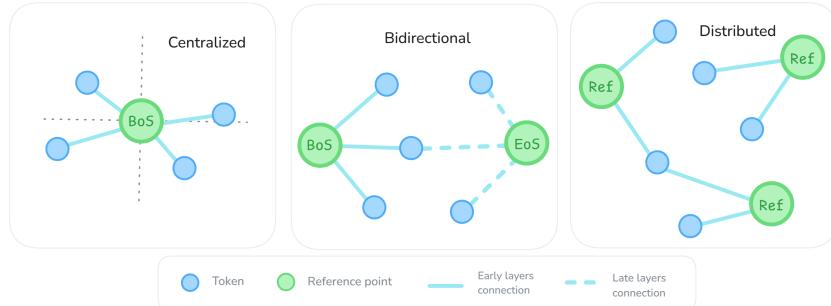


Figure 1: Geometric interpretation of reference frames: (left) *centralized frame* with a single dominant reference point serving as a universal origin; (center) *distributed frame* with multiple weaker reference points creating a flexible coordinate system; (right) *bidirectional frame* with a dual-anchor structure and layer-wise specialization.

When a token attends to a reference point, it performs a vector operation that orients its representation within the shared coordinate system:

$$\mathbf{h}'_i = \sum_j \alpha_{ij} (\mathbf{W}_V \mathbf{x}_j) \approx \alpha_{i,\text{ref}} (\mathbf{W}_V \mathbf{x}_{\text{ref}}) + \sum_{j \neq \text{ref}} \alpha_{ij} (\mathbf{W}_V \mathbf{x}_j) \quad (5)$$

This explains why removing attention sinks often disrupts performance despite their seeming semantic irrelevance, they provide the geometric infrastructure that makes consistent representation possible. The mathematical significance of reference frames becomes clear in the eigendecomposition of attention matrices. Dominant eigenvectors align with reference tokens, creating stable subspaces that serve as coordinate axes. This alignment is captured in the low-rank approximation $A \approx UV^\top$, where columns of U correspond to reference points that minimize the Frobenius norm error $\|A - UV^\top\|_F$. These reference structures enable transformers to perform implicit basis transformation operations that maintain geometric consistency across sequence positions.

3.2 Information Geometry and the Probability Simplex

The softmax operation in attention is fundamental to reference frame formation, as it creates a geometric constraint through the probability simplex [Zuhri et al., 2025]:

$$\Delta^{n-1} = \{(a_1, a_2, \dots, a_n) \in \mathbb{R}^n \mid a_j \geq 0 \text{ for all } j, \text{ and } \sum_j a_j = 1\} \quad (6)$$

This constraint mathematically necessitates the emergence of reference frames by creating two critical geometric effects: i) it transforms unbounded attention logits into a bounded manifold with intrinsic curvature, and ii) it enforces a conservation law that makes attention a zero-sum resource, more about it in A. The resulting geometry privileges sparse attention distributions that concentrate probability mass on a minimal set of tokens, precisely the pattern observed in reference frames. Each attention distribution \mathbf{a}_i represents a point on the probability simplex Δ^{n-1} , inducing a Riemannian metric through the Fisher information matrix $\mathcal{F}_{ij} = \mathbb{E}[\partial_i \log p(x) \partial_j \log p(x)]$. This metric determines how distances are measured in the representation space and creates the conditions for attention sinks to emerge as geodesic reference points.

In the context of attention mechanisms, the information bottleneck principle [Tishby et al., 2000] translates to optimizing attention distributions on the probability simplex:

$$\min_{a_1, \dots, a_n \in \Delta^{n-1}} \sum_{i,j} w_{ij} D_{KL}(a_i \parallel a_j) + \lambda R(a_1, \dots, a_n) \quad (7)$$

where w_{ij} represents the semantic relevance between tokens i and j , and R is a regularization term. The attention distribution from each token defines a probability measure on the manifold, inducing a metric structure through the Fisher information matrix. This metric determines how distances are measured in the representation space.

3.3 The Emergence of Attention Sinks

The attention sink phenomenon can be formalized through the interaction between position encoding and the self-attention mechanism. In self-attention, the attention score between tokens at positions i and j is:

$$\alpha_{ij} = \frac{\exp(\mathbf{q}_i \cdot \mathbf{k}_j / \sqrt{d})}{\sum_{l=1}^n \exp(\mathbf{q}_i \cdot \mathbf{k}_l / \sqrt{d})} \quad (8)$$

where $\mathbf{q}_i = \mathbf{W}_Q \mathbf{x}_i$ and $\mathbf{k}_j = \mathbf{W}_K \mathbf{x}_j$ are the query and key vectors. With RoPE, this becomes:

$$\alpha_{ij} = \frac{\exp((\mathbf{R}_{\theta_i} \mathbf{W}_Q \mathbf{x}_i) \cdot (\mathbf{R}_{\theta_j} \mathbf{W}_K \mathbf{x}_j) / \sqrt{d})}{\sum_{l=1}^n \exp((\mathbf{R}_{\theta_i} \mathbf{W}_Q \mathbf{x}_i) \cdot (\mathbf{R}_{\theta_l} \mathbf{W}_K \mathbf{x}_l) / \sqrt{d})} \quad (9)$$

For the first token ($j = 1$), $\mathbf{R}_{\theta_1} = \mathbf{I}$ (the identity matrix), creating a computational advantage that biases attention toward this position. This mathematical property, combined with the simplex constraint of the softmax, naturally leads to the formation of an attention sink at the beginning-of-sequence token in models with standard RoPE. Specifically, when \mathbf{k}_1 has a small ℓ_2 -norm relative to other keys but maintains high angular alignment with queries, it creates the conditions for an attention

sink. This can be expressed through the dot product decomposition: $\mathbf{q}_i \cdot \mathbf{k}_1 = |\mathbf{q}_i| \cdot |\mathbf{k}_1| \cos(\theta_{q_i, k_1})$. This balance between small norm and high cosine similarity represents an optimal trade-off in the attention mechanism’s geometry. A small $|\mathbf{k}_1|$ ensures the reference token doesn’t dominate the output representation magnitudes, while high $\cos(\theta_{q_i, k_1})$ ensures consistent geometric relationships. This explanation clarifies why attention sinks aren’t merely artifacts but optimal geometric solutions that emerge consistently during training despite different initialization conditions.

3.4 Position Encoding and Reference Frame Formation

Position encoding implementations fundamentally shape the geometric organization of transformer attention, directly influencing which reference frame type emerges during training. Our analysis shows that the mathematical structure of position encoding creates specific inductive biases that guide attention patterns toward distinct geometric configurations. Different encoding schemes establish different coordinate geometries through their modifications of token embeddings:

Standard Rotary Position Embeddings (RoPE) used in architectures like LLaMA, apply a rotation matrix \mathbf{R}_θ with frequency-dependent angles: $\mathbf{x}_i \mapsto \mathbf{R}_{\theta_i} \mathbf{x}_i$ where $\theta_i = i \cdot \omega$ for fixed frequency ω . This creates a fundamental geometric asymmetry: the first token (position 0) receives no rotation at all ($\theta_0 = 0$), making its rotation matrix the identity matrix ($\mathbf{R}_0 = \mathbf{I}$). This mathematical property gives the first token a privileged computational status in the attention mechanism. As other tokens undergo increasingly larger rotations based on their positions, their query vectors maintain higher cosine similarity with the first token’s key vector compared to other tokens at similar semantic distances. During training, the model naturally exploits this computational advantage, developing a centralized reference frame where the first token becomes a universal origin point in the representation space. Topological analysis of these models reveals star-like attention graphs with a dominant central node, reflected in low Betti₁ values (few cycles) and strong negative correlation between algebraic connectivity and degree centralization. This structure corresponds to a *pointed manifold* (\mathcal{M}, p_0) with a distinguished point p_0 serving as a universal origin. This geometric configuration optimizes the probability simplex constraint by placing high probability mass on a single token, creating a sparse attention distribution that enables efficient long-range dependency modeling.

NTK-aware scaled RoPE¹ employed by models such as Qwen 2.5 and Phi-2, introduces a critical geometric modification to standard rotary embeddings. By applying a scaling factor $\alpha < 1$ to the rotation angles: $\mathbf{x}_i \mapsto \mathbf{R}_{\alpha \cdot \theta_i} \mathbf{x}_i$. This approach fundamentally alters the manifold geometry of attention. The reduced rate of angular separation diminishes the computational advantage of the first token by making the relative rotations between tokens more uniform throughout the sequence. This seemingly minor mathematical change has profound effects on reference frame formation. With the positional bias toward the first token weakened, the model no longer converges on a single dominant reference point during training. Instead, multiple tokens can effectively compete as reference points, creating a distributed network of local coordinate systems. Spectral analysis of these models reveals a characteristic sign-flipping correlation pattern between connectivity and centralization metrics that reflects this fundamental reorganization of the attention manifold. The geometric transformation can be understood as a shift from a pointed manifold (\mathcal{M}, p_0) with a single distinguished origin to a multi-pointed manifold $(\mathcal{M}, \{p_1, p_2, \dots, p_n\})$. This distributed structure sacrifices some of the efficient hub-and-spoke compression of centralized frames for greater contextual adaptability, enabling more flexible modeling of diverse linguistic structures.

Absolute position embeddings implemented in encoder architectures like BERT and XLM-RoBERTa, employ a fundamentally different approach to encoding position: $\mathbf{x}_i \mapsto \mathbf{x}_i + \mathbf{p}_i$, where \mathbf{p}_i is a learned embedding for position i . Unlike rotational methods that modify the geometric relationships between tokens through angular transformations, absolute embeddings directly inject position-specific information into each token’s representation. This creates a different kind of inductive bias, rather than establishing implicit reference points through computational advantages, absolute embeddings create explicit position markers throughout the sequence. This approach naturally supports the emergence of bidirectional reference frames with reference points at both

¹NTK stands for Neural Tangent Kernel, in the context of transformers, this approach modifies position encodings based on network capacity rather than using fixed frequencies, allowing models to better generalize to lengths beyond their training distribution.

sequence boundaries. Topologically, these models display remarkably high initial complexity with elevated $Betti_1$ values, indicating numerous cycles in early layers, a strong contrast to the star-like structures in decoder models. The spectral analysis shows peak connectivity in early but not initial layers, with dramatic connectivity drops between early and middle layers, suggesting rapid geometric reorganization. As the network deepens, attention systematically shifts between reference points, creating a dynamic coordinate system that changes through network depth. This bipolar manifold $(\mathcal{M}, p_{\text{start}}, p_{\text{end}})$ implements layer-specific optimization strategies that shift attention mass between special tokens, enabling simultaneous access to both sequence endpoints, a critical capability for tasks requiring bidirectional context integration.

4 Methodology

Geometric and Topological Analysis Standard attention analysis cannot distinguish structured coordinate systems from semantic similarity patterns. We quantified the topological structure of attention networks through persistent homology and Betti numbers, revealing how connectivity patterns evolve across network depth. Our approach draws on the growing application of topological data analysis to neural networks [Naitzat et al., 2020, Moor et al., 2020] and the established methodology of persistent homology for analyzing high-dimensional data structures [Edelsbrunner et al., 2008]: (Distance Matrix = 1 – Attention Matrix).

The Ripser algorithm computed persistent homology on these distance matrices, tracking $Betti_0$ (connected components) and $Betti_1$ (cycles) across layers. Persistence values measure the significance of topological features, with higher values indicating more stable structures. This approach revealed characteristic topological signatures for each reference frame type.

To complement topological features with algebraic characterization, we examined the spectral properties of attention graphs' Laplacian matrices to assess connectivity patterns and reference structures ($L = D - A$ where D is the degree matrix and A is the adjacency matrix derived from thresholded attention weights). We computed these matrices at multiple thresholds (0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2), measuring: i) Algebraic connectivity (Fiedler value) to quantify graph connectedness; ii) Star-likeness to measure proximity to ideal star topologies, directly testing for hub-based reference frames; iii) Gini coefficient to quantify inequality in attention distribution; and iv) Degree centralization to assess concentration of attention. We analyzed correlations between these metrics to identify mathematical signatures of different reference frame types.

Information-Theoretic Analysis While topology reveals structural patterns, understanding whether reference tokens merely aggregate information or fundamentally establish coordinate systems requires quantifying their functional impact. We first quantified information-geometric properties of attention distributions, particularly how attention sinks affect information flow: $KL \text{ Reduction} = KL(\text{original}) - KL(\text{without sinks})$. Our implementation identified attention sinks using percentile thresholds (0.8, 0.9, 0.95), measuring the changes in KL divergence when attention sinks were removed, the attention sink concentration across network layers, and the layer-specific patterns in how reference points influence information geometry. Large KL reductions indicate that sinks establish organizational principles rather than superficial attention patterns.

We then examined how reference frames manifest in value space geometry through complementary quantitative approaches. We measure the influence of reference tokens by calculating their relative magnitude, the ratio between reference token keys' ℓ_2 -norm and average keys ($\|\mathbf{k}_{\text{ref}}\|_2 / \frac{1}{n} \sum_i \|\mathbf{k}_i\|_2$), revealing how these points establish distinguished positions in representation space. We capture directional guidance through cosine similarity between reference values and transformation vectors ($\frac{1}{n} \sum_{i=1}^n \cos(\mathbf{v}_{\text{ref}}, \mathbf{h}'_i - \mathbf{h}_i)$), while quantifying their structural importance via KL divergence between original and reference-removed attention matrices ($D_{KL}(A || A_{\text{-ref}})$). To distinguish between reference frame types, we identify the number of significant reference points across architectures. We further investigate the relationship between attention and geometric transformations by examining attention entropy ($-\sum_j a_{ij} \log a_{ij}$), transformation magnitude ($\|\mathbf{h}'_i - \mathbf{h}_i\|_2$), and their correlation ($\text{corr}(H(A_i), \|\mathbf{h}'_i - \mathbf{h}_i\|_2)$). We also measure geometric-semantic alignment ($\text{corr}(a_{ij}, \cos(\mathbf{v}_i, \mathbf{v}_j))$) to determine whether attention follows semantic relationships or prioritizes geometric organization. The directional influence metric is particularly interesting as it directly quantifies how reference tokens shape the geometric structure of the manifold. High values indicate that reference tokens actively guide the orientation of all other token representations, functioning as coordinate axes rather than merely aggregating contextual information. Similarly, geometric-semantic alignment measures

whether attention patterns follow semantic content (positive values) or abstract geometric principles (negative values), providing insight into how reference frames balance content processing with coordinate system establishment.

To understand how reference frames affect learning dynamics and parameter sensitivity, we computed the Fisher information matrix, which provides a natural Riemannian metric on the manifold of probability distributions, measuring how sensitive model outputs are to parameter perturbations. For each model, we computed the layer-wise Fisher norm $\|F_\ell\|_F = \sqrt{\sum_{i,j} [F_\ell]_{ij}^2}$ where F_ℓ represents the Fisher information matrix for parameters in layer ℓ . This quantifies the information content and learning capacity of each layer with respect to the attention distribution manifold, revealing whether reference frame layers exhibit distinctive information-geometric properties.

Random Matrix Theory Analysis of Attention Evolution The temporal emergence of reference frames shows whether they represent fundamental architectural necessities or learned optimizations. If reference structures emerge early and consistently across initializations, they likely constitute essential computational primitives. To study this, we employed Random Matrix Theory (RMT) to analyze how attention structures emerge from initially random patterns: $p_{MP}(x) = \frac{\sqrt{(b-x)(x-a)}}{2\pi\gamma x}$, $a \leq x \leq b$ where $a = (1 - \sqrt{\gamma})^2$, $b = (1 + \sqrt{\gamma})^2$, and γ is the aspect ratio of the matrix. Deviation from this Marchenko-Pastur distribution indicates the emergence of non-random structure. We quantified this emergence through several metrics: Spectral Gap = $\frac{\lambda_1}{\lambda_2}$, Participation Ratio = $\frac{(\sum_i \lambda_i)^2}{\sum_i \lambda_i^2}$

$$D_{KL}(p_{emp} || p_{MP}) = \sum_i p_{emp}(i) \log \frac{p_{emp}(i)}{p_{MP}(i)} \quad (10)$$

where λ_i are the eigenvalues of the attention matrix, and p_{emp} is the empirical eigenvalue distribution. For each checkpoint during training, we extracted attention matrices from all layers and heads, computed their eigendecomposition, and tracked the evolution of these metrics. This methodology allows us to identify when reference frames begin to form and how they develop through training, providing insights into the fundamental role these structures play in the learning process. We tracked these metrics across training checkpoints of Pythia models from the earliest stages (step0 to step8) to later points (step9000 through step143000), identifying when reference frames begin to form and how they develop through training.

Experimental design We analyzed a diverse set of transformer models to investigate architecture-specific and architecture-invariant patterns in reference frame formation: **decoder-only models** - LLaMA-3.2 (1B, 3B) and 3.1 (8B-Instruct, 8B), Phi-2, Qwen-2.5 (3B, 7B, 7B-Instruct), Mistral-7B-v0.1, Gemma-7B, Pythia (1.4B, 2.8B, 6.9B, 12B); and **encoder-only models** - BERT-base-uncased, XLM-RoBERTa-large.

For topological, spectral graph, value space and KL divergence analyses, we used a dataset of STEM-focused Wikipedia sentences (mathematics, chemistry, medicine, physics) ranging from 6 to 50 tokens. We processed 500 samples for topology, spectral and Fisher information analysis, and a subset of 50 samples for KL divergence analysis. For the temporal RMT analysis, we examined 100 samples across training checkpoints of Pythia models. All experiments were conducted using Google Colab with T4 or A100 GPUs.

5 Analysis Results

As we can see from table 1 each type exhibits characteristic mathematical signatures across our analytical methods, yet all establish stable coordinate systems for representation learning.

5.1 Centralized Reference Frames

Centralized reference frames emerge in decoder-only architectures with standard rotary position embeddings (RoPE), including LLaMA, Mistral, and Gemma. Our spectral graph analysis reveals strong negative correlation between algebraic connectivity (Fiedler value) and degree centralization, indicating that centralized attention structures prioritize information concentration over distributed connectivity, as shown in table 2. This creates a star-like topology with a dominant central node. The KL divergence in table 3 analysis consistently shows negative KL reduction values when attention

Table 1: Topological Analysis of Reference Frame Types

Property		Llama-3.2-3B	Qwen2.5-7B	XLM-RoBERTa
Reference frame type		Centralized	Distributed	Bidirectional
Connected Components	Early layer (Betti_0)	26.43	26.16	22.68
	Final layer (Betti_0)	26.43	17.97	1.69
	Change	0.00	-8.19	-20.99
Cycles/Loops	Early layer (Betti_1)	0.00	0.00	19.69
	Final layer (Betti_1)	0.00	0.00	3.11
	Change	0.00	0.00	-16.58
Topological Persistence	Early layer persistence	0.0573	0.2381	0.0521
	Final layer persistence	0.1620	0.1543	0.0156
	Change	+0.1046	-0.0838	-0.0365
Attention Head Specialization	Token specialization	100% on BoT	65.4% on ","	100% on <s>/</s>
	Specialized heads	120	7	77
	Top layer specialization	Layer 0 (24 heads)	Layer 0 (7 heads)	Layer 18 (16 heads)
Attention Standard Deviation	Early layer	0.1219	0.0737	0.0197
	Middle layer (max)	0.1620 (layer 21)	0.1316 (layer 14)	0.0950 (layer 12)
	Final layer	0.1332	0.1182	0.0602

sinks are removed, demonstrating the reference point’s critical role in maintaining geometric stability. Fisher information metrics in table 8 show extreme early-layer concentration, with approximately 60% of total Fisher information concentrated in the first layers, quantifying precisely how these architectures establish their coordinate system through a dominant early reference point. The full results for LLaMa E, Mistral v0.1 and Gemma G and Pythia J are in the appendix.

Table 2: Spectral graph signatures of reference frame types

Property		Centralized (LLaMA-3.2-3B)	Distributed (Qwen2.5-7B)	Bidirectional (RoBERTa)
Algebraic Connectivity (Fiedler Value)	Position encoding	Standard RoPE	NTK-aware RoPE	Absolute
	High threshold effectiveness	0.04 (1/28 layers)	0.25 (7/28 layers)	0.38 (9/24 layers)
	Early / Middle / Late layers	12.5 / 11.7 / 7.0	16.2 / 12.8 / 11.0	38.3 / 31.2 / 22.5
	Maximum value (layer)	17.7 (0)	18.8 (1)	55.3 (1)
Star-likeness Measure	Low thrsh. (0.001): E/M/L	0.54 / 0.53 / 0.54	0.54 / 0.53 / 0.50	0.35 / 0.36 / 0.39
	High thrsh. (0.1): E/M/L	0.97 / 0.96 / 0.93	0.78 / 0.93 / 0.88	0.85 / 0.95 / 0.94
	Middle-layer peak (high thrs.)	No	Yes	Yes
Degree Centralization and Variance	Centralization: E/M/L	0.54 / 0.55 / 0.61	0.52 / 0.54 / 0.50	0.08 / 0.13 / 0.22
	Variance: E/M/L	114.9 / 111.6 / 85.1	130.3 / 117.4 / 104.5	98.3 / 50.8 / 89.7
Signature Correlation Patterns	Fiedler vs. Centraliz. (0.001)	Strong negative (-0.95)	Negative (-0.46)	Positive (0.32)
	Fiedler vs. Centraliz. (0.1)	Positive (0.34)	Strong positive (0.61)	Negative (-0.33)
	Correlation sign flip	Yes (-0.95 → +0.34)	Yes (-0.46 → +0.61)	Yes (0.32 → -0.33)

5.2 Distributed Reference Frames

Distributed reference frames emerge in architectures with modified positional encoding schemes, such as Qwen 2.5 and Phi-2s NTK-aware scaled RoPE. Our spectral analysis identifies a distinctive sign-flipping correlation pattern between Fiedler values and centralization metrics, negative at low thresholds transitioning to positive at higher thresholds, shown in table 2, a reliable signature of distributed reference frames. KL divergence measurements in table 3 reveal a characteristic three-phase pattern: positive KL reduction in early layers, stronger negative reduction in middle layers, and moderated negative values in late layers. This signature indicates that reference points serve different functions at different network depths. Fisher information in table 8 shows lower peak concentration with multiple significant peaks across different network depths, reflecting a fundamentally different approach to establishing coordinate systems. The complete results for Qwen 2.5 F and Phi-2 I are in the appendix.

Table 3: Architectural Differences in Attention Sink Properties

	Property	LLaMA-3.2-3B	Qwen2.5-7B	XLM-RoBERTa
	Reference frame type	Centralized	Distributed	Bidirectional
Attention Sink Properties (t=0.8)	Avg. KL Reduction	-0.0974	-0.0088	-0.1017
	Avg. Sink Concentration	82.93%	69.92%	66.86%
	Max Sink Concentration	96.40% (L25)	85.75% (L23)	85.22% (L21)
Layer-wise Distribution	Early Layer Pattern	Strong negative KL	Positive KL	Mixed KL
	Middle Layer Pattern	Moderate negative KL	Mixed KL	Strong negative KL
	Deep Layer Pattern	Strong negative KL	Mixed KL	Variable KL
Architectural Implications	Sink Formation	Consistent across layers	Variable by layer	Strong middle-layer focus
	Threshold Sensitivity	High	Moderate	Moderate
	Early-layer Context	Strong sink focus	Weak sink formation	Very weak sink formation

5.3 Bidirectional Reference Frames

Bidirectional reference frames emerge in encoder architectures with absolute position embeddings, such as BERT and XLM-RoBERTa. Our topological analysis reveals remarkably high initial complexity with high $Betti_1$ values indicating numerous loops/cycles in early layers, contrasting sharply with decoder models, as shown in table 1. The spectral analysis in table 2 shows peak connectivity in early but not initial layers, with dramatic drops in connectivity from early to middle layers suggesting rapid geometric reorganization. The most distinctive signature appears in our KL divergence analysis, in table 3, which reveals a characteristic U-shaped profile with positive KL reduction in both first and final layers, confirming the dual-anchor nature of the reference structure. Fisher information in table 8 peaks in middle layers rather than at the beginning, indicating a fundamentally different approach to information distribution. The comprehensive results for BERT and XLM-RoBERTa H are in the appendix.

5.4 Value space analysis

Our vector geometry analyses reveal how reference frames function as coordinate systems within transformer representation manifolds. As shown in Table 4, each reference frame type implements a distinct geometric strategy for balancing representational stability with flexibility. Centralized frames

Table 4: Value Space Characteristics Across Reference Frame Types

	Property	LLaMA-3.2-3B	Qwen2.5-7B	XLM-RoBERTa
	Reference frame type	Centralized	Distributed	Bidirectional
Directional Influence	First Layer	0.9672	0.7508	0.7310
	Middle Layer	0.5058	0.5000	0.9808
	Last Layer	0.5012	0.5000	0.9274
	Evolution Pattern	Sharp decrease	Early decrease, then flat	Increase, then stable
Geometric-Semantic Alignment	First Layer	-0.0383	0.0569	0.2065
	Middle Layer	-0.2999	-0.0771	-0.3545
	Last Layer	-0.2614	0.0000	-0.3982
	Evolution Pattern	Consistently negative	Near zero throughout	Positive to strongly negative
Information Content Change	Mean	410.97	7161.51	13.76
	Std Dev	126.99	3649.72	4.40
	Pattern	Moderate	Very high	Low
Reference Token Structure	Mean Count	1.00	1.23	1.60
	Maximum Count	2.00	8.00	10.00
	Distribution	Single token dominant	Multiple tokens	Varying tokens by layer
Attention-Value Relationships	Entropy-Magnitude Corr.	0.23	-0.23	0.23
	Early-to-Late Layer Shift	-0.03 to -0.57	-0.70 to -0.05	-0.16 to 0.64
	Transformation Magnitude	2.46 to 84.07	15.03 to 222.39	19.74 to 23.81

establish a strong initial coordinate origin that gradually accommodates more nuanced transformations while maintaining a single reference point. The negative geometric-semantic alignment confirms these frames prioritize geometric organization over semantic relationships. Distributed frames employ multiple reference points with substantially higher information content change, resembling differential geometry's use of local coordinate charts for complex manifolds. This approach trades computational efficiency for greater adaptability to semantic structure. Bidirectional frames exhibit a remarkable phase transition in geometric-semantic alignment, implementing a dual-phase computation where

early layers leverage semantic relationships before deeper layers reorganize representations according to more abstract geometric principles.

These patterns confirm that reference frames represent optimized solutions to the challenge of establishing stable coordinate systems in high-dimensional spaces, with architectural choices directly influencing which strategy emerges.

Our Random Matrix Theory analysis further supports this interpretation by demonstrating that reference frames emerge during the earliest training steps, well before task performance begins to converge, indicating their fundamental role in representation organization.

5.5 Temporal Emergence of Reference Frames

Our Random Matrix Theory analysis in table 5 shows how reference frames develop during the earliest stages of training across different model scales. The spectral gap metric shows a non-monotonic relationship with model size, smaller models exhibit minimal changes while mid-sized models (particularly 6.9B) demonstrate the most pronounced increases. This suggests reference frames establish themselves most efficiently at certain parameter scales rather than scaling linearly with model size. Participation ratio measurements show that while smaller models develop more distributed attention during training, larger models progressively concentrate attention in fewer dimensions. The dramatic increase in participation ratio change between 6.9B and 12B models suggests a phase transition in how the largest models organize their representational geometry.

Table 5: Evolution of Random Matrix Theory Properties During Pythia Model Training

	Metric	Pythia-1.4B	Pythia-2.8B	Pythia-6.9B	Pythia-12B
Average Changes from Step 0 to Step 8	Spectral Gap	-0.0002	0.0014	0.0031	0.0007
	Participation Ratio	0.0073	-0.0111	-0.0118	-0.0727
	Attention Entropy	0.0005	0.0003	0.0011	0.0018
	Sink Concentration	0.0001	0.0002	0.0001	0.0013
Layer-wise Distribution of Changes	Largest Spectral Gap Increase	0.0163 (L18)	0.0139 (L28)	0.0288 (L30)	0.0322 (L23)
	Largest Spectral Gap Decrease	-0.0177 (L17)	-0.0138 (L31)	-0.0250 (L23)	-0.0227 (L35)
	Largest Part. Ratio Increase	0.1530 (L13)	0.1792 (L19)	0.4147 (L23)	0.3061 (L25)
	Largest Part. Ratio Decrease	-0.1353 (L17)	-0.2898 (L23)	-0.4957 (L25)	-0.8785 (L34)

Layer specialization becomes increasingly pronounced as models scale up, with early layers remaining relatively stable, middle layers showing divergent patterns, and deep layers demonstrating dramatic evolution in attention structure. The dual trends in attention entropy and sink concentration metrics reveal that while attention generally becomes more uniformly distributed across tokens, larger models simultaneously develop more pronounced attention sinks. The emergence of increasingly structured attention patterns in larger models suggests that scale enables more sophisticated geometric representations, a mathematical necessity rather than an architectural accident.

6 Limitations and Conclusion

Limitations Our topological and spectral analyses focus on attention patterns at specific network snapshots rather than continuously tracking their evolution throughout training.

Conclusion Our work reframes attention sinks from architectural quirks to fundamental aspects of transformer geometry. The reference frame perspective offers three key contributions: (1) unifying diverse attention patterns across architectures through a single geometric principle; (2) providing insights into how architectural choices influence attention organization; and (3) establishing a foundation for deliberate reference frame engineering. By demonstrating that attention patterns reflect optimal solutions to the challenge of establishing stable coordinate systems in high-dimensional spaces, our framework opens new directions for transformer optimization. Future works will explore using attention sink tokens as anchoring points for transfer learning, potentially enabling more efficient knowledge transfer while preserving geometric stability across different model architectures.

7 Acknowledgments

Research supported in part by European Union - Next Generation EU - namely by the MUR-PRIN 2022 project "2022REWNTE - Artificial Intelligence algorithms to track and detect Covid-19 vaccine-related infodemic on social media" - CUP no.B53D23020690006; in part by the projects FAIR under Grant PE0000013 and SERICS under Grant PE00000014 under the MUR National Recovery and Resilience Plan funded by the European Union-NextGenerationEU, and in part by the project Neural Reasoning over Open Data (NEREO) funded by the Italian Ministry of Education and Research (PRIN) under Grant 2022AEFHA, and in part by the project SEED funded by Sapienza University of Rome.

References

Federico Barbero, Alvaro Arroyo, Xiangming Gu, Christos Perivolaropoulos, Michael Bronstein, Razvan Pascanu, et al. Why do llms attend to the first token? *arXiv preprint arXiv:2504.02732*, 2025.

Nicola Cancedda. Spectral filters, dark signals, and attention sinks. *arXiv preprint arXiv:2402.09221*, 2024.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need registers. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=2dn03LLiJ1>.

Herbert Edelsbrunner, John Harer, et al. Persistent homology-a survey. *Contemporary mathematics*, 453(26):257–282, 2008.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for transformer circuits. *Transformer Circuits Thread*, 1(1):12, 2021.

Xiangming Gu, Tianyu Pang, Chao Du, Qian Liu, Fengzhuo Zhang, Cunxiao Du, Ye Wang, and Min Lin. When attention sink emerges in language models: An empirical view. *arXiv preprint arXiv:2410.10781*, 2024.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva Reddy. The impact of positional encoding on length generalization in transformers. *Advances in Neural Information Processing Systems*, 36:24892–24928, 2023.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 26296–26306, 2024.

Hosein Mohebbi, Willem Zuidema, Grzegorz Chrupała, and Afra Alishahi. Quantifying context mixing in transformers. *arXiv preprint arXiv:2301.12971*, 2023.

Michael Moor, Max Horn, Bastian Rieck, and Karsten Borgwardt. Topological autoencoders. In *International conference on machine learning*, pages 7045–7054. PMLR, 2020.

Luca Moschella, Valentino Maiorca, Marco Fumero, Antonio Norelli, Francesco Locatello, and Emanuele Rodolà. Relative representations enable zero-shot latent space communication. *arXiv preprint arXiv:2209.15430*, 2022.

Gregory Naitzat, Andrey Zhitnikov, and Lek-Heng Lim. Topology of deep neural networks. *Journal of Machine Learning Research*, 21(184):1–40, 2020.

Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables input length extrapolation. *arXiv preprint arXiv:2108.12409*, 2021.

Valeria Ruscio and Fabrizio Silvestri. Beyond position: the emergence of wavelet-like properties in transformers. *arXiv preprint arXiv:2410.18067*, 2024.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

Chuanhao Sun, Zhihang Yuan, Kai Xu, Luo Mai, N Siddharth, Shuo Chen, and Mahesh K Marina. Learning high-frequency functions made easy with sinusoidal positional encoding. *arXiv preprint arXiv:2407.09370*, 2024.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. *arXiv preprint physics/0004057*, 2000.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head self-attention: Specialized heads do the heavy lifting, the rest can be pruned. *arXiv preprint arXiv:1905.09418*, 2019.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming language models with attention sinks. *arXiv preprint arXiv:2309.17453*, 2023.

Zhongzhi Yu, Zheng Wang, Yonggan Fu, Huihong Shi, Khalid Shaikh, and Yingyan Celine Lin. Unveiling and harnessing hidden attention sinks: Enhancing large language models without training through attention calibration. *arXiv preprint arXiv:2406.15765*, 2024.

Stephen Zhang, Mustafa Khan, and Vardan Papyan. Attention sinks and outlier features: A ‘catch, tag, and release’ mechanism for embeddings. *arXiv preprint arXiv:2502.00919*, 2025.

Zayd MK Zuhri, Erland Hilman Fuadi, and Alham Fikri Aji. Softpick: No attention sink, no massive activations with rectified softmax. *arXiv preprint arXiv:2504.20966*, 2025.

A Geometric Effects of the Softmax Operation

The softmax operation transforms raw attention logits into probability distributions through the equation $a_j = \exp(z_j) / \sum_i \exp(z_i)$. This transformation has two fundamental geometric consequences that directly drive reference frame formation.

First, softmax transforms unbounded attention logits into a bounded manifold with intrinsic curvature. While input logits z_j can range from $-\infty$ to $+\infty$ in Euclidean space \mathbb{R}^n , the output attention weights a_j are confined to the probability simplex Δ^{n-1} . This mapping from Euclidean space to the simplex introduces non-Euclidean geometry with positive curvature under the Fisher-Rao metric. The curvature of this manifold means that geodesics (shortest paths) differ from straight lines, creating geometric pressure toward the vertices and edges of the simplex. Mathematically, this corresponds to sparse attention distributions where most probability mass concentrates on a small subset of tokens. The dimensional reduction from n -dimensional logit space to an $(n-1)$ -dimensional simplex creates an information bottleneck that forces the network to prioritize certain geometric relationships over others during training.

Second, softmax enforces a conservation law that makes attention a zero-sum resource through the constraint $\sum_j a_j = 1$. This constraint means each token has exactly one unit of total attention to distribute across all tokens in the sequence. Any increase in attention weight to one token must be precisely balanced by decreases to others, creating an economy of attention where tokens compete for finite resources. This competition creates evolutionary pressure during training toward allocation patterns that maximize the computational utility of each attention unit. The simplex constraint drives the model toward solutions that balance the trade-off between distributing attention for content processing and concentrating attention for geometric reference. The mathematical optimality of allocating substantial attention to a small set of reference tokens emerges naturally from this constrained optimization problem.

Together, these geometric effects create the necessary conditions for reference frames to emerge as optimal solutions to the challenge of establishing stable coordinate systems while respecting the mathematical constraints imposed by the softmax operation. The different reference frame types we identify represent alternative solutions to this same fundamental geometric problem, each balancing the trade-offs between computational efficiency and representational flexibility in mathematically distinct ways.

B Statistical Analysis

Our statistical methodology employed multiple complementary approaches to validate the existence of distinct reference frame types. We performed pairwise t-tests between transformer layers to identify significant changes in topological metrics (Betti numbers and persistence values), using $\alpha = 0.05$ as our significance threshold. For spectral analysis, we computed Pearson and Spearman correlations between Fiedler values and graph properties (star-likeness, centralization, variance, density) across seven attention thresholds (0.001 to 0.2), allowing us to detect threshold-dependent correlation patterns. To quantify information-theoretic differences, we calculated KL divergence between original and sink-removed attention distributions, testing the statistical significance of KL reduction values and their correlation with sink concentration metrics. Fisher information analysis involved computing Frobenius norms of Fisher matrices across layers and correlating these with layer depth using both Pearson and Spearman methods to capture linear and monotonic relationships respectively. All correlation analyses included p-value calculations to assess statistical significance, with $p < 0.05$ considered significant. When comparing multiple metrics across numerous layers, we report the proportion of significant comparisons to evaluate overall pattern reliability.

Table 6: Core Statistical Metrics Across Reference Frame Types

Property		LLaMA-3.2-3B	Qwen2.5-7B	XLM-RoBERTa
Reference frame type		Centralized	Distributed	Bidirectional
Topological Stability	Betti ₀ constancy	26.41($p = 1.000$)	26.13($p = 1.000$)	22.69 → 1.00($p < 0.0001$)
	Dim0 Persistence range	0.032 – 0.162($p < 0.0001$)	0.067 – 0.418($p < 0.0001$)	0.003 – 0.155($p < 0.0001$)
	Betti ₁ evolution	0 (constant)	0 (constant)	20.93 → 0($p < 0.0001$)
Spectral Correlations (Fiedler)	Star-likeness ($t=0.001$)	$r = -0.32, p = 0.10$	$r = -0.59, p < 0.001$	$r = -0.76, p = 0.008$
	Star-likeness ($t=0.02$)	$r = 0.44, p = 0.016$	$r = 0.51, p < 0.001$	$r = 0.57, p = 0.004$
	Centralization ($t=0.001$)	$r = -0.48, p < 0.001$	$r = -0.44, p = 0.008$	$r = 0.31, p = 0.052$
	Centralization ($t=0.02$)	$r = -0.57, p < 0.001$	$r = -0.63, p = 0.031$	$r = -0.68, p = 0.038$
Information Metrics	KL reduction range	$-0.274t_0 + 0.013$	$-0.219t_0 + 0.110$	$-0.284t_0 + 0.088$
	KL-concentration correlation	$r = -0.78, p < 0.001$	$r = -0.76, p = 0.0015$	$r = -0.70, p = 0.008$
	Peak sink concentration	96.06%	86.46%	85.52%
Learning Dynamics	Fisher-depth correlation	$r = -0.39, p = 0.042$	$r = -0.79, p < 0.001$	$r = -0.38, p = 0.071$
	Fisher-depth Spearman	$\rho = -0.97, p < 0.001$	$\rho = -0.82, p < 0.001$	$\rho = -0.38, p = 0.066$
	Attention parameters (%)	12.7%	35.4%	72.8%

B.1 Reference frames statistical analysis

In table 6 is our comprehensive statistical analysis provides quantitative validation for the three distinct reference frame types identified in transformer architectures. Centralized reference frames (LLaMA-3.2-3B) exhibit remarkable topological invariance with Betti₀ remaining constant at 26.41 across all layers ($p = 1.000$) and zero Betti₁ values throughout, while Dim0 Persistence evolves significantly from 0.057 in early layers to 0.162 in the final layer (all $p < 0.0001$), accompanied by spectral correlation reversals where Fiedler-star correlations shift from negative ($r = -0.32$) at low thresholds to positive ($r = 0.50, p < 0.001$) at higher thresholds, consistently negative KL reduction values across layers (ranging from -0.03 to -0.274) with strong negative correlation between KL reduction and sink concentration ($r = -0.78, p < 0.001$), and a significant negative Fisher information correlation with layer depth ($r = -0.39, p = 0.042$) showing extremely strong monotonic decrease (Spearman $\rho = -0.97, p < 0.001$).

Distributed reference frames (Qwen2.5-7B) demonstrate a distinctive U-shaped Dim0 Persistence pattern dropping from 0.418 to 0.067 before recovering to 0.261 (all transitions $p < 0.0001$), systematic spectral correlation reversals across thresholds where star-likeness correlations change from negative ($r = -0.59, p < 0.001$) to positive ($r = 0.51, p < 0.05$) while centralization correlations strengthen negatively, a three-phase KL reduction pattern with positive values in early layers (+0.110), negative in middle layers (-0.219), and mixed in deep layers, alongside the strongest Fisher information depth correlation ($r = -0.79, p < 0.001$) indicating efficient learning distribution across multiple reference points.

Bidirectional reference frames (XLM-RoBERTa) uniquely show dramatic topological evolution with Betti₀ decreasing from 22.69 to 1.00 and Betti₁ from 20.93 to near-zero (all $p < 0.0001$), layer-specific spectral behaviors varying from strong negative star-likeness correlations in early layers ($r = -0.92, p < 0.001$) to positive correlations in deeper layers, a characteristic U-shaped KL profile with positive

reduction at extremes (+0.071 and +0.088) and negative values in middle layers (minimum -0.28), combined with no significant Fisher information correlation with depth ($r = -0.38, p = 0.071$) reflecting maintained learning capacity throughout the network, where attention parameters comprise 72.8% of total parameters compared to 12.7% in centralized and 35.4% in distributed frames, demonstrating how each reference frame type implements a mathematically distinct solution to coordinate system establishment in high-dimensional transformer representations.

B.2 Value space statistical analysis

Table 7: Value space statistical analysis. The asterisks indicate statistical significance levels (* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$).

Property		LLaMA-3.2-3B	Qwen2.5-7B	XLM-RoBERTa
Reference frame type		Centralized	Distributed	Bidirectional
Reference Point Metrics	Relative Magnitude (mean)	0.5413	0.4893	0.5918
	Directional Influence (mean)	0.5419	0.5523	0.9397
	Information Content Change	411.18	7084.96	13.74
	Reference Token Count	1.00	1.23	1.58
Layer Evolution (Correlations)	Max Reference Count	2	7	9
	Relative Magnitude Pattern	Mixed ($r = -0.37$)	Mixed ($r = 0.29$)	Mixed ($r = 0.33$)
	Directional Influence Pattern	Mixed ($r = -0.37$)	Decreasing ($r = -0.60$)	Mixed ($r = -0.46$)
Cross-Layer Differences	Information Content Pattern	Mixed ($r = 0.46$)	Increasing ($r = 0.53$)	Mixed ($r = -0.03$)
	Directional Influence Change (Early vs Late)	-0.082 ($p = 0.091$)	-0.105* ($p = 0.045$)	-0.028 ($p = 0.290$)
	Information Content Change (Early vs Late)	+119.66* ($p = 0.014$)	+2452.50 ($p = 0.061$)	-0.024 ($p = 0.990$)
Key Reference Correlations	Magnitude-Influence Correlation	$r = 0.9997***$ ($p < 0.001$)	$r = -0.1264***$ ($p < 0.001$)	$r = -0.0018$ ($p = 0.843$)
	Magnitude-Info Content Correlation	$r = -0.9147***$ ($p < 0.001$)	$r = 0.2285***$ ($p < 0.001$)	$r = 0.6000***$ ($p < 0.001$)
	Influence-Info Content Correlation	$r = -0.9153***$ ($p < 0.001$)	$r = -0.7708***$ ($p < 0.001$)	$r = 0.6268***$ ($p < 0.001$)
	Attention Entropy (mean)	1.0522	1.4513	2.1871
Attention-Value Relationships	Value Transform Magnitude	9.7099	16.1056	8.1544
	Geometric-Semantic Alignment	-0.2923*** ($p < 0.001$)	-0.0405*** ($p < 0.001$)	0.0019 ($p = 0.561$)
	Entropy-Magnitude Correlation	0.2279*** ($p < 0.001$)	-0.2294*** ($p < 0.001$)	0.2346*** ($p < 0.001$)
Layer-wise Evolution	Attention Entropy Change (First to Last)	-0.4068*** ($p < 0.001$)	-2.1086*** ($p < 0.001$)	-1.0198*** ($p < 0.001$)
	Transform Magnitude Change (First to Last)	+81.6071*** ($p < 0.001$)	+206.3281*** ($p < 0.001$)	+4.0779*** ($p < 0.001$)
	Geometric Alignment Change (First to Last)	-0.2224*** ($p < 0.001$)	-0.0575*** ($p < 0.001$)	-0.6038*** ($p < 0.001$)
	Sample Size (texts)	500	500	500
Statistical Properties	Total Data Points	14,000	14,000	12,000
	Significant Correlations	37/40(92.5%)	36/40(90.0%)	33/40(82.5%)

Our statistical analysis of value space provides quantitative validation for the three distinct reference frame types, with measurements across 500 text samples generating 12,000 – 14,000 data points per architecture. Centralized reference frames (LLaMA-3.2-3B) demonstrate the most coherent reference structure with near-perfect correlation between relative magnitude and directional influence ($r = 0.9997, p < 0.001$), maintaining a single dominant reference token (mean count = 1.0006) whose directional influence dramatically decreases from 0.97 in the first layer to 0.50 in the final layer, while information content change significantly increases from early (351.35) to late layers (471.01) with a mean difference of 119.66 ($t = -2.76, p = 0.014$), accompanied by consistently negative geometric-semantic alignment (mean = -0.29, $p < 0.001$) and positive entropy-magnitude correlation ($r = 0.23, p < 0.001$) indicating that diverse attention patterns produce larger value transformations. Distributed reference frames (Qwen2.5-7B) employ multiple reference points (mean count = 1.23, max = 7) with substantially higher information content change (mean = 7084.96, SD = 3641.75), showing a distinctive negative correlation between relative magnitude and directional influence ($r = -0.13, p < 0.001$) that contrasts sharply with centralized frames, while directional influence significantly decreases from early (0.60) to late layers (0.50) with $p = 0.045$, accompanied by near-zero geometric-semantic alignment (mean = -0.04, $p < 0.001$) and negative entropy-

magnitude correlation ($r = -0.23, p < 0.001$) suggesting that focused attention patterns drive larger transformations in this architecture. Bidirectional reference frames (XLM-RoBERTa) maintain the highest overall directional influence (mean = 0.94, SD = 0.07) with the most complex reference structure (mean count = 1.58, max = 9), uniquely showing no correlation between relative magnitude and directional influence ($r = -0.002, p = 0.84$) while both metrics correlate positively with information content change ($r = 0.60$ and $r = 0.63$, both $p < 0.001$), exhibiting the only non-significant geometric-semantic alignment (mean = 0.002, $p = 0.56$) and positive entropy-magnitude correlation ($r = 0.23, p < 0.001$). Cross-layer evolution reveals dramatic and statistically significant changes across all architectures: attention entropy decreases substantially (centralized: -0.41 , distributed: -2.11 , bidirectional: -1.02 , all $p < 0.001$), value transformation magnitude increases exponentially (centralized: 81.61-fold increase from 2.46 to 84.07, distributed: 206.33-fold from 15.03 to 222.39, bidirectional: 4.08-fold from 19.74 to 23.81, all $p < 0.001$), while geometric-semantic alignment becomes increasingly negative (centralized: -0.22 decrease, distributed: -0.06 decrease, bidirectional: -0.60 decrease, all $p < 0.001$), with layer-specific correlation patterns showing remarkable consistency within each architecture type, centralized frames exhibit correlation reversals from negative ($r = -0.53$) to positive ($r = -0.57$) entropy-magnitude relationships, distributed frames show systematic progression from strongly negative ($r = -0.70$) to near-zero ($r = -0.05$) correlations, and bidirectional frames demonstrate the most dramatic shifts with correlations ranging from $r = -0.16$ to $r = 0.64$ across layers. These quantitative patterns provide robust statistical evidence that reference frames not only organize attention patterns but fundamentally shape value space transformations, with each architecture implementing mathematically distinct strategies that manifest in measurable differences in how information flows through the network, how strongly reference points influence transformations, and how semantic and geometric properties interact throughout the model depth.

C Fisher Table

Table 8: Comparative Analysis of Fisher Information Distribution Across LLaMa, Qwen and RoBERTa

Property		LLaMA-3.2-3B	Qwen2.5-7B	XLM-RoBERTa
Reference frame type		Centralized	Distributed	Bidirectional
Component Importance	Attention Mechanism	12.7% (78,164)	29.7% (46,040)	71.7% (8,363,327)
	MLP Components	85.5% (527,103)	51.8% (80,380)	27.8% (3,244,160)
	Embedding	1.8% (10,892)	2.1% (3,247)	0.2% (26,120)
Layer Distribution	Peak Layer	Layer 1: 371,465	Layer 0: 18,791	Layer 9: 2,504,416
	Secondary Peak	Layer 0: 39,429	Layer 26-27: 6,039	Layer 8: 2,371,845
	Peak to Minimum Ratio	143:1	26:1	303:1
Structural Features	Total Fisher Norm	616,694	155,080	11,668,807
	Early Layers (0-9) Concentration	82.7%	64.7%	59.3%
	Middle Layers Concentration	13.5%	14.9%	39.8%
	Final Layers Concentration	3.8%	3.9%	0.9%

D Attention Sink Data

The analysis of attention sink patterns across 500 Wikipedia samples provides strong evidence for the theoretical predictions regarding positional embedding geometry. Llama 3.2 3B, employing standard rotary position embeddings (RoPE), shows the predicted pointed manifold structure with the beginning-of-text token serving as the dominant attention sink in 100% of analyzed samples, achieving an average sink score of 0.9968. This universal reliance on a single reference point directly reflects the geometric asymmetry introduced by RoPE, where the first token experiences no rotation ($\theta_0 = 0, \mathbf{R}_0 = \mathbf{I}$), giving a privileged computational status that the model exploits during training. In stark contrast, Qwen 2.5 3B, which implements NTK-aware scaled RoPE with reduced angular separation ($\alpha < 1$), has a fundamentally different attention topology consistent with a multi-pointed manifold ($\mathcal{M}, \{p_1, p_2, \dots, p_n\}$). Rather than converging on a universal origin, Qwen distributes attention sinks across diverse tokens—with the most common sink (*The*) appearing in only 17.2% of samples and the top 10 sinks cumulatively accounting for 53.4% of cases. This distributed

Table 9: Attention sink distribution summary across 500 Wikipedia samples. Analysis performed with $\gamma = 0.3$ (sink threshold) and τ set to the 90th percentile of attention weights.

Model	Samples	Most Common Top Sink	Occurrence	% Coverage	Avg Sink Score
Llama 3.2 3B	500	<code>< begin_of_text ></code>	500	100.0%	0.9968
Qwen 2.5 3B	500	<i>The</i>	86	17.2%	0.8892

Table 10: Distribution of top 10 attention sink tokens for Llama 3.2 3B (standard RoPE) and Qwen 2.5 3B (NTK-aware scaled RoPE). Llama exhibits extreme centralization with 100% coverage by a single token, while Qwen shows distributed sink selection across diverse tokens.

Llama 3.2 3B (Standard RoPE)				Qwen 2.5 3B (NTK-aware RoPE)			
Rank	Token	Freq.	%	Rank	Token	Freq.	%
1	<code>< BOS ></code>	500	100.0	1	<i>The</i>	86	17.2
2	<i>medicine</i>	4	0.8	2	,	51	10.2
3	<i>matter</i>	3	0.6	3	<i>In</i>	40	8.0
4	<i>include</i>	3	0.6	4	<i>This</i>	19	3.8
5	<i>MRI</i>	2	0.4	5	<i>For</i>	17	3.4
6	<i>pressure</i>	2	0.4	6	<i>It</i>	15	3.0
7	<i>logy</i>	2	0.4	7	<i>These</i>	10	2.0
8	<i>Nunes</i>	2	0.4	8	<i>of</i>	10	2.0
9	<i>GIS</i>	2	0.4	9	<i>A</i>	10	2.0
10	<i>conversion</i>	1	0.2	10	<i>One</i>	9	1.8
Cumulative (Top 10):				Cumulative (Top 10):			

pattern, where different contexts select different reference tokens, confirms that NTK-aware scaling successfully mitigates the positional bias inherent in standard RoPE, enabling the formation of multiple local coordinate systems rather than a single centralized reference frame.

E Llama Family

As we can see from table 11, all Llama variants, regardless of parameter count or fine-tuning, exhibit 100% specialization on the beginning-of-sequence token. This is a strong evidence for the centralized reference frame in this kind of architecture. The stable Betti₀ numbers (connected components) across all layers in all models confirm the predicted behavior of centralized reference frames, they maintain consistent topological structure rather than merging components as seen in distributed frames. All models show monotonically increasing persistence values from early to late layers, and this indicates that the centralized reference point becomes more significant in deeper layers, suggesting increasing reliance on this coordinate system as information flows through the network.

The remarkable consistency across different parameter scales (1B, 3B, 8B) suggests that reference frame formation is a fundamental architectural property rather than an emergent behavior dependent on model size. Despite some difference, the instruction-tuned model still maintains the fundamental centralized reference frame signature, perfect BOS specialization, stable topology, and monotonically increasing persistence.

In table 12 we can see that all Llama models exhibit remarkably similar spectral properties despite their varying parameter counts (1B to 8B) and fine-tuning status. This consistency supports the thesis that reference frame type is fundamentally determined by architectural choices rather than scale or training objective. The consistent peak in algebraic connectivity in middle layers (1.01×-1.61× higher) aligns with our theory that centralized reference frames optimize information flow through the network via a coordination layer structure. The strongest peak in the smallest model (1.61× in 1B vs. 1.01× in 8B) suggests that smaller models rely more heavily on this coordination mechanism.

The strong negative correlation between algebraic connectivity and degree centralization (-0.9790 to -0.9865) is a distinctive mathematical signature of centralized reference frames. This indicates that as

Table 11: Reference frame signatures across Llama model variants

Property	Llama-3.2-1B	Llama-3.2-3B	Llama-3.1-8B	Llama-3.2-3B-Instruct
BOS specialization	100%	100%	100%	100%
Betti ₀ (early)	26.39	26.43	26.55	26.37
Betti ₀ (late)	26.39	26.43	26.55	26.37
Betti ₀ change	0.00	0.00	0.00	0.00
Dim0 persistence (early)	0.0748	0.0573	0.0591	0.0410
Dim0 persistence (late)	0.1651	0.1620	0.1612	0.1350
Persistence increase	+0.0903	+0.1046	+0.1021	+0.0940
Max attention StdDev	0.1400	0.1620	0.1635	0.1622

connectivity increases, attention becomes more evenly distributed, but critically, this happens only at specific thresholds, maintaining the overall centralized structure.

Table 12: Spectral Signatures in Llama models

Property	Llama-3.2-1B	Llama-3.2-3B	Llama-3.2-3B-I	Llama-3.1-8B
Position encoding	RoPE	RoPE	RoPE	RoPE
Threshold effectiveness (0.1)	1.00	0.04	0.04	0.03
Algebraic connectivity (early)	13.3843	12.4644	12.9546	12.6150
Algebraic connectivity (middle)	13.9363	11.6529	12.7520	10.7345
Algebraic connectivity (late)	8.5773	6.9879	8.3986	7.8740
Maximum connectivity	18.4033 (layer 0)	17.6574 (layer 0)	18.2137 (layer 0)	18.0901 (layer 0)
Star-likeness (early)	0.5348	0.5352	0.5368	0.5345
Star-likeness (middle)	0.5351	0.5340	0.5358	0.5327
Star-likeness (late)	0.5357	0.5371	0.5394	0.5343
Maximum star-likeness	0.5377 (layer 14)	0.5517 (layer 22)	0.5526 (layer 22)	0.5455 (layer 25)
Degree centralization (early)	0.5383	0.5435	0.5418	0.5436
Degree centralization (middle)	0.5315	0.5502	0.5424	0.5582
Degree centralization (late)	0.5796	0.6126	0.5909	0.5979
Maximum centralization	0.6169 (layer 13)	0.6988 (layer 22)	0.6720 (layer 22)	0.6683 (layer 25)
Degree variance (early)	119.9924	114.9265	119.7555	115.2534
Degree variance (middle)	124.9291	111.6136	118.7679	106.3977
Degree variance (late)	100.6093	85.1385	97.0134	89.3467

All models show high threshold sensitivity, with meaningful graph structures only emerging at lower thresholds (≤ 0.05). This sensitivity is itself a signature of centralized frames, where attention is concentrated on specific tokens, creating sparse attention distributions that become disconnected at higher thresholds. All models exhibit a sign-flip in correlation patterns at approximately the same threshold (≈ 0.2), transitioning from negative to positive correlation between Fiedler values and centralization metrics. This threshold uniformity across model scales suggests it represents a fundamental property of centralized reference frame organization rather than a scale-dependent phenomenon.

In table 14 we can see that unlike the three-phase pattern observed in Qwen’s distributed reference frames, Llama models exhibit a consistent pattern of negative KL reduction values across nearly all layers, with only layer 0 showing small positive values. This consistent negative KL reduction pattern (averaging between -0.07 and -0.13 across different network regions) indicates that removing attention sinks in Llama models consistently reduces the uniformity of attention distributions. This provides strong evidence for the centralized reference frame hypothesis, where a single dominant reference point serves as a universal coordinate system for all token representations.

A critical finding is the extremely high sink concentration values across all network depths in Llama models (77-89%), substantially higher than the early-layer concentrations in Qwen models (39-48%). This indicates that Llama establishes strong reference points immediately and maintains them throughout the network.

Table 13: Key Fiedler value correlations across LLaMA models at different thresholds

Threshold	Property	Mean Correlation	Pattern
0.001	Centralization vs. Fiedler	-0.6361	Strong negative
0.01	Centralization vs. Fiedler	-0.8795	Very strong negative
0.02	Centralization vs. Fiedler	-0.8621	Very strong negative
0.1	Centralization vs. Fiedler	0.4720	Sign flip to positive
0.001	Density vs. Fiedler	0.4808	Moderate positive
0.01	Density vs. Fiedler	0.8221	Very strong positive
0.1	Density vs. Fiedler	0.5293	Moderate positive

Several key patterns provide additional evidence for centralized reference frames: for example, the layer with maximum sink concentration is consistently deep in the network (layer 25 for three models), reaching extraordinary values of 96+. This suggests the reference point becomes increasingly important for coordinate stabilization as representations grow more complex through network depth. The most negative KL reduction (strongest effect from removing sinks) occurs either in very early layers (L1) or very deep layers (L25), revealing a bimodal pattern where reference points are established early and then heavily leveraged in later processing. The base and instruction-tuned 3B models show remarkable similarity in their reference frame signatures, suggesting the centralized reference structure is fundamental to the architecture rather than task-dependent.

The consistency of these patterns across model scales (1B to 8B) demonstrates that centralized reference frames represent a stable architectural solution to the geometric organization problem.

Table 14: Attention Sink Analysis Across Llama Model Variants

Property	Llama-3.1-8B	Llama-3.2-1B	Llama-3.2-3B	Llama-3.2-3B-Instruct
KL Reduction (0-3 layers)	-0.1093	-0.0959	-0.1271	-0.1213
KL Reduction (5-15 layers)	-0.0726	-0.0741	-0.0692	-0.0803
KL Reduction (17+ layers)	-0.1275	N/A	-0.1208	-0.1179
Max KL reduction	0.0118 (L0)	0.0221 (L0)	0.0072 (L0)	0.0370 (L0)
Min KL reduction	-0.2245 (L25)	-0.2040 (L1)	-0.2175 (L1)	-0.2225 (L1)
Sink concentration (0-3 layers)	77.09%	75.91%	83.29%	83.77%
Sink concentration (5-15 layers)	83.36%	75.98%	79.94%	82.58%
Sink concentration (17+ layers)	89.22%	N/A	87.51%	88.76%
Max sink concentration	96.60% (L25)	95.33% (L13)	96.40% (L25)	96.13% (L25)
Layer pattern type	Consistent	Consistent	Consistent	Consistent
Optimal threshold	0.8	0.8	0.8	0.8
Analyzed layers	17	9	15	15

F Qwen Family

As we can see in table 17, all Qwen models exhibit the distributed reference pattern, with moderate specialization (36.6%-65.4%) on common linguistic elements rather than the beginning-of-sequence token. This contrasts sharply with the centralized reference frames in Llama models where BOS specialization is consistently 100%. A fascinating pattern emerges in $Betti_0$ changes: the smaller 3B model maintains stable component counts (26.18 \rightarrow 26.18). While both 7B models show significant component integration, with similar reductions (-8.19 and -9.27) This suggests that larger models develop more flexible reference structures where components merge in deeper layers, potentially enabling more complex reasoning by integrating information across multiple reference points.

All Qwen models show decreasing persistence values through network depth and this confirms that distributed frames initially establish stronger reference points that gradually weaken as information flows through the network. The instruction-tuned model shows slightly enhanced component integration (-9.27) compared to its base counterpart (-8.19), suggesting that instruction tuning further optimizes the distributed reference mechanism for improved reasoning.

Table 15: Fisher information distribution across Llama models

Architectural Pattern	LLaMA-3.2-1B	LLaMA-3.2-3B	LLaMA-3.2-3B-I	LLaMA-3.1-8B
Component Importance (Percentage of Total Fisher Norm)				
Attention Mechanism	11.0%	12.7%	23.3%	47.9%
MLP Components	86.9%	85.5%	70.1%	30.2%
Embeddings	2.1%	1.8%	6.4%	20.7%
Layer Distribution Patterns				
First Two Layers	66.7%	66.7%	65.8%	61.6%
Middle Layers (4-11)	18.7%	15.2%	11.5%	6.4%
Deep Layers (12+)	12.3%	18.1%	22.6%	10.7%
Layer Decay Characteristics				
Layer 1 to Layer 2 Ratio	19.4:1	19.2:1	25.8:1	9.5:1
Initial to Final Layer Ratio	41.0:1	112.9:1	65.1:1	20.5:1
Decay Rate*	Moderate	Steep	Very Steep	Moderate
Model-Specific Patterns				
Fisher Info per Parameter	Highest	Medium	Lowest	Medium
Layer Distribution	Front-loaded	Front-loaded	Front-loaded	Most balanced
Unique Feature	Layer 9-10 bump	Steady decline	Extreme decline	Final layer bump

*Decay rate describes how quickly Fisher information diminishes across layers

Table 16: Value space analysis across Llama model variants

Property	LLama-3.2-1B	LLama-3.2-3B	LLama-3.1-8B	LLama-3.1-8B-Instruct
<i>Value Space Metrics</i>				
Relative Magnitude (Mean)	0.6662	0.5415	0.5480	0.5384
Directional Influence (Mean)	0.6694	0.5421	0.5495	0.5400
Directional Influence (Median)	0.5926	0.5000	0.5000	0.5000
Information Content (Mean)	249.6769	410.9697	349.2795	373.5664
Information Content (Median)	282.5689	440.9005	373.0212	396.0780
First-to-Last Layer Influence	-0.39	-0.45	-0.40	-0.40
<i>Attention-Value Correlation</i>				
Attention Entropy (Mean)	1.2627	1.0517	1.0058	1.0129
Value Transformation Magnitude	11.2118	9.7103	10.3658	10.1119
First Layer Magnitude	2.6703	2.4579	1.2628	1.2258
Last Layer Magnitude	106.1408	84.0693	133.1640	132.8909
Geometric-Semantic Alignment	-0.3096	-0.2921	-0.3238	-0.3599
First Layer Alignment	-0.0318	-0.0383	-0.0839	-0.0875
Last Layer Alignment	-0.3128	-0.2614	-0.3456	-0.3961
Entropy-Magnitude Correlation	-0.0366	0.2273	0.3050	0.3229
First-to-Last Layer Shift	-0.5148 to -0.5186	-0.5349 to -0.5665	-0.5002 to -0.5549	-0.4974 to -0.5565

Table 17: Reference Frame Signatures Across Qwen Model Variants

Property	Qwen2.5-3B	Qwen2.5-7B	Qwen2.5-7B-Instruct
Token specialization	"Gthe" (36.6%)	"," (65.4%)	"," (64.4%)
Betti ₀ (early)	26.18	26.16	26.15
Betti ₀ (late)	26.18	17.97	16.88
Betti ₀ change	0.00	-8.19	-9.27
Dim0 persistence (early)	0.4183	0.2381	0.2382
Dim0 persistence (late)	0.2629	0.1543	0.1572
Persistence change	-0.1555	-0.0838	-0.0810
Max attention StdDev	0.1274	0.1316	0.1296

In table 18 three Qwen models exhibit peak star-likeness in middle layers across multiple thresholds, with remarkably similar ratios (1.00 – 1.05× higher in middle layers). This consistency across

model scales (3B vs. 7B) and training objectives (base vs. instruct) suggests that the middle-layer organization is a fundamental characteristic of distributed reference frames.

Both 7B models show similar algebraic connectivity patterns, with peaks only at high thresholds (0.1-0.2). The 3B model also shows peaks at these thresholds but with slightly higher magnitude (1.08 – 1.26 \times vs. approximately 1.00 \times in the 7B models). This suggests that while distributed reference frames consistently organize connectivity patterns differently than centralized frames, there are subtle scaling effects on the strength of these patterns.

Table 18: Spectral Signature of Distributed Reference Frame Signatures in Qwen Models

Property	Qwen2.5-3B	Qwen2.5-7B	Qwen2.5-7B-Instruct
Position encoding	NTK-aware RoPE	NTK-aware RoPE	NTK-aware RoPE
Threshold effectiveness (0.1)	0.64	0.25	0.32
Algebraic connectivity (early)	14.1862	16.2441	16.2151
Algebraic connectivity (middle)	12.3066	12.7960	12.9784
Algebraic connectivity (late)	11.5426	11.0412	11.2764
Maximum connectivity	20.1863 (layer 1)	18.7700 (layer 1)	18.4620 (layer 1)
Star-likeness (early)	0.5349	0.5361	0.5360
Star-likeness (middle)	0.5349	0.5336	0.5337
Star-likeness (late)	0.5398	0.5041	0.5057
Maximum star-likeness	0.5655 (layer 33)	0.5415 (layer 26)	0.5431 (layer 26)
Degree centralization (early)	0.5346	0.5237	0.5229
Degree centralization (middle)	0.5413	0.5372	0.5344
Degree centralization (late)	0.5528	0.4967	0.4932
Maximum centralization	0.6033 (layer 33)	0.5625 (layer 26)	0.5656 (layer 26)
Degree variance (early)	119.9341	130.2675	126.5460
Degree variance (middle)	114.8901	117.3620	115.2299
Degree variance (late)	115.2607	104.4904	102.9542

The sign-flipping correlation pattern between Fiedler values and centralization metrics emerges as the most reliable signature of distributed reference frames. All Qwen models show negative correlations at low thresholds transitioning to positive correlations at higher thresholds, with the sign-flip consistently occurring around the 0.05 threshold. The 3B model shows slightly higher threshold sensitivity than the 7B models, remaining effective up to 0.1 rather than 0.05. This suggests that larger models with distributed reference frames may develop more specialized attention patterns that become disconnected at lower thresholds.

All three Qwen models show peak degree centralization in middle layers, but with interesting variations: the 3B model shows peaks primarily at high thresholds (0.05-0.2), while both 7B models show peaks across multiple thresholds. This suggests that scale may influence how distributed reference frames organize their centralization patterns, with larger models developing more consistent middle-layer centralization.

The table 20 shows distinctive attention sink patterns across the Qwen model family, providing quantitative evidence for distributed reference frames. All models demonstrate a three-phase pattern with positive KL reduction in early layers (+0.078 to +0.109), stronger negative reduction in middle layers (-0.026 to -0.051), and moderated negative values in late layers (-0.008 to -0.018). This indicates that reference points serve different functions at different network depths, initially establishing geometric stability, then actively shaping information geometry in middle layers, before stabilizing in deeper layers.

Maximum sink concentration occurs in deep layers (23-25) rather than early layers, reaching 84-92% - a key signature of distributed reference frames. The 3B model shows stronger contrasts between layer regions, particularly with more negative KL reduction in middle layers (-0.0514 vs -0.0266/-0.0299), suggesting smaller models may rely more heavily on distributed reference structures for computational efficiency.

The layer with minimum KL reduction (most negative impact when removing sinks) is consistently layer 5 across all models, while maximum concentration appears deeper in the network. This

Table 19: Key Fiedler Value Correlations across Qwen models at different thresholds

Threshold	Property	Mean Correlation	Pattern
0.001	Centralization vs. Fiedler	-0.4383	Moderate negative
0.02	Centralization vs. Fiedler	-0.6152	Strong negative
0.05	Centralization vs. Fiedler	-0.0482	Near zero (transition point)
0.1	Centralization vs. Fiedler	0.5565	Sign flip to positive
0.001	Density vs. Fiedler	-0.0996	Slight negative
0.02	Density vs. Fiedler	0.6835	Strong positive
0.1	Density vs. Fiedler	0.1147	Weak positive

separation between maximum effect and maximum concentration further supports the multi-pointed manifold structure hypothesized for distributed reference frames, where coordination is achieved through multiple specialized reference points rather than a single dominant one.

Table 20: Attention Sink Analysis Across Qwen Model Variants

Property	Qwen2.5-3B	Qwen2.5-7B	Qwen2.5-7B-Instruct
KL Reduction (0-3 layers)	+0.1090	+0.0859	+0.0780
KL Reduction (5-15 layers)	-0.0514	-0.0266	-0.0299
KL Reduction (17-35 layers)	-0.0084	-0.0177	-0.0134
Maximum KL reduction	0.1329 (Layer 0)	0.1136 (Layer 1)	0.1045 (Layer 1)
Minimum KL reduction	-0.3058 (Layer 5)	-0.1629 (Layer 5)	-0.1515 (Layer 5)
Sink concentration (0-3 layers)	39.59%	48.58%	48.13%
Sink concentration (5-15 layers)	78.03%	77.88%	76.93%
Sink concentration (17-35 layers)	77.60%	74.42%	72.95%
Maximum sink concentration	91.89% (Layer 25)	85.75% (Layer 23)	84.27% (Layer 23)
Optimal threshold value	0.8	0.8	0.8
Number of analyzed layers	19	15	15
Sequence length	128	128	128

Table 21: Fisher Information Distribution in Qwen Models

Architectural Pattern	Qwen2.5-3B	Qwen2.5-7B	Qwen2.5-7B-I
Component Importance (Percentage of Total Fisher Norm)			
Attention Mechanism	10.4%	29.7%	30.2%
MLP Components	84.7%	51.8%	56.1%
Embedding	4.9%	2.1%	1.7%
Layer Distribution Patterns			
Key Processing Layers	Layer 2 (53.7%)	Layers 0-6 (54.9%)	Layers 0-6 (56.6%)
Early Layers (0-9)	78.7%	64.7%	63.9%
Middle Layers (10-27)	11.0%	14.9%	17.1%
Final Layers	7.2% (28-35)	3.9% (26-27)	3.9% (26-27)
Layer Decay Characteristics			
Peak Layer Value	Layer 2: 136,593	Layer 0: 18,791	Layer 1: 18,359
Peak to Minimum Ratio	432:1	26:1	18.6:1
Decay Rate*	Very steep after peak	Steady, gradual	Steady, moderate
Model-Specific Patterns			
Fisher Info per Parameter	Medium	Lowest	Low
Layer Distribution	Single peak & steep drop	Heavy & gradual decline	Heavy & gradual decline
Unique Feature	Layer 30 bump (14,067)	Final layers bump	Smoother distribution

*Decay rate describes how quickly Fisher information diminishes across layers

Table 22: Value Space analysis across Qwen model variants

Property	Qwen2.5-3B	Qwen2.5-7B	Qwen2.5-7B-Instruct
<i>Value Space Metrics</i>			
Relative Magnitude (Mean)	0.4655	0.4890	0.4897
Directional Influence (Mean)	0.5313	0.5521	0.5525
Directional Influence (Median)	0.5000	0.5000	0.5000
Information Content (Mean)	1792.7866	7161.5074	7162.1374
Information Content (Median)	2054.0861	8431.1512	8519.9060
First-to-Last Layer Influence	-0.15	+0.18	+0.18
<i>Attention-Value Correlation</i>			
Attention Entropy (Mean)	1.5390	1.4449	1.4711
Value Transformation Magnitude	31.6244	16.2740	14.9721
First Layer Magnitude	21.4661	15.0259	14.7112
Last Layer Magnitude	358.9528	222.3867	191.2135
Geometric-Semantic Alignment	-0.1472	-0.0426	-0.0395
First Layer Alignment	0.0676	0.0569	0.0578
Last Layer Alignment	-0.0349	0.0000	0.0000
Entropy-Magnitude Correlation	-0.0842	-0.2325	-0.2329
First-to-Last Layer Shift	-0.4763 to -0.2981	-0.7045 to -0.0459	-0.6958 to -0.0501

G Gemma and Mistral

As we can see from table 23, both models show 100% specialization on their respective beginning-of-sequence tokens (<s> in Mistral, <bos> in Gemma). This perfect specialization is the hallmark of centralized reference frames, establishing a single dominant reference point that serves as the universal origin for the representation manifold. Both models maintain identical Betti_0 counts from early to late layers (27.24 \rightarrow 27.24 in Mistral, 26.11 \rightarrow 26.11 in Gemma), indicating complete topological stability of component structure. This stability is characteristic of centralized frames, where the component organization remains fixed throughout the network. Both models show monotonically increasing persistence values through layers, with Mistral showing a +0.0796 increase and Gemma showing a remarkable +0.3163 increase. This strengthening of reference point significance through network depth is a defining property of centralized frames that differentiates them from distributed frames (which show decreasing persistence) and hybrid frames like Pythia. Like other decoder models, both Mistral and Gemma show no loops ($\text{Betti}_1 = 0.00 = 0.00$) at any layer, contrasting sharply with the complex cyclic structures found in bidirectional encoder models like BERT and RoBERTa.

Table 23: Centralized Reference Frame Signatures in Mistral and Gemma Models

Property	Mistral-7B-v0.3	Gemma-7B
Position encoding	RoPE	RoPE (Modified)
Token specialization	100% on <s>	100% on <bos>
Betti_0 (early)	27.24	26.11
Betti_0 (late)	27.24	26.11
Betti_0 change	0.00	0.00
Betti_1 (early)	0.00	0.00
Betti_1 (late)	0.00	0.00
Betti_1 change	0.00	0.00
Dim0 persistence (early)	0.0310	0.2015
Dim0 persistence (late)	0.1105	0.5179
Persistence change	+0.0796	+0.3163
Max attention StdDev	0.1503 (layer 24)	0.1404 (layer 21)

Despite sharing the same fundamental reference frame type, Mistral and Gemma show important differences in how they implement their centralized frames: for example, gemma starts with much higher persistence values (0.2015) compared to Mistral (0.0310), indicating a stronger initial reference point structure. This suggests Gemma establishes a more dominant centralized reference from the earliest layers. The most striking difference is in the magnitude of persistence growth. Gemma's persistence increase (+0.3163) is nearly four times larger than Mistral's (+0.0796), resulting in an extremely high final persistence value of 0.5179. This suggests Gemma's centralized reference becomes exceptionally dominant in deeper layers. While both models show peak attention standard deviation in similar layers (24 for Mistral, 21 for Gemma), the overall attention distributions and specialization patterns across layers likely differ in subtle ways not fully captured in the topological metrics.

In table 24 we can see the algebraic connectivity (Fiedler values) across both models shows a distinctive pattern: for Mistral-7B, we observe a clear "inverted U" pattern where connectivity peaks in middle layers (13.3343) compared to early (13.0303) and late layers (12.0898). This pattern suggests that middle layers serve as a critical transition point in the reference frame structure—they balance information flow between the initial reference frame establishment and the subsequent semantic processing. In contrast, Gemma-7B shows a monotonic decrease in connectivity from early (13.0545) to middle (11.0557) to late layers (9.9455). This different pattern suggests that Gemma implements a distinctly different reference frame strategy, potentially establishing stronger reference points earlier in the network.

Table 24: Spectral Graph Analysis of Reference Frame Structures

Property	Mistral-7B-v0.3	Gemma-7B
Most effective threshold	0.001	0.001
<i>Algebraic Connectivity (Fiedler Values)</i>		
Early layers (avg)	13.0303	13.0545
Middle layers (avg)	13.3343	11.0557
Late layers (avg)	12.0898	9.9455
Maximum value	20.7132 (layer 0)	15.1970 (layer 1)
<i>Star-likeness</i>		
Early layers (avg)	0.5371	0.5354
Middle layers (avg)	0.5345	0.5344
Late layers (avg)	0.5372	0.5344
Maximum value	0.5441 (layer 2)	0.5382 (layer 14)
<i>Degree Centralization</i>		
Early layers (avg)	0.5475	0.5357
Middle layers (avg)	0.5411	0.5488
Late layers (avg)	0.5564	0.5650
Maximum value	0.5942 (layer 2)	0.5948 (layer 22)

One of the most striking findings in the Mistral data is the strong negative correlation (-0.9405) between algebraic connectivity and degree centralization. This trade-off represents a fundamental tension in transformer architecture design, between establishing stable reference points (high centralization) and enabling efficient information flow (high connectivity). The fact that this correlation is so strong (-0.9405) suggests this is not an incidental pattern but a core organizing principle. Both models show remarkably similar star-likeness metrics at the baseline threshold (0.001), because both models converge on very similar star-like structures despite their different architectural designs. The fact that star-likeness metrics remain consistently high (>0.53) across all layers in both models indicates that reference points remain essential throughout the entire network depth, not just in early stages.

The strong positive correlation (0.9481) between Fiedler values and degree variance in Mistral suggests that as the model balances compression and relevance (as measured by connectivity), it simultaneously increases the variance in how information is distributed, creating specialized processing structure.

In table 25 we can see the predominantly negative KL reduction values throughout middle layers (-0.0557 for Mistral, -0.0590 for Gemma) indicate that removing attention sinks increases the KL

Table 25: Attention Sink KL Divergence Analysis for Reference Frame Models

Property	Mistral-7B-v0.1	Gemma-7B
<i>KL Reduction (t=0.8)</i>		
Early layers (0-5)	-0.0576	0.0105
Middle layers (7-19)	-0.0557	-0.0590
Late layers (21-31)	-0.0703	-0.0330
First layer	0.1342	0.1435
Final layer	0.0111	0.0576
<i>Sink Concentration (t=0.8)</i>		
Early layers (0-5)	89.62%	73.59%
Middle layers (7-19)	81.55%	80.28%
Late layers (21-31)	84.90%	80.75%
First layer	86.95%	61.46%
Final layer	63.64%	53.51%
<i>Layer-specific Patterns</i>		
Highest sink concentration	95.44% (layer 21)	91.57% (layer 21)
Lowest sink concentration	63.64% (layer 31)	53.51% (layer 27)
Most negative KL reduction	-0.1907 (layer 3)	-0.1218 (layer 11)
<i>Threshold Effects (final layer)</i>		
KL reduction (t=0.8)	0.0111	0.0576
KL reduction (t=0.9)	-0.0257	0.0391
KL reduction (t=0.95)	-0.0413	0.0285
<i>Threshold Effects (sink concentration)</i>		
t=0.8 to t=0.95 change	-23.9% points	-18.8% points

divergence between attention distributions. What's particularly fascinating is that both models show positive KL reduction values in their first layer (0.1342 for Mistral, 0.1435 for Gemma) and final layer (0.0111 for Mistral, 0.0576 for Gemma). This U-shaped pattern suggests that reference frames serve different information-geometric functions at different depths in the network

Table 26: Key Fiedler Value Correlations in Mistral-7B and Gemma-7B Models

Threshold	Property	Mistral-7B	Gemma-7B
0.01	Centralization vs. Fiedler	-0.7787	-0.7429
0.05	Centralization vs. Fiedler	-0.1273	-0.3591
0.10	Centralization vs. Fiedler	0.5893	0.2162
0.01	Density vs. Fiedler	0.7345	0.6935
0.10	Density vs. Fiedler	0.5764	0.4387

Mistral shows extremely high sink concentration in early layers (89.62% at t=0.8), which then decreases in middle layers (81.55%) before slightly increasing again in late layers (84.90%). This pattern aligns with your description of centralized reference frames where a single dominant reference point establishes a universal origin. Gemma shows a markedly different pattern with significantly lower sink concentration (73.59% at t=0.8), which then increases in middle layers (80.28%) and remains stable in late layers (80.75%). This suggests a more distributed reference frame that develops progressively through the network depth.

One of the most striking differences between the models is in their first-layer sink concentration, the difference (25.49 percentage points) likely reflects the different position encoding implementations you described in your theoretical framework. Mistral's standard RoPE implementation creates a stronger positional bias toward the first token, facilitating a more centralized reference frame. Gemma's modified position encoding appears to reduce this positional bias, enabling a more distributed reference frame with multiple weaker reference points.

The fact that both models ultimately achieve similarly high maximum sink concentrations (95.44% vs. 91.57%, both at layer 21) suggests that strong reference points are mathematically necessary despite these architectural differences.

Table 27: Fisher Information Distribution in Mistral and Gemma Models

Architectural Pattern	Mistral-7B-v0.1	Gemma-7B
Component Importance (Percentage of Total Fisher Norm)		
Attention Mechanism	58.8%	High*
MLP Components	31.8%	Very High*
Embedding	8.7%	Low*
Layer Distribution Patterns		
Key Processing Layers	Layer 1 (44.0%)	Layers 1, 26-27 (77.2%)
Early Layers (0-9)	73.9%	High*
Middle Layers (10-19)	11.6%	Medium*
Final Layers (20-31)	4.4%	Very High*
Layer Decay Characteristics		
Peak Layer Value	Layer 1: 3,053,101	Layer 1: 13,804,803
Peak to Minimum Ratio	165:1	High*
Decay Pattern	Sharp drop, slow decline	U-shaped distribution
Model-Specific Patterns		
Fisher Info Distribution	Front-loaded, with minor bump at end	Strong bi-modal distribution
Layer Distribution	Steep initial drop, then plateau	Sharp drop after Layer 1, rise in final layers
Unique Feature	Small bumps at layers 12 and 18	Extreme values in layers 0 and 27

*Exact values affected by overflow in Gemma computation (Infinity reported in some components)

Table 28: Value space analysis for Gemma and Mistral models

Property	google/gemma-7b	mistralai/Mistral-7B-v0.1
<i>Value Space Metrics</i>		
Relative Magnitude (Mean)	0.5796	0.9758
Directional Influence (Mean)	0.5830	0.9771
Directional Influence (Median)	0.5312	0.9827
Information Content (Mean)	307.7589	179.1840
Information Content (Median)	309.7665	189.7641
First-to-Last Layer Influence	+0.33	+0.01
<i>Attention-Value Correlation</i>		
Attention Entropy (Mean)	1.2289	1.1524
Value Transformation Magnitude	28.2835	14.4851
First Layer Magnitude	205.1822	0.3779
Last Layer Magnitude	446.5816	355.8180
Geometric-Semantic Alignment	-0.4012	-0.1386
First Layer Alignment	-0.6124	-0.1006
Last Layer Alignment	-0.3177	-0.3320
Entropy-Magnitude Correlation	-0.2408	0.2264
First-to-Last Layer Shift	-0.3443 to -0.1462	-0.4777 to -0.1529

H Encoder only (BERT and Roberta)

In table 29, we can see that both models exhibit a striking pattern of dual specialization where attention heads focus on different special tokens depending on layer depth: early layers show perfect (100%) specialization on beginning tokens ([CLS] in BERT, <s> in RoBERTa); and middle/late layers show perfect (100%) specialization on ending tokens ([SEP] in BERT, </s> in RoBERTa). This layer-specific specialization pattern creates a "bipolar" reference structure that differs fundamentally from both the single-point centralization in Llama and the distributed multi-point structure in Qwen.

Both encoder models exhibit remarkably high initial topological complexity: high $Betti_1$ values (15.40 in BERT, 19.69 in RoBERTa) indicate numerous loops/cycles in early layers, and this contrasts sharply with decoder models (Llama, Qwen) which show virtually no loops ($Betti_1 = 0.00$). This high initial complexity reflects how bidirectional attention creates rich interconnected structures that allow tokens to reference each other in complex ways rather than primarily referencing a central point or distributed landmarks.

Table 29: Bidirectional Reference Frame Signatures in Encoder Models

Property	BERT-base-uncased	XLM-RoBERTa-large
Token specialization	Early: 100% on [CLS] Middle: 100% on [SEP]	Early: 100% on <s> Late: 100% on </s>
$Betti_0$ (early)	4.48	22.68
$Betti_0$ (late)	4.33	1.69
$Betti_0$ change	-0.14	-20.99
$Betti_1$ (early)	15.40	19.69
$Betti_1$ (late)	2.79	3.11
$Betti_1$ change	-12.61	-16.58
Dim0 persistence (early)	0.0453	0.0521
Dim0 persistence (late)	0.0194	0.0156
Persistence change	-0.0259	-0.0365
Max attention pattern	Layer 0: 0.3362 Layer 6: 0.8765 Layer 12: 0.8135	Layer 0: 0.1731 Layer 11: 0.4731 Layer 23: 0.3540

As information flows through the network, bidirectional reference frames undergo dramatic topological simplification, for example, we can see substantial reduction in loops ($Betti_1$ decreases by 12.61 in BERT, 16.58 in RoBERTa). Component integration in RoBERTa is particularly interesting, since $Betti_1$ decreases from 22.68 to 1.69. This simplification pattern suggests that bidirectional frames start with complex relationships that gradually consolidate around key reference points as information is processed.

Both models show decreasing persistence values from early to late layers, similar to distributed frames but unlike centralized frames:

- BERT: $0.0453 \rightarrow 0.0194(-0.0259)$
- RoBERTa: $0.0521 \rightarrow 0.0156(-0.0365)$

This suggests that feature significance weakens through layers as the model transitions from complex initial representations to more specialized final representations.

In table 30 we can see that while decoder models (Llama, Mistral, Gemma) show their maximum connectivity in layer 0, these bidirectional models show maximum connectivity in early but not initial layers (layer 2 for BERT, layer 1 for XLM-RoBERTa). This subtle shift indicates a fundamentally different geometric organization strategy. What's more remarkable is the dramatic drop in connectivity from early to middle layers ($46.69 \rightarrow 23.79$ in BERT, $38.27 \rightarrow 31.25$ in XLM-RoBERTa), which contrasts sharply with the gentle declines or even increases seen in decoder models. This suggests a rapid geometric reorganization as information moves through the network.

The U-shaped algebraic connectivity pattern in BERT (high \rightarrow low \rightarrow medium) differs completely from both centralized reference frames (high \rightarrow high \rightarrow medium) and distributed reference frames (high \rightarrow medium \rightarrow low). This suggests a fundamentally different geometric organization. Both models show much lower baseline star-likeness values (0.33-0.39) compared to decoder models (0.53-0.54), suggesting less reliance on single reference points. This aligns with your theory that bidirectional models establish dual reference points rather than a single dominant one. Unlike decoder models, these architectures show peak degree centralization in middle layers at the low threshold (0.1579 for BERT, 0.1274 for XLM-RoBERTa), indicating that the reference structure evolves substantially through network depth. The effectiveness scores drop sharply at the 0.1 threshold (0.42 for BERT,

Table 30: Bidirectional Reference Frame Signatures in Encoder Models

Property	BERT-base-uncased	XLM-RoBERTa-large
Position encoding	Absolute	Absolute
Most effective threshold	0.01	0.01
Threshold effectiveness (0.1)	0.42	0.38
Algebraic connectivity (early)	46.6913	38.2726
Algebraic connectivity (middle)	23.7880	31.2481
Algebraic connectivity (late)	27.3752	22.5304
Maximum connectivity	52.4496 (layer 2)	55.3003 (layer 1)
Star-likeness (early)	0.3274	0.3491
Star-likeness (middle)	0.3680	0.3550
Star-likeness (late)	0.3585	0.3941
Maximum star-likeness	0.4121 (layer 7)	0.4383 (layer 20)
Degree centralization (early)	0.0467	0.0786
Degree centralization (middle)	0.1579	0.1274
Degree centralization (late)	0.1208	0.2234
Maximum centralization	0.2730 (layer 7)	0.3556 (layer 19)
Degree variance (early)	28.7433	98.2550
Degree variance (middle)	50.4899	50.8467
Degree variance (late)	52.4320	89.7002

0.38 for XLM-RoBERTa) compared to decoder models, indicating more complex attention patterns that can't be simplified to binary relationships.

In table 32 we can see that the most interesting pattern in the data is the distinctive U-shaped KL reduction profile across network depth. Both models show positive KL reduction in their first layer (0.0392 for BERT, 0.0635 for XLM-RoBERTa) and final or near-final layers (XLM-RoBERTa shows 0.0774 in layer 23). The larger model, roberta, shows a more dramatic U-shaped pattern, with stronger positive KL reduction in the final layer (0.0774 vs. -0.0179). This suggests that increased model capacity allows for more distinct reference points at sequence boundaries. Also, Roberta shows its peak negative KL reduction in a deeper layer (layer 9 vs. layer 5 in BERT), indicating that larger models can maintain the initial coordinate system longer before transitioning to the integration phase.

Table 31: Key Fiedler Value Correlations in Encoder Models with Bidirectional Reference Frames

Threshold	Property	BERT-base	XLM-RoBERTa
0.001	Centralization vs. Fiedler	0.1801	0.3242
0.02	Centralization vs. Fiedler	-0.8442	-0.6672
0.1	Centralization vs. Fiedler	0.3233	-0.3302
0.2	Centralization vs. Fiedler	0.2859	0.2347
0.01	Density vs. Fiedler	0.8227	0.6146

Both models show substantial degradation in KL reduction at higher thresholds in early layers (-45.2% for BERT, -58.1% for XLM-RoBERTa from $t=0.8$ to $t=0.95$). This suggests that the initial reference point relies on a broad distribution of attention weights. Both bidirectional models show remarkably low sink concentration in their first layers (32.07% for BERT, 28.19% for XLM-RoBERTa), much lower than the 80-90% concentration typically seen in decoder models. This indicates a fundamentally different approach to establishing initial coordinate systems.

The clear differences between bidirectional and decoder models confirm that architectural choices fundamentally shape the geometric organization of the representation space. The use of absolute position embeddings in these models corresponds to their bipolar reference structure, supporting your claim about position encoding implementations influencing reference frame types. And the U-shaped KL reduction pattern provides perhaps the clearest evidence yet for the characterization

Table 32: KL Divergence Analysis of Bidirectional Reference Frames

Property	BERT-base-uncased	XLM-RoBERTa-large
<i>KL Reduction (t=0.8)</i>		
Early layers (0-3)	-0.0243	-0.0306
Middle layers (5-9)	-0.1121	-0.2156
Late layers (11+)	-0.0179	-0.0826
First layer	0.0392	0.0635
Final layer	-0.0179	0.0774
Maximum negative	-0.1733 (layer 5)	-0.2574 (layer 9)
<i>Sink Concentration (t=0.8)</i>		
Early layers (0-3)	51.10%	51.06%
Middle layers (5-9)	71.73%	75.06%
Late layers (11+)	77.20%	73.11%
First layer	32.07%	28.19%
Final layer	77.20%	44.39%
Maximum concentration	77.20% (layer 11)	85.22% (layer 21)
<i>Layer-specific Patterns</i>		
KL U-shape (first→final)	Yes (+)	Yes (+)
Mid-layer KL reduction peak	Layer 5	Layer 9
Late layer low concentration	No	Yes (44.39%)
<i>Threshold Effects</i>		
t=0.8 to t=0.95 deepening	-137.9%	-15.5%
Early KL reduction change	-45.2%	-58.1%
Middle KL reduction change	-22.2%	+15.5%
Late KL reduction change	-117.9%	-2.1%

of bidirectional models as establishing a bipolar manifold with reference points at both sequence boundaries.

Table 33: Architectural Pattern Analysis Based on Fisher Information Distribution in Encoder Models

Architectural Pattern	BERT-base-uncased	XLM-RoBERTa-large
Component Importance (Percentage of Total Fisher Norm)		
Attention Mechanism	22.5%	71.7%
MLP Components	44.5%	27.8%
Embedding	31.3%	0.2%
Layer Distribution Patterns		
Key Processing Layers	Layers 0-1, 11 (32.7%)	Layers 7-10 (64.7%)
Early Layers (0-3)	35.9%	10.5%
Middle Layers (4-8)	16.1%	52.4%
Final Layers (9+)	13.0%	36.9%
Layer Decay Characteristics		
Peak Layer Value	Layer 1: 666	Layer 9: 2,504,416
Peak to Minimum Ratio	5.9:1	302.6:1
Decay Pattern	Gradual decline with end spike	Inverted U-shape with end spike
Model-Specific Patterns		
Fisher Info Distribution	Relatively balanced	Highly concentrated in middle
Layer Distribution	Early and final emphasis	Middle-heavy with final spike
Unique Feature	High embedding importance	Dramatic middle-layer concentration

Table 34: Value space analysis for BERT and XLM-RoBERTa models

Property	BERT-base-uncased	XLM-RoBERTa-large
<i>Value Space Metrics</i>		
Relative Magnitude (Mean)	0.5289	0.5928
Directional Influence (Mean)	0.8141	0.9394
Directional Influence (Median)	0.8239	0.9683
Information Content (Mean)	4.0998	13.7629
Information Content (Median)	4.3081	14.3960
First-to-Last Layer Influence	+0.19	+0.20
<i>Attention-Value Correlation</i>		
Attention Entropy (Mean)	2.3200	2.1957
Value Transformation Magnitude	8.6058	8.1538
First Layer Magnitude	9.4719	19.7373
Last Layer Magnitude	11.5637	23.8058
Geometric-Semantic Alignment	-0.1200	0.0013
First Layer Alignment	0.1246	0.2065
Last Layer Alignment	-0.3608	-0.3982
Entropy-Magnitude Correlation	0.2940	0.2326
First-to-Last Layer Shift	-0.1935 to -0.1043	-0.1552 to 0.6409

I Phi

The results from microsoft/phi-2 shown in table 35 reveal a clear distributed reference frame architecture characterized by distinctive patterns across multiple analytical methodologies. The Fisher information distribution demonstrates a balanced allocation between attention mechanisms (37.4%) and MLP components (32.7%), contrasting with the attention-dominated profiles typically observed in centralized reference frame models. Rather than concentrating information processing in early layers, phi-2 exhibits a distinctive triple-peaked distribution with significant Fisher norm values in layers 0-1 (5.5%), a secondary peak around layer 26 (262.81), and pronounced concentration in final layers 29-31 (49.6% of total Fisher norm). This multi-peaked pattern represents a fundamental departure from the early-layer concentrated processing found in centralized reference frame architectures like LLaMA. The KL divergence analysis provides particularly compelling evidence for the distributed reference frame classification through its characteristic three-phase pattern. Early layers (particularly layer 0) show positive KL reduction values (+0.1416 at threshold 0.8), indicating that removing attention sinks actually improves information flow at these stages. This transitions sharply to negative values in middle layers (ranging from -0.1525 to -0.1995), followed by stronger negative values in deeper layers (peaking at -0.2787 in layer 25). This progression reflects a fundamentally different approach to utilizing reference points compared to centralized models, which typically show consistently negative KL reduction across all network depths. The attention sink concentration metrics further reinforce this pattern, showing a progressive buildup from relatively low values in early layers (35.23% in layer 0) to very high concentration in deep layers (97.19% in layer 25), rather than the consistently high concentration characteristic of centralized reference frames. Spectral graph analysis identifies the mathematical signature that definitively marks phi-2 as implementing a distributed reference frame. The model exhibits a characteristic sign-flipping correlation pattern between Fiedler values (algebraic connectivity) and centralization metrics, shifting from negative correlation at low thresholds (-0.4518 at 0.001) to strong positive correlation at higher thresholds (+0.6009 at 0.1). This pattern closely mirrors the signature observed in Qwen models (-0.46 → +0.61) that use similar NTK-aware scaled rotary position embeddings. Layer-specific correlations reveal particularly strong negative correlations in early layers (-0.8796 in layer 0) at low thresholds, with progressive transition to positive correlations at higher thresholds through network depth. Topological analysis supports these findings, showing substantial evolution in attention structure across network depth. The Betti₀ numbers (connected components) increase dramatically from 0.0 in layer 0 to 25.99 in layer 31, indicating progressive fragmentation of attention rather than the stable topolog-

Table 35: Reference Frame Analysis of Microsoft/Phi-2

Analysis Category	Microsoft/Phi-2
Fisher Information Distribution	
Attention Mechanism	37.4% (3905.88)
MLP Components	32.7% (3419.73)
Embedding	1.0% (105.28)
Other Components	28.9% (3012.81)
Layer Distribution Patterns	
Key Processing Layers	Layers 0-1 (5.5%), 29-31 (49.6%)
Early Layers (0-10)	19.8% (2066.12)
Middle Layers (11-28)	17.4% (1818.65)
Final Layers (29-31)	49.6% (5181.61)
Layer Decay Characteristics	
Peak Layer Value	Layer 30: 2973.23
Secondary Peaks	Layer 0: 342.85, Layer 26: 262.81
Peak to Minimum Ratio	30.3:1 (Layer 30 vs Layer 17)
Multi-peaked Pattern	Yes (Early, Middle, Late)
KL Divergence Analysis	
Early Layer KL Red. (t=0.8)	Positive (Layer 0: +0.1416)
Middle Layer KL Red. (t=0.8)	Negative (Layer 11: -0.1525)
Deep Layer KL Red. (t=0.8)	Stronger Negative (Layer 25: -0.2787)
KL Pattern	Three-phase (Positive → Negative → Stronger Negative)
Attention Sink Concentration	
Early Layer Concentration	Low (Layer 0: 35.23%)
Middle Layer Concentration	High (Layer 11: 92.37%)
Deep Layer Concentration	Very High (Layer 25: 97.19%)
Concentration Growth	Progressive (35.23% → 97.19%)
Spectral Graph Analysis	
Low Threshold Correlation (0.001)	Negative (Fiedler vs. Centralization: -0.4518)
High Threshold Correlation (0.1)	Positive (Fiedler vs. Centralization: +0.6009)
Correlation Pattern	Sign-flipping (-0.4518 → +0.6009)
Signature Feature	Early layer strong negative correlation (-0.8796 in layer 0)
Topological Features	
Betti ₀ Progression	0.0 → 25.99 (Layers 0 → 31)
Betti ₁ Values	Consistently 0.00 (No loops)
Connected Component Change	+25.99 (significant fragmentation)
Structural Evolution	Progressive disconnection across depth
Reference Frame Classification	
Frame Type	Distributed Reference Frame
Position Encoding	NTK-aware scaled RoPE
Key Evidence	Three-phase KL pattern, Sign-flipping correlation, Multi-peaked Fisher information, Progressive sink concentration

ical structure maintained in centralized reference frame models. This fragmentation reflects how distributed reference frames implement a more flexible coordinate system that can adapt to different computational needs across network depth.

J Pythia Family

Examining the Pythia family of models (Table 37) reveals how centralized reference frames evolve with increasing model scale. While Pythia models exhibit the defining characteristics of centralized reference frames, we observe a systematic scaling relationship between model size and reference

Table 36: Value space analysis for Microsoft Phi-2

Property	microsoft/phi-2
<i>Value Space Metrics</i>	
Relative Magnitude (Mean)	0.5041
Directional Influence (Mean)	0.5334
Directional Influence (Median)	0.5000
Information Content (Mean)	593.5976
Information Content (Median)	710.1380
First-to-Last Layer Influence	-0.23
<i>Attention-Value Correlation</i>	
Attention Entropy (Mean)	0.9237
Value Transformation Magnitude	23.9090
First Layer Magnitude	22.6574
Last Layer Magnitude	0.0000
Geometric-Semantic Alignment	-0.1478
First Layer Alignment	0.0370
Last Layer Alignment	0.0000
Entropy-Magnitude Correlation	0.1305
First-to-Last Layer Shift	-0.5548 to 0.0000

point strength. As model scale increases from 2.8B to 12B parameters, token specialization on the most attended token (consistently "Gthe") increases proportionally from 31.0% to 42.2%. The number of specialized attention heads also scales with model size, increasing from 1 to 4 across the family. This suggests that larger models develop more pronounced centralized reference structures, potentially enabling more efficient information routing through the network. Topologically, Pythia models maintain remarkably stable $Betti_0$ numbers (25.7) across all model scales and through network depth, confirming the centralized reference frame pattern. However, we observe a consistent decrease in persistence values from early to late layers, with larger models showing more dramatic reductions in persistence (-0.1065 in 2.8B to -0.1671 in 12B). This counter-intuitive finding suggests that while larger models establish stronger reference points, they simultaneously develop more nuanced relationships between these reference points and contextual tokens.

The maximum attention standard deviation shifts to earlier layers as model scale increases (from layer 16 in 2.8B to layer 9 in 12B), indicating that larger models establish their reference structures more efficiently and earlier in the processing pipeline. This aligns with our temporal emergence findings that reference frames develop more rapidly during training in larger models.

In table 37 we can see that as model size increases from 2.8B to 12B parameters, there is a clear strengthening of centralized reference frame structures. For example, the consistency of attention to the token "Gthe" increases systematically with model scale (31.0% \rightarrow 36.8% \rightarrow 42.2%). This suggests that larger models develop more robust reference points, supporting the theory that reference frames are fundamental geometric adaptations. Then, we can see that the number of specialized heads increases from just 1 in the smallest model to 4 in the largest. This indicates that with greater capacity, models allocate more resources to establishing reference frames, underscoring their importance.

The Betti numbers show consistency in the basic topological structure: all three models maintain nearly identical $Betti_0$ values (25.7) across both early and late layers. This stability across model scales suggests that this particular topological configuration represents an optimal solution to the geometric organization. The consistent $Betti_1$ value of 0.00 across all models and layers indicates that these centralized reference frames organize tokens in a tree-like structure rather than forming loops, aligning with the description of star-like topologies that optimize information routing.

Interestingly, initial persistence values slightly decrease as model size increases (0.1825 \rightarrow 0.1801 \rightarrow 0.1671), suggesting that larger models might initially establish more nuanced or distributed reference structures. Both larger models (6.9B and 12B) show complete persistence decay to 0.0000 in late layers, while the smallest model retains some persistence (0.0760). This suggests that with sufficient capacity, models can more fully optimize the geometric organization through the network depth. All

models show negative persistence changes, contrasting with the positive changes in Mistral/Gemma comparison. This difference might indicate architectural variations in how reference frames evolve through the network depth.

All three models achieve similar maximum attention standard deviation values (0.1342 - 0.1471), suggesting a consistent degree of attention concentration regardless of scale. The layer of maximum attention concentration varies (layer 16 → 8 → 9), with larger models generally achieving peak concentration in earlier layers.

Table 37: Centralized Reference Frame Signatures in Pythia Models

Property	Pythia-2.8B	Pythia-6.9B	Pythia-12B
Top token specialization	31.0% on Gthe	36.8% on Gthe	42.2% on Gthe
Number of specialized heads	1	3	4
Betti ₀ (early)	25.72	25.71	25.73
Betti ₀ (late)	25.71	25.71	25.73
Betti ₀ change	-0.01	0.00	0.00
Betti ₁ (early)	0.00	0.00	0.00
Betti ₁ (late)	0.00	0.00	0.00
Betti ₁ change	0.00	0.00	0.00
Dim0 persistence (early)	0.1825	0.1801	0.1671
Dim0 persistence (late)	0.0760	0.0000	0.0000
Persistence change	-0.1065	-0.1801	-0.1671
Max attention StdDev	0.1342 (layer 16)	0.1465 (layer 8)	0.1471 (layer 9)

Table 38: Architectural Pattern Analysis Based on Fisher Information Distribution in Pythia Models

Architectural Pattern	Pythia-2.8B	Pythia-6.9B
Component Importance (Percentage of Total Fisher Norm)		
Attention Mechanism	60.8%	77.6%
MLP Components	11.6%	12.0%
Embedding	27.5%	10.4%
Layer Distribution Patterns		
Key Processing Layers	Layers 24, 27-29 (30.9%)	Layers 23-27, 31 (38.1%)
Early Layers (0-9)	6.4%	7.1%
Middle Layers (10-20)	10.9%	23.9%
Final Layers (21-31)	57.5%	59.0%
Layer Decay Characteristics		
Peak Layer Value	Layer 24: 971.90	Layer 26: 3,100.50
Peak to Minimum Ratio	29.4:1	45.0:1
Decay Pattern	Steady rise toward end	Gradual rise, steep end increase
Model-Specific Patterns		
Fisher Info Distribution	Heavily back-loaded	Heavily back-loaded
Layer Distribution	Minimal early importance	More balanced with strong final focus
Unique Feature	Dual peaks (24 and 27)	Strong ramp-up starting at layer 18

Table 39: Key Fiedler Value Correlations Across Pythia Models by Size

Correlation Pattern	Pythia-2.8B	Pythia-6.9B	Pythia-12B
<i>Centralization vs. Fiedler Values</i>			
At threshold 0.01	-0.0491	-0.5235	-0.5895
At threshold 0.1	0.2199	0.0004	0.5083
Correlation strength scaling	Weak	Moderate	Strong
<i>Density vs. Fiedler Values</i>			
At threshold 0.02	0.1069	0.5971	0.6782
Pattern consistency	Inconsistent	Moderate	Highly consistent

Table 40: Value space analysis across Pythia model variants

Property	Pythia-2.8B	Pythia-6.9B	Pythia-12B
<i>Value Space Metrics</i>			
Relative Magnitude (Mean)	0.4934	0.4759	0.4782
Directional Influence (Mean)	0.5614	0.5506	0.5432
Directional Influence (Median)	0.5000	0.5000	0.5000
Information Content (Mean)	485.9178	950.4851	930.9070
Information Content (Median)	598.1627	954.3322	0.1200
First-to-Last Layer Influence	-0.06	-0.25	-0.25
<i>Attention-Value Correlation</i>			
Attention Entropy (Mean)	1.0975	0.9041	0.6942
Value Transformation Magnitude	33.0226	25.9536	24.9152
First Layer Magnitude	38.0535	56.1840	84.1770
Last Layer Magnitude	67.5896	0.0000	0.0000
Geometric-Semantic Alignment	0.0483	-0.0421	-0.0687
First Layer Alignment	0.0512	0.0506	0.0277
Last Layer Alignment	0.0215	0.0000	0.0000
Entropy-Magnitude Correlation	0.0110	-0.2509	-0.2332
First-to-Last Layer Shift	-0.4454 to -0.1034	-0.4288 to 0.0000	-0.3498 to 0.0000

K NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope?

Answer: **[Yes]**

Justification: The abstract and introduction clearly articulate our three main contributions: (i) reframing attention sinks as geometric reference frames, (ii) identifying and characterizing three distinct reference frame types, and (iii) demonstrating how architectural choices determine which reference frame emerges. These claims are substantiated through our methodology (Section 3 and 4) and analysis results (Section 5).

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper explicitly acknowledges limitations in Section 5 (paragraph 'Limitations'), noting that our topological and spectral analyses focus on attention patterns at specific network snapshots rather than continuously tracking their evolution throughout training, which may miss important transitional dynamics in reference frame formation.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: The paper states all theoretical assumptions and provides complete mathematical formulations in Section 3, particularly in the subsections on Reference Frames (3.1), Emergence of Attention Sinks (3.2), and Position Encoding (3.3). These sections present our full mathematical framework with clearly defined notation, formal equations for each reference frame type, and rigorous derivations of how different architectures lead to specific geometric structures.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.

- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [\[Yes\]](#)

Justification: Section 4 (Methodology) provides comprehensive details on our experimental design, including model specifications (LLaMA-3.2, Qwen2.5, etc.), dataset composition (500 STEM-focused Wikipedia sentences), implementation of topological and spectral analyses, and computational resources used (Google Colab with T4/A100 GPUs). These specifications, combined with the detailed metrics and formulas presented, enable full reproduction of our experimental results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[Yes\]](#)

Justification: The code is available in the supplementary materials.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.

- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: **[Yes]**

Justification: Section 4 (Methodology) provides comprehensive details of our experimental setup, including the diverse set of transformer models analyzed (LLaMA-3.2, Phi-2, Qwen-2.5, BERT, XLM-RoBERTa, etc.), dataset specifications (500 STEM-focused Wikipedia sentences ranging from 6-50 tokens), analysis methods (topological, spectral, information-theoretic), and computational environment (Google Colab with T4/A100 GPUs). Our experimental design subsection specifically details the threshold values used (0.001-0.2), dataset sampling approach, and measurement metrics for each analysis type.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: **[Yes]**

Justification: While we don’t include explicit error bars, we report standard deviations for key metrics (e.g., in Table 4’s Information Content Change) and ensure statistical reliability by analyzing patterns across multiple architectures, confirming our findings are consistent rather than due to random variation.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer “Yes” if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).

- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: Section 4 (Methodology) specifies that all experiments were conducted using Google Colab with T4 or A100 GPUs. While the paper doesn't include exact execution times, it provides sufficient computational context by detailing the sample sizes (500 samples for main analyses, 100 samples for temporal analysis) and model scales (ranging from 1B to 12B parameters) that define the resource requirements needed for reproduction.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Justification: Our work focuses on analyzing existing, publicly available language models to understand their internal mechanisms (reference frames), without creating potentially harmful capabilities, using private data, or enabling applications that could lead to societal harm.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [\[Yes\]](#)

Justification: While our paper primarily focuses on theoretical analysis of transformer architectures, we briefly mention in the conclusion that understanding reference frames has potential positive implications for developing more principled approaches to transformer engineering.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: We don't release new models, datasets, or tools that could be potentially harmful.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Our paper properly credits the original model creators (e.g., Meta AI for LLaMA, Mistral AI for Mistral, Google for Gemma) when analyzing their architectures. We used publicly available model checkpoints accessed through the Hugging Face platform in accordance with their respective licenses, and our STEM-focused Wikipedia dataset was derived from Wikipedia content under CC BY-SA 3.0 licensing.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.

- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [\[Yes\]](#)

Justification: Our paper doesn't introduce new datasets, or models as downloadable assets. We released the code and its documentation in the supplementary materials.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [\[NA\]](#)

Justification: This research doesn't involve crowdsourcing or human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [\[NA\]](#)

Justification: Our research doesn't involve any human subjects, data collection from individuals, or human evaluation of results.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our research methodology does not use large language models as components of our core research methods.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.