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ABSTRACT

We consider the problem of collaborative multi-user reinforcement learning. In
this setting there are multiple users with the same state-action space and transition
probabilities but with different rewards. Under the assumption that the reward ma-
trix of the N users has a low-rank structure – a standard and practically successful
assumption in the offline collaborative filtering setting – we design algorithms
with significantly lower sample complexity compared to the ones that learn the
MDP individually for each user. Our main contribution is an algorithm which ex-
plores rewards collaboratively with N user-specific MDPs and can learn rewards
efficiently in two key settings: tabular MDPs and linear MDPs. When N is large
and the rank is constant, the sample complexity per MDP depends logarithmically
over the size of the state-space, which represents an exponential reduction (in the
state-space size) when compared to the standard “non-collaborative” algorithms.

1 INTRODUCTION

Reinforcement learning has recently seen tremendous empirical and theoretical success Mnih et al.
(2015); Sutton et al. (1992); Jin et al. (2020b); Gheshlaghi Azar et al. (2013); Dann & Brunskill
(2015). Near optimal algorithms have been proposed to explore and learn a given MDP with sample
access to trajectories. In this work, we consider the problem of learning the optimal policies for mul-
tiple MDPs collaboratively so that the total number of trajectories sampled per MDP is smaller than
the number of trajectories required to learn them individually. This combines reinforcement learn-
ing and collaborative filtering. We assume that the various users have the same transition matrices,
but different rewards and the rewards have a low rank structure. Low rank assumption is popular
in the collaborative filtering literature and has been deployed successfully in a variety of tasks Bell
& Koren (2007); Gleich & Lim (2011); Hsieh et al. (2012). This can be regarded as an instance of
multi-task reinforcement, various versions of which have been considered in the literature Brunskill
& Li (2013); D’Eramo et al. (2020); Teh et al. (2017); Hessel et al. (2019).

Motivation Recently, collaborative filtering has been studied in the online learning setting: Bresler
& Karzand (2021); Jain & Pal (2022). Here multiple bandit instances are simultaneously explored
under low rank assumptions. In this work, we extend this setting to consider stateful modeling
of such systems. In the context of e-commerce, this can allow the algorithm to discover temporal
patterns like ‘User bought a Phone and hence they might be eventually interested in phone cover’
or ‘User last bought shoes many years ago which might be worn out by now, therefore recommend
shoes’. Note that the fact that a user has bought a shoe changes their preferences (and hence the
reward function). Our setting allows one to model such changes. While we assume that the users
share the same transition matrix, this can be relaxed in practice by clustering users based on side
information and modeling each cluster to have a common transition matrix. This approach has
been successfully deployed in various multi-agent RL problems in practice, including in sensitive
healthcare settings (see Mate et al. (2022) and reference therein).

Our Contributions a) Improved Sample Complexity: We introduce the setting of multi-user collab-
orative reinforcement learning in the case of tabular and linear MDPs and provide sample efficient
algorithms for both these scenarios without access to a generative model. Under low rank assump-
tion, the total sample complexity required to learn the near-optimal policies for every user scales
as Õ(N + |S||A|) instead of O(N |S||A|) in the case of tabular MDPs and Õ(N + d) instead of
O(Nd2) in the case of linear MDPs.
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b) Collaborative Exploration: In order to learn the rewards of all the users efficiently under low-
rank assumptions, we need to deploy standard low rank matrix estimation/completion algorithms,
which require specific kinds of linear measurements (See Section 1.1). Without access to a gener-
ative model, the main challenge in this setting is to obtain these linear measurements by querying
trajectories of carefully designed policies. We design such algorithms in Section 3.

c) Functional Reward Maximization: In the case of linear MDPs, matrix completion is more chal-
lenging since we observe measurements of the form e⊺i Θ

∗ψ where Θ∗ ∈ RN×d, corresponding to
the reward obtained by user i, with respect to an embedding ψ. Estimating Θ∗ under low rank as-
sumptions requires the distribution of ψ to have certain isotropy properties (see Section 6). Querying
such measurements goes beyond the usual reward maximization and are related to mean-field limits
of multi-agent reinforcement learning similar to the setting in Cammardella et al. (2020) where a
functional of the distribution of the states is optimized. We design a procedure which can sample-
efficiently estimate policies which lead to these isotropic measurements (Section 5).

d) Matrix Completion With Row-Wise Linear Measurements: For the linear MDP setting, the low
rank matrix estimation problem lies somewhere in between the matrix completion (Recht, 2011; Jain
et al., 2013) and matrix estimation with restricted strong convexity (Negahban et al., 2009). We give
a novel active learning based algorithm where we estimate Θ∗ row by row without any assumptions
like incoherence. This is described in Section 6.

1.1 RELATED WORKS

Related Settings: Multi-task Reinforcement learning has been studied empirically and theoretically
Brunskill & Li (2013); Taylor & Stone (2009); D’Eramo et al. (2020); Teh et al. (2017); Hessel et al.
(2019); Sodhani et al. (2021). Modi et al. (2017) considers learning a sequence of MDPs with side
information, where the parameters of the MDP varies smoothly with the context. Shah et al. (2020)
introduced the setting where the optimal Q function Q∗(s, a), when represented as a S × A matrix
has low rank. With a generative model, they obtain algorithms which makes use of this structure
to obtain a smaller sample complexity whenever the discount factor is bounded by a constant. Sam
et al. (2022) improves the results in this setting by considering additional assumptions like low rank
transition kernels. Our setting is different in that we consider multiple users, but do not consider
access to a generative model. In fact our main contribution is to efficiently obtain measurements
conducive to matrix completion without a generative model. Hu et al. (2021) considers a multi-
task RL problem with linear function approximation similar to our setting, but with the assumption
of low-rank Bellman closure, where the application of the Bellman operator retains the low rank
structure. They obtain a bound depending on the quantity N

√
d instead of (N +d) like in our work.

Lei & Li (2019) considers multi-user RL with low rank assumptions in an experimental context.

Low Rank Matrix Estimation: Low rank matrix estimation has been extensively studied in the
statistics and ML community for decades in the context of supervised learning Candès & Tao (2010);
Negahban & Wainwright (2011); Fazel (2002); Chen et al. (2019); Jain et al. (2013; 2017); Recht
(2011); Chen et al. (2020); Chi et al. (2019) in multi-user collaborative filtering settings. The basic
question is to estimate a d1×d2 matrixM given linear measurements (x⊺iMyi)

n
i=1 when the number

of samples is much smaller than d1 × d2 using the assumption that M has low rank.

a) Matrix Completion: xi and yi are standard basis vectors. Typically xi and yi are picked uniformly
at random and recovery guarantees are given whenever the matrix M is incoherent (Recht, 2011).

b) Matrix Estimation: xi and yi are not restricted to be standard basis vectors. Typically, they are
chosen i.i.d such that the restricted strong convexity holds (Negahban et al., 2009).

In this work, we consider MDPs associated with N users such that their reward matrix satisfies a
low rank structure. For the case of tabular MDPs, we use the matrix completion setting and for the
case of linear MDPs, our setting lies some where in between settings a) and b) as explained above.

1.2 NOTATION

By ∥ · ∥ we denote the Euclidean norm and by e1, . . . , ei, . . . the standard basis vectors of the space
Rm for some m ∈ N. Let Sd−1 := {x ∈ Rd : ∥x∥ = 1}. Let Bd(r) := {x ∈ Rd : ∥x∥ ≤ r}. For
any m × n matrix A and a set Ω ⊆ [n] by AΩ, we denote the sub-matrix of A where the columns
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corresponding to Ω∁ are deleted. By ∆(A), we denote the set of all Borel probability measures over
the set A. In the sequel,

2 PROBLEM SETTING

We consider N users indexed by [N ], each of them associated with a horizon H MDP with the
same state-space S, the same action space A and same transition matrices P = (P1, . . . , PH−1),
where Ph(·|sh, ah) is a probability measure over S, which gives the distribution of the state at time
h + 1 given the action ah was taken in state sh at time h. Each user has a different reward denoted
by Ru = (R1u, . . . , RHu) where Rhu : S × A → [0, 1]. Denote the MDP associated with the
user u byMu := (S,A,P,Ru). For the sake of simplicity, we will assume that the rewards are
deterministic.

We assume that all the MDPs start at a random state S1 with the same distribution. Consider a
policy Π := (π1, . . . , πH) where πh : ∆(A) × S → R+ is a kernel - i.e, πh(·|s) gives the proba-
bility distribution over actions given a state s at time h. By (S1:H , A1:H) we denote the trajectory
(S1, A1), (S2, A2), . . . , (SH , AH) ∈ S × A. By (S1:H , A1:H) ∼ M(Π) we mean the random tra-
jectory under the policy Π - where Ah ∼ πh(·|Sh) and Sh+1 ∼ Ph(·|Sh, Ah). That is, it is the
trajectory of the MDP under the policy Π. Define the value function of Mu under policy Π as:
V (Π,Mu) := E(S1:H ,A1:H)∼Π

∑H
h=1Rhu(Sh, Ah). We will call a policy Π̂u to be ϵ optimal for

Mu if V (Π̂u,Mu) ≥ supΠ V (Π,Mu)− ϵ. Our goal is to find ϵ optimal policies for every u ∈ [N ]
with as few samples as possible under low rank assumptions on the rewards Ruh.

Reward Free Exploration: The objective of reward free RL is to explore an MDP such that we
can obtain the optimal policy for every possible reward. After collecting K trajectories from the
MDP sequentially (denoted by DK), the algorithm outputs functions Π̂ and V̂ whose input is a
reward function R = (Rh(·, ·))Hh=1 (bounded between [0, 1]) and the output is a nearly-optimal
policy Π̂(R) and its estimated value V̂ (Π̂(R)) for this reward function. Denote the MDP with this
reward function by MR. Given ϵ > 0 and δ ∈ [0, 1], we let Krf(ϵ, δ) to be such that whenever
K ≥ Krf(ϵ, δ), with probability at-least 1− δ we have:

a) supR |V (Π̂,MR)− V̂ (Π̂(R))| ≤ ϵ and b) Π̂ is an ϵ optimal policy forMR for everyR.

This setting was introduced in Jin et al. (2020a). In this work, we will use the reward free exploration
algorithms in Zhang et al. (2020) for tabular MDPs and Wagenmaker et al. (2022) for linear MDPs.

Tabular MDP Setting S and A are finite sets. Denote the reward Rhu(s, a) by the N × |S||A|
matrix Rh where Rh(u, (s, a)) = Rhu(s, a). We have the following low-rank assumption:
Assumption (Tab) 1. The matrix Rh has rank r for some r ≤ 1

2 min(N, |S||A|).

Linear MDP Setting Our definition is slightly different from the one in Jin et al. (2020b). In this
setting, we consider embeddings ϕ : S × A → Rd, ψ : S × A → Rd such that ∥ϕ(s, a)∥1 ≤ 1,
∥ψ(s, a)∥2 ≤ 1. We make the following assumptions:

1. There exists θhu ∈ Rd, ∥θhu∥2 ≤
√
d such thatRhu(s, a) = ⟨θhu, ψ(s, a)⟩ andRh(s, a) ∈

[0, 1].
2. There exist signed measures µ1h, . . . , µdh over the space S such that: Ph(·|s, a) =∑d

i=1 µih(·)⟨ϕ(s, a), ei⟩

We will assume that µi are such that ∥
∫
µih(ds)ϕ(s, a)π(da|s)∥1 ≤ 1 and supi,h

∫
|µih(ds)| ≤ Cµ.

This is true whenever µih are probability measures. We consider different embeddings for transition
(ϕ) and reward (ψ) as the transition embeddings have a natural ∥ · ∥1 structure since they give linear
combinations of measure which make up Ph(·|s, a). We denote the N × d matrix whose u-th row is
θ⊺uh to be Θh. The low-rank assumption in this setting takes the following form:
Assumption (Lin) 1. . The N × d matrix Θh has rank r ≤ 1

2 min(N, d).

For the task of reward maximization in Linear MDPs, deterministic policies of the form πh(s) =
arg supa⟨ψ(s, a), u∗h⟩+ ⟨ϕ(s, a), v∗h⟩ suffice, for u∗h, v

∗
h ∈ Rd. We want to complete the matrix Θh,
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with data of the form (ei, ψ(Sh, Ah), e
⊺
i Θhψ(Sh, Ah)). To achieve matrix estimation, we need to

query (Sh, Ah) such that the distribution of ψ(Sh, Ah) is ‘nearly isotropic’ (See Section 6). Such
(Sh, Ah) cannot necessarily be obtained as a result of reward maximization policy of a single agent
and is related to mean-field limit of multi-agent RL (similar to the setting in Cammardella et al.
(2020)), and it could necessarily be a randomized policy. However, the space of all possible policies
can be very large and intractable. Therefore, we restrict our attention to policies given by some
fixed policy space Q. With some abuse of notation, we define the total variation distance between
two kernels as: TV(πh, π

′
h) := sups∈S TV(πh(·|s), π′

h(·|s)). We define a distance over Q by
DQ(Π

(1),Π(2)) = suph∈[H] TV(π
(1)
h , π

(2)
h ), where Π(i) = (π

(i)
h : h ∈ [H]). We refer to Section A

for additional discussion on the above observations, connections to multi-agent mean-field RL and
construction of Q such that it contains all ϵ-optimal policies for every possible linear reward.

3 THE ALGORITHM

Our algorithm proceeds in 4 phases. Note that since all the users in our setting have the same
transition probabilities, we can run reward free RL (Phase 1) in a distributed fashion over the users.
Reward free exploration is useful in this setting since all users share the same MDP and the main
unknown is the reward matrix. Reward free exploration can be done collectively by selecting random
users instead of the same user, which reduces the per user complexity. This is then used in two ways:
1) Collaboratively exploring the space in order to complete the reward matrix (Phase 2) 2) Learning
the optimal reward for every user once the reward matrix is known (Phase 4).

3.1 TABULAR MDP CASE:

Phase 1: Reward Free Exploration We run the reward free RL algorithm in Zhang et al. (2020) for

Krf( ϵ8 ,
δ
2 ) = C

|S||A|H2
(
|S|+log(

1
δ )

)
ϵ2 polylog( |S||A|H

ϵ ) time steps by picking the MDP corresponding
to a uniformly random user whenever the reward free RL algorithm queries a trajectory. Let the
output of the reward free RL algorithm be Π̂ and V̂ .

Phase 2: Querying the Reward Matrix In this phase we query a ‘uniform mask’ with the parameter
p for the reward matrix Rh using Algorithm 1. For each (s, a) ∈ S × A and h ∈ [H], maintain
a counter Th,(s,a) for (s, a) ∈ S × A and h ∈ [H], initialized at 0. Given the ‘active sets’ G =
(Gh)h∈[H] ⊆ S ×A and h ∈ [H], we define the reward J (;G) = (J1, . . . , Jh) by

Jh(s, a;G) = 1((s, a) ∈ Gh) (1)
We will denote this reward by J (·;G). Initialize active set G = (Gh)h∈[H] such that Gh = S × A.
We initialize the reward matrix R̂h(u, (s, a)) = ∗, where ∗ denotes unknown entry. This algo-
rithm terminates when it detects that sufficient number of samples have been collected for matrix
completion.

Phase 3: Reward Matrix Completion We receive Gh and the partially observed matrix R̂h for each

h as the output of Algorithm 1. By R̂G∁
h

h , we denote the sub-matrix where the columns corresponding
to Gh are deleted. We use the nuclear norm minimization algorithm given in Recht (2011) to recover

R
G∁
h

h from R̂
G∁
h

h for every h ∈ [H].

Phase 4: Computing the Optimal Policy Phase 3 outputs the completed sub-matrix RG∁
h

h , where
only the columns corresponding to |G∁h| are recovered. We construct the recovered matrix R̄h by

setting R̄G∁
h

h = R
G∁
h

h and R̄Gh

h = 0. We compute the optimal policy for each user using the rewards
from R̄h via the output of the reward free RL, Π̂, from Phase 1.

3.2 LINEAR MDP CASE:

Phase 1 : Reward Free RL We run the reward free RL algorithm for Linear MDPs from Wagen-
maker et al. (2022), with error ϵ and probability of failure δ

4 . We use trajectories from random users

whenever a trajectory is queried. Here, Krf(ϵ, δ/4) =
CdH5(d+log(

1
δ ))

ϵ2 +
Cd9/2H6 log4(

1
δ )

ϵ .
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Output: Active sets G = (Gh)h∈[H], Partially complete matrix R̂h

t← 0 ;
P̂G ← V̂ (J (·;G)), Π̂G ← Π̂(J (·;G));
while P̂G > ϵ

2 do
Ut ← Unif([N ]) ; // Pick a user uniformly at random

S
(t)
1:H , A

(t)
1:H , R

(t)
1:H ∼MUt

(Π̂G) ; // Query trajectory
for h ∈ [H] do

if (S(t)
h , A

(t)
h ) ∈ Gh and Rh(Ut, (S

(t)
h , A

(t)
h )) = ∗ then

T
h,(S

(t)
h ,A

(t)
h )
← T

h,(S
(t)
h ,A

(t)
h )

+ 1 ; // Increment count

R̂h(Ut, (S
(t)
h , A

(t)
h ))← R

(t)
h ; // Fill Missing Entry

end
if T

h,(S
(t)
h ,A

(t)
h )

= Np then

Gh ← Gh \ {(S(t)
h , A

(t)
h )} ; // Remove element from Active Set

end
end
t← t+ 1 ;
P̂G ← V̂ (J (·;G));
Π̂G ← Π̂(J (·;G));

end
Algorithm 1: Uniform Mask Sampler for Tabular MDPs

Phase 2: Querying Linear Measurements of the Reward Matrix We obtain policies whose tra-
jectory data allows low rank matrix estimation of the reward matrix.

Step 1: For each time step h ∈ [H], we want to query obtain samples (s
(t)
h , a

(t)
h ) such that∑T

t=1 ϕ(s
(t)
h , a

(t)
h )ϕ⊺(s

(t)
h , a

(t)
h ) ⪰ κ2I . This can be done by Algorithm 2. Given a projector Q

to some subspace of Rd, by Qh,Q denote the reward ∥Qϕ(s, a)∥2 at time h and 0 otherwise. The
termination condition ensures that we see enough data in all directions ϕ, which allows us to find
collaborative exploration policy below.

Step 2: Using the observations given in Step 1, we compute the policy Π̂f,h which approximately
satisfies the property given in Assumption 3. This procedure is described in Section 5.

Phase 3: Estimating Low Rank Reward Matrix For this, we use the active learning procedure
given in Section 6 via row-wise linear measurements along with the policy ΠMC,h = Π̂f,h, which
was computed in Phase 2.

Phase 4: Computing the Optimal Policy Once the reward matrix Θh have been reconstructed for
every h in Phase 3, we use the output of reward free RL in order to compute the ϵ optimal policy for
each user.

4 MAIN RESULTS

4.1 TABULAR MDP:

The standard assumption for low rank matrix completion is that of incoherence, which ensures that
the matrix is not too sparse so that sparse measurements are sufficient to learn it. The following
definition is used in Recht (2011).

Definition 1. Given a r dimensional sub-space U of Rn , we define the coherence of as:

µ(U) :=
n

r
sup

1≤i≤n
∥PUei∥2 .

A n1 × n2 matrix M with singular value decomposition UΣV ⊺ is called (µ0, µ1) coherent if:
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Input: Total time T ; Tolerance γ; lower isometry constant κ
Output: ϕht, S(h+1)t for h ∈ [H − 1], t ∈ [T ]
h← 1 ;
while h ≤ H − 1 do

Q← I ;
Π̂Q ← Π̂(Qh,Q) ;
Gϕ,h ← 0 ; // Grammian initialized to 0
t← 1 ;
while t ≤ T do

Ut ∼ Unif([N ]) ; // Pick a uniformly random user

S1:H , A1:H ∼MUt
(Π̂Q) ; // Obtain Trajectory

ϕht ← ϕ(Sh, Ah) ;
S(h+1)t ← Sh+1 ;
Gϕ,h ← Gϕ,h + ϕhtϕ

⊺
ht ; // Update Grammian

if ∃y ∈ Sd−1 : y⊺Gϕ,hy < κ2 then
Q← the eigenspace of Gϕ,h with eigenvalues < κ2I;
Π̂Q ← Π̂(Qh,Q) ;

end
t← t+ 1

end
h← h+ 1

end
Algorithm 2: Well Conditioned Matrix Sampler

a) The coherence of the row and column spaces of M are at-most µ0 b) The absolute value of every
entry of UV ⊺ is bounded above by µ1

√
r

n1n2
.

Given a policy Π, and Ω ⊆ S × A, by PΠ
h (Ω) we denote the probability that at time h we have

(Sh, Ah) ∈ Ω under the policy Π.
Assumption (Tab) 2. Given the reward matrix Rh and Ωh ⊂ S × A, recall the notation for the
sub-matrix RΩh

h of Rh. If supΠ P
Π(Ω∁

h) < ϵ have:

1. RΩh

h is (µ0, µ1) incoherent.

2. |Ω∁
h| ≤

|S|
2

The incoherence assumption for RΩ
h makes sense since the set Ω∁ cannot be easily reached with any

policy with a probability larger than ϵ. In fact we can arrive at an ϵ optimal policy for the original
reward by just setting the rewards at Ω∁ to be 0. These can be thought of as redundant states which
do not matter for our RL model with any reward.
Theorem 1. Suppose Assumption (Tab) 1, 2 hold. Let the parameter p =

C
max(µ2

1,µ0)r(N+|S||A|) log2 |S||A| log(Hδ )

N |S||A| . for some large enough constant C. Assume that
|S||A| and N are large enough such that p < 1/2. Then, with probability at-least 1− δ, we can find
an ϵ optimal policy Π̂u for every user u ∈ [N ] whenever the total number of trajectories queried is:

C
|S||A|H2

(
|S|+ log( 1δ )

)
ϵ2

polylog( |S||A|H
ϵ )+

Cmax(µ2
1, µ0)r(N + |S||A|)H log2 |S||A| log(Hδ )

ϵ

Remark 1. For large N , the number of trajectories queried per user is Õ( rH log2(|S||A|)
ϵ ), which is

an exponential improvement in the state-space size dependence when compared to the minimax rate
of |S||A|H2

ϵ2 (Dann & Brunskill, 2015). Every phase in the algorithm has polynomial computational
complexity inN, |S||A| and 1

ϵ . The probability p is chosen such that p|S||A|N = Õ(r(|S||A|+N)),
which is the number of free parameters required to describe a rank r matrix.
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4.2 LINEAR MDP

Assumption (Lin) 2. There exists a γ > 0 such that for every x ∈ Sd−1, and every h ∈ [H] there
exists a policy Πx,h such that whenever S1:H , A1:H ∼ Πx,h, E⟨ϕ(Sh, Ah), x⟩2 ≥ γ

The assumption above shows that we can obtain information about all directions. If this does not
hold for any γ, then ϕ(Sh, Ah) does not have any component in some direction x0 with any policy.
Thus, we can remove the sub-space spanned by x0 and make the embedding space Rd−1 at time h.

Assumption (Lin) 3. There exist ζ, ξ > 0 such that for every h ∈ [H], there exists a policy Πh,ζ,ξ ∈
Q such that whenever S1:H , A1:H ∼M(Πh,ζ,ξ), we have:

inf
x∈Sd−1

E
[
|⟨x, ψ(Sh, Ah)⟩|

√
d− ξd⟨x, ψ(Sh, Ah)⟩2

]
≥ ζ

The assumption above ensures that there exist measurements ψ(Sh, Ah) which are conducive to low
rank matrix estimation as considered in Section 6.

Assumption (Lin) 4. For any 1 ≥ η > 0, there exists an η net for Q, denoted by Q̂η such that
log |Q̂η| ≤ D log( 1η ).

We refer to Section A, where we justify this assumption. We first demonstrate that deterministic
policies which are sufficient for reward maximization (as used in Jin et al. (2020b)) cannot be used
in this context, so a set of stochastic policies is required. We then construct such policy classes with
D = O(dH log dH log log(|A|)).
Theorem 2. Suppose Assumptions (Lin) 1 2 3 and 4 hold and suppose ϵ < γ

2 . In Algorithm 2, we

set κ =
CCµdH

√
dH+D(

√
d+ξd)

ζ

√
log
(

CµH(d+D)
ζγδ

)
and T = C κ2d

γ2 log dκ
γ .

Then, with probability at least 1 − δ, our algorithm finds ϵ optimal policy for every user u ∈
[N ] with the total number of trajectories being bounded by: Trf + Tpol + Tmat−comp, where:

Trf =
dH5(d+log(

1
δ ))

ϵ2 +
d9/2H6 log4(

1
δ )

ϵ , Tpol =
C2

µd
5H3(dH+D) log2

(
CµH(d+D)

ζγδ

)
ζ2γ2 Tmat−comp =

C
Hr(N+d logN) log

d
ζξ+H logN log( log N

δ )
ζ2ξ2

Remark 2. Note that wheneverN is large, we have the the sample complexity per user to beO(Hr).
This is much better than the dependence of Ω(d2H2) in the minimax lower bounds for Linear MDPs
(Wagenmaker et al., 2022). While Phases 1 and 2 of the algorithm have a computational complexity
which is polynomial in d and 1

ϵ , the optimization problems posed in Phase 3 and 4 are not neces-
sarily polynomial time. We leave the computational aspects to future work. Notice that the sample
complexity Õ(r(N + d)) corresponds to the number of free parameters required to describe a rank
r matrix.

5 OBTAINING POLICIES WITH GIVEN STATISTICS

In this section, we consider the Linear MDP setting and describe the sub-routine described in Step 2
of Phase 2 of the algorithm where we compute a policy Π̂f,h such that the law of ϕ(Sh, Ah) under
this policy approximately satisfies the property given in Assumption 3. This is required in order to
use the guarantees for low matrix estimation in Phase 3, which is described in Section 6. We first
state a structural lemma which characterizes the law of Sh+1, Ah+1 under any policy Π.

Lemma 1. Consider any policy Π = (π1, . . . , πH−1, πH) to the MDP M. Let S1:H , A1:H ∼
M(Π). Then for any bounded, measurable function g : S ×A → R, we have:

Eg(Sh+1, Ah+1) =

d∑
i=1

νi

∫
g(s, a)dµih(ds)πh+1(da|s)

Where νi := ⟨Eϕ(Sh, Ah), ei⟩
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We now want to estimate certain statistics under any policy using available data, obtained from
the output of Algorithm 2. Notice that the output of Algorithm 2 gives a sequence of ran-
dom variables (ϕh1, s(h+1)1), . . . , (ϕhT , s(h+1)T ) ∈ Rd × S such that (s(h+1)l)

T
l=1|(ϕhl)Tl=1 ∼∏T

l=1

(∑d
i=1⟨ϕhl, ei⟩µhi(·)

)
andGϕ,h :=

∑T
t=1 ϕhtϕ

⊺
ht. For any measurable function g : S×A →

RK , ν ∈ Rd such that ∥ν∥ ≤ 1 and any randomized policy Π = (π1, . . . , πH) we define:

1. T1(g, π1) = E
∫
g(S1, a)π1(da|S1)

2. Th+1(g; ν, πh+1) =
∑d

i=1⟨ν, ei⟩
∫
µih(ds)πh+1(da|s)g(s, a) when h ≤ H − 1

3. Eν
1 (Π) := ∥T1(ϕ, π1)− ν∥1

4. Eν
h(Π) = infν1,...,νh−1∈Bd(1) F (Π, ν1, . . . , νh−1, ν) whenever h > 1

Define αht,ν = ϕ⊺htG
−1
ϕ,hν. We estimate these operators from data as follows:

1. T̂1(g, π1) = 1
T

∑T
t=1

∫
g(s1t, a)π1(da|s1t)

2. T̂h+1(g, ν, πh+1) =
∑T

t=1 αht,ν

∫
g(s(h+1)t, a)πh+1(da|s(h+1)t)

3. Êν
1 (Π) := ∥T̂1(ϕ, π1)− ν∥1

4. Êν
h(Π) = infν1,...,νh−1∈Bd(1) F̂ (Π, ν1, . . . , νh−1, ν) whenever h > 1

Where, for h > 1 and ν1, . . . , νh−1 ∈ Bd(1), we have defined:

1. F (Π, ν1, . . . , νh−1, νh) := Eν1
1 (Π) +

∑h
j=2 ∥Tj(ϕ, νj−1, πj)− νj∥1

2. F̂ (Π, ν1, . . . , νh−1, νh) := Êν1
1 (Π) +

∑h
j=2 ∥T̂j(ϕ, νj−1, πj)− νj∥1

Define f(s, a;x) := |⟨x, ψ(s, a)⟩|
√
d− ξd⟨x, ψ(s, a)⟩2. The output of our method is:

1. Π̂f,1 = arg supΠ=(π1,...,πH)∈Q infx∈Sd−1 T̂1(f(·;x), π1)

2. (Π̂f,h, ν̂) = arg sup ν∈B(1)
Π=(π1,...,πH)∈Q

infx∈Sd−1 T̂h(f(·;x); ν, πh) whenever h > 1, subject

to Êν̂,h−1(Π̂f,h) ≤ η0
3. Assign output: Π̂ζ,ξ,h = Π̂f,h

The idea behind this method is as follows. First, using the output of algorithm 2, we construct
T̂h(g, ν, πh), which approximates the functional Th(g, ν, πh) uniformly for every ν, πh. This is
shown in Lemma 9 in the appendix. We will show in Theorem 3 that obtaining policies which
can be used with the matrix completion routine reduces to picking a policy Πf,h = (π1, . . . , πH)
such that whenever S1:H , A1:H ∼ M(Πf,h), we must have: E infx∈Sd−1 f(Sh, Ah;x) ≥ ζ. Now,
we use Lemma 1 to conclude that if such a policy exists, then there exist ν1, . . . , νh−1 such that
Eϕ(Sj , Aj) = νj and infx∈Sd−1 Th(f(;x); νh, πh) ≥ ζ. Since we only have sample access, we find
such a policy approximately by optimizing using the estimates T̂ instead of the exact functional T
as described above.
Theorem 3. We condition on the event Gϕ,h ≥ κ2I for every h ∈ [H]. Let κ, η, η0 be such that for
some small enough constants c0, c > 0 and a large enough constant C > 0:

1. η ≤ c ζ

CµdH(
√
d+ξd)H

√
κ2

T ; η0 = c0
ζ

Cµ(
√
d+dξ)

2. κ ≥ C Cµ(
√
d+ξd)dH
ζ

√
log
(

dH|Q̂η|
δ

)
+ dH log

(
d
η

)
Recall the policy Π̂f,h. Suppose the Assumption 3 holds. Then, with probability at-least 1 − δ

4 we
obtain the policy Π̂f,h is such that whenever S1:H , A1:H ∼M(Π̂f,h), we have:

E inf
x∈Sd−1

f(Sh, Ah;x) ≥
ζ

2

8
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This implies that ψ(Sh, Ah) satisfies E|⟨ψ(Sh, Ah), x⟩| ≥ ζ

2
√
d
; Eψ(Sh, Ah)ψ

⊺
ik ≤

1
dξ2

6 MATRIX ESTIMATION WITH ROW-WISE LINEAR MEASUREMENTS

In this section, we describe the active learning based low rank matrix estimation procedure. For
an unknown rank r matrix Θ∗ (corresponding to the reward matrix Θ∗

h in the definition of Linear
MDPs) of dimensions N × d, we are allowed to query samples of the form (ei, ψ, e

⊺
i Θ

∗ψ) for any
i ∈ [N ] of our choice and ψ = ψ(Sh, Ah) where S1:H , A1:H ∼ M(ΠMC,h), for some input policy
ΠMC,h. This corresponds to running the MDP corresponding to user i, with the policy ΠMC,h and
observing the reward at time h, given by ⟨ei,Θ∗

hΨ(Sh, Ah)⟩. Our basic task is to estimate the matrix
Θ∗ from these samples with high-probability.

6.1 THE ESTIMATOR

Given any N × d matrix ∆, by ∆⊺
i , we denote its i-th row. Given K ∈ N, and a sequence of vectors

Ψ = (ψik ∈ Rd)i∈[N ],k∈[K].

L(∆,Ψ) :=
1

NK

N∑
i=1

K∑
k=1

|⟨∆i, ψik⟩|2

We estimate Θ∗ row-wise using the following iterative procedure, where recover some rows of Θ∗

into Θ̂ in each iteration and obtain the corresponding linear measurements of Θ∗. Letting the set of
unknown rows at iteration t to be Īt−1 (with Ī0 = [N ]). We draw a fresh sequence of vectors Ψ(t)

from some distribution, we then recover some rows Ī∁t ⊆ Īt−1 of Θ∗ and store them in Θ̂.

1. Draw Ψ(t) = (ψ
(t)
ik )k∈[Kt],i∈Īt−1

, we obtain θ∗ik = e⊺i Θ
∗ψ

(t)
ik .

2. Consider the loss function

L(Θ−Θ∗,Ψ(t)) :=
1

Kt|Īt−1|
∑

i∈Īt−1

K∑
k=1

|⟨Θi, ψ
(t)
ik ⟩ − θ

∗
ik|2 .

3. Find a matrix Θ with rank ≤ r such that L(Θ−Θ∗,Ψ(t)) = 0.
4. Initialize Īt ← ∅.
5. For every i ∈ Īt−1, draw K fresh samples using ψ̃

(t)
i1 , · · · , ψ̃

(t)
iK and compute∑K

k=1 |⟨Θi, ψ̃
(t)
ik ⟩−θ∗ik|2. If

∑K
k=1 |⟨Θi, ψ̃

(t)
ik ⟩−θ∗ik|2 > 0 then add i to Īt i.e., Īt ← Īt∪{i}.

6. End routine when Īt = ∅.

Suppose ψik are i.i.d random vectors such that there exist ζ, ξ > 0 such that for any x ∈ Rd,
∥x∥ = 1 we have:

∥ψik∥ ≤ 1 almost surely; E|⟨ψik, x⟩| ≥
ζ√
d
; Eψikψ

⊺
ik ≤

1

dξ2
(2)

To give some intuition, the second condition above means that given any vector x, there is some
overlap between the random vector ψ and x, ensuring that every measurement gives us some in-
formation helping us to complete the matrix. The third assumption is a standard bound on the
covariance matrix. Then we have the following theorem whose proof is presented in Section F.

Theorem 4. Assume that supi ∥Θ∗
i ∥ ≤ Cθ and that the distribution of ψ(t)

ik satisfies equation 2.

SupposeKt|Īt−1| = C r|Īt−1|+dr
ζ2ξ2 log d

ζξ +C
log( log N

δ )
ζ2ξ2 . With probability at-least 1−δ, the algorithm

terminates after logN iterations and the output Θ̂ satisfies Θ̂ = Θ∗. Therefore, with probability
at-least 1− δ, the sample complexity for estimation of Θ∗ is:

C
r(N + d logN)

ζ2ξ2
log d

ζξ + C
logN log

(
logN

δ

)
ζ2ξ2

9
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A MORE DISCUSSION REGARDING POLICY SPACE

A.1 NECESSITY OF RANDOMIZED POLICIES

We will first show that randomized policies might be necessary in such contexts with a simple ex-
ample and show that obtaining states which satisfy conditions like equation 2 goes beyond simple
reward maximization. Suppose H = 1, S = {1} and A = {1, . . . , d}. We consider the em-
bedding ψ(s, a) = ea. Suppose we want to obtain a policy π such that whenever S1, A1 ∼ π,
λmin(Eψ(S1, A1)ψ(S1, A1)

⊺) is maximized (where λmin denotes the minimum eigenvalue). This
is maximized when π(da|s) is chosen to be the uniform distribution over A and the corresponding
value is 1/d. Note that whenever π is a deterministic policy we will have λmin = 0 whenever d > 1.
This is in contrast to reward maximization problems where, under general conditions, a deterministic
optimal policy exists (See Theorem 1.7 in Agarwal et al. (2019)).

If fact, we can also show that the policy which minimizes ∥Eψ(S1, A1) − 1
d

∑d
a=1 ea∥ must also

necessarily be random.

In the case of linear MDPs, we can find such a deterministic optimal policy Π = (π1, . . . , πH)
as πh(s) = arg supa⟨ψ(s, a), u∗h⟩ + ⟨ϕ(s, a), v∗h⟩ (Jin et al., 2020b). This reduces the problem
to estimating the parameters u∗h, v

∗
h even when the state-action space is an infinite set. However,

when such policies are not guaranteed to exist, as in case of functional maximization required in
Section 6, the set of all policies can be intractably large. This is the justification for picking a nice
enough policy space denoted by Q.

A.2 CONSTRUCTING POLICY SPACES

We consider any linear MDP satisfying the definition given in Section 2 and suppose A is finite.
We consider the set of all probability distributions πh(a|s;u, v) ∝ exp(⟨ϕ(s, a), u⟩+ ⟨ψ(s, a), v⟩).
We consider Qh = {πh(a|s, u, v) : u, v ∈ Bd(R)}, We let our policy space be Q = {Π =
(π1, . . . , πH) : πh ∈ Qh}.
Lemma 2. Consider the probability distribution over a finite set [|A|] give by pβ(a) ∝ exp(βxa)
for every a ∈ [|A|] some xa ∈ R+ and β ∈ R+. For any ϵ > 0 and random variable A ∼ pβ , we
must have:

P(xA < sup
a
xa − ϵ) ≤ |A| exp(−βϵ)

And
ExA ≥ (sup

a
xa − ϵ)(1− |A| exp(−βϵ))

Lemma 3. Let Q∗
h(s, a) be the optimal action-value function for the MDP. Then the policy Π =

(π1, . . . , πh) given by πh(a|s) ∝ exp(βQ∗
h(s, a)) is ϵH + H2|A| exp(−βϵ) sub-optimal for any

ϵ > 0

12
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Proof. Consider the optimal value function defined by V ∗
h (s) = supaQ

∗
h(s, a). Let Q̄h(s, a) denote

the optimal action value function under the policy Π and let V̄ (s) =
∫
Q̄h(s, a)πh(da|s) denote the

value at state s with the policy Π. Clearly, we have: Q̄H(s, a) = Q∗
H(s, a) = R(s, a). Q̄h(s, a) ≥

Q∗
h(s, a)− η uniformly. Then we have

V̄h(s) ≥
∫
Q∗

h(s, a)πh(da|s)− η

≥ (sup
a
Q∗

h(s, a)− ϵ)(1− |A| exp(−βϵ))− η

≥ sup
a
Q∗

h(s, a)− ϵ−H|A| exp(−βϵ)− η = V ∗
h (s)− ϵ−H|A| exp(−βϵ)− η (3)

In the second step, we have invoked Lemma 2. In the last step, we have used the fact thatQ∗
h ∈ [0, H]

uniformly. Now, by the Bellman iteration, we have:

Q∗
h−1(s, a) = Rh−1(s, a) + Es′∼Ph−1(|s,a)V

∗
h (s

′)

≥ Rh−1(s, a) + Es′∼Ph−1(|s,a)V̄h(s
′)− ϵ−H|A| exp(−βϵ)− η

= Q̄h−1(s, a)− ϵ−H|A| exp(−βϵ)− η (4)

Therefore, by induction, we conclude that V̄1(s) ≥ V ∗
1 (s)− ϵH −H2|A| exp(−βϵ)

Therefore, by the definition of the value function, we conclude the claim.

Now, by a simple extension of Proposition 2.3 in Jin et al. (2020b), we conclude that the optimal Q∗
h

function for any linear MDP can be written as:

Q∗
h(s, a) = ⟨ψ(s, a), u∗h⟩+ ⟨ϕ(s, a), v∗h⟩ .

Where ∥u∗h∥2 ≤
√
d and ∥v∗h∥∞ ≤ HCµ. Observe that choosing ϵ = η

2H and β = 2 log(2H|A|/η)
η

will ensure that the randomized policy Π in the statement of Lemma 3 is η optimal. Therefore, we
can take R = 2dHCµ

log(2H|A|/η)
η in the definition of Qh above and conclude that this includes

every η optimal policy for every MDP with embedding functions ϕ, ψ. We will now bound the
covering number. Recall the definition of the distance DQ(Π1,Π2) = suph∈[H] TV(π

(1)
h , π

(2)
h ).

Therefore it is sufficient to obtain an η cover for Qh (denoted by Q̂h,η) and then construct Q̂η =

{Π = (π1, . . . , πH) : πh ∈ Q̂h,η∀h ∈ [H]} =
∏H

h=1 Q̂h,η .
Lemma 4. π(|s;u, v) be as defined in the beginning of this Subsection.

TV(π(·|s;u, v), π(·|s;u′, v′)) ≤ 1

2
(exp(2∥u− u′∥2 + 2∥v − v′∥∞)− 1)

Proof. Denote π(a|s;u, v) by π(a) and π(a|s;u′, v′) by π′(a). Consider the correspond-
ing partition functions denoted by Z :=

∑
a∈A exp(⟨ψ(s, a), u⟩ + ⟨ϕ(s, a), v⟩) and Z ′ :=∑

a∈A exp(⟨ψ(s, a), u′⟩+ ⟨ϕ(s, a), v′⟩). We conclude that using Hölder’s inequality for ⟨u−u′, ψ⟩
and ⟨v − v′, ϕ⟩ that:

exp(−∥u− u′∥2 − ∥v − v′∥∞) ≤ Z ′

Z
≤ exp(∥u− u′∥2 + ∥v − v′∥∞)

exp(−2∥u− u′∥2 − 2∥v − v′∥∞) ≤ π′(a)

π(a)
≤ exp(2∥u− u′∥2 + 2∥v − v′∥∞) (5)

TV(π, π′) = 1
2

∑
a∈A
|π(a)− π′(a)|

= 1
2

∑
a∈A

π(a)
∣∣1− π′(a)

π(a)

∣∣
≤ 1

2
(exp(2∥u− u′∥2 + 2∥v − v′∥∞)− 1) (6)
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Using the lemma above, we conclude that Q̂h,η = {πh(|s;u, v) : u, v ∈ B̂d,η/4(R)} whenever
η ≤ 1. Here B̂d,η/4(R) an η/4 net over Bd(R) with respect to the norm ∥ · ∥2. From the results in
Vershynin (2018), we can therefore take:

|Q̂h,η| ≤ |B̂d,η/4(R)|2 ≤ exp(Cd log(Cη
R )) (7)

Since we had Q̂η =
∏H

h=1, we conclude that:

log(|Q̂η|) ≤ cdH
(
log dH

η + log log(2H|A|/η)
)

A.3 RELATIONSHIP TO MEANFIELD LIMITS OF MULTI-AGENT RL

Consider the conditions given in equation 2 for ψ(Sh, Ah) where S1:H , A1:H ∼ Πmat−comp,h. We
refer to the proof of Theorem 3 to show that the following condition implies the conditions given
in equation 2:

inf
x∈Sd−1

E|⟨ψ(Sh, Ah), x⟩|
√
d− ξd⟨ψ(Sh, Ah)⟩2 ≥ ζ

Conversely, the conditions in equation 2 implies the following:

inf
x

E|⟨ψ(Sh, Ah), x⟩|
√
d− ξ2ζ

2
d⟨ψ(Sh, Ah), x⟩2 ≥

ζ

2

Therefore, the problem of obtaining a policy satisfying equation 2 reduces to finding a policy such
that the functional infx E|⟨ψ(Sh, Ah), x⟩|

√
d − βd⟨ψ(Sh, Ah), x⟩2 is maximized for some small

enough β ∈ R+. Note that this functional maps the distribution of (Sh, Ah) (denoted by Γh(Π))
obtained by applying some policy Π to a real number. Let us denote this function by J(Γh). Our
objective now is to find a policy Πmat−comp,h by solving the following optimization problem

arg sup
Π∈Q

J(Γh(Π)) (8)

This setup is similar to the mean field multi-agent control problem presented in Cammardella et al.
(2020). To explicitly see the connection to Multi-agent systems, consider n agents with the same
MDPM and embedding functions ϕ, ψ. Each trajectory from this multi-agent system corresponds
to jointly and running the MDP associated with each agent with the same policy independently. The
collective reward of the system is given by J(Γ̂h), where Γ̂h denotes the empirical distribution of
state-actions of the n agents at time h. Note that on the one hand, picking a policy Πn to maximize
this reward is a reward maximization problem on the joint multi-agent system. And, for any fixed
policy Π, as n → ∞, Γ̂h(Π) → Γh(Π) under reasonable assumptions on the state space via the
law of large numbers and hence J(Γ̂h(Π)) → J(Γh(Π)) under continuity. Therefore the planning
problem in equation 8 is the same as the multi-agent planning problem described above in the limit
n→∞.

B ANALYSIS - TABULAR MDPS

We will call the reward free RL procedure in Phase 1 to be successful if it outputs the ϵ optimal
policy. This has probability atleast 1− δ

2 .

B.1 ANALYSIS OF ALGORITHM 1

Lemma 5. Suppose p ≤ 1
2 , conditioned on the success of Phase 1, with probability at-least 1 −

exp(−cNp|S||A|H), Algorithm 1 terminates after querying C|S||A|NHp
ϵ trajectories. (Gh)h∈[H],

the active sets at the termination of the algorithm. They satisfy:

sup
π

H∑
h=1

Pπ
h (Gh) ≤

5ϵ

8
(9)
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For any a × b matrix R, let R̂ be its partially observed version (that is, there exists a set of indices
I ⊆ [a] × [b] such that R̂ij = Rij if (i, j) ∈ I and R̂ij = ∗ otherwise). We call a random set
of indices J to have the distribution Unif(m, [a], [b]) if J is drawn uniformly at random such that
|J | = m.

Lemma 6 (Modification: Mod1). Suppose we run, independently, a modification of algorithm 1
where on the “Query trajectory” step the trajectories are sampled from a fixed MDP M1 (but
rewards are from the reward function corresponding to Ut). Consider all the random variables
that determine the trajectory of this algorithm:

(
V̂ , Π̂, (S

(t)
1:H , A

(t)
1:H , R

(t)
1:H)t, (Ut)t

)
. Then the joint

distribution of this collection of random variables is unchanged under the modification.

Proof. The proof follows from an induction argument on the time index t. We describe the key steps
here. For the ease of notation, let Tt =

(
(S

(t)
1:H , A

(t)
1:H , R

(t)
1:H), Ut

)
Let XT =

(
V̂ , Π̂, (Tt)t≤T

)
. Let

X̃T and T̃t denote the corresponding quantities under the modification. It is enough to show that
finite dimensional marginals have the same joint distribution under the modification. In particular,
we will show:

1. T0
d
= T̃0

2. Suppose XT
d
= X̃T . Then the Markov kernel kTT+1|XT

is almost surely (under the com-

mon distribution of XT , X̃T ) equal to kT̃T+1|X̃T
. Thus XT+1

d
= X̃T+1

The first statement is straightforward since, in the zeroth step, the distribution of Π̂G not affected
by the modification, and thus due to identical MDP transitions across users, the distribution of T0
is preserved under modification. A similar argument proves the second statement. Roughly, given
a realization of XT the distribution of TT+1 is same as the distribution of T̃T+1 given the same
realization of X̃T , due to the exact same reason presented for the first statement. A fully formal
proof requires setting up appropriate proability spaces, so we omit it here. Furthermore, since the
random variables considered are all discrete, one can argue via PMFs as well.

Lemma 7. Suppose p ≤ 1
2 . conditioned on the success of Phase 1 and termination of Algo-

rithm 1, for every h ∈ [H], the Algorithm 1 returns partially filled reward matrices R̂h. Con-

sider the sub-matrix R̂G∁
h

h . Let Ih ⊆ [N ] × G∁h be the sub-set of observed indices for R̂h. Let

Jh|Gh ∼ Unif(
Np|G∁

h|
2 , [N ],G∁h). There exists a coupling between Jh and Ih such that

P
(
Jh ⊆ Ih

∣∣Gh) ≥ 1− |S||A| exp(−cNp)

Proof. Let us fix Gh and construct a coupling between Ih and Jh.

Consider any fixed, arbitrary permutations σg over [N ], for g ∈ G∁h. By σ(Ih), we denote
{(σg(i), g) : (i, g) ∈ Ih}.

Claim 1. Conditioned on Gh, σ(Ih) has the same distribution as Ih.

Proof. Let {σ(s,a):[N ]→[N ]|(s, a) ∈ S×A} be a set of arbitrary permutations on [N ]. From lemma 6
it is enough to prove the statement for the random variables under the modification described in that
lemma (call this Mod1). Now consider a further modification (call it Mod2) where in every iteration
t, we sample Ut ∼ Unif([N ]), for each horizon h we set Ũ (t)

h = σ
(S

(t)
h ,A

(t)
h )

(Ut), and then update

the entries of Rh(Ũ
(t)
h , (S

(t)
h , A

(t)
h )) (instead of Rh(Ut, (S

(t)
h , A

(t)
h ))). Next, we couple these two

modifications by using same (V̂ , Π̂) and the same set of Ut’s for both the modifications. Further, we
couple the MDP used in these modifications to be the same, single MDP.

Now an induction argument shows that the sequence of active sets G obtained in these modifications
are also identical for every time t; only the rows of Rh where entries are filled change according
to the set of permutations chosen.Thus, under the described coupling, Mod1 and Mod2 produce
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identical trajectories (i.e., (S(t)
1:H , A

(t)
1:H)), the columns of reward matrices are just permutations of

each other described by the chosen set of permutations, and algorithm 1 terminate at the same
time in both these cases. However, the same induction argument also shows that for each t and h,
conditioned on Gh, trajectories (which is same in Mod1 and Mod2) until at beginning of iteration t,
we have (Ut, (S

(t)
h , A

(t)
h ))

d
= (Ũ

(t)
h , (S

(t)
h , A

(t)
h )).

Therefore if Ih, Ĩh ⊂ [N ] × G∁h denotes the subset of observed indices at termination (outside the
active set), then Ĩh = σ(Ih) ≡ {(σ(s,a)(i), (s, a)) : (i, (s, a) ∈ Ih)} and, conditioned on Gh,

Ĩh
d
= Ih

Claim 2. At termination, conditioned on Gh, random sets Igh = {(i, g) : (i, g) ∈ Ih} are jointly
independent.

Proof. Again we work with the modification Mod1 described in lemma 6. For each (s, a) consider
the collection of Ut’s that are used populate the column (s, a) of matrix Rh in algorithm 1. Call this
collection U(s,a).

Remark 3. Since the columns of Ih have exactly Np entries, permutation invariance proved in the
above claim implies that

For any set J̄ ⊆ [N ]×G∁h, define the count function (N J̄
g )g∈G∁

h
such that N J̄

g = |{i ∈ [N ] : (i, g) ∈
J̄}|.
We are now ready to give the coupling: given Gh, draw uniformly random, independent permutations
σg for g ∈ G∁h. Draw (Ng)g∈G∁

h
independent of σg and to have the joint law of (NJh

g )g∈G∁
h

. Define:

J̃h = {(σg(i), g) : i ≤ Ng, g ∈ G∁h}

Ĩh = {(σg(i), g) : i ≤ Np, g ∈ G∁h}

Claim 3. The marginal distributions of J̃h and Ĩh are respectively the distributions of Jh and Ih.

Proof. First we will prove a general statement about J ∼ Unif(r, [N ], [M ]). Let X ∈ {0, 1}N×M

withXi,m = 1 iff (i,m) ∈ J . Let (Nm)m∈[M ] be the count functions corresponding to J i.e.,Nm =∑
iXi,m. Let Ym = (X1,m, · · · , XN,m). We will argue that conditional on {Nm : m ∈ [M ]}, the

random vectors Ym are jointly independent. Indeed, pick any x ∈ {0, 1}N×M and (n1, · · · , nm).
Let ym be the m’th column of x. Then

P [X = x,∩m{Nm = nm}] =

(∏
m

1

[∑
i

xi,m = nm

])
1

∑
i,m

xi,m = r

 1(
MN
r

)
The above can also be written as

P [∩m{Ym = ym},∩m{Nm = nm}] =

(∏
m

1

[∑
i

xi,m = nm

])
1

[∑
m

nm = r

]
1(

MN
r

)
Let 1 denote the all 1 vector in RN . Note that ym = (x1,m, · · · , xN,m)⊤. Marginalizing the above,
we see that

P [∩m{Nm = nm}] =

(∏
m

1(
N
nm

)) 1

[∑
m

nm = r

]
1(

MN
r

)
Thus the conditional distribution can be expressed as

P
[
∩m{Ym = ym}

∣∣∣∣ ∩m {Nm = nm}
]
=

(∏
m

1
[
1⊤ym = nm

](
N
nm

) )
1 [
∑

m nm = r](
MN
r

)
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Since the (conditional) joint PMF factors, it is an easy calculation to show the conditional indepen-
dence i.e.,

P
[
∩m{Ym = ym}

∣∣∣∣ ∩m {Nm = nm}
]
=
∏
m

P
[
Ym = ym

∣∣∣∣ ∩m {Nm = nm}
]

Furthermore, for any n1, · · ·nm such that
∑

m nm = r, marginalization shows

P [Ym = ym| ∩m {Nm = nm}] =
1
[
1⊤ym = nm

](
N
nm

)
Let N−m = (N1, · · · , Nm−1, Nm+1, · · · , NM ), and similarly for n−m. Then

P [Ym = ym, N−m = n−m|Nm = nm]

= P [Ym = ym| ∩m {Nm = nm}]P [N−m = n−m|Nm = nm]

=

0,
∑

m nm ̸= r
1[1⊤ym=nm]

( N
nm

)
P [N−m = n−m|Nm = nm] , otherwise

The above factorization directly implies that Ym, conditioned on Nm is uniformly distributed on its
support {y : 1⊤y = Nm} and is independent of N−m. Thus

P
[
∩m{Ym = ym}

∣∣∣∣ ∩m {Nm = nm}
]

=
∏
m

P
[
Ym = ym

∣∣∣∣Nm = nm

]
=
∏
m

1
[
1⊤ym = nm

](
N
nm

)
Observation: The above calculations give another way to generate Y : first generate N1, · · · , NM

from the right distribution, and then conditioned on Nm generate each Ym uniformly such that
1⊤Ym = Nm.

Next we apply the above calculations and observation to J = Jh|Gh ∼ Unif(
Np|G∁

h|
2 , [N ],G∁h). For

a uniformly random permutation σ on [N ], the set {σ(i) : 1 ≤ i ≤ k} is uniformly distributed on
all k-sized subsets of [N ]. In the statement of the claim the permutations are chosen independently
for each g ∈ G∁c . Thus from the above observation, we have Jh

d
= J̃h conditioned on Gh.

The claim about Ĩh follows directly from permutation invariance proved by claim 1.

Claim 4. P(Ng > Np|Gh) ≤ exp(−c0Np) for every g ∈ G∁h

Proof. Throughout this proof, we will condition on the terminal active set Gh. We will show this
using the results on concentration with negative regression property as established in Proposition 29
in Dubhashi & Ranjan (1996). Ng =

∑N
i=1 1((i, g) ∈ J̃h). Now we will show that the collection

Xig := 1((i, g) ∈ J̃h) for i ∈ [N ], g ∈ G∁h satisfy the negative regression property. By the definition
of negative regression, we can conclude that the sub-collection (Xig)i∈[N ] also satisfies this property
for every g ∈ G∁h.

Consider the partial order over binary vectors X ⪰ Y iff Xl ≥ Yl for every l. The negative
regression property is satisfied iff for every K1,K2 ⊆ [N ] × G∁h such that K1 ∩ K2 = ∅, and a
real valued function f(Xm : m ∈ K1) which is non-decreasing with respect to the partial order, we
must have:

g(tl : l ∈ K2) := E
[
f(Xm : m ∈ K1)

∣∣Xl = tl,∀l ∈ K2

]
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be such that g is a non-increasing function in tl with respect to the partial order. Note that in
the case of uniform distribution as in J̃h, the distribution (Xm)m∈K1

is the uniform, permutation

invariant distribution with constant sum almost surely. The sum being Np|G∁
h|

2 −
∑

l∈K2
tl. Therefore,

whenever t′l ≥ tl for every l ∈ K2, we have the following stochastic dominance:[
(Xm)m∈K1

∣∣∣∣Xl = t′l∀l ∈ K2

]
⪯
[
(Xm)m∈K1

∣∣∣∣Xl = tl∀l ∈ K2

]
Therefore, this coupling leads us to conclude that:

g(tl : l ∈ K2) := E
[
f(Xm : m ∈ K1)

∣∣Xl = tl∀l ∈ K2

]
≥ E

[
f(Xm : m ∈ K1)

∣∣Xl = t′l∀l ∈ K2

]
= g(t′l : l ∈ K2) (10)

The second step follows from stochastic dominance. This implies that the function g is non-
increasing which establishes the negative regression property. Now, we consult Proposition 29 in
Dubhashi & Ranjan (1996) to show that we can take Chernoff bounds on Ng =

∑
i∈[N ]Xig as

though Xig were i.i.d Ber(p). Therefore, from an application of Bernstein’s inequality (Boucheron
et al., 2013), we conclude the statement of the claim.

Now, Jh ⊆ Ih if and only if Ng ≤ Np for every g ∈ G∁h. Therefore, from the claim above, we have
P(Jh ⊆ Ih|G∁h) ≥ 1− |S||A| exp (−c0Np).

We are now ready to prove Theorem 1.

Proof of Theorem 1. In order to establish the result, we need to show that with p as set in the state-
ment, the algorithm returns ϵ optimal policies Π̂u for every user u ∈ [N ] with probability at-least
1− δ.

The total sample complexity is the number of trajectories queried in Phase 1 plus the num-
ber of trajectories queried in Phase 2. Phase 1 queries Krf( ϵ8 ,

δ
2 ) trajectories, which is

C
|S||A|H2

(
|S|+log(

1
δ )

)
ϵ2 polylog( |S||A|H

ϵ ) by the results of Zhang et al. (2020). By Lemma 5, we
conclude that the sample complexity of phase 2 is C|S||A|NHp

ϵ and with the value of p given in the
statement of the theorem, this succeeds with probability at-least 1 − δ

4 when conditioned on the
success of Phase 1.

We will show that conditioned on the success of Phase 2, with probability at-least 1− δ
4 , the nuclear

norm minimization algorithm of Recht (2011) successfully obtains RG∁
h

h . Indeed by Theorem 1 in

Recht (2011), we see that whenever co-ordinates of RG∁
h

h corresponding to random indices drawn
from Unif(m, [N ],G∁h) are observed with m = C1 max(µ2

1, µ0)r(N + |G∁h|) log
2 |G∁h| log(Hδ ), the

algorithm succeeds at recovering RG∁
h

h with probability at-least 1− δ
8H . The number of co-ordinates

we observe is

Np|G∁h| ≥
Np|SA|

2
≥ 2C1 max(µ2

1, µ0)r(N + |G∁h|) log
2 |G∁h| log(Hδ )

In the last step, we have used Assumption 2 to conclude that |G∁h| ≥
|S||A|

2 . For the constant C in
the definition of p large enough, we must have:

m ≤ Np|G∁h|
2

Note that the results of Recht (2011) requires at-least m observations to be chosen uniformly at
random co-ordinates, but we do not obtain observations which are uniformly at uniformly random
co-ordinates. Here, we will use the results of Lemma 7. Let Jh be a fictitious subset of co-ordinates
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distributed as Unif(m, [N ],G∁h) when conditioned on G∁h. If the observed co-ordinates are Jh, then
we can successfully estimate the reward matrixRh with proability at-least 1− δ

8H in this case. Now,
suppose that the actually observed co-ordinates are Ih, which is a strict super-set of Jh. Then we
check that the matrix completion algorithm, which is based on constrained nuclear-norm minimiza-
tion, still succeeds with observed co-ordinates corresponding to Ih whenever it succeeds with the
observed co-ordinates correspond to Jh.

We now refer to the coupling in Lemma 7, which shows that we can couple Jh to the real distribution
Ih such that Jh ⊆ Ih with probability at-least 1 − δ

8H When the constant C1 in the definition of p
is large enough, we conclude by invoking Lemma 7 that: Jh ⊆ Ih with probability at-least 1− δ

8H .
Applying union bound for h ∈ [H], we conclude that Phase 3 succeeds with probability at-least
1− δ

4 when conditioned on the success of Phases 1 and 2.

Therefore, from the arguments above, we conclude that Phases 1,2 and 3 succeed with probability

at-least 1−δ and give us the reward matricesRG∁
h

h where the sets satisfy the following equation from
Lemma 5.

sup
π

H∑
h=1

Pπ
h (Gh) ≤

5ϵ

8
(11)

It now remains to show that we obtain ϵ optimal policies for each user after Phase 4. Note that
whenever Phase 1 succeeds, we can compute ϵ/4 optimal policies for every possible reward function
bounded in [0, 1]. Since we do not know the rewards over the set Gh, we set it to zero as described
in the algorithm to obtain R̄h. It remains to show that planning with R̄h and using it with the reward
free RL algorithm gives us an ϵ optimal policy. Suppose Π∗

u is the optimal policy for user u and
suppose Π̄u be the optimal policy for user u under rewards R̄h(u, (s, a)). Note that combined with
the guarantees for the reward free RL, in order to complete the proof of the theorem, it is sufficient
to show that the policy Π̄u is 3ϵ/4 optimal with respect to the actual rewards Rh(u, (s, a)). Let
S∗
1:H , A

∗
1:H ∼M(Π∗

u) and S̄1:H , Ā1:H ∼M(Π̄u).

E
H∑

h=1

Rh(u, (S
∗
h, A

∗
h)) ≤ E

H∑
h=1

Rh(u, (S
∗
h, A

∗
h))1((S

∗
h, A

∗
h) ∈ G∁h) + 1((S∗

h, A
∗
h) ∈ Gh)

= E
H∑

h=1

R̄h(u, (S
∗
h, A

∗
h)) + 1((S∗

h, A
∗
h) ∈ Gh) = E

H∑
h=1

R̄h(u, (S
∗
h, A

∗
h)) +

H∑
h=1

PΠ∗

h (Gh)

≤ E
H∑

h=1

R̄h(u, (S
∗
h, A

∗
h) +

5ϵ

8

≤ E
H∑

h=1

R̄h(u, (S̄h, Āh) +
5ϵ

8

≤ E
H∑

h=1

Rh(u, (S̄h, Āh) +
5ϵ

8

(12)

In the first step we have used the fact that the rewards are uniformly bounded in [0, 1]. In the second
step, we have used the definition of R̄h(u, (s, a)) := Rh(u, (s, a))1((s, a) ∈ G∁h). In the third
step, we have used the guarantee in equation 11. In the fourth step, we have used the fact that P̄ i
maximizes the reward R̄h. In the fifth step, we have used the fact that Rh(u, (s, a)) ≥ R̄h(u, (s, a))
uniformly. From the discussion above, this concludes the proof of the theorem.
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C ANALYSIS - LINEAR MDPS

Lemma 8. Suppose Assumption 2 holds. Let κ > 1 and T ≥ C dκ2

(γ−ϵ)2 log
dκ
γ−ϵ . With probability at-

least 1−H exp(−c(γ − ϵ)T ), the output of Algorithm 2 returns ϕth such that
∑T

t=1 ϕthϕ
⊺
th ⪰ κ2I

for every h ∈ [H]

Proof of Theorem 2. By Theorem 1 in Wagenmaker et al. (2022), we take Krf(ϵ, δ/4) =
CdH5(d+log(

1
δ ))

ϵ2 +
Cd9/2H6 log4(

1
δ )

ϵ . Phase 1 succeeds with probability 1− δ
4 .

Note that this is the quantity Trf in the statement of the theorem. We now condition on the success
of Phase 1. The number of trajectories queried by Algorithm 2 which is given by HT = Tpol. By
Lemma 8, we conclude that for the given values of T and κ, this algorithm successfully outputs ϕht
such that Gϕ,h ⪰ κ2I for every h ∈ [H], with probability at-least 1− δ

4 .

Now, condition on the success of Algorithm 2. By theorem 3, we conclude that with these conclude
that with proabability at-least 1− δ

4 , with the values of the given parameters, for every h ∈ [H], the
procedure in Step 2 of Phase 2 outputs a policy Π̂f,h such that whenever S1:H , A1:H ∼ M(Π̂f,h),
the conditions in equation 2 is satisfied for the random vector ψ(Sh, Ah) with ζ replaced by ζ/2.
We then use the active learning based matrix completion procedure given in Section 6, where the
vectors ψjk are sample using the policy Π̂f,h on the given user. By theorem 4, we conclude that
conditioned on the success of all the steps above, with probability 1 − δ

4 , we can exactly estimate
each of the matrices Θ∗

h for h ∈ [H] with Tmat−comp number of samples.

Upon the success of Phases 1, 2, 3 (which occurs with probability at-least 1 − δ by union bound),
we conclude that Phase 4 gives the ϵ optimal policy for each user u ∈ [N ] because of the guarantees
of reward free RL.

D DEFERRED PROOFS

D.1 PROOF OF LEMMA 5

Proof. We suppose that the reward free RL in Phase 1 succeeds and returns the ϵ
8 optimal policy

for every choice of rewards bounded in [0, 1]. The algorithm terminates whenever the active sets are
such that

V̂ (J (;G)) ≤ ϵ

2
(13)

Note that by the definition of J (;G), the maximum value for the MDP with reward J (;G) is
supΠ

∑H
h=1 P

Π(Gh). Since V̂ is the output of the reward free RL algorithm, we conclude that
we have:

|V̂ (J (;G))− sup
Π

H∑
h=1

PΠ
h (Gh)| ≤

ϵ

8
(14)

We conclude via equation 13 and equation 14 that equation 9 holds, which establishes the second
part of the theorem. We now consider the termination time.

Suppose G(t) is the sequence of active sets before termination at step t (i.e, it satisfies
V̂ (J (;G(t))) > ϵ

2 ). Recall Π̂, the output of the reward free RL algorithm. It follows from the
guarantees for reward free RL that:

|
H∑

h=1

P Π̂G

h (G(t)h )− sup
Π

H∑
h=1

PΠ
h (G(t)h )| ≤ ϵ

8

Combining this with Equation equation 14 and the fact that V̂ (J (;G(t))) > ϵ
2 , we conclude:

H∑
h=1

P Π̂G

h (G(t)h ) ≥ ϵ

4
(15)
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We consider the potential function with φ(0) = 0 and φ(t) =
∑

h∈[H]

∑
(s,a)∈S×A T

(t)
h,(s,a), where

T
(t)
h,(s,a) is the counter Th,(s,a) inside Algorithm 1 at the beginning of the step t.

Whenever G(t) is such that V̂ (J (;G(t))) > ϵ
2 , we define Nt := φ(t + 1) − φ(t) (i.e, before

termination). Just for the sake of theoretical arguments, we define the fictious random variables
Nt = Ber( ϵ8 ) i.i.d after termination. Let Ft = σ(G(s), S(s)

1:H , A
(s)
1:H , R

(s)
1:H , U

(s) : s ≤ t)

Claim 5. The following relations hold:

1. E [Nt|Ft] ≥ ϵ
8

2. E
[
N2

t |Ft

]
≤ E[Nt|Ft]H

4

3. |Nt| ≤ H almost surely.

Proof. The inequalities are clear when G(t) is such that V̂ (J (;G(t))) ≤ ϵ
2 . Now consider the case

V̂ (J (;G(t))) > ϵ
2 . By definition, conditioned on this event, we have almost surely:

Nt =

H∑
h=1

1((S
(t)
h , A

(t)
h ) ∈ G(t)h ).1(R̂

(t)
h (Ut, (S

(t)
h , A

(t)
h )) = ∗)

That is, we increment the Th,(s,a) only when we encounter an element of the active set such that the
entry for this user has not been observed before. Observe that for any arbitrary (s, a) ∈ S ×A

P
(
R̂

(t)
h (Ut, (s, a)) = ∗

∣∣Ft, (S
(t)
h , A

(t)
h ) = (s, a)

)
=
|{u : R̂

(t)
h (s, a) = ∗}|
N

. (16)

This is true since the law of S(t)
h , A

(t)
h is independent of Ut (since all users share the same MDP),

when conditioned on Ft. Now, the algorithm only fills the column corresponding to (s, a) until the
number of entries is smaller than Np ≤ N

2 . We conclude that:

|{u : R̂(t)(h, (s, a)) = ∗}| ≥ N −Np ≥ N

2
.

This allows us to conclude P
(
R̂

(t)
h (Ut, (s, a)) = ∗

∣∣Ft, (S
(t)
h , A

(t)
h ) = (s, a)

)
≥ 1

2 and hence:

ENt =

H∑
h=1

E1((S(t)
h , A

(t)
h ) ∈ G(t)h ).1(R

(t)
h (Ut, (S

(t)
h , A

(t)
h )) = ∗)

≥ 1

2

H∑
h=1

E1((S(t)
h , A

(t)
h ) ∈ G(t)h )

=
1

2

H∑
h=1

P Π̂G

h (G(t)h ) ≥ ϵ

8
(17)

In the last step we have used equation 15. The bound |Nt| ≤ H almost surely follows from defini-
tion. Now note that E

[
N2

t |Ft

]
≤ HE [Nt|Ft].

Claim 6. For any τ ∈ N and some c0 > 0 small enough, we have:

P

(
τ−1∑
t=0

Nt <
ϵτ

16

)
≤ exp(−c0 ϵτ

H )
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Proof. For 3
4H > λ > 0, consider Mt = −

λ2E[N2
t |Ft]

1−λH
3

+ λ (E [Nt|Ft]−Nt). Now consider:

E exp(

τ−1∑
t=0

Mt) = E

[
E [exp(Mτ−1)|Fτ−1] exp

(
τ−1∑
t=0

Mt

)]

= E [exp(λE [Nτ−1|Fτ−1]− λNt)|Fτ−1] exp

(
τ−2∑
t=0

Mt

)
exp

(
−λ2E[N2

τ−1|Fτ−1]
1−λH

3

)

≤ E exp

(
−λ2E[N2

τ−1|Fτ−1]
1−λH

3

)
exp

(
τ−2∑
t=0

Mt

)
exp

(
−λ2E[N2

τ−1|Fτ−1]
1−λH

3

)

= E exp(

τ−2∑
t=0

Mt) (18)

In the first step we have used the fact that
∑τ−2

t=0 Mt is Fτ−1 measurable and the towering property
of conditional expectation. In the third step, we have used the exponential moment bound given
in Exercise 2.8.5 in Vershynin (2018), as applied to Nτ − E [Nτ−1|Fτ−1] along with the fact that
Nt ∈ [0, H] almost surely. From equation 18, we conclude that E exp(

∑τ
t=0Mt) ≤ 1 and thus

applying the Chernoff bound, we conclude that for any β > 0

P

(
τ−1∑
t=0

−λE[N2
t |Ft]

1−λH
3

+ (E [Nt|Ft]−Nt) > β

)
≤ exp(−λβ)

Now, using item 2 from Claim 5, we conclude that

P

(
τ−1∑
t=0

Nt < −β + 3−4λH
3−λH

τ−1∑
t=0

E [Nt|Ft]

)
≤ exp(−λβ)

Now, using item 1 from Claim 5, we note that
∑τ−1

t=0 E [Nt|Ft] ≥ ϵτ
8 almost surely. Setting λ = 1

4H
and β = c0ϵτ for some small enough constant ϵ, we conclude:

P

(
τ−1∑
t=0

Nt <
ϵτ

16

)
≤ exp(−c0 ϵτ

H )

Let τ term denote the termination time for the algorithm. This is true since φ(t) is increasing in t,
φ(t) ≤ NpH|S||A|, and strict inequality holds when t < τ term. For every τ < τ term we have
φ(τ) =

∑τ−1
t=0 Nτ < NpH|S||A|. Therefore, we have the following relationship between the

events:

{τ term > τ} ⊆
{ τ∑

t=1

Nτ < Np|S||A|H
}

Setting τ = 16Np|S||A|H
ϵ , we have:

P(τ term > τ) ≤ P

(
τ∑

t=1

Nτ < Np|S||A|H

)
≤ exp(−cNp|S||A|)

D.2 PROOF OF LEMMA 8

Proof. By Remark 4.3 in Wagenmaker et al. (2022), we show that non-linear rewards can be handled
by the reward free RL algorithm in Phase 1 as long all the reward are uniformly bounded in [0, 1].
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Let Bth be the matrix I+Aϕ in Algorithm 2 at step t for horizon h. Similarly, let the corresponding
projection Q be Qth. Recall that Qth is the projection onto an eigenspace of Bth. Now, suppose
S1:H , A1:H ∼MUt

(Π̂Qt,h) as in the algorithm. Let ϕth := ϕ(Sh, Ah). Now, if Qth ̸= 0, then:

ϕ⊺thB
−1
th ϕth ≥ ϕ

⊺
thQthB

−1
th Qthϕth

≥ ϕ⊺thQth
I

1 + κ2
Qthϕth

=
∥Qthϕth∥2

1 + κ2
(19)

In the first step, we have used the fact that Qth is the projector to the eigenspace of B−1
th . In the

second step, we have used the fact that over the eigenspace corresponding to Qth, the eigenvalues
of B−1

th are at-least 1
1+κ2 . We now invoke Assumption 2 in order to show that, along with the

guarantees of reward free RL in phase 1, we conclude that:

E
[
∥Qthϕth∥2|Qth ̸= 0, Bth

]
≥ γ − ϵ (20)

Now, note by the fact that Qth is a projector and that ∥ϕth∥ ≤ 1, we have:

E
[
∥Qthϕth∥4

∣∣Qth ̸= 0, Bth

]
≤ E

[
∥Qthϕth∥2

∣∣Qth ̸= 0, Bth

]
(21)

Recall the Paley-Zygmund inequality which states that for any positive random variable Z, we must
have: P(Z > EZ

2 ) ≥ 1
4
(EZ)2

EZ2 . Therefore,

P
[
ϕ⊺thB

−1
th ϕth >

γ − ϵ
2(1 + κ2)

∣∣∣∣Qth ̸= 0, Bth

]
≥ P

[
∥Qthϕth∥2 >

γ − ϵ
2

∣∣∣∣Qth ̸= 0, Bth

]
≥ P

[
∥Qthϕth∥2 >

1

2
E
[
∥Qthϕth∥2

∣∣Qth ̸= 0, Bth

]∣∣∣∣Qth ̸= 0, Bth

]
≥ 1

4

E
[
∥Qthϕth∥2

∣∣Qth ̸= 0, Bth

]2
E
[
∥Qthϕth∥4

∣∣Qth ̸= 0, Bth

] ≥ 1

4
E
[
∥Qthϕth∥2

∣∣Qth ̸= 0, Bth

]
≥ γ − ϵ

4
(22)

In the first step, we have used equation 19. In the second step, we have used equation 20. In the
third step, we have used the Paley-Zygmund inequality and the moment bound in equation 21.

Define the stopping time τ = inf{t ≤ T : Qth = 0} and τ = ∞ if the set in the RHS is empty.
Let Ξ0

t for t ∈ {0} ∪ N be a sequence of i.i.d random variables with the law γ−ϵ
2(1+κ2)Ber(

γ−ϵ
4 ). We

consider the sequence of random variables Ξt = ϕ⊺thB
−1
th ϕth for t < τ and Ξt = Ξ0

t for t ≥ τ
Now, we apply the matrix determinant lemma which states that det(B + uu⊺) = det(B)(1 +
u⊺B−1u). We note that B(t+1)h = Bth + ϕthϕ

⊺
th. Therefore, whenever t < τ , we must have:

det(B(t+1)h) = det(Bth)(1 + Ξt) (23)

Since ∥ϕth∥ ≤ 1 almost surely, we must have

Tr(Bth) =

d∑
i=1

⟨ei, Bthei⟩ ≤ d+ t

It is easy to show that for any PSD matrix, A, if Tr(A) ≤ α, then det(A) ≤ (αd )
d (since trace is

the sum of the eigenvalues and the determinant is the product). Combining the equations above, we
conclude that whenever t < τ , we must have:

(
t+ 1 + d

d

)d

≥
t∏

s=0

(1 + Ξt)
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Therefore, the event

{τ > T} ⊆ {
(
T+1+d

d

)d ≥ T∏
s=0

(1 + Ξt)} (24)

Claim 7.

P

 T∏
s=0

(1 + Ξt) ≥
(
1 +

γ − ϵ
2(1 + κ2)

) (γ−ϵ)T
8

 ≥ 1− exp (−c0T (γ − ϵ))

Let κ > 1 and T ≥ C dκ2

(γ−ϵ)2 log
dκ
γ−ϵ , we have:

P

[
T∏

s=0

(1 + Ξt) ≥
(
T+1+d

d

)d] ≥ 1− exp (−c0T (γ − ϵ))

Proof. Let NT be the number of variables (Ξt)
T
t=0 such that Ξt ≥ γ−ϵ

2κ2 . Then, it is clear that∏T
s=0(1 + Ξt) ≥ (1 + γ−ϵ

2κ2 )
NT .

Therefore,

P

 T∏
s=0

(1 + Ξt) ≥
(
1 +

γ − ϵ
2(1 + κ2)

) (γ−ϵ)T
8

 ≥ P
(
NT ≥

(γ − ϵ)T
8

)

≥ P
(
Bin(T, γ−ϵ

4 ) ≥ (γ − ϵ)T
8

)
≥ 1− exp (−c0T (γ − ϵ)) (25)

Here Bin refers to the law of a binomial random variable. The first step follows from the fact that∏T
s=0(1 +Ξt) ≥ (1 + γ−ϵ

2(1+κ2) )
NT almost surely. The second step follows from equation 22, which

shows that conditioned on Qth, Bth, the random variable 1(Ξt ≥ γ−ϵ
2(1+κ2) ) stochastically dominates

Ber(γ−ϵ
4 ). The last step follows from an application of Bernstein’s inequality for binomial random

variables.

Now, using equation 24 along with Claim 7, we conclude:

P(τ > T ) ≤ P

((
T+1+d

d

)d ≥ T∏
s=0

(1 + Ξt)

)
≤ exp(−c0T (γ − ϵ))

D.3 PROOF OF LEMMA 1

Proof. By the definition of Linear MDP, we must have Sh+1|Sh, Ah ∼
∑d

i=1⟨ϕ(Sh, Ah), ei⟩µih(·)
and Ah+1|Sh+1 ∼ πh+1(·|Sh). Therefore, for any bounded, measurable function g : S × A → R,
we must have:

Eg(Sh+1, Ah+1) = E
[
E
[
g(Sh+1, Ah+1)

∣∣Sh, Ah

]]
= E

d∑
i=1

⟨ϕ(Sh, Ah), ei⟩
∫
µi(h−1)(ds)πh+1(da|s)g(s, a)

=

d∑
i=1

νih

∫
µih(ds)πh+1(da|s)g(s, a) (26)
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D.4 PROOF OF LEMMA 9

Proof. It is clear from the assumption that E
[∫
g(s(h+1)t, a)πh+1(da|st)|(ϕht)t≤T

]
=∑d

i=1⟨ϕht, ei⟩
∫
µih(ds)πh+1(da|s)g(s, a).

Note that

T∑
t=1

αht,νϕht =

T∑
t=1

ϕ⊺htG
−1
ϕ,hνϕht

=

T∑
t=1

ϕhtϕ
⊺
htG

−1
ϕ,hν = (

T∑
t=1

ϕhtϕ
⊺
ht)G

−1
ϕ,hν

= Gϕ,hG
−1
ϕ,hν = ν (27)

Therefore,

E
[
T̂ (g; ν, πh)|(ϕl)t∈[T ]

]
=

d∑
i=1

⟨
T∑

t=1

αt,νϕt, ei⟩
∫
µi(h−1)(ds)πh(da|s)g(s, a)

=

d∑
i=1

⟨ν, ei⟩
∫
µi(h−1)(ds)πh(da|s)g(s, a) = T (g; ν, πh) (28)

Note that, conditioned on (ϕt)t∈[T ], αht,ν

∫
g(s(h+1)t, a)πh+1(da|s(h+1)t) are independent random

variables bounded above by αht,νB. Therefore, applying the Azuma-Hoeffding inequality, we con-
clude:

P
(
|T̂ (g; ν, πh)− T (g; ν, πh)| > β

∣∣∣∣(ϕt)t∈[T ]

)
≤ 2 exp

(
− t2

2B2
∑

t α
2
t,ν

)
Now, observe that

∑
t α

2
ht,ν =

∑
t ν

⊺G−1
ϕ,hν ≤

1
κ2 whenever Gϕ,h ⪰ κ2I This concludes the

proof.

D.5 PROOF OF LEMMA 10

Proof. Notice that:∣∣Eν1
1 (Π)− Eν′

1
1 (Π′)

∣∣ ≤∣∣Eν1
1 (Π)− Eν1

1 (Π′)
∣∣+∣∣Eν1

1 (Π′)− Eν′
1

1 (Π′)
∣∣

≤
∣∣Eν1

1 (Π)− Eν1
1 (Π′)

∣∣+ ∥ν1 − ν′1∥1
≤
∥∥E∫ ϕ(S1, a)π1(da|S1)− E

∫
ϕ(S1, a)π

′
1(da|S1)

∥∥
1
+ ∥ν1 − ν′1∥1

≤ sup
(s,a)

∥ϕ(s, a)∥1TV(π1, π′
1) + ∥ν1 − ν′1∥1 ≤ TV(π1, π

′
1) + ∥ν1 − ν′1∥1 (29)

In the first, second and third steps we have used the triangle inequality. In the last step, we have used
the fact that for any bounded function, and any probability measures µ, ν, we have |

∫
f(x)µ(dx)−∫

f(x)ν(dx)| ≤ supx |f(x)|TV(ν, µ).
Now consider:∣∣∥Tj(ϕ, νj−1, πj)− νj∥1 − ∥Tj(ϕ, ν′j−1, π

′
j)− ν′j∥1

∣∣
≤ ∥νj − ν′j∥1+

∥∥Tj(ϕ, νj−1, πj)− Tj(ϕ, ν′j−1, π
′
j)
∥∥
1

≤ ∥νj − ν′j∥1+
∥∥Tj(ϕ, νj−1, πj)− Tj(ϕ, ν′j−1, πj)

∥∥
1
+
∥∥Tj(ϕ, ν′j−1, πj)− Tj(ϕ, ν′j−1, π

′
j)
∥∥
1
(30)
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Now, observe that:∥∥Tj(ϕ, νj−1, πj)− Tj(ϕ, ν′j−1, πj)
∥∥
1
≤

d∑
i=1

|⟨νj−1 − ν′j−1, ei⟩|
∥∥∥∥∫ ϕ(s, a)µi(j−1)(ds)πj(da|s)

∥∥∥∥
1

≤
d∑

i=1

|⟨νj−1 − ν′j−1, ei⟩| = ∥νj−1 − ν′j−1∥1 (31)

Where we recall supi,h,π ∥
∫
ϕ(s, a)µih(ds)π(da|s)∥1 ≤ 1 as given in the definition of Linear MDP.

Using the Hahn-Jordan decomposition of a signed measure, we conclude:∥∥Tj(ϕ, ν′j−1, πj)− Tj(ϕ, ν′j−1, πj)
∥∥
1

≤
d∑

i=1

|⟨ν′j−1, ei⟩|
∥∥∥∥ ∫ ϕ(s, a)µi(j−1)(ds)(πj(da|s)− π′

j(da|s))
∥∥∥∥
1

≤
d∑

i=1

Cµ|⟨ν′j−1, ei⟩|TV(πj , π′
j) ≤ Cµ∥ν′j−1∥1TV(πj , π′

j) (32)

Combining equation 30, equation 31 and equation 32 we conclude:∣∣∥Tj(ϕ, νj−1, πj)− νj∥1 − ∥Tj(ϕ, ν′j−1, π
′
j)− ν′j∥1

∣∣
≤ ∥νj − ν′j∥1 + Cµ∥ν′j−1∥1TV(πj , π′

j) + ∥νj−1 − ν′j−1∥1 (33)

Combining equation 29 and equation 33, we conclude the first inequality in the statement of the
lemma.

With a reasoning very similar to that in equation 29, we have:∣∣Êν1
1 (Π)− Êν′

1
1 (Π′)

∣∣ ≤ TV(π1, π
′
1) + ∥ν1 − ν′1∥1 (34)

Using similar reasoning as in equation 33:∣∣∥Tj(ϕ, νj−1, πj)− νj∥1 − ∥Tj(ϕ, ν′j−1, π
′
j)− ν′j∥1

∣∣
≤ ∥νj − ν′j∥1 +

(
T∑

t=1

|(νj−1 − ν′j−1)
⊺G−1

ϕ,j−1ϕ(j−1)t|

)
+

(
T∑

t=1

|(ν′j−1)
⊺G−1

ϕ,j−1ϕ(j−1)t|

)
TV(πj , π

′
j)

(35)

Now note that for any ν ∈ Rd, we have:
T∑

t=1

∣∣ν⊺G−1
ϕ,j−1ϕ(j−1)t

∣∣ ≤√T∑
t

∣∣ν⊺G−1
ϕ,j−1ϕ(j−1)t

∣∣2

=

√√√√T

T∑
t=1

ν⊺G−1
ϕ,j−1ϕ(j−1)tϕ

⊺
(j−1)tG

−1
ϕ,j−1ν

=
√
Tν⊺G−1

ϕ,j−1ν

≤
√

T
κ2 ∥ν∥2 (36)

Here, in the first step we have used the fact that whenever x ∈ RK , we must have ∥x∥1 ≤
√
K∥x∥2.

In the third step, we have used the fact that
∑T

t=1 ϕ(j−1)tϕ
⊺
(j−1)t = Gϕ,j−1 by definition. In the last

step, we have used the fact that Ĝϕ,j−1 ⪰ κ2I . Plugging this into equation 35, we conclude:∣∣∥Tj(ϕ, νj−1, πj)− νj∥1 − ∥Tj(ϕ, ν′j−1, π
′
j)− ν′j∥1

∣∣
≤ ∥νj − ν′j∥1 +

√
T
κ2 ∥νj−1 − ν′j−1∥2 +

√
T
κ2 ∥ν′j−1∥2TV(πj , π′

j) (37)

Using this and the definition of F̂ we conclude the second inequality in the statement of the lemma.
equation 44 and equation 45 follow from a similar reasoning.
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D.6 PROOF OF LEMMA 11

Proof. First consider the case h = 1. Let g(s, a) := ϕ(s, a). In this case, supν∈Bd(1)
|Êν,1(Π) −

Eν,1(Π)| ≤ ∥T0(g;π1) − T̂0(g;π1)∥1. By equation 29 and equation 34, we conclude that π1 →
T0(ϕ;π1) and π1 → T̂0(ϕ;π1) are 1-Lipschitz with respect to TV() and ∥ · ∥1.

sup
Π=π1,...,πH∈Q

∥T0(g;π1)− T̂0(g;π1)∥1 ≤ sup
Π=π1,...,πH∈Q̂η

∥T0(g;π1)− T̂0(g;π1)∥1 + 2η

We apply Lemma 9 co-ordinate wise to the co-ordinates of ϕ and union bound over Q̂η . We have:

P
(

sup
Π=π1,...,πH∈Q

∥T0(g;π1)− T̂0(g;π1)∥1 > 2η + dβ

)
≤ d|Q̂η| exp(−β2κ2

2 ) (38)

Now, consider h > 1. Consider any η net over Bd(1), denoted by B̂d,η with respect to the norm ∥·∥1.
We can take |B̂d,η| ≤ exp(Cd log(d/η)) (Vershynin, 2018). Invoking Lemma 10, we conclude:

sup
Π∈Q

sup
ν∈Bd(1)

|Eν,h(Π)− Êν,h(Π)| ≤ sup
ν1,...,νh∈Bd(1)

Π∈Q

|F̂ (Π, ν1, . . . , νh)− F (Π, ν1, . . . , νh)|

≤ sup
ν1,...,νh∈B̂d,η

Π∈Q̂η

|F̂ (Π, ν1, . . . , νh)− F (Π, ν1, . . . , νh)|+ 2

(
1 + Cµ +

√
T
κ2

)
ηh (39)

Now, by the triangle inequality, we have:

|F̂ (Π, ν1, . . . , νh)− F (Π, ν1, . . . , νh)|

≤ ∥T0(ϕ, π1)− T̂0(ϕ, π1)∥1 +
h−1∑
j=1

∥Tj(ϕ, νj , πj+1)− T̂j(ϕ, νj , πj+1)∥1 (40)

Therefore, by invoking Lemma 9, along with union bound over every component in the sum in equa-
tion 40 and over the net in equation 39 we conclude that:

P

 sup
ν1,...,νh∈B̂d,η

Π∈Q̂η

|F̂ (Π, ν1, . . . , νh)− F (Π, ν1, . . . , νh)| > βdh


≤ 2dh|Q̂η||B̂d,η|h exp(−β2κ2

2 ) (41)

Combining equation 39 and equation 41, we conclude the second item in the statement of the lemma.

The concentration ofX1 andXh follow in a similar fashion, but here we consider an η net even over
x and use the Lipschitzness results given in Lemma 10 and the fact that x→ f(ϕ;x) is 1 Lipschitz.

E PROOF OF THEOREM 3

Lemma 9. Suppose h ∈ [H − 1], and g : S × A → R be such that |g(s, a)| ≤ B for every (s, a).
For any policy πh and any ν such that ∥ν∥2 ≤ 1, we must have:

P
(
|T̂h(g; ν, πh)− Th(g; ν, πh)| > β

∣∣∣∣(ϕht)t∈[T ], Gϕ,h ⪰ κ2I
)
≤ 2 exp

(
−β2κ2

2B2

)
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Lemma 10. Let Π = (π1, . . . , πH), Π′ = (π′
1, . . . , π

′
H) be policies in Q. Conditioned on the event

Gϕ,h ⪰ κ2I , the following hold:

|F (Π, ν1, . . . , νh−1, νh)− F (Π′, ν′1, . . . , ν
′
h−1, ν

′
h)|

≤

 h∑
j=2

CµTV(πj , π
′
j)∥νj∥1 + 2∥νj − ν′j∥1

+ TV(π1, π
′
1) + 2∥ν1 − ν′1∥1 (42)

|F̂ (Π, ν1, . . . , νh−1, νh)− F̂ (Π′, ν′1, . . . , ν
′
h−1, ν

′
h)|

≤
√

T
κ2

 h∑
j=2

TV(πj , π
′
j)∥νj∥2 + ∥νj − ν′j∥2

+ TV(π1, π
′
1) +

h∑
j=1

∥νj − ν′j∥1 (43)

Suppose x ∈ Sd−1

|Th(f(·;x), ν, πh)− Th(f(·;x′), ν′, π′
h)|

≤ 2Cµ(
√
d+ ξd) (∥ν − ν′∥1 + TV(πh, π

′
h) + ∥x− x′∥2∥ν∥1) (44)

|T̂h(f(·;x), ν, πh)− T̂h(f(·;x′), ν′, π′
h)|

≤ 2
√

T
κ2 (
√
d+ ξd) (∥ν − ν′∥2 + TV(πh, π

′
h) + ∥x− x′∥2∥ν∥2) (45)

Lemma 11. Condition on the event Gϕ,h ⪰ κ2I for every h ∈ [H]. Fix some η > 0 and let Q̂η

denote any η-net over Q. With probability at-least 1− δ/4, the following hold simultaneously:

1.

sup
ν

sup
Π∈Q
|Eν

1 (Π)− Êν
1 (Π)| ≤ C d

κ

√
log
(

d|Q̂η|
δ

)
+ Cη .

2. For h > 1:

sup
Π∈Q

sup
ν∈Bd(1)

|Eν
h(Π)− Êν

h(Π)| ≤
CdH

κ

√
log
(

dH|Q̂η|
δ

)
+Hd log

(
d
η

)
+ C

(√
T
κ2

)
ηH

3. X1 := supΠ=(π1,...,πH)∈Q
∣∣ infx∈Sd−1 T̂1(f(·;x), π1)− infx∈Sd−1 T1(f(·;x), π1)

∣∣
X1 ≤

C(
√
d+ ξd)

κ

√
log
(

|Q̂η|
δ

)
+ d log

(
d
η

)
+ Cη(

√
d+ ξd)

4. Xh := sup ν∈B(1)
Π=(π1,...,πH)∈Q

∣∣ infx∈Sd−1 T̂h(f(·;x); ν, πh)− infx∈Sd−1 Th(f(·;x); ν, πh)
∣∣

Xh ≤
C(
√
d+ ξd)

κ

√
log
(

|Q̂η|H
δ

)
+ d log

(
d
η

)
+ Cη(

√
d+ ξd)

(
Cµ +

√
T
κ2

)
Lemma 12. Π = (π1, . . . , πH). For any η ≥ 0, and h ∈ [H], suppose Eν

h(Π) ≤ η. Then, we have:

∥Eϕ(Sh, Ah)− ν∥1 ≤ η .

Proof. Let S1:H , A1:H ∼ M(Π). By Lemma 1, we conclude that: Eϕ(S1, A1) = T1(ϕ, π1).
Therefore we conclude the lemma for the case h = 1. Now let h > 1.

Now, note that for j > 1, we have: Eϕ(Sj , Aj) = Tj(ϕ,Eϕ(Sj−1, Aj−1), πj). There exists a
sequence ν1, . . . , νh−1 such that

Eν1
1 (Π) +

h∑
j=2

∥Tj(ϕ, νj−1, πj)− νj∥1 ≤ η0
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LettingEν1
1 (Π) =: η1, ∥Tj(ϕ, νj−1, πj)−νj∥1 =: ηj , we have from the case h = 1 : ∥Eϕ(S1, A1)−

ν1∥1 ≤ η1.

∥Eϕ(Sj , Aj)− νj∥1 = ∥Tj(ϕ,Eϕ(Sj−1, Aj−1), πj)− νj∥1
≤ ∥Tj(ϕ,Eϕ(Sj−1, Aj−1), πj)− Tj(ϕ, νj−1, πj)∥1 + ∥Tj(ϕ, νj−1, πj)− νj∥1
≤ ∥νj−1 − Eϕ(Sj−1, Aj−1)∥1 + ηj (46)

We have used equation 31 in the last step. Continuing recursively, we conclude the result

Proof of Theorem 3. We condition on the event described in Lemma 11. We suppose that κ, η and
η0 are related as in the statement of the theorem. We will apply these values whenever we invoke the
concentration bounds obtained from Lemma 11 in all the inequalities below. First consider h = 1.
Let Π̂f,1 = (πf,1

H , . . . , πf,H
H ). By item 3 in Lemma 11, we have (with X1 as defined in the lemma):

inf
x∈Sd−1

T̂1(f(;x), πf,1
1 ) ≥ sup

Π∈Q
inf

x∈Sd−1
T1(f(;x), π1)−X1 ≥ ζ −X1 ≥ 3ζ

4

Similarly, we have:

inf
x∈Sd−1

T1(f(;x), πf,1
1 ) ≥ inf

x∈Sd−1
T̂1(f(;x), πf,1

1 )− ζ
4

Combining the two displays above, we conclude the theorem for h = 1. Now consider h > 1.
We will first show that the constraint Êν,h−1(Π) ≤ η0 is feasible for some Π ∈ Q and some ν.
Note that, for any policy Π there exists a ν1, . . . , νh−1 ∈ Rd such that Eϕ(Sj , Aj) = νj whenever
S1:H , A1:H ∼ M(Π). For the choice ν = νh−1, we must have Eν,h−1(Π) = 0. Now, by item 1
and 2 of Lemma 11, we conclude that Êν,h−1 ≤ η0. Therefore this optimization is feasible.

Consider the solutions to the optimization problem given by ν̂ and Π̂f,h. Note again from Lemma 11
that Eν̂,h−1(Π̂f,h) ≤ Êν̂,h−1(Π̂f,h) + η0 ≤ 2η0. Now, applying Lemma 12, we conclude that
whenever S1:H , A1:H ∼M(Π̂f,h)

∥Eϕ(Sh−1, Ah−1)− ν̂∥1 ≤ 2η0

By a similar reasoning as the case h = 1, we conclude:

inf
x∈Sd−1

Th(f(;x), ν̂, πf,h
h ) ≥ 3 ζ

4

Now, applying equation 44, we conclude:

inf
x∈Sd−1

Ef(Sh, Ah;x) = inf
x∈Sd−1

Th(f(;x),Eϕ(Sh−1, Ah−1), π
f,h
h )

≥ inf
x∈Sd−1

Th(f(;x), ν̂, πf,h
h )− sup

x∈Sd−1

|Th(f(;x),Eϕ(Sh−1, Ah−1), π
f,h
h )− Th(f(;x), ν̂, πf,h

h )|

≥ 3ζ

4
− 2Cµ(

√
d+ ξd) (∥ν̂ − Eϕ(Sh−1, Ah−1)∥1) ≥

ζ

2
(47)

In the last step, we have used the lipschitzness bound for Th given in Lemma 10. We will show that
the conditions given in equation 2 are satisfied for ψ(Sh, Ah) with parameters ζ/2 instead of ζ.

∥ψ(Sh, Ah)∥2 ≤ 1 almost surely follows from the definition of ψ. Now, Ef(Sh, Ah, x) ≥ ζ
2

for every x ∈ Sd−1 implies E|⟨x, ψ(Sh, Ah)⟩| ≥ ζ

2
√
d

. Using the definition of f(Sh, Ah, x) (see

Section 5) and the fact that Ef(Sh, Ah, x) ≥ ζ
2 as established above, we conclude that for every

x ∈ Sd−1, we also have:

dξE⟨x, ψ(Sh, Ah)⟩2 ≤
√
dE|⟨x, ψ(Sh, Ah)⟩| −

ζ

2

≤
√
dE|⟨x, ψ(Sh, Ah)⟩| ≤

√
d
√

E⟨x, ψ(Sh, Ah)⟩2 (48)

In the second step, we have used Jensen’s inequality. From this, we conclude E⟨x, ψ(Sh, Ah)⟩2 ≤
1

dξ2 for every x ∈ Sd−1 and thence Eψ(Sh, Ah)ψ(Sh, Ah)
⊺ ⪯ 1

dξ2 .
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F PROOF OF THEOREM 4

Let the unknown row set in the iteration t in the matrix estimation procedure of Section 6.1 be
denoted by Īt−1. For the analysis, we will use the convention that Īt = ∅ if the procedure terminates
before the t-th iteration. Suppose Kt is such that for every t ≤ logN , we have: Kt|Īt−1| ≥
C r|Īt−1|+dr

ζ2ξ2 log d
ζξ +C

log( log N
δ )

ζ2ξ2 . We will then show that the event {|Īt| ≤ 1
10 |Īt−1|∀t ≤ logN} ∩

{Θ̂i = Θ∗
i ,∀i ∈ Ī∁logN} has probability at-least 1 − δ. To show this, it is sufficient to consider the

step t = 1 with Ī0 = [N ], K1 = K, Ψ(1) = Ψ and show that with probability 1 − δ
logN , Ī1 ≤ 9N

10

and Θ̂i = Θ∗
i for every i ∈ Ī∁1 . The result then follows from a union bound. We will therefore

establish the following structural lemma and prove the Theorem 4. The rest of the section is then
dedicated to proving Lemma 13.

Lemma 13. Suppose the distribution of ψik satisfies equation 2. Let K ≥ C(r+
dr
N )

ζ2ξ2 log d
ζξ . Let

Y(Ψ) denote the set of all matrices ∆ with rank at most 2r such that L(∆,Ψ) = 0. Let IZ(∆) =
{i ∈ [N ] : ∆i ̸= 0}. With probability 1− exp(−cζ2ξ2NK) we must have:

Y(Ψ)∩
{
∆ : |IZ(∆)| > N

10

}
= ∅

Proof of Theorem 4. Let Θ̄ be the rank ≤ r matrix found satisfying L(Θ̄ − Θ∗,Ψ(t)) = 0. By
Lemma 13, we have that |IZ(Θ̄−Θ∗)| ≤ N

10 with probability at-least 1− δ
logN (by setting K = K1

as in the statement of Theorem 4). By Lemma 14, the probability that there exists an i ∈ [N ] such

that Θ̄i ̸= Θ∗
i , and

∑K
k=1

∣∣∣⟨Θ̄i, ψ̃ik⟩ − θ∗ik
∣∣∣2 = 0 is at most |I| · exp(−cζ2ξ2K) ≤ δ ·N−c for some

large constant c. From this we conclude that Θ̄i = Θ∗
i for every i ∈ Ī∁1 .

Lemma 14. Fix any Θ̂. Suppose the distribution of (ψik)i∈[N ],k∈[K] satisfies equation 2. Then,
there exists a small enough constant c such that:

P

(
∃i s.t.

K∑
k=1

∣∣∣⟨Θ̂i, ψik⟩ − θ∗ik
∣∣∣2 < Kζ4ξ2∥Θ̂i−Θ∗

i ∥2
32d

)
≤ |I| · exp(−cζ2ξ2K).

Proof. Consider the Paley-Zygmund inequality, which states that for any positive random variable
Z,

P
(
Z ≥ EZ

2

)
≥ (EZ)2

4EZ2
.

Suppose i ∈ I and denote Γi := Θ̂i − Θ∗
i . By the properties of ψik, we have that E|⟨Γi, ψik⟩| ≥

ζ∥Γi∥√
d

and E|⟨Γi, ψik⟩|2 ≤ ∥Γi∥2

ξ2d .

Applying the Paley-Zygmund inequality to the random variable |⟨Γi, ψik⟩|, we conclude the result
in equation 52:

P
(
|⟨ψik,Γi⟩| ≥

ζ ∥Γi∥
2
√
d

)
≥ ζ2ξ2

4
(49)

Let p0 := ζ2ξ2

4 . Let N(Γi,Ψi) :=
∑K

k=1 1

(
|⟨ψik,Γi⟩| > ζ

2
√
d

)
. Clearly,∑K

k=1

∣∣∣⟨Θ̂i, ψik⟩ − θ∗ik
∣∣∣2 ≥ ζ2∥Γi∥2

4d ·N(Γi,Ψi). Therefore, we have:

P

(
K∑

k=1

∣∣∣⟨Θ̂i, ψik⟩ − θ∗ik
∣∣∣2 < Kζ4ξ2∥Γi∥2

32d

)
≤ P

(
N(Γi,Ψi) <

Kζ2ξ2

8

)
≤ P

(
Bin(K, p0) ≤ Kp0

2

)
≤ exp(−cp0K) (50)
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Here Bin(K, p0) denotes the binomial random variable. In the second step we have used the fact
that N(Γi,Ψi) is a sum of K independent Bernoulli random variables with probability of being
1 for each of them being at-least p0 = ζ2ξ2

4 . In the last step, we have used Sanov’s theorem for
large deviations. In the last step we have used Bernstein’s inequality for concentration of sums of
Bernoulli random variables (see Boucheron et al. (2013)). The statement of the result then follows
from a union bound argument over i ∈ I .

F.1 PROOF OF LEMMA 13

Suppose I ̸= ∅, I ⊆ [N ] be any fixed subset. ByM(N, d, I, 2r), we denote the set of all N × d
matrices ∆ with rank at-most 2r such that ∥∆i∥ > 0 for all i ∈ I . By B(N, d, I, 2r) we denote the
set of all N × d matrices with rank at-most 2r such that ∥Γi∥ = 1 whenever i ∈ I .

Lemma 15. Suppose infΓ∈B(N,d,I,2r) L(Γ,Ψ) > 0. Then, L(∆,Ψ) > 0 for every ∆ ∈
M(N, d, I, 2r)

Proof. For every ∆ ∈M(N, d, I, 2r), we construct Γ such that:

Γi =

{
∆i

∥∆i∥ whenever i ∈ I
0 otherwise

(51)

Now, by hypothesis, L(Γ,Ψ) > 0. This implies, there exists an i ∈ I and k ∈ K such that
|⟨ψik,Γi⟩| > 0. This implies |⟨ψik,∆i⟩| > 0 and thence we conclude that L(∆,Ψ) > 0.

Lemma 16. Suppose Γ is such that ∥Γi∥ = 1 for every i ∈ I . Suppose the distribution of
(ψik)i∈[N ],k∈[K] satisfy equation 2. Then, there exists a small enough constant c such that:

P
(
L(Γ,Ψ) < |I|ζ4ξ2

32Nd

)
≤ |I|2K2 exp(−cζ2ξ2|I|K)

Proof. Consider the Paley-Zygmund inequality, which states that for any positive random variable
Z,

P
(
Z ≥ EZ

2

)
≥ (EZ)2

4EZ2
.

Suppose i ∈ I . By the properties of ψik, we have that E|⟨Γi, ψik⟩| ≥ ζ√
d

and E|⟨Γi, ψik⟩|2 ≤ 1
ξ2d

Applying the Paley-Zygmund inequality to the random variable |⟨Γi, ψik⟩|, we conclude the result
in equation 52:

P
(
|⟨ψik,Γi⟩| ≥

ζ

2
√
d

)
≥ ζ2ξ2

4
(52)

Let p0 := ζ2ξ2

4 . Let N(Γ,Ψ) :=
∑

i∈I

∑K
k=1 1

(
|⟨ψik,Γi⟩| > ζ

2
√
d

)
. Clearly, L(Γ,Ψ) ≥

ζ4

4dNKN(Γ,Ψ) almost surely. Therefore, we have:

P
(
L(Γ,Ψ) < |I|ζ4ξ2

32N
√
d

)
≤ P

(
N(Γ,Ψ) < |I|Kζ2ξ2

8

)
≤ P

(
Bin(|I|K, p0) ≤ |I|Kp0

2

)
≤ exp(−cp0|I|K) (53)

Here Bin(|I|K, p0) denotes the binomial random variable. In the second step we have used the fact
that N(Γ,Ψ) is a sum of |I|K independent Bernoulli random variables with probability of being
1 for each of them being at-least p0 = ζ2ξ2

4 . In the last step, we have used Sanov’s theorem for
large deviations. In the last step we have used Bernstein’s inequality for concentration of sums of
Bernoulli random variables (see Boucheron et al. (2013))
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Lemma 17. Suppose the distribution of (ψik)i∈[N ],k∈[K] satisfy equation 2. Let |I| ≥ N
10 . There

exist positive constants c0, c, C such that whenever KN ≥ Cr(N+d)
ζ2ξ2 log d

ζξ , we have:

P
(

inf
Γ∈B(N,d,I,2r)

L(Γ,Ψ) < c0
ζ4ξ2

d

)
≤ exp(−cζ2ξ2NK)

Proof. It is sufficient to prove this result for Γ ∈ B0(N, d, I, 2r) ⊆ B(N, d, I, 2r), which is the
set of all matrices such that ∥Γi∥ = 1 for every i ∈ I and 0 otherwise. Define ∥Γ∥1,2,⊺ :=
1
N

∑N
i=1 ∥Γi∥. Suppose Γ̂ ∈ B0(N, d, I, 2r) is such that ∥Γ− Γ̂∥1,2,⊺ < η. Then,

L(Γ,Ψ) =
1

NK

N∑
i=1

N∑
k=1

|⟨Γi, ψik⟩|2

≥ 1

NK

N∑
i=1

N∑
k=1

|⟨Γ̂i, ψik⟩|2 − 2|⟨Γ̂i − Γi, ψik⟩||⟨Γ̂i, ψik⟩| (54)

= L(Γ̂,Ψ)− ∥Γ− Γ̂∥1,2,⊺ ≥ L(Γ̂,Ψ)− 2η (55)

In the third step, we have used the fact that ∥ψik∥ ≤ 1 and the Cauchy-Schwarz inequality to imply
|⟨Γ̂i − Γi, ψik⟩| ≤ ∥Γ̂i − Γi∥. Therefore, given any η net of B0(N, d, I, 2r), denoted by B̂0,η , we
must have:

inf
Γ∈B0(N,d,I,2r)

L(Γ,Ψ) ≥ inf
Γ∈B̂0,η

L(Γ̂,Ψ)− 2η (56)

We will now parametrize B0(N, d, I, 2r) as follows:

Claim 8. Every Γ ∈ B0(N, d, I, 2r) can be written as

Γi =

{∑2r
k=1 uikvk if i ∈ I

0 otherwise
(57)

Where v1, . . . , v2r are orthonormal vectors in Rd and ui = (uik)
2r
k=1 ∈ R2r are such that ∥ui∥ = 1.

Proof. By the singular value decomposition, we have: Γ = WΣV ⊺ for orthogonal matrices W,V
and the singular value matrix Σ. Therefore, Γij =

∑2r
k=1 wikσkvkj Denoting uik := wikσk, we

note that Γi =
∑2r

k=1 uikvk, where vk is the k-th column of V .

Now, it remains to show that ∥ui∥ = 1. By ortho-normality of v1, . . . , v2r and the definition of Γ,
we have: 1 = ∥Γi∥2 =

∑2r
k=1 |uik|2 = ∥ui∥2

Therefore, we construct an η-net for B0(N, d, I, 2r) as follows: consider any η/2-net over the
sphere S2r−1, denoted by Ŝη

2
(2r) with respect to the Euclidean norm. Similarly, consider any

η

2
√
2r

-net over the sphere Sd−1, denoted by Ŝ η

2
√
2r
(d). We draw (ui)i∈I , (vk)k∈[2r] from the set∏

i∈I Ŝη
2
(2r)

∏
k∈[2r] Ŝ η

2
√
2r
(d) and take B̂0,η to be the set of all Γ̂(u, v) of the form given in

Claim 8.

Claim 9. B̂0,η is an η net for B0(N, d, I, 2r) with respect to the norm ∥ · ∥1,2,⊺.

|B̂0,η| ≤ exp
(
2dr log( 4

√
2r

η + 1) + 2|I|r log( 4η + 1)
)

Proof of Claim 9. Let Γ ∈ B0(N, d, I, 2r). Let (ui), (vk) be such that: Claim 8, Γi =
∑2r

k=1 uikvk.
By construction, there exists Γ̂ ∈ B̂0,η such that:
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Γ̂i =

2r∑
k=1

ûikv̂k

with ∥ui − ûi∥ ≤ η
2 and ∥vk − v̂k∥ ≤ η

2
√
2r

for every i ∈ I and k ∈ [2r].

In order to show that ∥Γ− Γ̂∥1,2,⊺ ≤ η, it is sufficient to show that ∥Γ̂i − Γ̂i∥ ≤ η for every i ∈ [I].

∥Γ̂i − Γi∥ =
∥∥ 2r∑

k=1

(ûik − uik)vk +

2r∑
k=1

uik(vk − v̂k)
∥∥

≤
∥∥ 2r∑

k=1

(ûik − uik)vk
∥∥+∥∥ 2r∑

k=1

uik(vk − v̂k)
∥∥

=

√√√√ 2r∑
k=1

(ûik − uik)2+
∥∥ 2r∑

k=1

uik(vk − v̂k)
∥∥ ≤ η

2
+
∥∥ 2r∑

k=1

uik(vk − v̂k)
∥∥

≤ η

2
+

√√√√ 2r∑
k=1

u2ik

√√√√ 2r∑
k=1

∥vk − v̂k∥2 ≤ η (58)

Therefore B̂0,η is an η net with respect to ∥ · ∥1,2,⊺. By Corollary 4.2.13 in Vershynin (2018), we
can pick:

∣∣Ŝ η

2
√
2r
(d)
∣∣ ≤ ( 4

√
2r

η + 1)d and |Ŝη
2
(2r)| ≤ ( 4η + 1)2r and conclude the bound on the

cardinality of B̂0,η .

By Lemma 16 and a union bound,

P

(
inf

Γ̂∈B̂0,η

L(Γ̂,Ψ) <
ζ4ξ2|I|
32Nd

)
≤ |B̂0,η| exp(−cζ2ξ2|I|K)

≤ exp
(
2dr log( 4

√
2r

η + 1) + 2|I|r log( 4η + 1)− cζ2ξ2|I|K
)

(59)

Therefore, whenever taking |I| ≥ N
10 and η = c1

ζ4ξ2

d for some constant c1 small enough, and

combining equation 59 with equation 55, we conclude that whenever K ≥ C(r+
dr
N )

ζ2ξ2 log d
ζξ for a

large enough constant C, we have:

P
(

inf
Γ∈B0(N,d,I,2r)

L(Γ,Ψ) < c0
ζ4ξ2

d

)
≤ exp(−cζ2ξ2NK)

Now, consider |I| ≥ N
10 . The number of such sets I is at-most exp(c1N) for some constant c1 > 0.

Therefore, applying Lemma 17 along with the union bound over all I such that |I| ≥ N
10 we have:

Corollary 1. Under the conditions of Lemma 17, we have:

inf
I⊆N

|I|≥N
10

inf
Γ∈B(N,d,I,2r)

L(Γ,Ψ) > c0
ζ4ξ2

d

with probability at-least 1− exp(−cζ2ξ2NK)
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We are now ready to prove Lemma 13.

Proof of Lemma 13. Combining Lemma 15 and Corollary 1, we conclude that with probability at-
least 1− exp(−cζ2ξ2NK),

Y(Ψ)
⋂( ⋃

I⊆[N ]

|I|≥N
10

M(N, d, I, 2r)

)
= ∅

Note that if ∆ ∈ Y(Ψ) such that |IZ(∆)| > N
10 implies ∆ ∈ M(N, d, I, 2r) for some |I| > N

10 .
This allows us to conclude the statement of the lemma.
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