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Abstract
Long-tailed recognition (LTR) aims to learn balanced models from
extremely unbalanced training data. Fine-tuning pretrained founda-
tion models has recently emerged as a promising research direction
for LTR. However, we observe that the fine-tuning process tends to
degrade the intrinsic representation capability of pretrained models
and lead tomodel bias towards certain classes, thereby hindering the
overall recognition performance. To unleash the intrinsic represen-
tation capability of pretrained foundation models, in this work, we
propose a new Parameter-Efficient Complementary Expert Learn-
ing (PECEL) for LTR. Specifically, PECEL consists of multiple ex-
perts, where individual experts are trained via Parameter-Efficient
Fine-Tuning (PEFT) and encouraged to learn different expertise
on complementary sub-categories via a new sample-aware logit
adjustment loss. By aggregating the predictions of different experts,
PECEL effectively achieves a balanced performance on long-tailed
classes. Nevertheless, learning multiple experts generally intro-
duces extra trainable parameters. To ensure parameter efficiency,
we further propose a parameter sharing strategy which decomposes
and shares the parameters in each expert. Extensive experiments
on 4 LTR benchmarks show that the proposed PECEL can effec-
tively learn multiple complementary experts without increasing the
trainable parameters and achieve new state-of-the-art performance.

CCS Concepts
• Computing methodologies→ Computer vision tasks.
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1 Introduction
Real-world data usually conforms to a long-tailed distribution,
where a minority of classes (i.e., head classes) cover the major-
ity of samples, while the other classes (i.e., tail classes) comprise
only a few samples. Such data imbalance poses a formidable chal-
lenge for learning long-tailed recognition (LTR) models, since the
learned models are prone to be biased towards the head classes
with most of data but exhibit poor performance on other classes. To
address this challenge, researchers have proposed many approaches
[17, 23, 36, 41, 51, 54] to learn competent models from unbalanced
long-tailed training data.

Existing LTR approaches can be broadly categorized into train-
ing from scratch methods and fine-tuning methods. Training from
scratch models are trained from randomly initialized models, and
usually exhibit unsatisfactory performance [6, 55]. In contrast, LTR
methods via fine-tuning [10, 16, 34, 43, 46] mitigate the data imbal-
ance issue by adapting pretrained foundation models [24, 38, 40].
Foundation models are typically trained on extensive data, and
inherently learn generalizable representations across different se-
mantic categories [24, 40]. Therefore, LTR methods via fine-tuning
foundation models often yield higher accuracies [34, 46]. For ex-
ample, BALLAD [34], VL-LTR [46] and UDCPG [16] fine-tune the
visual and linguistic branches of CLIP [40] for LTR. To accelerate
the training process and prevent undermining the representation
of pretrained models in full fine-tuning, LPT [10] and LIFT [43]
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Figure 1: Accuracy of each class in ImageNet-LT [9] by Zero-
Shot recognition, Full Fine-tuning, PEFT (AdaptFormer [5])
and our proposed method. Here we use the pretrained CLIP-
ViT-B [40]. For better visualization, the accuracy values are
smoothed. Best viewed in color.
introduce Parameter-Efficient Fine-Tuning (PEFT) methods to LTR
and achieve notable improvements.

However, we empirically observe that full fine-tuning and PEFT
on long-tailed data tend to degrade the inherent representation ca-
pability of pretrained models. To verify this, in Figure 1, we present
the accuracy values of each class in ImageNet-LT [9], which are
obtained by zero-shot recognition, full fine-tuning, PEFT (Adapt-
Former [5]) and our proposed method, respectively. The class in-
dices are sorted according to the class frequencies. Figure 1 shows
that zero-shot recognition can achieve a relatively balanced per-
formance on different class groups, i.e., many-shot (with > 100
samples), medium-shot (with 20−100 samples) and few-shot classes
(with < 20 samples), suggesting the pretrained model learns sat-
isfactory representations for different classes. Though full fine-
tuning can achieve favorable accuracy on the many-shot classes,
the performance on the medium and few-shot classes is inferior
to zero-shot recognition, indicating the representation capability
on these classes is degraded due to fine-tuning on long-tailed data.
Similarly, PEFT exhibits a lower accuracy than zero-shot recogni-
tion on the few-shot classes, which indicates the representations of
these classes are also hindered and become less discriminative.

To unleash the potential of pretrained foundation models, in
this work, we propose the Parameter-Efficient Complementary Ex-
pert Learning (PECEL) for LTR. Specifically, PECEL learns multiple
expert models from the pretrained models via PEFT, which are
encouraged to attain different expertise on complementary classes.
To ensure this, we propose a sample-aware logit adjustment (SLA)
loss, which adjusts the learning difficulty of individual experts
on different classes and samples. Thus, an expert only needs to
focus on learning certain classes and pay less attention to other
classes. By aggregating the predictions of these experts, PECEL can
achieve a balanced performance across different classes. Besides,
directly learning multiple experts generally increases the number
of trainable parameters by multiple times. To alleviate this, we pro-
pose a parameter sharing strategy. For each expert, the parameters
in different PEFT blocks are decomposed as shared components

and low-dimensional separate components. By distributing the
shared components across different blocks, each expert only needs
to maintain a small number of trainable parameters. To demonstrate
the efficacy of PECEL, we conduct extensive experiments on the
CIFAR100-LT [26], ImageNet-LT [9], Places-LT [57] and iNaturalist
2018 [47]. As shown in Figure 2, our proposed PECEL can per-
form on par with the state-of-the-art methods with notably fewer
trainable parameters, and achieve higher accuracy with equivalent
numbers of parameters.

To summarize, our contributions in this work include the follow-
ing aspects.

• To the best of our knowledge, the proposed PECEL is the
first work to effectively address the representation degrada-
tion issue when adapting foundation models for long-tailed
recognition.

• We propose sample-aware logit adjustment and a param-
eter sharing strategy, which can effectively learn multiple
complementary experts and reduce the number of trainable
parameters, respectively.

• The proposed PECEL achieves state-of-the-art performance
on 4 long-tailed recognition benchmarks.

2 Related Work
2.1 Long-Tailed Recognition
Long-tailed recognition (LTR) aims at learning models with bal-
anced performance on different classes from extremely unbalanced
training data. Existing LTR methods can be divided into training
from scratch and fine-tuning pretrained models.
Training from Scratch. LTR methods by training from scratch
mainly included re-balancing, logit adjustment, representation learn-
ing and ensemble learning. Re-balancing methods tackled the data
imbalance issue via re-sampling the imbalanced inputs [31, 39, 42]
or balancing the loss of different classes with re-weighting [6, 8,
13, 41] and re-margining [4]. Logit adjustment methods [28, 36, 56]
sought to alleviate the class imbalance by incorporating dedicated
biases or weights into the output logits. Representation learning
methods [7, 22, 37, 58] aimed at learning balanced and discrimi-
native representations from the long-tailed data via metric learn-
ing [35, 50, 53] or contrastive learning [18, 23, 29, 58]. Ensemble
learning-based LTR methods [1, 45, 51, 54, 55] usually learned mul-
tiple diverse expert models, and aggregated the outputs of different
experts. Specifically, RIDE [51] proposed a routing module and
selected the most appropriate expert in testing time. SADE [54]
trained complementary experts and adaptively aggregated the pre-
dictions to handle different data distributions. MDCS [55] and LGLA
[45] aggregated skill-diverse experts to achieve more balanced per-
formance. Compared to recent LTR methods that fine-tuned pre-
trained models [16, 43, 46], training from scratch methods usually
exhibited inferior performance.
Fine-tuning Pretrained Models. Enlightened by the unprece-
dented success of foundation models [24, 38, 40], recent LTR meth-
ods [16, 34, 46] also resorted to pretrained foundation models to
tackle the data imbalance. For example, BALLAD [34] trained the vi-
sual and linguistic encoder of CLIP [40] with text prompts and input
images, then fine-tuned a linear adapter on the balanced training
samples. Tian et al. proposed VL-LTR [46], which aligned the images
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Figure 2: Classification accuracy and number of trainable parameters of different methods on (a) CIFAR100-LT, (b) ImageNet-LT,
(c) iNaturalist 2018. PECEL† denotes PECEL with a lower bottleneck dimension.

and text embeddings via contrastive learning, and trained the LTR
classifier with cross-modality attention. GML [44] tackled LTR as a
mutual information maximization problem [3] between the latent
embeddings and ground-truth labels. UDCPG [16] addressed the
feature collapse in training by aligning the image and text features
with prototype-based contrastive learning. To improve the train-
ing efficiency and preserve the inherent representation capability
[10, 43], some LTR methods also explored PEFT techniques for LTR.
LPT [10] adopted two-stage visual prompt tuning [21] to further
empower the pretrained model’s capability on fine-grained discrim-
ination. LIFT [43] proposed to integrate PEFT modules (such as
AdaptFormer [5]) and designed a simple yet highly effective frame-
work for LTR. As illustrated in Figure 1, we empirically observed
that PEFT still degraded the representation capability of pretrained
models. In this work, we propose to learn multiple complementary
experts via PEFT to alleviate this issue and further unleash the
potential of pretrained foundation models for LTR.

2.2 Parameter-Efficient Fine-Tuning
Parameter-efficient fine-tuning (PEFT) aims to relieve the training
and storage cost of large pretrained models [38, 40] by only updat-
ing a small number of parameters while keeping other parameters
frozen [30]. VPT [21] proposed to freeze the pretrained backbone
and prepend some extra trainable prompt tokens to fine-tune visual
recognition tasks. LoRA [20] proposed to inject low-rank trainable
matrices to each layer in the backbone. To further explore param-
eter efficiency, VeRA [25] proposed to decompose the projection
matrix in PEFT modules into a fixed random part and a learnable
part. Different from LoRA-style methods that re-parameterized the
projection weights, Adapter [19] inserted a bottleneck module af-
ter the feed-forward network (FFN) of Transformer blocks [48],
which only comprised simple linear projections and nonlinear lay-
ers. AdaptFormer [5] extended the sequential design of Adapter
to parallel and added an extra scaling factor, which demonstrated
better performance. However, existing PEFT methods typically
maintain separate parameters in each block, which will remark-
ably increase the number of trainable parameters when learning
multiple experts for LTR. To address this issue, in this work, we
propose a parameter sharing strategy by decomposing and sharing
the parameters in different PEFT blocks.

3 Methodology
In this section, we first briefly introduce some preliminary knowl-
edge, and then present the overall framework of the proposed
Parameter-Efficient Complementary Expert Learning (PECEL). How
to learn multiple complementary experts and reduce the number
of trainable parameters in each expert model are elaborated in Sec-
tion 3.3 and 3.4, respectively. Finally, the overall training objective
and analysis on the number of trainable parameters of PECEL are
illustrated in Section 3.5 and 3.6, respectively.

3.1 Preliminary
Logit Adjustment. Logit adjustment [36] tackles the class imbal-
ance issue by infusing class-level biases (i.e., relative class frequency)
into the predicted logits in the training process. Let z ∈ R𝐶 denotes
the model predicted logits, where 𝐶 denotes the number of classes,
the logit adjustment loss is calculated as:

L𝑙𝑎 (z, y) = −
𝐶∑︁
𝑖=1

y𝑖 log
exp(z𝑖 + log(b𝑖 ))∑𝐶
𝑗=1 exp(z𝑗 + log(b𝑗 ))

, (1)

where y ∈ R𝐶 denotes the one-hot ground-truth label, b𝑖 is the
relative frequency of class 𝑖 . Intuitively, Eq. 1 adds larger biases to
the head classes, which can lower the learning difficulty, thereby
enforcing the model to focus more on the tail classes and achieving
more balanced performance.
AdaptFormer. The previous method LIFT [43] empirically demon-
strates that conducting PEFT with AdaptFormer [5] can achieve
favorable LTR performance. Therefore, in this work, we also adopt
AdaptFormer as the basic PEFT block. Given the input feature
X ∈ R𝑁×𝐷 , where 𝑁 and 𝐷 denote the batch size and feature
dimension, respectively, the output of an AdaptFormer block is

X𝑑𝑜𝑤𝑛 = 𝐿𝑁 (X)W𝑑𝑜𝑤𝑛,

X𝑢𝑝 = 𝑅𝑒𝐿𝑈 (X𝑑𝑜𝑤𝑛)W𝑢𝑝 ,

X𝑜𝑢𝑡 = 𝑠 · X𝑢𝑝 ,
(2)

where 𝐿𝑁 (·) denotes Layer Normalization [2], W𝑑𝑜𝑤𝑛 ∈ R𝐷×𝑑

andW𝑢𝑝 ∈ R𝑑×𝐷 are the down and up projection matrix (𝑑 is the
bottleneck dimension and 𝑑 ≪ 𝐷), respectively, and 𝑠 is a learnable
scalar. An AdaptFormer block is typically used as a parallel branch
of the feed-forward network (FFN) in a Transformer block [11, 48],
updating the outputs to X𝑜𝑢𝑡 + 𝐹𝐹𝑁 (X).
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Figure 3: Overview of the proposed Parameter-Efficient Complementary Expert Learning (PECEL). PECEL consists of multiple
experts. In each expert, the CLIP-ViT-B[40] and AdaptFormer [5] with the proposed parameter sharing strategy are used as
the pretrained model and basic PEFT block, respectively. To ensure different experts can learn complementary expertise, the
experts are guided by the proposed sample-aware logit adjustment loss conditioned by different weight factors 𝜏 . Besides, to
ensure parameter efficiency when learning multiple experts, we propose a parameter sharing strategy to decompose and share
the parameters in different PEFT blocks.

3.2 Method Overview
The overall framework of the proposed Parameter-Efficient Comple-
mentary Expert Learning (PECEL) for LTR is illustrated in Figure 3.
As shown in Figure 3, PECEL consists of multiple experts, where
each expert is composed of a frozen pretrained backbone and train-
able PEFT modules. In this work, following the previous works
[43, 46], we also use the pretrained CLIP-ViT-B [40] and Adapt-
Former [5] as the pretrained model and basic PEFT block in this
work. To learn expertise on complementary classes, the output
logits of different experts are supervised with the proposed sample-
aware logit adjustment loss conditioned by different weighted fac-
tors. Since learning multiple experts introduces extra parameters,
to ensure parameter efficiency, we propose a parameter sharing
strategy to decompose and share the parameters in PEFT blocks. In
the inference stage, the outputs of different experts are aggregated
via averaging without adjusting the logits.

3.3 Learning Complementary Experts
As illustrated in Figure 1, the fine-tuning process undermines the
inherent representation capability of pretrained models, then re-
sults in the model bias towards certain semantic classes. To take
full advantage of pretrained models for LTR, we propose to learn
multiple complementary experts, where each expert is enforced to
learn the expertise on different subcategories via PEFT. The techni-
cal details of PEFT blocks in each expert are presented in Figure 3
and depicted in Section 3.4.

Unlike the fixed relative class frequency b in Eq. 1, to learn ex-
perts specializing in different class groups, we propose to condition
b with different weight factors. Specifically, assuming the output
logits of the 𝑘 − 𝑡ℎ expert E𝑘 is z𝑘 , the loss function for E𝑘 is
calculated as:

L𝑙𝑎 (z𝑘 , y) = −
𝐶∑︁
𝑖=1

y𝑖 log
exp(z𝑘

𝑖
+ 𝜏𝑘 log(b𝑖 ))∑𝐶

𝑗=1 exp(z𝑘𝑗 + 𝜏𝑘 log(b𝑗 ))
, (3)

where 𝜏𝑘 is a weight factor to enforce expert E𝑘 to focus on spe-
cific classes. Particularly, when 𝜏𝑘 = 1, Eq. 3 degrades to Eq. 1,
and can facilitate a relatively balanced performance on different

classes. When 𝜏𝑘 > 1, the imbalance ratio between different classes
is enlarged, so the penalty to the head classes is increased, encour-
aging the expert E𝑘 to focus and achieve better performance on tail
classes. On the contrary, when 𝜏𝑘 < 1, the imbalance ratio between
different classes drops, therefore improving the performance on
head classes for expert E𝑘 . By employing different weight factors,
different experts can learn knowledge on complementary classes.
In practice, we set PECEL with 3 experts to learn complementary
knowledge on many-shot, medium-shot and few-shot classes by
setting 𝜏 > 1, 𝜏 = 1 and 𝜏 < 1, respectively.

Note that Eq. 3 only adjusts the learning difficulty according
to the class frequency. However, due to the intra-class diversity,
the learning difficulty of samples in the same class can be very
different [56]. To address this issue and enforce the learning of
each expert, in this section, we further adapt Eq. 3 and propose the
Sample-aware Logit Adjustment (SLA). Specifically, SLA further
adjusts the logit bias in Eq. 3 for the misclassified hard samples.
Based on Eq. 3, the calculation of SLA loss is

L𝑠𝑙𝑎 (z𝑘 , y) = −
𝐶∑︁
𝑖=1

y𝑖 log
exp(z𝑘

𝑖
+ 𝜏𝑘 log(b𝑖 ) + 𝛽𝑖 )∑𝐶

𝑗=1 exp(z𝑘𝑗 + 𝜏𝑘 log(b𝑗 ) + 𝛽 𝑗 )
, (4)

where 𝛽 ∈ R𝐶 is a bias vector and its values depend on the predic-
tion results. Intuitively, if the current sample is correctly classified,
𝛽 = 0, degrading Eq. 4 to Eq. 3. While the current sample is misclas-
sified, 𝛽𝑖𝑝 = 𝜖 , 𝛽𝑖𝑦 = −𝜖 and 𝛽𝑖 = 0 for other values, where 𝑖𝑝 and
𝑖𝑦 denote the index of the predicted and ground-truth class label,
respectively. 𝜖 denotes a small positive value. For the misclassified
samples, Eq. 4 can enlarge the logit bias on the ground-truth class,
and decrease the bias on the misclassified class, thereby enforcing
the model focus more on the misclassified samples.

3.4 Parameter-Efficient Expert Learning
Learning with Eq. 4 can yield multiple complementary experts.
However, the number of trainable parameters will also increase
linearly by multiple times. To ensure the parameter efficiency of
PECEL, different from previous PEFT methods that maintain sepa-
rate trainable parameters in different blocks [5, 20], we propose a
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parameter sharing strategy to decompose and share the parameters
across different PEFT modules.
Parameter Sharing. As illustrated in Figure 3, in each expert, the
projectionmatrices in PEFT blocks are decomposed into shared base
matrices and standalone low-dimensional matrices. Specifically, for
the 𝑖 − 𝑡ℎ PEFT block, the down and up projection matrices are
decomposed as:

W𝑖
𝑑𝑜𝑤𝑛

= P𝑑𝑜𝑤𝑛 (Q𝑖𝑑𝑜𝑤𝑛)
⊤,

W𝑖
𝑢𝑝 = (Q𝑖𝑢𝑝 )⊤P𝑢𝑝 ,

(5)

where P𝑑𝑜𝑤𝑛 ∈ R𝐷×𝑑 and P𝑢𝑝 ∈ R𝑑×𝐷 denote the base down
and up projection matrices, respectively. P𝑑𝑜𝑤𝑛 and P𝑢𝑝 are shared
across different blocks. Q𝑖

𝑑𝑜𝑤𝑛
∈ R𝑑×𝑑 and Q𝑖𝑢𝑝 ∈ R𝑑×𝑑 are the

standalone low-dimensional matrices for down projection and up
projection in the 𝑖 − 𝑡ℎ block, respectively. Therefore, integrating
Eq. 2, the outputs of the 𝑖 − 𝑡ℎ shared PEFT block is calculated as:

X𝑖
𝑑𝑜𝑤𝑛

= 𝐿𝑁 (X𝑖 ) (P𝑑𝑜𝑤𝑛 (Q𝑖𝑑𝑜𝑤𝑛)
⊤),

X𝑖𝑢𝑝 = 𝑅𝑒𝐿𝑈 (X𝑖
𝑑𝑜𝑤𝑛

) ((Q𝑖𝑢𝑝 )⊤P𝑢𝑝 ),
X𝑖𝑜𝑢𝑡 = 𝑠 · X𝑖𝑢𝑝 .

(6)

As shown in Figure 3, X𝑖𝑜𝑢𝑡 and the outputs of pretrained backbone
block are integrated via addition. Note that Q𝑑𝑜𝑤𝑛 and Q𝑢𝑝 are sep-
arate, the individual blocks can therefore maintain their own down
and up projection matrices. Since P𝑑𝑜𝑤𝑛 and P𝑢𝑝 are shared, and
given 𝑑 ≪ 𝐷 , in each expert, the number of trainable parameters
can be reduced by a large margin.
Shared Parameter Regularization. The reduction of trainable
parameters requires the network to learn discriminative shared
parameters. To facilitate this, we design a simple regularization loss
for the shared parameters. Specifically, the shared parameters are
restricted to orthogonal matrices. For the shared down projection
matrix P𝑑𝑜𝑤𝑛 , the loss is

L𝑟𝑒𝑔 (P𝑑𝑜𝑤𝑛) = |P⊤
𝑑𝑜𝑤𝑛

P𝑑𝑜𝑤𝑛 − I|, (7)

where | · | denotes the mean absolute error loss. I denotes the identity
matrix. The calculation of L𝑟𝑒𝑔 (P𝑢𝑝 ) is in a similar way.

3.5 Training Objective
As shown in Figure 3, for each expert, the training loss includes the
sample-aware logit adjustment loss in Eq. 4 and regularization loss
in Eq. 7. Assuming there are 𝐾 experts, the overall training loss for
PECEL is

L𝑎𝑙𝑙 =
𝐾∑︁
𝑖=1

(L𝑠𝑙𝑎 (z𝑖 , y) + L𝑟𝑒𝑔 (P𝑖𝑑𝑜𝑤𝑛) + L𝑟𝑒𝑔 (P𝑖𝑢𝑝 )), (8)

where P𝑖
𝑑𝑜𝑤𝑛

and P𝑖𝑢𝑝 denote the projection matrices for expert 𝑖 .

3.6 Trainable Parameter Analysis.
To demonstrate the parameter efficiency of the proposed method,
we calculate the exact number of trainable parameters when ap-
plying AdaptFormer with and without parameter sharing. In prac-
tice, the down and up projections are usually instantiated by lin-
ear layers, which include the weight matrices and bias vectors.
Therefore, an AdaptFormer block has (2𝑑𝐷 + 𝐷 + 𝑑) parameters.

Table 1: Accuracy onCIFAR100-LT under different imbalance
ratio (IR) settings. †: lower bottleneck dimension. The best
and second-best results are highlighted in bold andunderline,
respectively.

Backbone Trainable Total IR=100 IR=50 IR=10Params Params

Training from scratch.
PaCo [7] ICCV’21 ResNet32 0.46M 0.46M 52.0 56.0 64.2
SADE [54] NeurIPS’22 ResNet32 1.34M 1.34M 49.8 53.9 63.6
NCL [27] CVPR’22 ResNet32 1.34M 1.34M 54.2 58.2 -
BCL [58] CVPR’22 ResNet32 0.46M 0.46M 51.9 56.6 64.9
OUR [35] ACM MM’23 ResNet32 0.46M 0.46M 50.8 64.5 63.9
GLMC [12] CVPR’23 ResNet32 0.46M 0.46M 57.1 62.3 72.3
MDCS [55] ICCV’23 ResNet32 1.34M 1.34M 56.1 60.1 -
LGLA [45] ICCV’23 ResNet32 1.34M 1.34M 57.2 61.6 -
DODA [49] ICLR’24 ResNet32 0.46M 0.46M 51.0 53.6 62.7

Fine-tuning pretrained models.
Zero-Shot ViT-B - - 64.4 64.4 64.4
Full Fine-tuning ViT-B 85.0M 85.0M 52.9 61.4 73.3
BALLAD [34] arXiv’22 ViT-B 149.6M 149.6M 77.8 - -
LiVT [52] CVPR’23 ViT-B 85.5M 85.5M 58.2 - 69.2
LIFT [43] ICML’24 ViT-B 0.10M 85.1M 81.7 83.1 84.9
PECEL† ViT-B 0.03M 85.0M 81.7 83.4 85.0
PECEL ViT-B 0.10M 85.1M 84.3 84.6 86.4

The total number of parameters for 𝐿 blocks is (2𝑑𝐷 + 𝐷 + 𝑑)𝐿.
Similarly, when using parameter sharing, 𝐿 AdaptFormer blocks
contain 2(𝑑2 + 𝑑)𝐿 + (2𝑑𝐷 + 𝐷 + 𝑑) parameters. Givens 𝑑 ≪ 𝐷 ,
2(𝑑2+𝑑)𝐿+ (2𝑑𝐷+𝐷+𝑑) is remarkably smaller than (2𝑑𝐷+𝐷+𝑑)𝐿.
For example, assuming the feature dimension 𝐷 , bottleneck dimen-
sion 𝑑 and the number of AdaptFormer blocks 𝐿 are 768, 32 and
12, respectively, there are ∼599K trainable parameters in all PEFT
blocks. When using the proposed parameter sharing strategy, the
number of trainable parameters is reduced by ∼87% to ∼75K.

4 Experiments
4.1 Experimental Settings
Datasets andEvaluation.We conduct experiments on the CIFAR100-
LT [26], ImageNet-LT [9], Places-LT [57] and iNaturalist 2018 [47]
to verify the efficacy of the proposed method.

CIFAR100-LT [26] is the long-tailed version of CIFAR100, in-
cluding 100 classes with 50K images for training and 10K images for
validation.We follow the split in [43, 51, 54] and generate CIFAR100-
LT with different imbalance ratios (IR) [45, 55]. IR is defined as the
ratio of the maximum and minimum number of samples per class.

ImageNet-LT [9] and Places-LT [57] are the long-tailed ver-
sion of ImageNet-1k [9] and Places365 [57] dataset, respectively.
ImageNet-LT includes 115.8K training images and 50K validation
images, distributed across 1K classes. Places-LT includes 365 classes,
with 62.5K training images and 36.5K validation images. The IR of
ImageNet-LT and Places-LT are 256 and 996, respectively.

iNaturalist 2018 [47] consists of 437.5K training images and
244K validation images, distributed across 8192 classes. The maxi-
mum and minimum number of samples per class are respectively
1000 and 2, i.e., the IR of iNaturalist 2018 is 500.

By default, we report the Top-1 overall accuracy as the evaluation
criterion. Following the common practice [43, 55], we also report
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the accuracy of many-shot (with > 100 samples), medium-shot
(with 20 − 100 samples) and few-shot classes (with < 20 samples).
Due to the page limits, the results on Places-LT are reported in the
supplementary material.
Implementation Details. For a fair comparison with previous
works [16, 34, 43, 46], we adopt CLIP [40] as the pretrained foun-
dation model. Specifically, the backbone architecture of PECEL
is ViT-B [11], and initialized with the pretrained CLIP visual en-
coder. For parameters in PEFT modules, the up projection layers
and learnable scale factors are initialized with 0 to avoid influencing
the features at the initial training stage. The other parameters are
initialized via Kaiming Normalization [14]. We use the semantic-
aware initialization and test-time ensembling proposed in LIFT [43]
to initialize the classifiers and further improve the test accuracy. For
the experiments on CIFAR100-LT, ImageNet-LT and Place-LT, we
use the SGD optimizer to perform optimization. The initial learning
rate and total epochs are set as 0.1 and 10. The learning rate de-
cays linearly to 0 by epoch. Since iNaturalist 2018 consists of more
training samples and classes, we use the AdamW optimizer [33] for
better convergence in experiments on iNaturalist 2018. The initial
learning rate and total epochs are set as 5𝑒−4 and 20, respectively.

Unless specified otherwise, the number of experts in PECEL is
set as 3, with 𝜏 in Eq. 4 set as [0.5, 1.0, 1.5] to enforce different
experts to learn expertise on the many-shot, medium-shot and
few-shot classes, respectively. The bias factor 𝜖 in 𝛽 (Eq. 4) is set
as 0.1. The bottleneck dimension 𝑑 in the PEFT blocks is set as
14/64/24/224 for CIFAR100-LT/ImageNet-LT/Places-LT/iNaturalist
2018 to align the number of trainable parameters with LIFT [43].
More implementation details can be found in the supplementary.

4.2 Comparison with SOTA Methods
CIFAR100-LT. In Table 1, we report the classification accuracy on
CIFAR100-LT with different imbalance ratios (IR). † denotes PECEL
with a lower bottleneck dimension, i.e., 𝑑 = 1 for CIFAR100-LT. As
shown in Table 1, owing to the multiple complementary experts,
the proposed PECEL can achieve 84.3%/84.6%/86.4% Top-1 accuracy
on CIFAR100-LT with IR=100/50/10, which outperforms previous
state-of-the-art LIFT [43] by 2.6%/1.2%/1.4%. Besides, compared
to LIFT [43], due to the proposed parameter sharing strategy, the
proposed PECEL can achieve comparable performance with ∼70%
fewer trainable parameters.
ImageNet-LT & iNaturalist 2018. The results on ImageNet-LT
and iNaturalist 2018 are reported in Table 2. † denotes PECEL
with a lower bottleneck dimension, i.e., 𝑑 = 32 for ImageNet-LT
and 𝑑 = 128 for iNaturalist 2018. In Table 2, the proposed PE-
CEL achieves 79.2% and 82.5% classification accuracy on ImageNet-
LT and iNaturalist 2018, respectively, which remarkably surpass
the previous state-of-the-art method LIFT [43]. For the parame-
ter efficiency, compared with LIFT, PECEL can achieve compara-
ble performance with 60.4%/62.3% fewer parameters on ImageNet-
LT/iNaturalist 2018, which is attributed to the parameter sharing
strategy in Section 3.4. In Table 2, we also report the accuracy of
many-shot classes (Many), medium-shot classes (Med) and few-shot
classes (Few). As shown in Table 2, due to the proposed skill-diverse
and complementary expert learning in Eq. 4, compared with LIFT

[43], PECEL can achieve a more balanced performance across dif-
ferent class groups and higher performance on each class group.

4.3 Ablation Study and Analysis
Ablation Study. To demonstrate the effectiveness of the proposed
modules, we conduct ablation experiments onCIFAR100-LT (IR=100)
and iNaturalist 2018 (iNat 2018). The results are reported in Table 3.
Our baseline is LIFT [43], which adopts PEFT with AdaptFormer
[5] for LTR. In Table 3, we observe that the parameter sharing
(Share) strategy can reduce the number of trainable parameters, yet
at the cost of reducing the representation capability of all expert
models. The proposed parameter regularization (Reg) strategy can
reduce representation redundancy and improve the recognition
accuracy. Incorporating complementary expert learning (CEL) can
substantially improve the overall accuracy of CIFAR100-LT and
iNaturalist 2018 to 83.7% and 81.6%, respectively. Moreover, since
CEL via sample-aware logit adjustment (CEL-SLA) can facilitate
learning on misclassified samples, the final recognition accuracy
on CIFAR100-LT and iNaturalist 2018 is further promoted to 84.3%
and 82.5%, respectively.
Complementary Expert Learning. Table 3 shows the proposed
modules can effectively improve the overall accuracy. We need to
further verify the contribution of individual experts. In Table 4, we
present the classification accuracy of each expert in PECEL on each
class group. Table 4 shows that different experts (i.e., E1,E2,E3)
conditioned with 𝜏 = [0.5, 1.0, 1.5] can competently learn expertise
on many-shot, medium-shot and few-shot classes, respectively,
which demonstrates the effectiveness of complementary expert
learning in Eq. 4. Besides, Table 4 also shows that aggregating these
complementary experts yields higher overall accuracy than each
single expert, which also verifies the necessity of learning multiple
complementary experts.
Expert Numbers. As mentioned in Section 4.1, by default, PECEL
consists of 3 experts conditioned by the weight factors of 0.5, 1.0
and 1.5, respectively. In Table 5, we report the accuracy of PECEL
with different expert numbers and weight factors 𝜏 . For example,
[0.5, 1.5] denotes PECEL consists of two experts which are condi-
tioned by 0.5 and 1.5, respectively. As shown in Table 5, PECEL
with different 𝜏 consistently performs better than LIFT in Table 1.
Since the performance of few-shot and many-shot classes will be
hindered more remarkably when 𝜏 = 0.5 and 2.0, PECEL with
𝜏 = [0.0, 1.0, 2.0] exhibits lower performance than 𝜏 = [0.5, 1.0, 1.5].
It’s also noted that PECEL achieves 83.9% accuracy when 𝜏 =

[1.0, 1.0, 1.0], indicating that ensembling experts with similar ex-
pertise can also help.
Sample-aware Logit Adjustment. In addition to learning com-
plementary experts, Sample-aware Logit Adjustment (SLA) also
aims to shift more attention to the misclassified samples. To verify
this, in Figure 4, we present the accuracy gains of each class in
CIFAR100-LT when using the sample-aware bias in Eq. 4. Figure 4
shows that applying sample-aware bias can improve the average ac-
curacy by 2.0% on the few-shot classes, which usually involve more
misclassified samples due to the lower class frequency. Given the
ablation results in Table 3, the proposed SLA can finely achieve the
goal of facilitating learning on misclassified samples and improving
the overall performance.
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Table 2: Accuracy on ImageNet-LT and iNaturalist 2018. †: lower bottleneck dimension. The best and second-best results are
highlighted in bold and underline, respectively.∗ denotes ImageNet-22k pretrained backbone.

ImageNet-LT iNaturalist 2018

Backbone Trainable Total Many Med Few All Backbone Trainable Total Many Med Few AllParams Params Params Params

Training from scratch.
SADE [54] NeurIPS’22 ResNeXt50 66.1M 66.1M 66.5 57.0 43.5 58.8 ResNet50 67.6M 67.6M - - - 72.9
NCL [27] CVPR’22 ResNeXt50 66.1M 66.1M - - - 60.5 ResNet50 67.6M 67.6M 72.7 75.6 74.5 74.9
LiVT [52] CVPR’23 ViT-B 85.0M 85.0M 73.6 56.4 41.0 60.9 ViT-B 85.0M 85.0M 78.9 76.5 74.8 76.1
OUR [35] ACM MM’23 ResNeXt50 23.0M 23.0M 66.5 55.7 37.9 57.2 ResNet50 23.5M 23.5M 70.5 73.9 74.8 73.7
MDCS [55] ICCV’23 ResNeXt50 66.1M 66.1M 72.6 58.1 44.3 61.8 ResNet50 67.6M 67.6M 76.5 75.5 75.2 75.6
LGLA [45] ICCV’23 ResNeXt50 66.1M 66.1M - - - 61.1 ResNet50 67.6M 67.6M 70.1 76.2 77.6 76.2
DODA [49] ICLR’24 ResNeXt50 66.1M 66.1M 66.9 54.1 37.4 56.9 ResNet50 67.6M 67.6M 71.2 73.2 73.4 73.7

Fine-tuning pretrained models.
Zero-Shot ViT-B - - 65.4 63.1 64.8 64.4 ViT-B - - 7.6 4.0 3.5 4.2
Full Fine-Tuning ViT-B 85.0M 85.0M 74.6 50.6 22.0 56.0 ViT-B 85.0M 85.0M 74.2 65.3 59.1 63.8
BALLAD [34] arXiv’21 ViT-B 149.6M 85.0M 79.1 74.5 69.8 75.7 - - - - - - -
VL-LTR [46] ECCV’22 ViT-B 149.6M 85.0M 84.5 74.6 59.3 77.2 ViT-B 149.6M 149.6M - - - 76.8
RAC [32] CVPR’22 - - - - - - ViT-B 85.0M 85.0M 75.9 80.5 81.1 80.2
UDCPG [16] ACM MM’23 ResNet50 23.5M 23.5M 76.4 69.5 60.2 70.9 ResNet50 23.5M 23.5M - - - 75.2
LPT [10] ICLR’23 - - - - - - - ViT-B∗ 1.01M 86.0M - - 79.3 76.1
LIFT [43] ICML’24 ViT-B 0.62M 85.6M 81.3 77.4 73.4 78.3 ViT-B 4.75M 89.8M 74.0 80.3 82.2 80.4
PECEL† ViT-B 0.24M 85.2M 81.3 77.6 73.0 78.3 ViT-B 1.79M 86.8M 76.8 80.6 81.3 80.5
PECEL ViT-B 0.62M 85.6M 82.1 77.8 76.3 79.2 ViT-B 4.68M 89.8M 80.2 82.5 82.9 82.5

Table 3: Ablation study on CIFAR100-LT with IR=100 and
iNaturalist 2018 (iNat 2018). Share: parameter sharing; Reg:
parameter regularization; CEL: complementary expert learn-
ing via Eq. 3; CEL-SLA: CEL via sample-aware logit adjust-
ment, i.e., Eq. 4; Param: number of trainable parameters in
backbone.

Share Reg CEL CEL-SLA CIFAR100-LT iNat 2018

Acc Param Acc Param

LIFT 81.7 0.10M 80.4 4.75M

✓ 79.9 0.03M 80.1 1.99M
✓ ✓ 80.7 0.03M 80.4 1.99M
✓ ✓ 83.7 0.10M 81.6 4.68M
✓ ✓ ✓ 84.1 0.10M 82.0 4.68M

PECEL ✓ ✓ ✓ 84.3 0.10M 82.5 4.68M

Table 4: Accuracy of each expert in PECEL on CIFAR100-
LT with IR=100 and ImageNet-LT. The best and second-best
results are highlighted in bold and underline, respectively.

CIFAR100-LT (IR=100) ImageNet-LT

Many Med Few All Many Med Few All

E1 (𝜏1 = 0.5) 89.6 81.4 70.9 81.1 85.0 75.0 64.0 77.3
E2 (𝜏2 = 1.0) 86.4 82.8 80.7 83.4 81.3 77.3 75.4 78.5
E3 (𝜏3 = 1.5) 80.8 80.4 85.3 82.0 75.1 77.6 81.3 77.2

PECEL 87.5 83.3 81.8 84.3 82.1 77.8 76.3 79.2

Fewer Parameters. As shown in Table 1 and 2, using the proposed
parameter sharing strategy, PECEL can achieve a favorable balance

Table 5: Impact of different expert numbers and weight fac-
tors on CIFAR100-LT (IR=100).

𝜏 Many Med Few All

2 Experts [0.5, 1.5] 87.1 82.3 80.5 83.4

[1.0, 1.0, 1.0] 86.9 83.4 81.3 83.9
3 Experts [0.0, 1.0, 2.0] 87.7 81.7 81.5 83.7

[0.5, 1.0, 1.5] 87.5 83.3 81.8 84.3

4 Experts [0.5, 0.75, 1.0, 1.5] 87.8 83.1 80.4 83.9
[0.5, 1.0, 1.25, 1.5] 86.2 82.6 81.7 83.6
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Figure 4: The accuracy gain of each class in CIFAR100-LT
when using Sample-aware Logit Adjustment in Eq. 4.

between performance and parameter efficiency. To further explore
the parameter efficiency for PECEL, we 1) share the projection
matrices P𝑑𝑜𝑤𝑛 and P𝑢𝑝 in Eq. 5 across different experts (denoted
as Share); 2) set P𝑑𝑜𝑤𝑛 and P𝑢𝑝 as fixed random matrices as done
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Figure 5: The accuracy and number of trainable parameters of PECEL with different bottleneck dimensions on CIFAR100-LT
and ImageNet-LT. PECEL E2 denotes the expert with 𝜏 = 1.0 in PECEL.

Table 6: Accuracy on CIFAR100-LT (IR=100) and ImageNet-
LT under other settings. ‡: higher bottleneck dimension to
align the number of trainable parameters.

CIFAR100-LT ImageNet-LT

Param Acc Param Acc

LIFT [43] 0.10M 81.7 0.62M 78.3

PECEL (Random) 0.04M 73.6 0.32M 75.8
PECEL (Share) 0.06M 83.3 0.42M 78.6
PECEL (Share‡) 0.10M 83.7 0.61M 78.6
PECEL 0.10M 84.3 0.62M 79.2

in VeRA [25] (denoted as Random). The experimental results on
CIFAR100-LT (IR=100) and ImageNet-LT are presented in Table 6.
As shown in Table 6, though leveraging 1) and 2) can improve
parameter efficiency, the recognition accuracy will also be compro-
mised. The reason is that sharing parameters across experts may
confound the learning of skill-diverse experts and the fixed random
matrices may weaken the representation learning ability and leave
learned representation less discriminative.
Bottleneck Dimension. In Figure 5, we present the recognition
accuracy and number of trainable parameters of PECEL with differ-
ent bottleneck dimensions on CIFAR100-LT and ImageNet-LT. As
shown in Figure 5, the performance of PECEL generally increases
with the number of trainable parameters, i.e., the bottleneck dimen-
sion. Considering the overall parameter efficiency, the bottleneck
dimensions of CIFAR100-LT and ImageNet-LT are set as 14 and 64,
respectively. It’s also noted that the performance gains of aggre-
gating different experts (i.e., PECEL E2 to PECEL) also generally
enlarge with the increasing bottleneck dimension, which indicates
that a larger bottleneck dimension would help learn experts with
diverse expertise.
Generalization Analysis. The proposed PECEL is instantiated
with AdaptFormer [5] and ViT [11], but it’s also generalizable to
other PEFT methods and backbones. In Table 7, we present the
performance of adopting LoRA [20] and ResNet50 [15], respec-
tively. Adopting LoRA for PECEL is straightforward since LoRA
also uses the down and up projection matrices. For experiments
with ResNet50, each convolutional bottleneck block is equipped

Table 7: Accuracy on CIFAR100-LT (IR=100) and ImageNet-
LT with LoRA and ResNet50 as backbone.

CIFAR100-LT ImageNet-LT

Param Acc Param Acc

LIFT [43] 0.10M 81.7 0.62M 78.3
LIFT (LoRA) 0.15M 80.8 1.18M 76.9
LIFT (ResNet50) 0.15M 63.5 0.95M 70.2

PECEL 0.10M 84.3 0.62M 79.2
PECEL (LoRA) 0.15M 82.9 1.15M 78.1
PECEL (ResNet50) 0.16M 65.9 0.88M 71.2

with a parallel PEFT block. Besides, since the latent feature dimen-
sion progressively increases in ResNet, in different stages, different
projection matrices P𝑑𝑜𝑤𝑛 and P𝑢𝑝 (Eq. 5) with different 𝐷 are used
for parameter sharing. As shown in Table 7, compared with LIFT
with the same configuration, the proposed PECEL also performs
well and achieves about 2% higher accuracy on CIFAR100-LT, sug-
gesting the proposed PECEL generalizes well to other backbones
and PEFT methods.

5 Conclusion
In this paper, we propose the Parameter-Efficient Complementary
Expert Learning (PECEL) to unleash the potential of pretrained
models for LTR via learning diverse complementary experts. To
alleviate the extra parameter cost brought by multiple experts, we
design a cross-block parameter sharing strategy. Besides, we pro-
pose parameter regularization and sample-aware logit adjustment
to reduce the shared parameter redundancy and facilitate learning
on misclassified samples. The extensive experiments on CIFAR100-
LT, ImageNet-LT, Places-LT and iNaturalist 2018 show that the pro-
posed PECEL can achieve comparable performance with previous
state-of-the-art methods with about 60% fewer trainable parame-
ters, and achieve substantial improvements with equivalent number
of trainable parameters. Currently, the proposed method mainly
focuses on leveraging the visual encoder in pretrained models. In
the future, we’ll explore simultaneously incorporating the visual
and linguistic knowledge of pretrained multi-modal foundation
models for long-tailed recognition.
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