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ABSTRACT

In-context learning (ICL) has emerged as a powerful paradigm for adapting large
language models (LLMs) to new and data-scarce tasks using only a few carefully
selected task-specific examples presented in the prompt. However, given the limited
context size of LLMs, a fundamental question arises: Which examples should be
selected to maximize performance on a given user query? While nearest-neighbor-
based methods like KATE have been widely adopted for this purpose, they suffer
from well-known drawbacks in high-dimensional embedding spaces, including
poor generalization and a lack of diversity. In this work, we study this problem of
example selection in ICL from a principled, information theory-driven perspective.
We first model an LLM as a linear function over input embeddings and frame the
example selection task as a query-specific optimization problem: selecting a subset
of exemplars from a larger example bank that minimizes the prediction error on a
specific query. This formulation departs from traditional generalization-focused
learning theoretic approaches by targeting accurate prediction for a specific query
instance. We derive a principled surrogate objective that is approximately sub-
modular, enabling the use of a greedy algorithm with an approximation guarantee.
We further enhance our method by (i) incorporating the kernel trick to operate in
high-dimensional feature spaces without explicit mappings, and (ii) introducing
an optimal design-based regularizer to encourage diversity in the selected exam-
ples. Empirically, we demonstrate significant improvements over standard retrieval
methods across a suite of classification tasks, highlighting the benefits of structure-
aware, diverse example selection for ICL in real-world, label-scarce scenarios. We
conduct extensive experiments over multiple classification datasets using several
LLM models and demonstrate significantly improved performance achieved by our
exemplar retrieval algorithm.

1 INTRODUCTION

With the advent of highly capable large language models (LLMs) (Adiwardana et al., 2020; Wang et al.,
2019; Zhang et al., 2021; Wang et al., 2022), in-context learning (ICL) (Rubin et al., 2022; Liu et al.,
2022; Wu et al., 2022) via prompt optimization has emerged as a powerful technique for generating
responses to complex user queries in data-scarce settings. In this popular and practical paradigm, we
assume access to a small bank of high-quality task-specific examples. For a given user query, a few
unique and relevant demonstrations are selected to form additional context for the language model.
Since LLMs are pre-trained on large corpora, even a small number of carefully chosen exemplars can
often suffice to guide the model toward producing accurate and task-consistent responses (Luo et al.,
2024). The key is to select examples that are both representative and query-relevant, enabling the
model to implicitly infer the task. Compared to fine-tuning (see Wang et al. (2025) and references
therein), ICL offers a lightweight and efficient alternative, especially when labeled data is limited.

Given the limited context window of large language models, a natural and important question arises
for ICL: “Given a specific user query, how can we optimally select and order a subset of task-specific
examples from an associated example bank to include in the prompt to maximize performance?”
While several existing methods address this question empirically (Dong et al., 2022; Luo et al., 2024),
our work takes a principled, information-theoretic approach to tackle this problem.

Motivated by data-scarce settings and the need for task generalization, we focus on common and
practical scenarios where the exemplar retriever is frozen and non-trainable. Among unsupervised
retrieval methods, the most widely used is KATE (Liu et al., 2021), which pioneered a k-nearest
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Figure 1: This figure is divided into two halves, illustrating the KiTE’s selection pipeline on the left and the
kernelization trick on the right. Left: The selection module (Alg. 1) maintains an inverse design matrix V!
and, for each candidate x, computes relevance (Eq. (8)) and diversity (Eq. (10)), combines them into a total score
(Eq. (11)), selects the highest-scoring example, and updates V ~* via Sherman—Morrison (Eq. (12)). The chosen
exemplars are then fed into the LLM to produce the final prediction y. Right: The kernel trick panel shows how
every inner product in feature space is replaced by a kernel evaluation, (¢(z), ¢(z')) — k(z,2’) (Lemma I,
Eq. (13)), enabling use of Gaussian RBF and polynomial kernels to work implicitly in the reproducing kernel
hilbert space (RKHS) without ever computing high-dimensional feature vectors.
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neighbor (kNN)-based strategy for selecting in-context examples. KATE identifies the k examples
most similar to the user query in a pre-trained embedding space (e.g., BERT), drawing on the intuition
that nearby points in this space are likely to be the most informative.

However, as with classical kNN, this approach suffers from the curse of dimensionality—a well-
documented issue in high-dimensional spaces where distances become less informative (Koppen,
2000). In traditional machine learning, this problem is often addressed by assuming a structured
hypothesis class (e.g., linear models), which effectively reduces the model complexity and improves
generalization guarantees with fewer samples. This motivates our central theoretical question in
the ICL context: “Can we design an example selection algorithm—i.e., a retriever—that, given a
user query, operates under a structured modeling assumption to improve selection quality?” Such
an information-theoretic modeling-driven approach can not only mitigate the limitations of high-
dimensional retrieval but also implicitly encourage diversity among selected examples - another
desirable property for generalization in ICL.

From a theoretical standpoint, we model the LLLM as a function that behaves linearly in its input,
and the goal of ICL in the context of LLMs translates to algorithmically selecting a small number of
datapoints to train the linear model (conditioned on an input test query).

Suppose we are given a high-quality example bank of n labeled datapoints. For a specific d-dimensional
user query z, we consider the following core problem: “Given a test point z and an example bank
(x4, yi)?zl € R? x R, which k examples should be selected to train a linear model such that the
prediction error on z € R? is minimized?” Note that a selection algorithm for the aforementioned
problem can be directly used for selecting ICL examples for LLMs. '

Theoretically speaking, this departs from standard learning-theoretic goals, which typically aim for
generalization over a distribution of test points. In contrast, we focus on query-specific generalization,
i.e., training a model that performs well on a single (and potentially arbitrary) test query using a
carefully selected subset of training examples. For the linear model, we derive a surrogate loss objective
that quantifies this query-specific prediction error and show that this objective is approximately
submodular. This key structural insight allows us to apply a greedy selection algorithm with a
provable 1 — e~ approximation guarantee relative to the optimal subset - here v € (0, 1) is the
approximate sub-modularity ratio of the objective given the example bank.

Building on this formulation, we design a computationally efficient and fully unsupervised example
selection algorithm. We evaluate it across multiple tasks and find that it consistently outperforms strong

'In fact, if we were using kNN to predict the response for z, then the selected datapoints would have been the
k—nearest datapoints to z. This is also the intuition for choosing examples in KATE (Liu et al., 2021).
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baselines such as kNN-based top-k retrieval (Liu et al., 2021), DPP-based retrieval (Ye et al., 2023a),
and BM25 (TF-IDF) keyword retrieval, demonstrating the effectiveness of our theory-guided retrieval
in in-context learning. For example, our algorithm surpasses the strongest baseline, DPP (Ye et al.,
2023a) by 2.44% on HellaSwag benchmark (Zellers et al., 2019) with Qwen-2.5-1.5B model (Hui
et al., 2024). In this study, our focus is primarily on classification tasks, where the output is a single
label, aligning with the assumptions of our theoretical framework. Note that classification tasks
encompass a large fraction of use-cases where LLMs are used in a widespread fashion; for instance,
LLM-as-a-judge (Zheng et al., 2023), toxicity detection (Gehman et al., 2020), and intent detection
(Larson et al., 2019).

In addition to our base algorithm, we incorporate two complementary techniques to further enhance
example selection. First, in the theoretical setting, we extend our greedy algorithm under linear
models to the general nonlinear models using the well-known kernel trick. This allows our method to
operate in high (possibly infinite) dimensional feature spaces without explicitly computing the feature
mappings. By replacing inner products in the objective with kernel evaluations, we enable richer
representations that capture nonlinear relationships between datapoints. Empirically, we observe that
using a well-calibrated kernel can lead to noticeable improvements in LLM performance, suggesting
that the choice of feature space plays a critical role in guiding in-context learning. Second, we
introduce a mechanism for enforcing diversity in the selected examples. Inspired by maximum
information gain theory—a well-established framework in experimental design, bandits, and Bayesian
optimization (Lattimore & Szepesvdri, 2020) — we consider the scenario where the goal is to select
a subset of examples such that the resulting trained model performs well across all queries in the
example bank. This naturally leads to the classical optimal experimental design problem, whose
objective function is well-understood. We incorporate this design objective as a regularizer into our
selection criterion to encourage diversity among selected examples. Intuitively, and as supported
by our experiments, promoting diversity improves the generalizability of the model and boosts the
quality of LLM responses.

2 RELATED WORKS

In-Context Learning (ICL). In-context learning, introduced by Brown et al. (2020b), is a powerful
paradigm where large language models (LLMs) learn new tasks by conditioning on a few input-output
examples provided in the prompt, without any parameter updates. The underlying mechanisms of ICL
have been extensively studied; some works suggest that ICL enables the prediction task to become
linearly separable (Saunshi et al., 2020) or that it allows the model to infer a shared latent concept
from demonstrations (Xie et al., 2021). Further research indicates that ICL is a nuanced process, as
models do not always rely strictly on the provided input-output mappings (Min et al., 2022). The
ICL capabilities of LLMs can be enhanced through dedicated self-supervised or supervised training
procedures (Chen et al., 2022; Min et al., 2021; Wei et al., 2023a). A broad range of studies has also
investigated the factors that influence ICL performance, such as demonstration calibration and corpora
effects (Zhao et al., 2021; Shin et al., 2022; Wei et al., 2022; Yoo et al., 2022; Wei et al., 2023b), as
well as the working mechanisms themselves, including how models perform implicit gradient descent
(Olsson et al., 2022; Li et al., 2023b; Pan, 2023; Dai et al., 2022).

Example retrieval for few-shot learning. The effectiveness of ICL is highly sensitive to the choice of
in-context examples, a variance quantified in early works (Brown et al., 2020b; Min et al., 2022), which
has motivated a significant line of research on demonstration selection. Initial approaches focused on
unsupervised heuristics, such as retrieving semantically similar examples using embedding-based
nearest neighbors (Liu et al., 2022) or lexical overlap, which showed sizeable gains over random
sampling. Subsequent research has advanced beyond fixed heuristics to instead learn a retriever
model. These methods often fine-tune a dense retriever to select effective demonstrations, using labels
distilled from a language model (Rubin et al., 2022) or employing reinforcement and contrastive
objectives to balance relevance and coverage (Li et al., 2023a; Luo et al., 2023; Wang et al., 2023; Ye
et al., 2023b; Ghosal et al., 2025b;a). Orthogonal to retrieval, information-theoretic criteria such as
mutual information (Sorensen et al., 2022) or LM perplexity (Gonen et al., 2023) serve as lightweight
proxies for example quality. Influence-function analysis by Li & Qiu (2023) selects training points
that exert the greatest effect on the language model’s prediction. The current state-of-the-art involves
subset-level methods that explicitly model interactions between examples, often using determinantal
point processes (DPPs) to promote diversity and avoid redundancy (Yang et al., 2023; Ye et al., 2023a).
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Based on an information-theoretic standpoint, in this paper, we propose a computationally efficient
and fully unsupervised example selection framework.

3 THEORETICAL MODEL

Consider access to a dataset & containing n known input-output pairs
(x1,%1), (X2,92), - - -» (Xn,Yn) € RY x R, where features are d-dimensional vectors and the
output are real scalars.

Further, consider an input test query z € R?. For any k < d, the ICL problem is defined as selecting
the optimal subset of examples from X to provide as context (to the LLM) or train a model for
predicting the response to the input test query z. The goal is to ensure that the prediction error is
minimized via an optimal choice of examples. Note that in ICL, the selected subset contains unique
elements and cannot be a multi-set. This is because, in an LLM, duplicating the examples does not
provide additional context.

To make the problem mathematically tractable, conditioned on the input test query z € R?, assume
that the model response (in this instance, the LLM) is linear in its input with a distinct underlying
parameter vector § € R?. The selected subset of k& examples is used to train the model to generate
a prediction for the test query z € R%.”> Specifically, conditioned on z, there exists an unknown
parameter vector @ € R such that the response y for any feature vector x € R is generated as

y = (x,0) +n, where n ~ N(0,1) . (1

In the above framework, the ICL problem reduces to the following question: For a given test query z,
which subset of examples S of size at most k from X should we select so that a least squares estimator
fitted on S minimizes the expected error for the prediction on z? Mathematically, given a test query z,
we aim to solve the optimization problem:

min  |(z,0 — 05s)], 2)
SCx:|S|<k

- -1
where Os = (BId + Zie S xix;r) (Zle s xiyz) is the 3-regularized least squares estimator.

This discrete optimization problem is computationally challenging, with complexity that is exponential
in k and polynomial in n, stemming from the combinatorial nature of selecting subsets—specifically,
the (Z) possible combinations. Note that this poses a severe computational challenge since this
runtime will be required per user query. On the other hand, fast algorithms during inference without
hurting the accuracy are of paramount importance. Our goal is to develop an efficient algorithm that
can find high-quality solutions to the optimization problem in equation 2.

4 ALGORITHM DESIGN

We develop a principled approach to solve the in-context learning subset selection problem by
leveraging submodular optimization theory (Das & Kempe, 2011). Our methodology consists of three
main components: problem reformulation using concentration inequalities, theoretical analysis of
submodularity, and a greedy algorithm with provable approximation guarantees.

Problem Reformulation To make the optimization problem in equation 2 tractable, we use con-
centration inequalities to bound the prediction error. Applying the Chernoff bound for sub-Gaussian
random variables, we can bound, for any § € (0, 1), the prediction error as

(2.6~ 8s)| £, /llz]]3, s log(1/9) 3)

with probability greater than 1 — &, where Vs = Blg + > s x;x; is the design covariance matrix,
and a constant 5 dependent factor is hidden under 5. This is a well-known result on the prediction
error in linear models - for instance, see (Lattimore & Szepesvari, 2020, Chapter 20).

The above theoretical bound shows that the upper bound on prediction error is related to the chosen
subset S of training datapoints via the term ||z||f/,1. Hence, we need to minimize ||z ||3/,1 for a fixed
S S

>We emphasize that the underlying parameter vector § € R? can vary conditioned on the test query z.
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z € R, or, equivalently solve the following optimization problem

z S 9 h z S - — TV_l . 4
Sgg{%gkf( ), where f,(§) =-2z Vg'z 4
The set function f, is monotonically increasing, which follows from the fact that for any two sets
S C L, the corresponding design matrices satisfy Vs =< V in the Lowener order. Along with
monotonicity, a desirable property for maximizing set functions is submodularity, defined as:

Definition 1 (Submodular Function). A set function f : 2% — R is called submodular if for all
SCLC Xandx € X\ L, it satisfies the diminishing returns property:

FEULx}) = f(8) = F(LU{x}) = f(£).
For monotone and submodular functions, a greedy algorithm admits an (1—1/e)-factor approximation.

The set function f, in equation 4 doesn’t satisfy sub-modularity. However, it exhibits approximate
submodularity and retains the near-optimality guarantee of greedy algorithms. The notion of approx-
imate submodularity can be captured by the submodularity ratio Das & Kempe (2011), formally
defined below.

Definition 2 (Submodularity ratio). For a ground set X and a parameter k € N, the submodularity
ratio of a set function f : 2% — R is defined as

W)= g xecUEUED = FS)

SCX, FSUL) = f(S)
LCX:|L|<E,
LNS=0

The submodularity ratio captures how much more the value of the function f can increase by adding
any subset L of size at most k to S, compared to the combined benefits of adding its elements to S.
Hence, it quantifies the degree to which f satisfies the diminishing returns property, and hence how
well greedy algorithms are expected to perform in maximizing f under cardinality constraints. If the
set function f is submodular, then v = 1. When 0 < «y < 1, the function is said to be approximately
submodular. The next result lower bounds the submodularity ratio of f,.

Lemma 1 (Submodularity ratio of f,). For any z € RY, the submodularity ratio of f,(S) =

szVg;lz satisfies Y (fz) > m where (1 is the maximum coherence between any pair of

Ty—1
x; Vg x;

elements in X \ S, given by |1 = maxy, x ¢s |1ij|, with p; ; = \/1+xTV_1x-\/1+xTV_1X'.
7 S & J S J

Lemma | gives a query-independent lower bound on the submodularity ratio of f,. In practice, for a

given query z, sets S and £ = {x1,...,x;} C X'\ S, one can compute the submodularity ratio (with
. kAL (2T VZix;)?
i=1 "= . = S v
abuse of notation) as v, (f, 2, £,S) = Ay A, where A; TV denotes

the marginal gain in f, of adding x; to S. The lower bound in Lemma 1 is derived by bounding
this ratio using the Cauchy-Schwartz inequality and the maximum coherence p. Detailed proof of
Lemma 1 is deferred to the appendix. The lower bound is empirically verified for all the datasets used
in our experiments.

4.1  GREEDY ALGORITHM

We are now ready to present our Greedy algorithm for in-context example selection. Using the
Sherman-Morrison formula, for any S C S such that S \ &’ = {x}, we get

z' Vg'x)?

2(S) = f2(S') + (2 Ve x)” 5
FAS) = 18+ ®
This naturally yields a greedy algorithm. We start with an emty set Sy = () and at each step
i € {1,2,...,k}, we select the example that provides the maximum marginal gain over already
selected examples S;—1 = {x1,...,X;—1}:

(2" Vs, x)°
X; = argmax ——————.
x€X\S; 4 1+ XTVsi,lx

(6)
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Although equation 6 involves inverting matrices V; of dimension d, the rank-one nature of their
sequential updates Vs, = Vs, , + x;x, helps compute their inverse efficiently, again using the
Sherman-Morrison formula:
-1 —1 Vgil—lxix;rvgilfl
VS' = VS'71 - Ty—1 : )
’ ’ 1+x,V Si, Xi

This allows us to maintain the inverse matrix in O(d?) time per iteration, rather than recomputing it
from scratch.

The following adaptation of a result from Das & Kempe (2011) using our lower bound on the
submodularity ratio (Lemma 1) states the performance of the greedy algorithm under approximate
submodularity.

Theorem 1 (Greedy Algorithm Performance with Approximate Submodularity). For any z € R, let
the greedy algorithm return a set Sgrecay fOr the optimization problem in equation 4. Then
1

FolSeay) = (1= € 0T ) - f(S7),

where S* is an optimal solution of size at most k.

Thus, the approximation guarantee degrades gracefully with the submodularity ratio v (f,). When
the submodularity ratio v (f,) is close to 1 (i.e., when k = 1 or u & 0), greedy algorithms perform
nearly as well as optimal algorithms (upto an (1 — 1/e) factor). In practice, the value of -y can be
estimated, providing useful certificates of near-optimality for solutions obtained via greedy selection.

Remark 1. For functions of the form f,(S) = —vaglz, where Vs = 3. x;x; + Bl
increasing the regularization strength ( tends to make f,(S) nearly submodular—that is, . (f) — 1.
This shift further enhances the performance of the greedy algorithm in practice.

Selecting Diverse Examples Equation 6 seeks the example x; which is most relevant to the input
query z in the geometry induced by the matrix Vgitl. However, for in-context learning, both
relevance (i.e., choosing examples similar to the input) and diversity (i.e., choosing similar examples)
are essential, and need to be carefully balanced.

To select diverse examples, we seek the set S that fetches the maximum information about the unknown
parameter vector # € R from noisy linear responses of the form equation 1. To this end, let S C X’
be a subset of size k. For a parameter vector § ~ N (04, 1), a design matrix X s € R**9 formed
from the elements of S, and response vector ys € R” formed from responses y =x'60 +1,x € S,
with n ~ N(0, 3), the information gain about 6 from ys is given by the mutual information between
fandys,ie., I(0;ys) := H(ys) — H(ys|0), where H(-) denotes the Shannon entropy (Cover,
1999). Since ys|0 ~ N (0, SI;) and ys ~ N (0, X5 X s + BI}), information gain simplifies to

1 1
1(0;ys) = 5 log det (Id + BX}—XS) ,

which follows from the fact that the entropy of a Gaussian distribution with covariance matrix X is
% log det(2meX). Therefore, to find the most informative (or, equivalently, diverse) set, we find the

set with the maximum information gain. This, along with the fact that Vg = XgXS + B4, leads to
the following optimization problem:

S), wh S) = log det(Vs) . 8
ch{?g‘gkg(),wereg() ogdet(Vs) (®)

The function g is known as the D-optimal design (Pukelsheim, 2006).

Lemma 2 (Submodularity of g). For any 8 > 0, the function g(S) = log det(V.s) is monotone and
submodular.

The result holds from the matrix-determinant lemma, which, for any x ¢ S, yields
logdet(Vs +xx ') —logdet(Vs) = log(1 +x' Vg'x) .

Monotonicity follows since this increment log(1 + x Vglx) is positive. Submodularity holds since
this increment becomes smaller as Vg grows (i.e., as the set S grows), due to redundancy in the
directions already spanned. This also admits a natural greedy selection rule:
x; = argmax log(1l + XTV‘;ilX) , 9)
XEX\S;i_1
which can also be computed efficiently using equation 7.
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Combined Relevance and Diversity To select relevant as well as diverse examples, we maximize the
combined objective f,(S)+g(S), which maintains both monotonicity and approximate submodularity.
Therefore, we combine the corresponding greedy selection rules equation 6 and equation 9 to obtain

(z'V5! %)
X; = argmax L

—2 4 Alog(14+x"Vg! x),
XEX\Si—1 1+ XTVSLIX ( Si—1 )

where A > 0 controls the trade-off between relevance and diversity. The set S returned by this
greedy algorithm maintains the approximation guarantee of Theorem 1. We call this algorithm Linear

Information Theoretic Exemplars (LiTe) for ICL and present the pseudo-code in Algorithm 1.
4.2 MovinG BEyoND LINEARITY: KERNEL TRICK

In this section, we generalize our approach to

the practical setting of non-linear models by as-

suming that conditioned on a test query z € R?,
d :

the response y for any feature vector x € R® is Require: Dataset X — {(xi, y:)}y; test query z; sub-

genera.ted as y = h(x) +n, where ) ~ N (O.’ 1) set size k; regularization 8 > 0; diversity weight
and h is an unknown element of a reproducing A> 0.

Algorithm 1: LINEAR AND INFORMATION THEORETIC
ExempLARS (LITE)

kernel Hilbert space (RKHS, see Scholkopf & 1. Initialize V! « %1 4

Smola (2002)). An RKHS, denoted by H, i 2. Initialize available datapoints mask + 1,,
completely characterized by a symmetric and  3: Initialize selected set S < ()

positive semi-definite kernel k£ : RY x R? = R 4: for j = 1to k do

and vice-versa. Two commonly used kernels are ~ 5: Xaaitable < {X; : mask; = 1}

the polynomial kernel kpoyy (%, X") = (x'x' + 6 for each x € lXavauable do o

¢)™ and the Gaussian kernel kgge(x,x') = 7 p<Viiz “T<_ 2V X

exp (_HxQ_U,Z/W)’ where ¢, m, o are hyperpa- 8 rel(x) « %; div(x) « log(1 +
rameters of the kernels. The kernel trick says x'u)

that there exists a feature map ¢ : R? — H; 9 score(x) < rel(x) + A - div(x)

such that k(x, x’) = ¢(x) " #(x’), where the in- 10:  end for

ner product is associated with Hy. This trick 11: X" ArGMAX e score(x) .
helps us to perform all computations in the high . k. =1 1 uu
(possibly infinite) dimensional Hilbert space Hy, 12 ue Vaxn Ve Ve - 14 (x*)Tu
analogously to those in the Euclidean space, but 13: S < S U {x"}, update mask to exclude x*
without the need for computing the inner product 14: end for

explicitly. 15: return S

To see this, the greedy selection rule in the Euclidean space R? can be lifted to the RKHS as

2
()T 0(x)
X; = argmax

Al v !
R T TV, o e Ves069), 00

where Vo s = I+ 3, s d(x;)p(x;)T = BI + &L s is the design covariance matrix in Hy,.
Forming a design matrix ®s from ¢(x), x € S and using kernel trick, we obtain
0(x) "V, 50(x) = 6(x) (2§ s + A1)~ o (x)

6(x)T6(x) — (%) 0L (D5 @ + BT) " Ps6(x) )

@ = =
—~

(k30— ks(3) T (Ks +81) ks (x) ) an

where K5 =[k(x;,X;)]x, x,es is the gram matrix of size |S| x |S] and ks (z) =[k(x, %;)], cs i5 2
vector of size |S].
Equation 11 helps the selection rule equation 10 to be implemented with only the kernel computations,

avoiding matrix inverses and matrix-vector multiplications in (possibly) infinite-dimensional RKHS.
This leads to our framework for in-context example selection, summarized below:
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Note that KiTe is a strict generalization [RSUEEINCREIFER I TN TR ETS

of Lrre (Algorithm 1) and captures It 1 At each stepi € {1,2,...,k}, select the example:
as a special case when the kernel is

linear, i.e., when ky,(x,x') = x'x'. (ks,_, (z x))2
In our experiments, we keep the kernel | x; = argmax —————~—+\log (B+ks,_, (x,x)) ,
as a tunable hyperparameter of KiTE. xeX\8; BHks, (x,x)

‘where ks(z,x) = k(z,x) —ks(z) T (Ks + BI) 'ks(x) .

J

5 EXPERIMENTS

We present a comprehensive empirical
analysis of our proposed approach, evaluating its performance across a variety of open-source datasets
and models.

| SST-2 | SST-5 | CMSQA | MRPC | QNLI | HellaSwag
Method| GN' QW LL [GN QW LL [GN QW LL [GN QW LL [GN QW LL |GN QW LL

Random|86.32 63.36 89.84|32.31 40.53 42.41|42.25 65.90 67.22|66.38 70.45 71.12|57.56 70.21 68.43|41.75 66.30 65.21
BM25 |90.14 67.78 91.63|36.05 47.86 47.85|42.91 70.02 70.92|66.96 73.77 70.58(62.12 71.11 69.38|41.34 67.85 66.32
Dense |88.99 72.94 92.55|35.96 46.64 44.14|43.98 70.18 72.23|65.83 73.92 71.81|64.42 70.73 70.04|40.44 68.80 67.88
DPP 90.25 71.22 91.86|36.84 47.88 46.45|37.53 70.05 71.65|68.04 74.25 70.63|63.62 70.53 70.08|40.56 69.32 68.55
Kite 93.35 74.41 94.2840.60 49.59 47.59|46.60 71.25 72.89|68.38 75.27 71.98|65.32 71.05 71.68|41.68 71.02 70.12

Table 1: Evaluation Results. We compare classification accuracy (%) of KITE against retrieval baselines on six
few-shot benchmarks. Model abbreviations: GN (GPT-Neo 2.7B), QW (Qwen 2.5-1.5B), LL (Llama 3.2-3B).

Implementation Details. We conduct our evaluations using three open-source, state-of-the-art
language models: GPT-Neo-2.7B (Black et al., 2021), Qwen 2.5-1.5B (Hui et al., 2024), and Llama-
3.2-3B (Grattafiori et al., 2024). For all baselines, we fix the number of in-context examples to
50 during inference, truncating as necessary based on the model’s maximum context length. We
represent textual inputs using embeddings obtained from bert-base-uncased (Devlin et al.,
2019). We experiment with three kernels: (i) Linear kernel ky;,(x, x") (which reduces to LiTg; see
Algorithm 1), (ii) Polynomial kernel kpoy (x,x’) with varying degree m and (iii) Gaussian kernel
kGauss (X, ) (Iength-scale o = 1.0). We use a regularization parameter of 5 = 0.02 and a diversity
parameter of A = 0.5. For Kite in Table 1, we report the best result across the three kernel choices.
A detailed ablation study on the impact of the kernel choice is presented in Table 3. We defer the
mathematical formulation for each kernel to Appendix.

Datasets. To empirically demonstrate the efficacy of KiTE, we evaluate on five few-shot classification
datasets: SST-2 & 5 (Socher et al., 2013) (single-sentence sentiment), CMSQA (Talmor et al., 2019)
(question answering), MRPC (Dolan et al., 2004) (sentence-pair paraphrase), QNLI (Wang et al.,
2018) (binary entailment classification), and HellaSwag (Zellers et al., 2019) (common sense NLI).

For each task, we use the corresponding validation split for evaluation and employ the deduplicated
training split as the candidate exemplar set.

Evaluation Metrics. Following prior work (Brown et al., 2020a), we formulate all classification
tasks as multiple-choice problems. we construct input prompts by concatenating the given context
with each candidate label (i.e., “context + label””). We then compute the conditional log-likelihood
of generating the label tokens given this combined input prompt, and select the candidate with the
highest log-likelihood as the model’s prediction. Model performance is evaluated using accuracy,
defined as the fraction of correctly predicted examples on the validation split.

Baselines. For a fair and comprehensive evaluation, we compare KiTE against several baselines,
including Random, BM25 (Robertson et al., 2009), top-k with Dense embddings (Dense) (Liu et al.,
2021), and DPP-based retrieval strategies (Ye et al., 2023a).

Results. We report our evaluation results in Table 1. We find that KiTE consistently outperforms all
baselines across most datasets and model architectures. On GPT-Neo-2.7B, for example, KiTE delivers
an accuracy improvement of +4.55% on SST-5 (Socher et al., 2013) and +3.69% on CMSQA (Talmor
etal., 2019) over BM25 (Robertson et al., 2009). Further, this trend is consistently observed across
all evaluated models. With Qwen-2.5-1.5B, KITE surpasses the strongest baseline, DPP (Ye et al.,
2023a), on four out of five datasets, achieving notable gains of +1.71% on SST-5 and +1.70% on
HellaSwag. Similarly, on Llama-3B, KrtE achieves the highest accuracy on four datasets, including a
substantial +2.24% improvement on HellaSwag over the state-of-the-art (Ye et al., 2023a). Across all
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Vary k (fixed 3 = 1) | Vary §3 (fixed k = 20)
Dataset 5 10 15 20 25 30 35 | 1 3 5 7 9 11

SST-5 0.748 0.685 0.705 0.689 0.703 0.716 0.696]0.689 0.744 0.719 0.758 0.792 0.827
CMSQA 0.852 0.811 0.816 0.841 0.830 0.797 0.836]0.841 0.804 0.884 0.843 0.907 0.886
MRPC 0.876 0.840 0.793 0.816 0.850 0.887 0.848]0.816 0.765 0.803 0.824 0.824 0.898
QNLI 0.844 0.801 0.900 0.893 0.875 0.837 0.877]0.893 0.829 0.823 0.919 0.912 0.882
HellaSwag 0.395 0.601 0.525 0.596 0.839 0.908 0.806|0.596 0.803 0.767 0.806 0.935 0.852

Table 2: Analysis on Submodularity ratio vmi,. Left: We vary & while fixing 5 = 1; Right: We vary  while
fixing k£ = 20.

15 evaluation settings (five datasets and three models), K1tk attains the highest accuracy in 13 cases,
underscoring its robustness and efficacy as an exemplar retrieval framework.

Ablation study on kernel function. The choice of kernel is a critical hyperparameter in our KiTe
framework, as it defines the geometry of the feature space in which relevance and diversity are mea-
sured. To clearly understand its impact, we conducted an ablation study comparing the performance
of three distinct kernels: Linear (which reduces Kitk to the LiTe algorithm), Polynomial (with degree
m = 3), and Gaussian RBF (¢ = 1.0). The results, detailed in Table 3, reveal that no single kernel
is universally optimal; the best choice is contingent on the specific dataset and its underlying data
distribution.

The strong performance of the non-linear kernels across most datasets validates our core motivation
for moving beyond the linear model of LiTe. It underscores the importance of the kernel trick in
empowering the model to capture richer, non-linear relationships between exemplars, which is essential
for effective in-context learning. The main results reported in Table 1 represent the best performance
achieved across these kernels for each task, highlighting the consistent advantage conferred by a
well-tuned kernelized approach.

Empirical validation of submodularity. We
empirically validate the submodularity of our ~ Dataset  Linear Polynomial Gaussian RBF

set function, f,(S) = —z' Vg'z by estimat-  §qT.5 47.95 48.38 49.59
ing its submodularity ratio (Def. 2) on real- CMSQA  69.86 71.06 71.25
world text embeddings. For this analysis, we =~ MRPC 75.27 71.22 67.15
used the first 500 examples from each dataset =~ QNLI 70.46 70.38 71.05
to generate embeddings. We created two dis-  HellaSwag 67.18  71.02 70.67

tinct types: demonstration embeddings, by
concatenating an input with its gold label, and Table 3: Ablation study on the kernel function. We report

query embeddings, from the input alone. accuracy for KiTE using different kernels on Qwen-1.5B.

To estimate the ratio, we ran a Monte Carlo simulation across a grid of hyperparameters for subset
size k and regularization /3. In each trial, we sampled a disjoint triplet (S, £, z), where S is a random
set of demonstration embeddings, £ is a diverse set of up to k demonstration embeddings selected via
farthest-point sampling, and z is a query embedding. We then computed the ratio and recorded the
minimum value observed (ynin) for each configuration.

As shown in Table 2, our experiments reveal a consistently high ~,,;, across all datasets and settings.
These values, typically at or above 0.8, provide strong empirical evidence that our objective function
is approximately submodular in practice. This finding justifies our use of a greedy algorithm, as it is
expected to yield near-optimal results.

6 CONCLUSION

In this paper, we introduce KiTE, a principled, information-theoretic framework that treats in-context
exemplar selection as a query-specific optimization problem. By leveraging an approximately submod-
ular objective and the kernel trick, our algorithm efficiently selects exemplars that balance relevance
and diversity, an approach supported by theoretical performance guarantees. Extensive experiments
demonstrate that KiTE consistently outperforms strong retrieval baselines across multiple classification
datasets and language models, validating its efficacy and effectiveness for in-context example selection.
Extending Kr1TE to generative tasks, which involve producing multiple dependent output tokens, is an
important direction for future work.
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