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ABSTRACT

User interests on content platforms are inherently diverse, manifesting through
complex behavioral patterns across heterogeneous scenarios such as search, feed
browsing, and content discovery. Traditional recommendation systems typically
prioritize business metric optimization within isolated specific scenarios, neglect-
ing cross-scenario behavioral signals and struggling to integrate advanced tech-
niques like LLMs at billion-scale deployments, which finally limits their abil-
ity to capture holistic user interests across platform touchpoints. We propose
RED-Rec, an LLM-enhanced hierarchical Recommender Engine for Diversified
scenarios, tailored for industry-level content recommendation systems. RED-Rec
unifies user interest representations across multiple behavioral contexts by aggre-
gating and synthesizing actions from varied scenarios, resulting in comprehen-
sive item and user modeling. At its core, a two-tower LLM-powered framework
enables nuanced, multifaceted representations with deployment efficiency, and a
scenario-aware dense mixing and querying policy effectively fuses diverse be-
havioral signals to capture cross-scenario user intent patterns and express fine-
grained, context-specific intents during serving. We validate RED-Rec on hun-
dreds of millions of users in a world-leading UGC platform through online A/B
testing, showing substantial performance gains in both content recommendation
and advertisement targeting tasks. We further introduce a million-scale sequential
recommendation dataset for comprehensive offline evaluation. We hope our work
could advance unified modeling of users, unlocking deeper personalization and
fostering more meaningful user engagement across large-scale platforms.

1 INTRODUCTION

Modern content platforms have evolved into complex ecosystems where users engage across mul-
tiple behavioral contexts—browsing personalized feeds, conducting topical searches, discovering
content creators, and responding to targeted advertisements. Each interaction scenario captures dis-
tinct yet complementary aspects of user intent: search queries reveal explicit informational needs,
feed engagement demonstrates implicit content affinity, and advertisement responses indicate com-
mercial preferences ( , ). As a result, user interests are
1nherently multi-dimensional and dynam1c manlfestmg through intertwined behavioral trajectories
spanning these contexts (Figure 1).

Despite this richness, production recommendation systems typically operate in isolation, with sepa-
rate models independently optimized for business objectives such as Click- Through Rate (CTR) in
feeds and Advertiser Value (ADVYV) in advertisements ( , ).
This siloed design, which traps systems in local optima, leads to Several 11m1tat10ns First, it frag-
ments user understanding by restricting each model to narrow behavioral contexts, thereby weaken-
ing generalization and robustness. Second, it yields inconsistent user experiences when independent
systems infer divergent interests. Third, it underutilizes cross-scenario signals, limiting knowledge
transfer across tasks and weakening performance for users with sparse activity in certain scenarios
( ; , ). For example, a user exploring sustainable living may search
for eco- frlendly products engage with environmental content, and click green-technology ads—yet
scenario-isolated modehng fails to synthesize coherent 51gnals into unified user intent. Although
some cross-scenario approaches exist ( , ), they typically require
extensive manual feature engineering and struggle W1th scalablhty and robustness in production.
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Figure 1: Learning user interests from diverse behavioral contexts. Left: User interests manifest through
diverse topics and interconnected behavioral patterns across multiple engagement contexts. Middle: These
multifaceted interests are naturally captured in rich behavioral sequences spanning homefeed interactions, ad
engagements, and search activities, reflecting the dynamic and evolving nature of user preferences. Right:
RED-Rec employs unified hierarchical sequential representation learning based on LLMs to process these be-
havioral histories, generating nuanced user embeddings that enable context-aware recommendations. Termi-
nology is further explained in Section A.

We are motivated by the observation that users exhibit consistent interest patterns across diverse
scenarios, and that modeling these patterns holistically can significantly enhance recommendation
quality. The observation highlights the value of user-centric, instead of scenario-centric, systems that
synthesize behavioral signals from multiple scenarios to construct comprehensive user interest repre-
sentations. Recent advances have made this approach increasingly feasible: LL.Ms have transformed
the semantic understanding of user behaviors and content ( s ), while advanced se-
quence modeling techniques effectively capture complex temporal dynamics and cross-scenario de-
pendencies ( , ). Meanwhile, modern platforms generate massive multi-scenario logs
( , ; , ; s ), creating opportunities for unified
modehng at scale. However realizing this vision entails significant challenges: (i) heterogenelty
in action schemas, temporal dynamics, and semantics; (ii) activity imbalance across scenarios; (iii)
large-scale training and serving with strict latency and throughput constraints; and (iv) reconciling
differing optimization objectives within a smgle architecture. Wh11e recent work explores mixtures
of multi-source signals ( s s ),
truly end-to-end unified modeling for 1ndustrlal deployments remains underexplored

We present Recommender Engine for Diversified scenarios (RED-Rec), an LLM-enhanced hierar-
chical sequential recommendation framework tailored for billion-scale content platforms. RED-Rec
unifies interest modeling across heterogeneous contexts by: (1) employing LLM-powered user
and item encoders within a hierarchical two-tower structure, enabling rich semantic representa-
tions while preserving efficiency for large-scale retrieval; (2) introducing a 2-D dense mixing
policy that fuses multi-scenario behavioral signals along temporal and scenario axes to capture
cross-scenario dependencies, coupled with multi-interest, scenario-aware queries that express fine-
grained, scenario-specific user intents. We train RED-Rec end-to-end on billions of behavioral events
drawn from billions of items and over one hundred million users, and incorporate system-level op-
timizations enabling stable, low-latency online deployment.

To enable a more rigorous evaluation, we additionally introduce a new multi-scenario sequential
dataset, curated from a world-leading User-Generated Content (UGC) platform. The dataset spans
millions of items and diverse user behaviors across feeds, search, and advertisement contexts, fa-
cilitating benchmarking of unified and scenario-specific models. Through extensive offline exper-
iments, RED-Rec consistently outperforms baselines across multiple metrics and scenarios. This
effectiveness translates successfully to production environments, as demonstrated through online
A/B tests, and has been deployed in a commercial system supporting hundreds of millions of daily
users.

To sum up, our main contributions include the design and implementation of a unified, user-centric
interest modeling framework that achieves both expressiveness and efficiency for billion-scale cross-
scenario recommendation, complemented by a comprehensive million-scale multi-scenario sequen-
tial dataset that enables rigorous evaluation of unified modeling approaches. Through empirical
validation in both offline and online production environments, we demonstrate substantial improve-
ments that establish the practical viability of unified cross-scenario modeling at billion scale.
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2 RELATED WORK

Sequence Modeling The advent of deep learning has greatly advanced recommender systems,
with methods such as neural collaborative filtering (He et al., 2017) and factorization machines (Ren-
dle, 2010; Guo et al., 2017) excelling at capturing intricate user—item interactions. Sequential recom-
mendation systems have evolved from simple recurrent architectures to sophisticated transformer-
based models capable of learning complex temporal dependencies in user behavior. Early work
such as GRU4Rec (Hidasi et al., 2015) pioneered the use of recurrent neural networks for modeling
session-based interactions. Subsequent models like Caser (Tang & Wang, 2018) employed convo-
lutional filters to extract both short- and long-term patterns, while attention-based methods further
improved the ability to focus on relevant historical interactions. Transformer-based approaches,
including SASRec (Kang & McAuley, 2018) and BERT4Rec (Sun et al., 2019), introduced self-
attention mechanisms to capture long-range dependencies, and bidirectional encodings to leverage
full context for superior representation learning. More recent advances have explored contrastive
learning (Zhou et al., 2020; Wei et al., 2023), multi-interest modeling (Li et al., 2019; Cen et al,,
2020), and graph neural networks (Wang et al., 2020; Zhang et al., 2022b; Yang et al., 2023) to better
model the dynamic and multifaceted nature of user preferences. Emerging research has begun lever-
aging large language models to enhance user and item representations in sequential recommendation
tasks (Chen et al., 2024a; Hu et al., 2024; Wang et al., 2024b), as well as generative patterns (Chen
et al., 2024b; Paischer et al., 2024; Deng et al., 2025; Han et al., 2025) that bridge natural language
understanding and recommendation tasks. This paradigm shift has brought about transformative
improvements in recommendation pipelines.

Multi-scenario Recommendation While user interests are generally stable, behavioral patterns
can vary significantly across scenarios (Zang et al., 2022; Gao et al., 2023). Early cross-platform
studies (Niu et al., 2021; Tan et al. found that users maintain similar topical interests on
different platforms, despite differences in interaction patterns and frequencies. _These insights
inspired methods _to_disentangle latent interests from observed behaviors. _Multi-scenario
recommendation methods (Tan et al,, 2021; Zhao et al., 2023; Li et al., 2024; Wu et al,, 2025

s &

model diverse user behaviors while capturing shared interest representations. For instance,
M2M(Zhang et al., 2022¢) introduced novel meta units for ads scenarios. Advances in disentangled

representation_learning have better separated stable interests from_ contextual actions; works
like STAR(Sheng et al,, 2021), AdaSparse(Yang et al., 2022) and APG(Yan et al., 2022) emplo
domain-aware _designs to_learn domain commonalities and distinctions in CTR prediction.
HierREC(Gao et al., 2024) combines explicit and implicit scenario-aware modules to capture
hybrid-grained information. Graph-based methods (Tanetal, 2021; Caoetal., 2022) are
widely used to model multi-behavioral patterns and generate unified user embeddings.
This research direction is also known as cross-domain (Ma et al,, 2022) or multi-domain
Zhao et al. ; Yang et al., 2024) recommendation, leveraging multi-source user histories to

enhance performance. However, scalability remains an issue for most approaches on industrial-scale

datasets, and large-scale online validations are limited. Recently, methods utilizing foundation
models to build universal recommenders have been proposed (Wang et al., 2024a; Shen et al., 2024)

including works for multi-scenarion settings like LLM4CDSR(L.iu et al., 2025), but they have yet
to be extended to billion-scale industrial settings.

3 CROSS-SCENARIO DATASET

Existing open-source sequential recommendation datasets are constrained by their narrow focus,
often capturing user behaviors in isolated e-commerce or entertainment scenarios centered around
singular interaction types such as ratings, clicks, or purchases (Ben-Shimon et al.,, 2015; Harper
& Konstan, 2015; Ni et al., 2019; Zhu et al., 2018). These datasets, while foundational for earlier
research, are fundamentally limited in their ability to model the multi-scenario, and cross-modal
nature of user interests observed in modern large-scale UGC platforms. Notably, even in most recent
datasets such as KuaiRand (Gao et al., 2022) and Qilin (Chen et al., 2025) that begin to characterize
UGC environments, a fragmented approach is frequently adopted that underrepresents the complex
interplay between scenarios and only partially reflects the holistic evolution of user interests.
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To address these limitations, we first introduce a multi-scenario sequential recommendation dataset
derived from billions of user interactions from a third-party UGC platform, featuring several key
characteristics:

Diverse Behavioral Contexts Our dataset en-
compasses a comprehensive range of real-
world interaction scenarios on the UGC plat-
form, including (a) homefeed browsing, (b)
search-driven browsing and clicking, and (c)
ad exposure and engagement. This temporally-
aligned diversity enables robust analysis of user
behavior across distinct yet interconnected sce-
narios within a unified platform ecosystem.
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lions of items and hundreds of millions of en-
gagement records, surpassing existing datasets
in scale and delivering the volume and com-
plexity needed for developing and benchmark-
ing cutting-edge recommender models at scale. s
Also, by tracking user behavior over extended Y v L EEEEE
time periods, our dataset facilitates the study of @
long-term interest evolution, behavioral stabil- =
ity, and cross-scenario consistency, which are (c) Scenario 3: Advertisements at time t-2
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typically constrained in other publicly available Figure 2: Multiple scenarios represented in the
datasets. dataset. Our work primarily focuses on three key sce-

o o narios: homefeed, search, and ads.
An example datapoint is shown in Figure 2,

while Figure 3 presents overall dataset statistics. Additional details including dataset collection
and filtering can be found in Section C.

4 MULTI-SCENARIO USER INTEREST LEARNING

4.1 TASK FORMULATION

LetU = {uy,us,...,un} denotes the set of users and Z = {i, is, ..., ips} represents the universal
item space. The item space contains posts with image-text or video content created by either regular
users or advertisers, which can be recommended to users or discovered through search interactions.

For each user v € U, we observe a chronologically ordered engagement sequence S, =
{(i1,a1,51,11), (i2, a2, 52,t2), .., (i|5,], @[5, 5|Su|> t|5.|) }» Where each interaction tuple consists
of iy € T (the interacted item at timestamp ¢), a; € A (the engagement action performed), s; € S
(the scenario context), and ¢ (the interaction timestamp). The engagement sequence encompasses
user activities across three distinct scenarios S = {homefeed, ads, search}. I Each interaction i; is
associated with rich contextual information including content features, and user engagement actions
a; € A, where A = {like, share, comment, follow, messaging, block} represents the comprehensive
set of possible user responses to content.

"While advertisements can appear in search results for specific keywords, we consider such interactions as
highly target-specific and exclude them from this task scope.
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Figure 3: User engagement analytics dashboard. We sample 10k users for a comprehensive visualization of
their interaction patterns across feed & ads channels and recommendation & search scenarios, focusing on their
behavioral trends, content performance, and engagement metrics: (1) User distribution by channel & scenario;
(2) Top notes engagement analysis; (3) Behavior pattern distribution; (4) Duration vs. engagement correlation;
(5) 24-hour activity trends; (6) UGC content lifecycle included; (7) User behavior by channel & scenario; (8)
User activity by channel & scenario.



Under review as a conference paper at ICLR 2026

Y~ SR : N @ I Note: - = = = = S S DT : Target ltems
1 1 | Note: 1 Extremely Comprehensive Rare Momo
! : g y Firstimage |\ Avatars! title : OO.
2 T )
: ! 1 Video: 1] ifyoulike it please follow or give a like before you™ | | Clustering
1 : | -
1 Y- I Cover Image go~ More updates will be coming soon (@]

1 g 1

0.0 1oV 1 1 (oo Content ® O Og
1 (>_o)#eqggpartyavatar #cuteavatarsharing' 1 .. Q
| LNy S 1 ashongshiavata hiirdatarieael | T @ 0 7
! | —= = a=— _! | #imomoarmy #momoavatar #avatarrecommendation | | s Hungarian™~ _ ! h
1 1 || #profilepicturetycoon fichangeprofilepicture tags, | pling Matehing 5. 1 o
e e e — ] 0o (Y
| Extremely Vision Ocr L e et KNO <+ Recall 1N

e -L__, === -
: Comprehensive Rare M- Encoder Model Scenario 1@ Scenario 2 @ ;Scenario 3 O, 000 - OO.
o e L _ kSceDnego DimD @ | Target Scenario 000 -
\ 00 0o D.. I e | Target ltems ,I\‘r;saa:ﬁl User Representation
<imgprompts [T T TTJW (mage Tokens) @ g > o Examples
<text prompt> {title} {tags} {Content} {Ocr Time Dim Scenario-aware
P P> {iitle} {tags} { }{Ocr} Dense Mixing Query
Aucxiliary Embeddings -
O O O . —_— O attention —_—
. 1. User Engage

3.

Iltem LLM Encoder

] 2. Position Encoding [

User LLM Encoder ]

Figure 4: Overall framework of RED-Rec. RED-Rec is a two-tower hierarchical architecture comprising a
multi-modal item encoder and a sequential user encoder. The item encoder fuses textual and visual signals into
unified embeddings, while the user encoder utilizes scenario-specific transformer blocks to model the evolution
of user interests. The system is trained end-to-end.

Given the multi-scenario user engagement sequences, our primary objective is to learn unified repre-
sentations that capture user preferences and item characteristics across different contexts. Formally,
we aim to learn embedding functions f, : U x H, — R?and f; : T — R? that map users
(conditioned on their interaction history) and items to a shared d-dimensional embedding space:

u=fu(u,S.), vi=fi(i)

where u € R¢ represents the user embedding and v; € R? represents the item embedding. The
embedding can be directly used in Recall Task or used as features for downstream models like
pre-ranking and fine-grained ranking.

4.2 HIERARCHICAL LLM-BASED REPRESENTATION LEARNING

RED-Rec is a two-tower LLM-powered framework designed to learn comprehensive item and user
embeddings. It incorporates a 2-D dense mixing policy for effectively aggregating and fusing user
interactions across diverse scenarios, along with multi-scenario multi-interest querying to capture
various facets of user preferences. The framework operates by first encoding items through a dedi-
cated item encoder, then fusing scenario-specific interactions which are subsequently processed by
the user encoder to generate tailored user embeddings for each scenario.

Item Representation Learning For each item ¢ € Z, we employ a multi-modal encoder Ejep
to generate an embedding e; = Ejem(x;,V4;0;,60,) € R4, where x; is the item’s textual input—
consisting of title, tags, content, and OCR-extracted text—and v; is its visual content. Textual
features are encoded by a pre-trained language model (parameters 6;), while images are processed
by the ViT ( , ) vision encoder (parameters 6,,) and then projected to dimension
d via a linear layer.

Sequential User Interest Modeling At timestamp ¢, we model the user’s current interest based
on their past n behaviors across the platform. Given user «’s combined interaction sequence .S,, =
ShSa U S2, where S” denotes homefeed interactions, S¢ denotes advertising interactions, and S
denotes search interactions. Each interaction is represented as S = {Content, timestamp, action}.
The current sequence representation can be denoted as H,, = [e;,,€;,,...,e; | € R"*? where e;,
represents the content embedding for the ¢-th interaction in the user’s recent history.

Based on this, actions A, = [a;,,a,,,...,a;, ]| are represented as one-hot vectors encoding en-
gagement behaviors including {collect, share, message, block, like} for interaction n. These action
vectors are converted to dense embeddings using a learnable embedding layer. Furthermore, times-
tamps are not only used to sort engagement chronologically but also serve as temporal features at the
hour level, as we observe that user interests and behaviors vary significantly across different times
of the day. Specifically, each timestamp is discretized into a 24-dimensional one-hot vector repre-
senting the hour of the day h;, = OneHot(hour(timestamp;)) € {0,1}?%, and then converted to
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dense embeddings through a learnable embedding layer. The final enhanced representation H, in-
corporates content, action, and temporal information. The user-level encoder processes this enriched

sequence to generate contextualized user representations U,, = Euser(I:Iu; 0.).

Cross-scenario Interest Mix and Query To effectively capture user interests across multiple sce-
narios, we introduce a cross-scenario 2-D dense mixing and querying policy in RED-Rec.

The mixing policy serves as a gating and fusion mechanism, aggregating user behaviors from multi-
ple scenarios (homefeed, ads, search) before the user encoder. Formally, let S3[—n, :] denote user
u’s latest ns records in scenario s € {homefeed, ads, search}. We define the mixed sequence:

SZlixer _ Merge (Sgomefeed[_nh :]’ Szds[_na :]7 qulearch[_nS :])7 (1)

where Merge(+) deterministically fuses events—sorting by timestamp and concatenating per a fixed
scenario order, retaining scenario tags. During training, n, samples per scenario are used; at infer-
ence, the most recent n are selected, with ns tuned as a hyperparameter. “2-D dense mixing” refers
to filtering events along both scenario (balancing quotas) and temporal (recency) axes, preserving
all selected events for encoding. This addresses behavior imbalance (e.g., far more homefeed than
ad/search actions), ensuring that infrequent but informative user signals are retained for downstream
modeling. We have ablations for different mixing policies in Section 5.

To further enhance modeling capacity, we design a 2-D positional encoding for each event. For the
j-th event in S™*r we define 1) Sequence position encoding as PEq(j), reflecting the event’s
absolute position in the sequence; and 2) Time-gap encoding as PEgap(Atj), where At; = tour —t;
is the interval between the interaction and the present. The final positional encoding is computed as
P; = PEseq(j) + PEgaP(At]‘).

The query module enables learnable query embeddings, termed scenario-aware queries, denoted as
Q = [q1,92,...,9K] € RE*4 where K is the number of interest aspects. These queries enable
the model to attend to different facets of user preference under varying contexts. The scenario-
aware user representation is then formed by feeding the concatenation of user interaction history
(excluding the most recent W actions) and Q into a user encoder:

Uguery = Euser ([I:Iu[ *W]§ Q] ) 9u) s )

where W denotes the window size for recent interactions. By leveraging different queries, the user
encoder can generate multiple representations, each reflecting a distinct aspect of user interest.

During training, we adopt Noise Contrastive Estimation (NCE) as the main objective to model se-

quential recommendation. Given refined interest embeddings {ri,....rs} and positive samples

ti,...,t from the target window, we cluster the positive samples into s groups usin

cosine similarity and then match cluster centroids to interest embeddings via the Hungarian

algorithm to maximize pairwise similarity. The contrastive loss is applied only to these

matched pairs:

w S

1
Lioal = " Z Z Lnce(ti,ry) - (4, 7) 3)

i=1j=1

= 1 if the cluster of ¢; is matched with r;, and 0 otherwise.

4.3 BENCHMARKING AND OFFLINE EVALUATION

We evaluate representations on recall tasks with a temporal split protocol. For each user u, their
interaction sequence S, is split at a randomly sampled cutoff ¢,;. The input is Simput {(i,a,s,t) €
Syt < tew), and the next three items form the targets: G, = {is.,, 1o +1, tt+2}- A candidate
pool C is formed by random sampling from the active items in the platform and mixing in G,.
The user embedding u is computed from St and similarity scores are defined as score(u, i) =
cos(u,v;), Vi e C u G,. Items are ranked to produce recommendations R,,, and top-K results

RE are evaluated using HR@K, NDCG@K, and MRR for K € {10, 50, 100, 1000}.
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Table 1: Recommendation results for individual scenarios. Baseline methods are evaluated separately on
the homefeed and ads scenarios. In all metrics, higher scores reflect better performance.

Homefeed Ads
Baselines 1 HR/NDCG19 HR/NDCGio0 HR/NDCGir  MRRs100 HR/NDCGio HR/NDCGigo HR/NDCGix  MRRyi100
SASRec 1.76/0.97 12.32/1.79 32.01/4.04 1.01 3.26/1.63 14.08/3.71 39.11/5.27 1.57
MoRec 1.78/1.25 12.48/2.23 31.98/4.12 1.21 3.47/1.67 13.98/3.88 38.27/4.89 1.78
HSTU 1.79/1.22 12.72/2.21 31.76/3.69 1.15 3.85/1.70 14.32/3.30 38.20/5.38 1.43
HLLM 1.66/0.62 12.77/1.83 32.52/4.02 1.22 4.21/1.21 14.27/3.37 39.21/4.48 1.39
DLRM-v3 1.63/1.03 11.33/2.01 28.96/3.72 1.13 3.54/1.21 15.27/3.22 35.39/4.27 1.67
RED-Rec 2.31/0.68 12.59/1.88 31.94/3.86 1.27 4.24/1.28 16.44/3.21 40.18/4.61 1.96
RED-Rec-pt 2.90/0.63 14.89/2.02 36.16/4.01 1.30 4.84/1.30 17.66/2.87 42.71/5.21 2.27
RED-Rec-mm 2.35/1.21 14.20/2.27 31.29/3.97 1.29 4.31/1.31 17.22/3.18 41.86/4.66 1.92
RED-Rec-mm-pt 3.23/1.27 15.46/2.21 36.29/4.14 1.38 4.82/1.19 18.21/3.29 42.56/4.98 221

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS AND BASELINES

In our default setup, all models are trained on a standardized dataset of 1 million users and evaluated
on 10,000 test samples, using a randomly sampled base pool of approximately 1 million notes for
fair comparison. We set the window size W=10, last_n=128, and use 3 queries per scenario. Both
item and user encoders are initialized with either a 1.3B-parameter LLaMA-based model ( s

) or the 1.5B Qwen-2.5 model ( s ), while the vision encoder uses CLIP ViT-
B/16. Training requires about 24 hours on 8§ NVIDIA H100 GPUs for 3 epochs, with batch size 2
and gradient accumulation of 4. Detailed implementation can be found in Section E.

We compare our model with

several mainstream baselines: Table 2: Recommendation results for mixed scenarios.

SASRec ( R Search + Homefeed (for Homefeed)
), MoRec ( s Baselines? HR/NDCGyy HR/NDCGioo HR/NDCGi, MRRyi00
), HSTU ( R SASRec 1.73/1.22 12.02/3.21 32.17/4.17 1.52
), HLLM ( . MoRec 1.79/1.30 13.92/2.99 33.01/3.98 1.53
_ HSTU 1.79/1.25 12.84/3.28 33.15/4.24 1.55
), and DLRM-v3 ( HLLM 1.69/1.02 13493.18  33.04/4.21 158
, ). Experiments  pj gy.y3 1.64/1.18 11.35/3.02 30.89/3.98 1.48
are conducted in single-  RED-Rec 2.26/1.32 14.74/3.16 33.29/4.20 1.58
scenario (homefeed, ads) and  RED-Recpt  292/1.33 18.26/3.24 38.92/4.23 1.67
multi-scenario (e.g., search + Homefeed + Ads (for Ads)
homefeed, homefeed + ads, “pcelinest HRNDCGi, HRNDCGin HR/NDCGi, MRRyio0
all combined) settings. Our SASRec 3.72/1.24 16.18/3.08 38.94/4.72 1.94
model is evaluated in four MoRec 3.80/1.30 17.23/2.62 38.29/4.77 1.98
S P HSTU 3.89/1.28 16.95/3.15 40.12/4.81 2.01
;’:ggn;es' RED feilsy mbol, 3.68/1.19 1724312 39.76/478 1.97
D-Rec-mm, and their pre- pjpppy3 3.52/1.21 15.43/2.95 36.87/4.58 1.87
trained versions (“-pt”), the RED-Rec 4.36/1.31 18.32/3.27 42.61/5.02 2.11
latter trained on a ]arge_sca]e RED-Rec-pt 5.18/1.38 18.89/3.21 46.59/5.57 2.38
online dataset. Standard rec- Homefeed + Search + Ads (for Ads)
ommendation metrics are used “pojinect  HRNDCGiy HR/NDCGio HRNDCGi,  MRRaioo
(see Section D). We evaluate  SASRec 3.68/1.21 14.29/2.08 38.94/4.72 1.94
all baselines on our proposed MoRec 3.82/1.33 18.27/2.98 38.41/4.66 1.98
industrial dataset to demon-  HSTU 3.92/1.31 17.21/3.19 40.14/4.81 2.11
trate th " X HLLM 4.08/1.11 19.92/3.18 43.27/4.91 2.06
Strate the  periormance gans — py pap-yv3 3.34/1.01 14.08/2.81 35.74/4.36 1.74
brought by unified modeling.  RED-Rec 472/1.33 18.33/3.22 42.89/4.97 1.94
Meanwhile, experiments on a RED-Rec-pt 5.18/1.35 20.52/3.24 49.17/5.93 2.41
public dataset are presented in
Section B.

5.2 SINGLE-SCENARIO

We first evaluate our model alongside baseline methods on two distinct recommendation scenarios:
the Homefeed and Ads settings, as presented in Table 1. The results demonstrate that RED-Rec out-
performs popular baselines, even in scenarios that were not specifically targeted during optimization.
We attribute this improvement both to the modeling of multi-interest user representations and to ad-
vancements in the backbone framework. Compared to baselines relying on ID-based representations
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like SASRec and HSTU, leveraging LLMs provides richer semantic encodings, especially bene-
ficial under cold-start conditions, resulting in substantial performance gains. Furthermore, when
compared to models with similar architectures, such as HLLM, our approach benefits from a larger
backbone with enhanced Chinese language capabilities, allowing for a better fit to the dataset and
further boosting effectiveness.

5.3 MULTI-SCENARIO

We further evaluate our model in multi-scenario settings to assess whether incorporating information
flow between scenarios can enhance performance, particularly in the homefeed and ads scenarios
(Table 2). Additionally, we illustrate the improvements brought by multi-scenario recommendation
in Figure 5. The most significant gains are observed in two specific cases: leveraging data from
search scenario improves homefeed recommendation, while utilizing both homefeed and search
data enhances ads recommendation.

We observe that modeling information flow between scenarios—such as integrating Homefeed, Ads,
and Search data—consistently improves the performance of most baselines, with the largest gains
seen for RED-Rec. This can be attributed to its effective multi-source signal integration and the
advanced user-side LLM, which offers strong few-shot reasoning capabilities. For Homefeed rec-
ommendations, access to Search data—especially post-search clicks—significantly increases HR
and NDCG scores. Similarly, Ads recommendations benefit from combined Homefeed and Search
behaviors, showing the greatest metric improvements. These enhancements are consistent across all
cutoff values, and RED-Rec not only raises the likelihood of relevant items being recommended, but
also ensures they appear closer to the top.

5.4 MODULE ABLATION
Table 3: Model ablation for RED-Rec. Top: model config ablation; Bottom:

We further conduct abla- Scenario mixing policy ablation.

tion studies on several key Homefeed
components of the model  Setting HR/NDCG;y HR/NDCGioy HR/NDCGy, MRR
design, focusing on the ba-  “seqren= 128, Multi-Interest, pt_ 2.90/0.63 1489202 36.16/401 130
sic model capabﬂities: (D) SeqLen = 128, Multi-Interest 2.31/0.68 12.59/1.88 31.94/3.86 1.27
: SeqLen = 128, Single-Interest 1.85/0.72 10.24/1.95 26.78/4.12 1.31
input sequence length, (2) ¢ 4707 &I nrerest 2.08/0.71 1132194 2867392 129
multi-interest query, and  SeqLen = 32, Multi-Interest 1.72/0.61 9.48/1.76 2547364 129
(3) Pretramlng on a larger— Homefeed + Search + Ads
scale dataset.  For Cross-  “npersirategy HR/NDCGio HR/NDCGio HRNDCGi. MRR
scenario recommendation, ¢ =R L O 210053 10.55/1.90 21441220 065
we also examine differ-  Naive Combination 428/1.22 17.60/3.06 41.90/4.85 185
ent methods for the mixer 1D (on position) 431/1.23 17.65/3.08 4195487 186
dule t bi X 1D (on timestamp) 4.40/1.25 17.80/3.10 4220490 188
module to combine various  »p \ixing (RED-Rec) 4.72/1.33 18.33/3.22 42.89/4.97  1.94

input sources. The ablation
results (Table 3) show that longer input sequences, multi-interest queries, and large-scale pretrain-
ing all lead to improved recommendation metrics. For cross-scenario settings, our 2D-mixing policy
yields the strongest performance, highlighting the value of integrating positional and temporal in-
formation for effective signal fusion.

5.5 MODEL SCALING

The choice of the 1.5B Qwen2.5 model for initialization balances model accuracy with online de-
ployment costs. To investigate the effect of model size, we train multiple models—each on the same
number of tokens—and evaluate them on an offline test set, exploring scaling laws relative to pa-
rameter count. We examine two model families: LLaMA ( , ) (mainly LLaMA
2 series) and Qwen ( , ) (mainly Qwen 2.5 series), with model sizes ranging from
0.5B to 7B parameters. As shown in Figure 5 (b), we report both Hit Rate (HR) performance and
the corresponding Sample per Second (SPS) within our deployment environment for the Home-
feed+Search+Ads scenario. Results show that larger model sizes consistently improve HR up to 7B
parameters in both families, indicating the potential for scaling law benefits. However, increased
model size leads to decreased SPS, limiting the feasibility of deploying larger models for online
serving. Throughput results, as measured by SPS, are also presented in Figure 5 (b).
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Figure 5: Comparison of scaling laws and gains from multi-scenario inclusion. (a) Performance gains
achieved through unified modeling with RED-Rec, where the shaded region represents the improvement; (b)
Scaling behavior of model size with respect to click HR.

5.6 ONLINE SERVING

We conducted online A/B experiments on downstream recommendation scenarios within the recall
stage of an industrial recommender system. We specifically report results in advertising scenarios, as
offline studies demonstrate the most significant improvements when generalizing user interests from
homefeed click patterns. The experiment employed a balanced traffic allocation of 10% treatment
versus 10% control, running for one week. The item pool consists of active items across the platform

approximately 1.1 billion) and was tested against the full active user base (approximately 160
RED-Rec achieved a 0.8864%

Table 4: A/B Test Results Comparing Experimental vs Control

improvement in_total ADVV and a oo in di :
QVeme tota VV and a Groups. We report key metrics in different domains.

0.3401% _increase in overall Feed

Ad Spend (Cost)m Domain Metric Change (%)
substantial improvements given the Community APP LT (long-term active users) -0.0015
latform’s scale. Notably, over 90% SAU LT (search-related) -0.0007
f items recall r roach ar E-commerce Overall Purchase UV -0.0886
WW Live Streaming Live Broadcast Engagement UV~ -0.0694
unigue .Wlt n_the iitial candi 'ate Commercialization ~ Advertiser Value (ADVV) +0.8864
eneration phase, demonstratin, Advertising Spend +0.3401

significant incremental value and
diversity to the recommendation pool.

We observe minimal trade-offs: platform-level content engagement declined marginally (less than
0.01% in most cases), with small reductions in purchase UV (-0.09%) and live broadcast engagement
(0.07%) due to systematic ad prioritization based on learned user preferences. These negligible
decreases are substantially outweighed by advertising performance gains while maintaining user
experience integrity. Based on these promising results, we have fully deployed the method to
production across the entire platform.

Details of our online serving can be found in Section E.2.

6 CONCLUSION

We introduce RED-Rec, a unified hierarchical LLM-based sequential recommendation framework
designed to leverage multi-scenario behavioral contexts for context-aware user modeling at industry
scale. The proposed two-tower architecture, combined with scenario-aware mixing and querying
policies, enables expressive and efficient recommendations across diverse scenarios, including feeds,
search, and advertising. Comprehensive empirical evaluations—conducted on a newly constructed
million-scale multi-scenario dataset and through large-scale real-world deployment—demonstrate
substantial improvements over strong baselines in both offline and production environments. Our
work underscores the importance of unified user interest modeling in enabling more consistent,
intelligent, and user-centric recommendation systems, paving the way for richer and more seamless
experiences on large-scale content platforms.

10
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ETHICS STATEMENT

The dataset used and planned for release in this work has been fully anonymized and does not contain
any personal or individually identifiable information, but rather consists of a collection of publicly
accessible content. The paper does not include any analysis, reporting, or disclosure of private user
details, and care has been taken to ensure that all data handling aligns with privacy regulations and
ethical guidelines.

REPRODUCIBILITY STATEMENT

We have provided demo source code and running tutorials as supplementary materials and also
inhttps://anonymous.4open.science/r/RedSegRec—-ano—-4158. Key implementa-
tion details and experimental settings are described in the main paper (Section 4 and Section 5). We
promise we will open-source both the code and the dataset used in our experiments upon acceptance.
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A TERMS

We would like to firstly offer additional explanations for specific terms used throughout the paper in
order to facilitate understanding for non-expert readers:

Homefeed refers to the main feed or landing page displayed to a user when they open a content
latform or app. It typically consists of a personalized selection of items (such as posts, products,

videos, etc.) recommended to the user based on their preferences and past behavior.

Internal Flow denotes the content consumption pattern within the single-column sliding or
swiping through content (e.g., images, videos, or articles). Users engage with recommendations

directly within this detailed view by navigating between related items or sliding to the next
recommended content.

External Flow refers to the content consumption flow that occurs on the main feed of the platform,
where users browse the list of recommended items presented to them upon opening the app. This
rocess typically involves users scrolling vertically through the two-columns page.

Scenarios refer to distinct user interaction environments or channels within the platform, each
characterized by unique user intents and behavioral patterns. In this paper, we focus on three core
scenarios: homefeed, ads, and search. The homefeed scenario represents the primary personalized
feed where users_consume a diverse assortment of recommended content. The ads scenario
corresponds to user engagement with sponsored or promotional content distributed throughout
various parts of the platform. Although advertisement content can appear within the homefeed,
we treat it as a separate scenario because it represents a different source and serves distinct
business objectives. The search scenario involves users actively retrieving information or content
by submitting queries.

last-n  refers to the most recent 'n’ items a user has interacted with on the platform. For example,
’last10’ indicates the user’s last 10 consumed items. This concept is commonly used to capture and
analyze a user’s most current interests or activity history.

Engage represents user interactions with content, such as clicks, likes, comments, shares, or dwell
time. Engagement metrics are used to measure how users interact with recommended items and to
assess the effectiveness of recommender systems.

B FURTHER EXPERIMENTS

We further test RED-Rec on Amazon Books Reviews(VicAuley et al. a widely used subset

in recommender system research datasets which sampled from the Amazon Review dataset. In the
Books subset, each review typically contains fields such as reviewer ID, item (book) ID, ratin

1-5 stars), review text, timestamp, and sometimes additional metadata (e.g., book title). We test
and compare RED-Rec in Table 5. Following LLM4CDSR(Liu et al., 2025), we further test and

compare RED-Rec in an cross-scenario setting, where we choose the Cloth-Sport sub-categories of
the Amazon dataset, The results are shown in Table 6 >,

On the Amazon Books Reviews dataset, our model achieves slightly better results than HLLM
and outperforms traditional methods. A reasonable explanation is that both our approach and
HLLM leverage LLMs for semantic-based item embeddings, which provides a natural advantage in
capturing deeper item relationships. In the cross-scenario reasoning task, RED-Rec also surpasses
most baselines. Although it performs slightly worse than LLM4CDSR in some cases, it is important
to note that RED-Rec and LLM4CDSR are fundamentally designed for different task settings.
Specifically, LLM4CDSR focuses more on interest generalization across distinct interest groups
(such as from Clothing to Sports) through careful prompt and architectural design, while RED-Rec
aims for large-scale unified modeling across business domains, focusing more on the holistic user
modeling from their behaviors.

2% means results of the baselines are adopted from the original LLM4CDSR paper.
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Table 5: A comparison on the Amazon Books dataset.

RED-Rec:LIBLLaMA  946/549 1863703  2988/845

RED-Rec:13B-Quen25 998588 19987188 3262875

Table 6: Comparison on the Amazon Cloth-Sport cross-scenario setting. Metrics for Cloth are shown on the
left, and for Sport on the right.

BerdRect 6331 0.5720 53.50 04514
AMID* 475 0.6814 BI7 0.5867
STAR 62.36 05243 51,22 04724

VoM 6527 0.5362 52,08 04626
LLMACDSR 80,18 0.7316 7046 0.6312
RED-Rec-LIB-LLaMA 7628 0.6821 6628 0.5824
RED-Rec-15B-Qwen2,5 7825 0.7214 12 0.6318

C  DATASET

We compare our dataset with other existing datasests or benchmarks from UGC platforms in Table 7.

An item in the proposed dataset is like:

Listing 1: Example of an item in the training dataaset.

“user-id ”: Txxxx”,
“homefeed_item_lastn ”:

“duration”: 28,

“is_collect”: 0,

”is_.comment”: 0,

“is_follow™”: 0,

”is_hide”: 0,

7is_like”: 0,

“is.read_comment”: 1,

”is_share”: 0,

“is_videoend”: 0,

“item_id”: 7684a48440000000023014319”,

INUUS Y
MAM/L “duration”: 17,
“is_collect”: 0,

“is_read_comment”: 0,

“is_share”: 0,

“is_videoend”: 0,

“item_id”: 7684aa0720000000021003dbe”,

“"page_key”: 0,
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Table 7: A brief comparison of public-released datasets and the training dataset RED-Rec used.

Property  Amazon  JDSearch  KuaiSAR Qilin RED-Rec(dataset)
Users 192.4k 1738k 258k 155k 10m
Queries 3.2k RS 453.7k 3719k search items
Actions  L7m 26.7m_ 19.7m 25m 6832m.
Content  text/image text_ text/video ~ text/image/video ~ text/image/video

Scenario, Ree. Search  SearchtRec  SearchtRec  Scarch+RectAds

“timestamp ”: 1749732355,

/]
1.

A~~~
prd

ds_item_lastn™: [ ... ],
“search_item_lastn”:

NS
L

where

e user_id: Unique identifier for the user, e.g., xxxx.
* data:

— homefeed_item_lastn: An array of objects representing the last n items from the
user’s home feed. Each object contains:
* duration: Viewing duration (in seconds)._
iscclick: Whether the item was clicked (1) or not (0).
iscclickprofile: Whether the user’s profile was clicked (1 or 0).
is.collect: Whether the item was collected or saved (1 or 0).
is.comment: Whether the item was commented on (1 or 0)..
is.follow: Whether the user followed from this item (1 or 0).
is hide: Whether the item was hidden (1 or 0).
is.Like: Whether the item was liked (1 or 0).
isamessage: Whether the author of the message was messaged (1 or 0).
iscread.comment: Whether comments were read (1 or 0).
is.share: Whether the item was shared (1 or 0).
is.videoend: Whether a video was watched until the end (1 or 0)._
item.id: Identifier for the contentitem.
page-key: Page identifier,
- ads.item lastn: _Array of the last n interacted advertisement items (item.id,
duration,etc.).
— search.item lastn: Array of the last n search items with similar structure.

¥R Ok K X K K K K X X X X K X

Privacy protection is paramount in our dataset construction, implemented through multiple
complementary_techniques to_safeguard user confidentiality. We employ comprehensive data
anonymization by replacing real user with cryptographically secure hashes, ensuring unlinkability
to_original entities. We also add a consistent bias to the engagement timestamp. We retain
only essential behavioral signals required for recommendation research while removing potentially
identifying metadata such as device information, location data, and detailed content descriptors,
thereby creating a privacy-preserving dataset that enables recommendation system research without

We focus exclusively on active platform users who demonstrate substantial engagement patterns:
users must have at least 30 valid clicks in the homefeed scenario and 5 valid clicks in the

advertisement scenario, where a click is considered valid only if the associated viewing duration
exceeds 3 seconds.
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D METRICS

In this work, we focus on three widely adopted metrics: Hit Ratio (HR). Normalized Discounted
Cumulative Gain (NDCG), and Mean Reciprocal Rank (MRR). In _recommender systems and
information retrieval, model performance is typically assessed by ranking-based evaluation metrics
that reflect both the accuracy and the ordering of recommendations. These metrics are evaluated at
various ranking cutoffs K (e.g., K = 10, 100,1000) to provide a comprehensive view of retrieval
quality across different user engagement depths.

Hit Ratio (HR) Hit Ratio (HR @K) measures the proportion of test cases in which at least one

relevant item, usually the ground-truth item, is found within the top-K positions of the ranked
recommendation list. Formally, for a set of /V users (or queries), it is defined as:

N
HROK — — Z I(rank; < K), %)

where rank; denotes the position (starting from 1) at which the ground-truth item for the i-th user

occurs in the predicted ranking, and I(-) is the indicator function. HR is equivalent to recall @K in
the case of a single relevant item per query.

HR @K is intuitive and interpretable, indicating the likelihood that a user’s desired item appears
among the top-K recommendations. However, it does not reward higher placements within the
top-K and disregards the relative ranking among recommended items.

Normalized Discounted Cumulative Gain (NDCG) Normalized Discounted Cumulative Gain
NDCG@K) extends HR@K by accounting for the position of relevant items, rewarding items that
are ranked higher in the recommended list. For each test case, DCG is computed as:

K
L
DCGaK = Y 17U 5)
j=1

— logy(j + 1)’

where rel; ; is the relevance label (typically 1 for the ground-truth item and O otherwise) for the j-th
item in the ranked list for user 7. The DCG is then normalized by the ideal DCG (IDCQG), i.e., the
maximum possible DCG for that user, to yield:

1 Y DCG,aK
NDCGaK = — ' —— i
cG N & IDCG;QK ©)

NDCG@K captures both the relevance and ranking quality, penalizing relevant items that appear
lower in the ranking. It is especially useful in scenarios with multiple relevant items per user or
graded relevance,

Mean Reciprocal Rank (MRR) Mean Reciprocal Rank (MRR @K) evaluates how highly the first

relevant item is ranked, and is defined as: _

N

1 1
MRROK = + ; p— (7)

where rank; is the position of the first relevant item in the recommended list for user 7, and set to
infinity (i.e., reciprocal rank is 0) if no relevant items are found in the top-/&. MRR @K emphasizes
early precision, heavily rewarding algorithms that surface the relevant item at or near the top.

Its sensitivity to the first relevant item’s position makes it particularly apt for settings prioritizin
immediate relevance (e.g., question answering, search).
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Evaluation Protocols and Cutoff Values In our work, all metrics above are computed at different
cutoff values K to approximate various user scenarios (e.g., users interacting with the top 10 or
top 100 items). These are denoted as HRAK, NDOGQK, and MRRQK, for various X _(e.g.,
K = 10,100, 1000). For interpretability and easier comparison, MRR is often multiplied by 100
and reported as MRRy109. These metrics are computed under a leave-one-out or leave-many-out
evaluation: for each user, one or more ground-truth relevant items are held out (used as positives),
and the ranking is judged over a candidate pool comprising these positives and many sampled
negatives.

E  IMPLEMENTATION DETAILS

E.1 MODEL IMPLEMENTATION,

We provide additional implementation details of the proposed RED-Rec. _

Item Encoder. The item encoder is designed to construct robust content representations, leveraging
a pretrained LLM as its foundation. Textual information related to each item—including titles and
descriptions—is concatenated, tokenized, and prepended with a designated special token to sharpen
the representation focus. This sequence is then passed through the LLM encoder, producing dense
semantic embeddings for each item. Specifically, we extract the embedding corresponding to the
special token. The resulting embedding’s dimension matches the model’s hidden size; for instance,
1536 for LLaMA2-1.3B and 3584 for Qwen-7B.

For multimodal input, there are essentially two primary approaches. The first involves utilizin
an individual vision encoder such as ViT(Dosovitskiy et al., 2020) like LLaVA(Liu et al., 2023), to

extract visual tokens, which are then projected into the language embedding space. The second
approach directly leverages vision-language models (VLMs) such as Qwen-VL, which jointl
process visual and textual inputs within a unified architecture. In our work, we primarily adopt
the first approach based on considerations of model size and efficiency for online serving.

User Encoder. User representation learning is managed via hierarchical interest modeling over
long_interaction histories. User interaction sequences are first encoded using the item encoder,
resulting in contextualized item embeddings. These are then organized and refined by the proposed
mixer module that captures temporal and sequential dependencies. The enhanced representations
are_subsequently fed into a disentangled multi-interest learning module, which goes beyond
conventional single-vector user profiles by learning multiple independent embeddings—each
attending to a distinct facet of user intent,

Training supervision extends past traditional next-item prediction, encompassing all interactions
within a lookahead window to better reflect realistic browsing patterns. _To achieve this, we
apply cosine similarity clustering to partition target items based on behavioral signals, followed
by Hungarian algorithm matching to associate each cluster centroid with its corresponding interest
vector. A contrastive loss function drives the specialization of each embedding, ensuring broad
coverage and effective disambiguation of diverse user preferences across multiple interest groups.
Complete implementation details are available in our supplementary code repository.

To model user interests in a disentangled manner, we introduce learnable queries that capture
refined, distinct interests according to three key principles: sufficient supervision for each query,
minimal overlap in interest coverage, and coherent optimization directions. Given refined interest
embeddings {ry,...,rs} and positive samples {tq,...,t, } from the target window, we cluster the
positive samples into s groups using cosine similarity and then match cluster centroids to interest
embeddings via the Hungarian algorithm to maximize pairwise similarity. The contrastive loss is
applied only to these matched pairs. The contrastive loss Lycg is defined as:

esim(t,r)/T

0g esim(t,r)/T Z;il esim(r,e;)/T

Lnce(t,r) = —1 ¥

where m is the number of negative samples, e; is the ith negative sample embedding, and sim
denotes cosine similarity.

20



Under review as a conference paper at ICLR 2026

This design enables adaptive learning: queries naturally specialize for users with diverse interests
and converge for users whose preferences are more focused. nterest users while naturally convergin
for users with focused preferences.

E.2  ONLINE DEPLOYMENT OPTIMIZATION.

In this section, we describe our practical optimizations at both the item and user sides, ensurin
efficiency, scalability, and robustness in a real-world environment.

Item-side To enable fast candidate retrieval, we precompute and cache embeddings for all active
items_on_the platform using our item encoder. Existing items are retraced in large batches
every 7 days utilizing 64 H800 GPUs, while new items are indexed daily with 5 L20 cards on
the item serving side. The resulting item embeddings are stored in a high-throughput, scalable
key-value (KV) database for real-time lookup during serving. Embedding updates are performed
asynchronously, ensuring the retrieval pipeline remains responsive even during refresh cycles. This
caching strategy significantly reduces inference latency, as the model does not need to encode each
item on-the-fly. Furthermore, we observe that the top 20% of items account for 99% of user clicks,

and leveraging the KV cache effectively eliminates redundant computation for these high-frequenc
items.

User-side ~ For user representation, we maintain a rolling window capturing each user’s most recent
behaviors on the platform. Upon each user request, the backend retrieves the corresponding item
embeddings for these behaviors directly from the item KV cache. These cached embeddings
are then fed into the user-side encoder, which leverages the LLM model to generate up-to-date
user_representations _within_strict latency constraints. _To further minimize latency, user-side
encoding is optimized through efficient batching, grouping requests to maximize GPU throughput
during sequential modeling. We also implement intermediate representation caching: for highly
active users, we cache and incrementally update their user embeddings as new interactions occur,

recomputing only when substantial behavioral changes are detected. The user-side service uses 20
L.20 cards.

Model Compression and Quantization To accommodate the deployment of large-scale
parameters, we employ model quantization and compression techniques to ensure cost-effective
and efficient inference. On the user side, we utilize bf16 guantization to accelerate computation and
reduce memory usage, while on the item side, embeddings are maintained with 6 decimal places to
further minimize bandit pressure and optimize cache efficiency. We use ONNX Runtime” for further
acceleration, and we specifically precompile intensive operators such as multi-head attention and
layer normalization for the LLM components to further minimize latency during online inference.
These strategies decrease memory footprint and lower serving latency, particularly for user-side
computation. All serving nodes operate statelessly, relying on distributed caches and databases
for both embedding retrieval and user state management. This design is for seamless horizontal
scaling. Additionally, if a user disables an item they have posted—rendering it invalid—the system
automatically pads the sequence with empty content to ensure consistent input structure and model
stability.

F  FURTHER EXPERIMENTS
F.1 PRETRAINING VALIDATION

Our first set of experiments investigates the effect of varying the backbone LLMs for the item and
user encoders. Specifically, we explore the following configurations: (1) using different pretrained
LLMs for item and user encoders, (2) training one or both encoders from scratch instead of

initializing from a pretrained model, and (3) freezing the item encoder during training. The detailed
results are summarized in Table 8.

Across all settings, we observe that using exactly the same pretrained LLM for both item and user
encoders and fine-tuning them jointly yields the best performance. In contrast, utilizing mismatched

3https://github.com/microsoft/onnxruntime
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Table 8: Ablation results for different combinations of item and user LL.Ms and training strategies.

Scenario Configuration HR/NDCGip HR/NDCGi1990 HR/NDCG;r MRRy4100
Homefeed RED-Rec (2 * Qwen) 2.31/0.68 12.59/1.88 31.94/3.86 1.27
Item LLM from scratch 0.00/0.00 0.00/0.00 0.03/0.01 0.00
User LLM from scratch 0.00/0.00 0.03/0.01 1.32/0.21 0.01
Item LLM frozen 1.27/0.36 5.51/0.77 11.37/1.02 0.37
User LLM frozen 1.78/0.44 10.47/1.02 23.06/1.48 1.01
Homefeed + Ads RED-Rec (2 * Qwen) 4.36/1.31 18.32/3.27 42.61/5.02 2.11
Item LLM from scratch 0.00/0.00 0.00/0.00 0.08/0.04 0.01
User LLM from scratch 0.00/0.00 0.00/0.00 1.01/0.07 0.03
Item LLM frozen 1.49/0.41 9.49/1.31 19.29/1.52 0.76
User LLM frozen 2.57/1.01 13.72/1.98 29.72/1.88 3.28
Homefeed + Ads RED-Rec (2 * Qwen) 4.36/1.31 18.32/3.27 42.61/5.02 2.11
RED-Rec-CoT (2 * Qwen) 4.46/1.35 18.78/3.60 44.61/5.01 2.15

encoders, initializing from scratch, or freezing either encoder all result in significant drops in overall
accuracy. This suggests that consistent representation spaces and co-adaptation between the two
encoders are crucial for optimal model performance.

F.2  COT VALIDATION

We _explore explainable recommendations based on _Chain-of-Thought (CoT)-based

Wei et al., 2022) explanations for the input layer in multi-scenario setting. In this experiment, we
introduce a Chain-of-Thought (CoT) auxiliary loss: beyond learning discriminative user and item

encoders, we encourage explainable multi-scenario reasoning by forcing the user model to generate
natural language rationales for each action:

[Sul L
Lear == Y, Y > logps(re | rree, Zus), ©)

ueld t=14=1
where denotes the probability, computed by a learnable language model head parameterized
b of generating the /-th token 7; , of the rationale conditioned on the previous tokens r;_g

and the contextualized user embedding z, ; at interaction t. The overall training loss is then
‘Ct tal — /:/ + )\ o) £ ol

We use GPT 4.1 to generate CoT explanations. An example of the generated CoT explanantion is
The user browsed multiple articles related to Switzerland on the homepage, such as "Do you dare
10 guess how many days of sunshine in Switzerland?” and ”What to wear for a trip 1o Switzerland
next week?” This _indicates a clear interest in Switzerland. _While previously recommended ads
included those related 19 travel, they were not specifically targeted at Switzerland.

Therefore, we recommend to the user the targeted ad " Personal tested and useful! The ultimate
transportation ticket map tool for traveling in Switzerland!”, as well as other ads related to traveling
in Switzerland, such as ”Countdown to opening! The four legendary theme parks of Fiesch First
Mountain”_and " Interlaken sledding premivm tips — Save 400 RMB instantly”.

The CoT explanation module is particularly well-suited to_the multi-scenario recommendation
setting. By generating step-by-step rationales that account for user behaviors across different
scenarios_or domains, the model can provide contextually accurate and human-understandable
Justifications for its recommendations. This improves both transparency and user trust, crucial for
scenario-aware systems. However, we observe that applying the CoT-based approach to large-scale
datasets introduces significant challenges. The requirement to generate context-dependent rationales
for every user interaction leads to substantially increased computational and memory costs. Given
these limitations, we restrict our experiments to small-scale testings. The detailed results are
summarized in Table 8. Including CoT data in training has led to certain improvements, but it
does not outperform the pretrained model.
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