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ABSTRACT

User interests on content platforms are inherently diverse, manifesting through
complex behavioral patterns across heterogeneous scenarios such as search, feed
browsing, and content discovery. Traditional recommendation systems typically
prioritize business metric optimization within isolated specific scenarios, neglect-
ing cross-scenario behavioral signals and struggling to integrate advanced tech-
niques like LLMs at billion-scale deployments, which finally limits their abil-
ity to capture holistic user interests across platform touchpoints. We propose
RED-Rec, an LLM-enhanced hierarchical Recommender Engine for Diversified
scenarios, tailored for industry-level content recommendation systems. RED-Rec
unifies user interest representations across multiple behavioral contexts by aggre-
gating and synthesizing actions from varied scenarios, resulting in comprehen-
sive item and user modeling. At its core, a two-tower LLM-powered framework
enables nuanced, multifaceted representations with deployment efficiency, and a
scenario-aware dense mixing and querying policy effectively fuses diverse be-
havioral signals to capture cross-scenario user intent patterns and express fine-
grained, context-specific intents during serving. We validate RED-Rec on hun-
dreds of millions of users in a world-leading UGC platform through online A/B
testing, showing substantial performance gains in both content recommendation
and advertisement targeting tasks. We further introduce a million-scale sequential
recommendation dataset for comprehensive offline evaluation. We hope our work
could advance unified modeling of users, unlocking deeper personalization and
fostering more meaningful user engagement across large-scale platforms.

1 INTRODUCTION

Modern content platforms have evolved into complex ecosystems where users engage across mul-
tiple behavioral contexts—browsing personalized feeds, conducting topical searches, discovering
content creators, and responding to targeted advertisements. Each interaction scenario captures dis-
tinct yet complementary aspects of user intent: search queries reveal explicit informational needs,
feed engagement demonstrates implicit content affinity, and advertisement responses indicate com-
mercial preferences (Covington et al., 2016; Hidasi et al., 2015). As a result, user interests are
inherently multi-dimensional and dynamic, manifesting through intertwined behavioral trajectories
spanning these contexts (Figure 1).

Despite this richness, production recommendation systems typically operate in isolation, with sepa-
rate models independently optimized for business objectives such as Click-Through Rate (CTR) in
feeds and Advertiser Value (ADVV) in advertisements (Zhang et al., 2019; Chapelle et al., 2014).
This siloed design, which traps systems in local optima, leads to several limitations. First, it frag-
ments user understanding by restricting each model to narrow behavioral contexts, thereby weaken-
ing generalization and robustness. Second, it yields inconsistent user experiences when independent
systems infer divergent interests. Third, it underutilizes cross-scenario signals, limiting knowledge
transfer across tasks and weakening performance for users with sparse activity in certain scenarios
(Xia et al., 2020; Zhu et al., 2022). For example, a user exploring sustainable living may search
for eco-friendly products, engage with environmental content, and click green-technology ads—yet
scenario-isolated modeling fails to synthesize coherent signals into unified user intent. Although
some cross-scenario approaches exist (Zhang et al., 2023; Bao et al., 2023), they typically require
extensive manual feature engineering and struggle with scalability and robustness in production.
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Figure 1: Learning user interests from diverse behavioral contexts. Left: User interests manifest through
diverse topics and interconnected behavioral patterns across multiple engagement contexts. Middle: These
multifaceted interests are naturally captured in rich behavioral sequences spanning homefeed interactions, ad
engagements, and search activities, reflecting the dynamic and evolving nature of user preferences. Right:
RED-Rec employs unified hierarchical sequential representation learning based on LLMs to process these be-
havioral histories, generating nuanced user embeddings that enable context-aware recommendations. Termi-
nology is further explained in Section A.

We are motivated by the observation that users exhibit consistent interest patterns across diverse
scenarios, and that modeling these patterns holistically can significantly enhance recommendation
quality. The observation highlights the value of user-centric, instead of scenario-centric, systems that
synthesize behavioral signals from multiple scenarios to construct comprehensive user interest repre-
sentations. Recent advances have made this approach increasingly feasible: LLMs have transformed
the semantic understanding of user behaviors and content (Wang et al., 2024b), while advanced se-
quence modeling techniques effectively capture complex temporal dynamics and cross-scenario de-
pendencies (Sun et al., 2019). Meanwhile, modern platforms generate massive multi-scenario logs
(McAuley et al., 2015; Harper & Konstan, 2015; Gao et al., 2022), creating opportunities for unified
modeling at scale. However, realizing this vision entails significant challenges: (i) heterogeneity
in action schemas, temporal dynamics, and semantics; (ii) activity imbalance across scenarios; (iii)
large-scale training and serving with strict latency and throughput constraints; and (iv) reconciling
differing optimization objectives within a single architecture. While recent work explores mixtures
of multi-source signals (Ma et al., 2022; Zhang et al., 2022a; Liu et al., 2024; Yang et al., 2024),
truly end-to-end unified modeling for industrial deployments remains underexplored.

We present Recommender Engine for Diversified scenarios (RED-Rec), an LLM-enhanced hierar-
chical sequential recommendation framework tailored for billion-scale content platforms. RED-Rec
unifies interest modeling across heterogeneous contexts by: (1) employing LLM-powered user
and item encoders within a hierarchical two-tower structure, enabling rich semantic representa-
tions while preserving efficiency for large-scale retrieval; (2) introducing a 2-D dense mixing
policy that fuses multi-scenario behavioral signals along temporal and scenario axes to capture
cross-scenario dependencies, coupled with multi-interest, scenario-aware queries that express fine-
grained, scenario-specific user intents. We train RED-Rec end-to-end on billions of behavioral events
drawn from billions of items and over one hundred million users, and incorporate system-level op-
timizations enabling stable, low-latency online deployment.

To enable a more rigorous evaluation, we additionally introduce a new multi-scenario sequential
dataset, curated from a world-leading User-Generated Content (UGC) platform. The dataset spans
millions of items and diverse user behaviors across feeds, search, and advertisement contexts, fa-
cilitating benchmarking of unified and scenario-specific models. Through extensive offline exper-
iments, RED-Rec consistently outperforms baselines across multiple metrics and scenarios. This
effectiveness translates successfully to production environments, as demonstrated through online
A/B tests, and has been deployed in a commercial system supporting hundreds of millions of daily
users.

To sum up, our main contributions include the design and implementation of a unified, user-centric
interest modeling framework that achieves both expressiveness and efficiency for billion-scale cross-
scenario recommendation, complemented by a comprehensive million-scale multi-scenario sequen-
tial dataset that enables rigorous evaluation of unified modeling approaches. Through empirical
validation in both offline and online production environments, we demonstrate substantial improve-
ments that establish the practical viability of unified cross-scenario modeling at billion scale.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Sequence Modeling The advent of deep learning has greatly advanced recommender systems,
with methods such as neural collaborative filtering (He et al., 2017) and factorization machines (Ren-
dle, 2010; Guo et al., 2017) excelling at capturing intricate user–item interactions. Sequential recom-
mendation systems have evolved from simple recurrent architectures to sophisticated transformer-
based models capable of learning complex temporal dependencies in user behavior. Early work
such as GRU4Rec (Hidasi et al., 2015) pioneered the use of recurrent neural networks for modeling
session-based interactions. Subsequent models like Caser (Tang & Wang, 2018) employed convo-
lutional filters to extract both short- and long-term patterns, while attention-based methods further
improved the ability to focus on relevant historical interactions. Transformer-based approaches,
including SASRec (Kang & McAuley, 2018) and BERT4Rec (Sun et al., 2019), introduced self-
attention mechanisms to capture long-range dependencies, and bidirectional encodings to leverage
full context for superior representation learning. More recent advances have explored contrastive
learning (Zhou et al., 2020; Wei et al., 2023), multi-interest modeling (Li et al., 2019; Cen et al.,
2020), and graph neural networks (Wang et al., 2020; Zhang et al., 2022b; Yang et al., 2023) to better
model the dynamic and multifaceted nature of user preferences. Emerging research has begun lever-
aging large language models to enhance user and item representations in sequential recommendation
tasks (Chen et al., 2024a; Hu et al., 2024; Wang et al., 2024b), as well as generative patterns (Chen
et al., 2024b; Paischer et al., 2024; Deng et al., 2025; Han et al., 2025) that bridge natural language
understanding and recommendation tasks. This paradigm shift has brought about transformative
improvements in recommendation pipelines.

Multi-scenario Recommendation
:::::
While

::::
user

:::::::
interests

:::
are

:::::::::
generally

:::::
stable,

::::::::::
behavioral

::::::
patterns

:::
can

::::
vary

:::::::::::
significantly

:::::
across

:::::::::
scenarios

:::::::::::::::::::::::::::::
(Zang et al., 2022; Gao et al., 2023).

::::::
Early

::::::::::::
cross-platform

::::::
studies

::::::::::::::::::::::::::::
(Niu et al., 2021; Tan et al., 2021)

:::::
found

::::
that

:::::
users

::::::::
maintain

::::::
similar

:::::::
topical

::::::::
interests

::
on

:::::::
different

:::::::::
platforms,

:::::::
despite

:::::::::
differences

:::
in

:::::::::
interaction

:::::::
patterns

::::
and

:::::::::::
frequencies.

::::::
These

:::::::
insights

::::::
inspired

:::::::::
methods

::
to
:::::::::::

disentangle
::::::

latent
:::::::
interests

::::::
from

::::::::
observed

::::::::::
behaviors.

::::::::::::::
Multi-scenario

:::::::::::::
recommendation

::::::::::
methods

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Tan et al., 2021; Zhao et al., 2023; Li et al., 2024; Wu et al., 2025)

:::::
model

:::::::
diverse

::::
user

:::::::::
behaviors

::::::
while

::::::::
capturing

:::::::
shared

:::::::
interest

:::::::::::::
representations.

:::::
For

::::::::
instance,

::::::::::::::::::::::
M2M(Zhang et al., 2022c)

::::::::
introduced

:::::
novel

:::::
meta

::::
units

:::
for

:::
ads

::::::::
scenarios.

:::::::::
Advances

::
in

::::::::::
disentangled

:::::::::::
representation

::::::::
learning

:::::
have

:::::
better

:::::::::
separated

::::::
stable

::::::::
interests

:::::
from

:::::::::
contextual

:::::::
actions;

::::::
works

:::
like

::::::::::::::::::::::
STAR(Sheng et al., 2021),

::::::::::::::::::::::::::
AdaSparse(Yang et al., 2022)

:::
and

::::::::::::::::::::
APG(Yan et al., 2022)

:::::
employ

:::::::::::
domain-aware

::::::::
designs

::
to
::::::

learn
:::::::
domain

:::::::::::::
commonalities

::::
and

:::::::::::
distinctions

::
in
::

CTR
::::::::
prediction.

::::::::::::::::::::::
HierREC(Gao et al., 2024)

::::::::
combines

:::::::
explicit

::::
and

:::::::
implicit

::::::::::::::
scenario-aware

::::::::
modules

::
to
:::::::

capture
::::::::::::
hybrid-grained

::::::::::::
information.

:::::::::::::::
Graph-based

::::::::
methods

::::::::::::::::::::::::::::::
(Tan et al., 2021; Cao et al., 2022)

::
are

:::::
widely

::::::
used

:::
to

::::::
model

:::::::::::::::
multi-behavioral

::::::::
patterns

::::
and

:::::::::
generate

:::::::
unified

:::::
user

:::::::::::
embeddings.

::::
This

::::::::
research

::::::::
direction

:::
is

:::::
also

:::::::
known

:::
as

::::::::::::
cross-domain

:::::::::::::::
(Ma et al., 2022)

::
or

::::::::::::
multi-domain

::::::::::::::::::::::::::::::
(Zhao et al., 2023; Yang et al., 2024)

::::::::::::::
recommendation,

:::::::::
leveraging

::::::::::::
multi-source

::::
user

::::::::
histories

::
to

:::::::
enhance

:::::::::::
performance.

::::::::
However,

::::::::
scalability

:::::::
remains

:::
an

::::
issue

:::
for

::::
most

:::::::::
approaches

:::
on

::::::::::::
industrial-scale

:::::::
datasets,

::::
and

:::::::::
large-scale

::::::
online

:::::::::
validations

::::
are

:::::::
limited.

:::::::::
Recently,

::::::::
methods

:::::::
utilizing

:::::::::
foundation

::::::
models

::
to

::::
build

::::::::
universal

::::::::::::
recommenders

::::
have

:::::
been

:::::::
proposed

:::::::::::::::::::::::::::::::
(Wang et al., 2024a; Shen et al., 2024)

:
,
::::::::
including

:::::
works

:::
for

:::::::::::::
multi-scenarion

:::::::
settings

:::
like

:::::::::::::::::::::::::
LLM4CDSR(Liu et al., 2025),

:::
but

::::
they

:::::
have

::
yet

::
to

::
be

::::::::
extended

::
to

::::::::::
billion-scale

::::::::
industrial

:::::::
settings.

:

3 CROSS-SCENARIO DATASET

Existing open-source sequential recommendation datasets are constrained by their narrow focus,
often capturing user behaviors in isolated e-commerce or entertainment scenarios centered around
singular interaction types such as ratings, clicks, or purchases (Ben-Shimon et al., 2015; Harper
& Konstan, 2015; Ni et al., 2019; Zhu et al., 2018). These datasets, while foundational for earlier
research, are fundamentally limited in their ability to model the multi-scenario, and cross-modal
nature of user interests observed in modern large-scale UGC platforms. Notably, even in most recent
datasets such as KuaiRand (Gao et al., 2022) and Qilin (Chen et al., 2025) that begin to characterize
UGC environments, a fragmented approach is frequently adopted that underrepresents the complex
interplay between scenarios and only partially reflects the holistic evolution of user interests.

3
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To address these limitations, we first introduce a multi-scenario sequential recommendation dataset
derived from billions of user interactions from a third-party UGC platform, featuring several key
characteristics:

User Lastn in Cross Scenarios Interactions

(a) Scenario 1: Homefeed at time t-5

click

t-5
click

share

follow
comment
timestamp & 
location 

like & collect 

click

engage

tags

t-4

click after search
engage

infeed preview
(need click)

instream flow
(scroll down)

t-2

commercialization
notes

advertising 
(goods, app promotion, 
services, etc.)

purchase page

(b) Scenario 2: Search at time t-4

(c) Scenario 3: Advertisements at time t-2
Figure 2: Multiple scenarios represented in the
dataset. Our work primarily focuses on three key sce-
narios: homefeed, search, and ads.

Diverse Behavioral Contexts Our dataset en-
compasses a comprehensive range of real-
world interaction scenarios on the UGC plat-
form, including (a) homefeed browsing, (b)
search-driven browsing and clicking, and (c)
ad exposure and engagement. This temporally-
aligned diversity enables robust analysis of user
behavior across distinct yet interconnected sce-
narios within a unified platform ecosystem.

Comprehensive Engagement Patterns The
dataset uniquely captures both explicit positive
user engagements such as clicks, likes, collec-
tions, and shares, as well as negative signals.
Additionally, we record view duration for each
interaction, providing a nuanced and holistic
depiction of user preferences and attention pat-
terns.

Industrial Coverage The dataset includes mil-
lions of items and hundreds of millions of en-
gagement records, surpassing existing datasets
in scale and delivering the volume and com-
plexity needed for developing and benchmark-
ing cutting-edge recommender models at scale.
Also, by tracking user behavior over extended
time periods, our dataset facilitates the study of
long-term interest evolution, behavioral stabil-
ity, and cross-scenario consistency, which are
typically constrained in other publicly available
datasets.

An example datapoint is shown in Figure 2,
while Figure 3 presents overall dataset statistics. Additional details including dataset collection
and filtering can be found in Section C.

4 MULTI-SCENARIO USER INTEREST LEARNING

4.1 TASK FORMULATION

Let U “ tu1, u2, . . . , uNu denotes the set of users and I “ ti1, i2, . . . , iMu represents the universal
item space. The item space contains posts with image-text or video content created by either regular
users or advertisers, which can be recommended to users or discovered through search interactions.

For each user u P U , we observe a chronologically ordered engagement sequence Su “

tpi1, a1, s1, t1q, pi2, a2, s2, t2q, . . . , pi|Su|, a|Su|, s|Su|, t|Su|qu, where each interaction tuple consists
of it P I (the interacted item at timestamp t), at P A (the engagement action performed), st P S
(the scenario context), and t (the interaction timestamp). The engagement sequence encompasses
user activities across three distinct scenarios S “ thomefeed, ads, searchu. 1 Each interaction it is
associated with rich contextual information including content features, and user engagement actions
at P A, where A “ tlike, share, comment, follow, messaging, blocku represents the comprehensive
set of possible user responses to content.

1While advertisements can appear in search results for specific keywords, we consider such interactions as
highly target-specific and exclude them from this task scope.

4
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(a) User Interaction Distribution
Channel and Scenario Analysis

(b) Top 100 Notes by Channel and Scenario

(c) Behavior Distribution Analysis (d) Duration vs Engagement Analysis (Top 1000)

(e) 24-Hour Activity Pattern (GMT+8) (f) Content Lifecycle by Channel ✖ Scenario

(g) User Behavior by Channel and Scenario (h) User Activity by Channel ✖ Scenario  (500 Users)
Figure 3: User engagement analytics dashboard. We sample 10k users for a comprehensive visualization of
their interaction patterns across feed & ads channels and recommendation & search scenarios, focusing on their
behavioral trends, content performance, and engagement metrics: (1) User distribution by channel & scenario;
(2) Top notes engagement analysis; (3) Behavior pattern distribution; (4) Duration vs. engagement correlation;
(5) 24-hour activity trends; (6) UGC content lifecycle included; (7) User behavior by channel & scenario; (8)
User activity by channel & scenario.
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Figure 4: Overall framework of RED-Rec. RED-Rec is a two-tower hierarchical architecture comprising a
multi-modal item encoder and a sequential user encoder. The item encoder fuses textual and visual signals into
unified embeddings, while the user encoder utilizes scenario-specific transformer blocks to model the evolution
of user interests. The system is trained end-to-end.

Given the multi-scenario user engagement sequences, our primary objective is to learn unified repre-
sentations that capture user preferences and item characteristics across different contexts. Formally,
we aim to learn embedding functions fu : U ˆ Hu Ñ Rd and fi : I Ñ Rd that map users
(conditioned on their interaction history) and items to a shared d-dimensional embedding space:

u “ fupu, Suq, vi “ fipiq

where u P Rd represents the user embedding and vi P Rd represents the item embedding. The
embedding can be directly used in Recall Task or used as features for downstream models like
pre-ranking and fine-grained ranking.

4.2 HIERARCHICAL LLM-BASED REPRESENTATION LEARNING

RED-Rec is a two-tower LLM-powered framework designed to learn comprehensive item and user
embeddings. It incorporates a 2-D dense mixing policy for effectively aggregating and fusing user
interactions across diverse scenarios, along with multi-scenario multi-interest querying to capture
various facets of user preferences. The framework operates by first encoding items through a dedi-
cated item encoder, then fusing scenario-specific interactions which are subsequently processed by
the user encoder to generate tailored user embeddings for each scenario.

Item Representation Learning For each item i P I, we employ a multi-modal encoder Eitem
to generate an embedding ei “ Eitempxi,vi; θi, θvq P Rd, where xi is the item’s textual input—
consisting of title, tags, content, and OCR-extracted text—and vi is its visual content. Textual
features are encoded by a pre-trained language model (parameters θi), while images are processed
by the ViT (Dosovitskiy et al., 2020) vision encoder (parameters θv) and then projected to dimension
d via a linear layer.

Sequential User Interest Modeling At timestamp t, we model the user’s current interest based
on their past n behaviors across the platform. Given user u’s combined interaction sequence Su “

Sh
u YSa

u YSs
u, where Sh

u denotes homefeed interactions, Sa
u denotes advertising interactions, and Ss

u
denotes search interactions. Each interaction is represented as S “ tContent, timestamp, actionu.
The current sequence representation can be denoted as Hu “ rei1 , ei2 , . . . , eins P Rnˆd where eit
represents the content embedding for the t-th interaction in the user’s recent history.

Based on this, actions Au “ rai1 ,ai2 , . . . ,ains are represented as one-hot vectors encoding en-
gagement behaviors including tcollect, share, message, block, likeu for interaction n. These action
vectors are converted to dense embeddings using a learnable embedding layer. Furthermore, times-
tamps are not only used to sort engagement chronologically but also serve as temporal features at the
hour level, as we observe that user interests and behaviors vary significantly across different times
of the day. Specifically, each timestamp is discretized into a 24-dimensional one-hot vector repre-
senting the hour of the day hit “ OneHotphourptimestamptqq P t0, 1u24, and then converted to

6
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dense embeddings through a learnable embedding layer. The final enhanced representation Ĥu in-
corporates content, action, and temporal information. The user-level encoder processes this enriched
sequence to generate contextualized user representations Uu “ EuserpĤu; θuq.

Cross-scenario Interest Mix and Query To effectively capture user interests across multiple sce-
narios, we introduce a cross-scenario 2-D dense mixing and querying policy in RED-Rec.

The mixing policy serves as a gating and fusion mechanism, aggregating user behaviors from multi-
ple scenarios (homefeed, ads, search) before the user encoder. Formally, let Ss

ur´ns :s denote user
u’s latest ns records in scenario s P thomefeed, ads, searchu. We define the mixed sequence:

Smixer
u “ Merge

´

Shomefeed
u r´nh :s, Sads

u r´na :s, Ssearch
u r´ns :s

¯

, (1)

where Mergep¨q deterministically fuses events—sorting by timestamp and concatenating per a fixed
scenario order, retaining scenario tags. During training, ns samples per scenario are used; at infer-
ence, the most recent ns are selected, with ns tuned as a hyperparameter. “2-D dense mixing” refers
to filtering events along both scenario (balancing quotas) and temporal (recency) axes, preserving
all selected events for encoding. This addresses behavior imbalance (e.g., far more homefeed than
ad/search actions), ensuring that infrequent but informative user signals are retained for downstream
modeling. We have ablations for different mixing policies in Section 5.

To further enhance modeling capacity, we design a 2-D positional encoding for each event. For the
j-th event in Smixer

u , we define 1) Sequence position encoding as PEseqpjq, reflecting the event’s
absolute position in the sequence; and 2) Time-gap encoding as PEgapp∆tjq, where ∆tj “ tcurr ´ tj
is the interval between the interaction and the present. The final positional encoding is computed as
pj “ PEseqpjq ` PEgapp∆tjq.

The query module enables learnable query embeddings, termed scenario-aware queries, denoted as
Q “ rq1,q2, . . . ,qKs P RKˆd, where K is the number of interest aspects. These queries enable
the model to attend to different facets of user preference under varying contexts. The scenario-
aware user representation is then formed by feeding the concatenation of user interaction history
(excluding the most recent W actions) and Q into a user encoder:

Uquery
u “ Euser

´”

H̃ur: ´W s; Q
ı

; θu

¯

, (2)

where W denotes the window size for recent interactions. By leveraging different queries, the user
encoder can generate multiple representations, each reflecting a distinct aspect of user interest.

During training, we adopt Noise Contrastive Estimation (NCE) as the main objective to model se-
quential recommendation.

::::
Given

:::::::
refined

::::::
interest

:::::::::::
embeddings

:::::::::::
tr1, . . . , rsu

:::
and

:::::::
positive

:::::::
samples

::::::::::
tt1, . . . , twu

:::::
from

::::
the

:::::
target

::::::::
window,

::::
we

:::::::
cluster

:::
the

::::::::
positive

:::::::
samples

::::
into

::
s
:::::::

groups
:::::

using
:::::
cosine

:::::::::
similarity

::::
and

::::
then

::::::
match

::::::
cluster

:::::::::
centroids

::
to
:::::::

interest
:::::::::::

embeddings
::::

via
:::
the

:::::::::
Hungarian

:::::::::::::::::::
algorithm(Kuhn, 1955)

::
to

::::::::
maximize

:::::::
pairwise

:::::::::
similarity.

:::
The

:::::::::
contrastive

::::
loss

::
is

::::::
applied

::::
only

::
to

::::
these

:::::::
matched

:::::
pairs:

Ltotal “
1

w

w
ÿ

i“1

s
ÿ

j“1

LNCEpti, rjq ¨ Πpi, jq

:::::::::::::::::::::::::::::::

(3)

:::::
where

::::::::::
Πpi, jq “ 1

:
if
:::
the

::::::
cluster

::
of

::
ti::

is
:::::::
matched

::::
with

:::
rj ,

:::
and

::
0
:::::::::
otherwise.

4.3 BENCHMARKING AND OFFLINE EVALUATION

We evaluate representations on recall tasks with a temporal split protocol. For each user u, their
interaction sequence Su is split at a randomly sampled cutoff tcut. The input is Sinput

u “ tpi, a, s, tq P

Su : t ă tcutu, and the next three items form the targets: Gu “ titcut , itcut`1, itcut`2u. A candidate
pool C is formed by random sampling from the active items in the platform and mixing in Gu.
The user embedding u is computed from Sinput

u , and similarity scores are defined as scorepu, iq “

cospu,viq, @i P C Y Gu. Items are ranked to produce recommendations Ru, and top-K results
RK

u are evaluated using HR@K, NDCG@K, and MRR for K P t10, 50, 100, 1000u.
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Table 1:
:::::::::::::
Recommendation

::::::
results

:::
for

::::::::
individual

::::::::
scenarios.

::::::
Baseline

:::::::
methods

:::
are

:::::::
evaluated

::::::::
separately

::
on

::
the

::::::::
homefeed

:::
and

:::
ads

:::::::
scenarios.

::
In
:::
all

::::::
metrics,

:::::
higher

:::::
scores

:::::
reflect

::::
better

::::::::::
performance.

Homefeed Ads

Baselines Ò HR/NDCG10 HR/NDCG100 HR/NDCG1k MRR˚100 HR/NDCG10 HR/NDCG100 HR/NDCG1k MRR˚100

SASRec 1.76/0.97 12.32/1.79 32.01/4.04 1.01 3.26/1.63 14.08/3.71 39.11/5.27 1.57
MoRec 1.78/1.25 12.48/2.23 31.98/4.12 1.21 3.47/1.67 13.98/3.88 38.27/4.89 1.78
HSTU 1.79/1.22 12.72/2.21 31.76/3.69 1.15 3.85/1.70 14.32/3.30 38.20/5.38 1.43
HLLM 1.66/0.62 12.77/1.83 32.52/4.02 1.22 4.21/1.21 14.27/3.37 39.21/4.48 1.39
DLRM-v3 1.63/1.03 11.33/2.01 28.96/3.72 1.13 3.54/1.21 15.27/3.22 35.39/4.27 1.67

RED-Rec 2.31/0.68 12.59/1.88 31.94/3.86 1.27 4.24/1.28 16.44/3.21 40.18/4.61 1.96
RED-Rec-pt 2.90/0.63 14.89/2.02 36.16/4.01 1.30 4.84/1.30 17.66/2.87 42.71/5.21 2.27
RED-Rec-mm 2.35/1.21 14.20/2.27 31.29/3.97 1.29 4.31/1.31 17.22/3.18 41.86/4.66 1.92
RED-Rec-mm-pt 3.23/1.27 15.46/2.21 36.29/4.14 1.38 4.82/1.19 18.21/3.29 42.56/4.98 2.21

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS AND BASELINES

In our default setup, all models are trained on a standardized dataset of 1 million users and evaluated
on 10,000 test samples, using a randomly sampled base pool of approximately 1 million notes for
fair comparison. We set the window size W=10, last n=128, and use 3 queries per scenario. Both
item and user encoders are initialized with either a 1.3B-parameter LLaMA-based model (Cui et al.,
2023) or the 1.5B Qwen-2.5 model (Yang et al., 2025), while the vision encoder uses CLIP ViT-
B/16. Training requires about 24 hours on 8 NVIDIA H100 GPUs for 3 epochs, with batch size 2
and gradient accumulation of 4. Detailed implementation can be found in Section E.

Table 2:
:::::::::::::
Recommendation

::::::
results

::
for

:::::
mixed

::::::::
scenarios.

Search + Homefeed (for Homefeed)

Baselines Ò HR/NDCG10 HR/NDCG100 HR/NDCG1k MRR˚100

SASRec 1.73/1.22 12.02/3.21 32.17/4.17 1.52
MoRec 1.79/1.30 13.92/2.99 33.01/3.98 1.53
HSTU 1.79/1.25 12.84/3.28 33.15/4.24 1.55
HLLM 1.69/1.02 13.49/3.18 33.04/4.21 1.58
DLRM-v3 1.64/1.18 11.35/3.02 30.89/3.98 1.48
RED-Rec 2.26/1.32 14.74/3.16 33.29/4.20 1.58
RED-Rec-pt 2.92/1.33 18.26/3.24 38.92/4.23 1.67

Homefeed + Ads (for Ads)

Baselines Ò HR/NDCG10 HR/NDCG100 HR/NDCG1k MRR˚100

SASRec 3.72/1.24 16.18/3.08 38.94/4.72 1.94
MoRec 3.80/1.30 17.23/2.62 38.29/4.77 1.98
HSTU 3.89/1.28 16.95/3.15 40.12/4.81 2.01
HLLM 3.68/1.19 17.24/3.12 39.76/4.78 1.97
DLRM-v3 3.52/1.21 15.43/2.95 36.87/4.58 1.87
RED-Rec 4.36/1.31 18.32/3.27 42.61/5.02 2.11
RED-Rec-pt 5.18/1.38 18.89/3.21 46.59/5.57 2.38

Homefeed + Search + Ads (for Ads)

Baselines Ò HR/NDCG10 HR/NDCG100 HR/NDCG1k MRR˚100

SASRec 3.68/1.21 14.29/2.08 38.94/4.72 1.94
MoRec 3.82/1.33 18.27/2.98 38.41/4.66 1.98
HSTU 3.92/1.31 17.21/3.19 40.14/4.81 2.11
HLLM 4.08/1.11 19.92/3.18 43.27/4.91 2.06
DLRM-v3 3.34/1.01 14.08/2.81 35.74/4.36 1.74
RED-Rec 4.72/1.33 18.33/3.22 42.89/4.97 1.94
RED-Rec-pt 5.18/1.35 20.52/3.24 49.17/5.93 2.41

We compare our model with
several mainstream baselines:
SASRec (Kang & McAuley,
2018), MoRec (Yuan et al.,
2023), HSTU (Zhai et al.,
2024), HLLM (Chen et al.,
2024a), and DLRM-v3 (Nau-
mov et al., 2019). Experiments
are conducted in single-
scenario (homefeed, ads) and
multi-scenario (e.g., search +
homefeed, homefeed + ads,
all combined) settings. Our
model is evaluated in four
variants: RED-Rec-symbol,
RED-Rec-mm, and their pre-
trained versions (“-pt”), the
latter trained on a large-scale
online dataset. Standard rec-
ommendation metrics are used
(see Section D). We evaluate
all baselines on our proposed
industrial dataset to demon-
strate the performance gains
brought by unified modeling.
Meanwhile, experiments on a
public dataset are presented in
Section B.

5.2 SINGLE-SCENARIO

We first evaluate our model alongside baseline methods on two distinct recommendation scenarios:
the Homefeed and Ads settings, as presented in Table 1. The results demonstrate that RED-Rec out-
performs popular baselines, even in scenarios that were not specifically targeted during optimization.
We attribute this improvement both to the modeling of multi-interest user representations and to ad-
vancements in the backbone framework. Compared to baselines relying on ID-based representations

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

like SASRec and HSTU, leveraging LLMs provides richer semantic encodings, especially bene-
ficial under cold-start conditions, resulting in substantial performance gains. Furthermore, when
compared to models with similar architectures, such as HLLM, our approach benefits from a larger
backbone with enhanced Chinese language capabilities, allowing for a better fit to the dataset and
further boosting effectiveness.

5.3 MULTI-SCENARIO

We further evaluate our model in multi-scenario settings to assess whether incorporating information
flow between scenarios can enhance performance, particularly in the homefeed and ads scenarios
(Table 2). Additionally, we illustrate the improvements brought by multi-scenario recommendation
in Figure 5. The most significant gains are observed in two specific cases: leveraging data from
search scenario improves homefeed recommendation, while utilizing both homefeed and search
data enhances ads recommendation.

We observe that modeling information flow between scenarios—such as integrating Homefeed, Ads,
and Search data—consistently improves the performance of most baselines, with the largest gains
seen for RED-Rec. This can be attributed to its effective multi-source signal integration and the
advanced user-side LLM, which offers strong few-shot reasoning capabilities. For Homefeed rec-
ommendations, access to Search data—especially post-search clicks—significantly increases HR
and NDCG scores. Similarly, Ads recommendations benefit from combined Homefeed and Search
behaviors, showing the greatest metric improvements. These enhancements are consistent across all
cutoff values, and RED-Rec not only raises the likelihood of relevant items being recommended, but
also ensures they appear closer to the top.

5.4 MODULE ABLATION
Table 3: Model ablation for RED-Rec. Top: model config ablation; Bottom:
scenario mixing policy ablation.

Homefeed

Setting HR/NDCG10 HR/NDCG100 HR/NDCG1k MRR

SeqLen = 128, Multi-Interest, pt 2.90/0.63 14.89/2.02 36.16/4.01 1.30
SeqLen = 128, Multi-Interest 2.31/0.68 12.59/1.88 31.94/3.86 1.27
SeqLen = 128, Single-Interest 1.85/0.72 10.24/1.95 26.78/4.12 1.31
SeqLen = 64, Multi-Interest 2.08/0.71 11.32/1.94 28.67/3.92 1.29
SeqLen = 32, Multi-Interest 1.72/0.61 9.48/1.76 25.47/3.64 1.29

Homefeed + Search + Ads

Mixer Strategy HR/NDCG10 HR/NDCG100 HR/NDCG1k MRR

Sorted by Timestamp 2.10/0.53 10.55/1.90 21.44/2.20 0.65
Naive Combination 4.28/1.22 17.60/3.06 41.90/4.85 1.85
1D (on position) 4.31/1.23 17.65/3.08 41.95/4.87 1.86
1D (on timestamp) 4.40/1.25 17.80/3.10 42.20/4.90 1.88
2D-Mixing (RED-Rec) 4.72/1.33 18.33/3.22 42.89/4.97 1.94

We further conduct abla-
tion studies on several key
components of the model
design, focusing on the ba-
sic model capabilities: (1)
input sequence length, (2)
multi-interest query, and
(3) pretraining on a larger-
scale dataset. For cross-
scenario recommendation,
we also examine differ-
ent methods for the mixer
module to combine various
input sources. The ablation
results (Table 3) show that longer input sequences, multi-interest queries, and large-scale pretrain-
ing all lead to improved recommendation metrics. For cross-scenario settings, our 2D-mixing policy
yields the strongest performance, highlighting the value of integrating positional and temporal in-
formation for effective signal fusion.

5.5 MODEL SCALING

The choice of the 1.5B Qwen2.5 model for initialization balances model accuracy with online de-
ployment costs. To investigate the effect of model size, we train multiple models—each on the same
number of tokens—and evaluate them on an offline test set, exploring scaling laws relative to pa-
rameter count. We examine two model families: LLaMA (Touvron et al., 2023) (mainly LLaMA
2 series) and Qwen (Yang et al., 2025) (mainly Qwen 2.5 series), with model sizes ranging from
0.5B to 7B parameters. As shown in Figure 5 (b), we report both Hit Rate (HR) performance and
the corresponding Sample per Second (SPS) within our deployment environment for the Home-
feed+Search+Ads scenario. Results show that larger model sizes consistently improve HR up to 7B
parameters in both families, indicating the potential for scaling law benefits. However, increased
model size leads to decreased SPS, limiting the feasibility of deploying larger models for online
serving. Throughput results, as measured by SPS, are also presented in Figure 5 (b).
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Figure 5: Comparison of scaling laws and gains from multi-scenario inclusion. (a) Performance gains
achieved through unified modeling with RED-Rec, where the shaded region represents the improvement; (b)
Scaling behavior of model size with respect to click HR.

5.6 ONLINE SERVING

:::
We

::::::::
conducted

::::::
online

::::
A/B

::::::::::
experiments

:::
on

::::::::::
downstream

::::::::::::::
recommendation

::::::::
scenarios

::::::
within

:::
the

::::
recall

::::
stage

::
of

::
an

::::::::
industrial

::::::::::::
recommender

::::::
system.

::::
We

:::::::::
specifically

:::::
report

::::::
results

::
in

:::::::::
advertising

::::::::
scenarios,

::
as

:::::
offline

::::::
studies

::::::::::
demonstrate

:::
the

:::::
most

::::::::
significant

::::::::::::
improvements

:::::
when

::::::::::
generalizing

::::
user

:::::::
interests

::::
from

::::::::
homefeed

::::
click

::::::::
patterns.

::::
The

:::::::::
experiment

:::::::::
employed

:
a
::::::::
balanced

:::::
traffic

:::::::::
allocation

::
of

::::
10%

::::::::
treatment

:::::
versus

::::
10%

:::::::
control,

::::::
running

:::
for

:::
one

::::::
week.

:::
The

::::
item

::::
pool

:::::::
consists

::
of

:::::
active

:::::
items

:::::
across

:::
the

:::::::
platform

::::::::::::
(approximately

::::
1.1

::::::
billion)

::::
and

::::
was

:::::
tested

:::::::
against

:::
the

::::
full

:::::
active

::::
user

:::::
base

:::::::::::::
(approximately

:::
160

::::::
million

::::::
users).

Table 4:
:::
A/B

::::
Test

::::::
Results

:::::::::
Comparing

:::::::::::
Experimental

::
vs

:::::::
Control

::::::
Groups.

::
We

:::::
report

:::
key

::::::
metrics

:
in
:::::::

different
:::::::
domains.

Domain Metric Change (%)
Community APP LT (long-term active users) -0.0015

SAU LT (search-related) -0.0007
E-commerce Overall Purchase UV -0.0886
Live Streaming Live Broadcast Engagement UV -0.0694
Commercialization Advertiser Value (ADVV) +0.8864

Advertising Spend +0.3401

RED-Rec
:::::::
achieved

:::
a
::::::::::

0.8864%
:::::::::::
improvement

::
in

:::::
total

:
ADVV

:::
and

::
a

:::::::
0.3401%

::::::::
increase

:::
in

:::::::
overall

:
Feed

Ad Spend (Cost),
:::::::::::::

representing
:::::::::
substantial

::::::::::::
improvements

:::::
given

::::
the

::::::::
platform’s

:::::
scale.

::::::::
Notably,

::::
over

:::::
90%

::
of

:::::
items

::::::
recalled

:::
by

:::
our

::::::::
approach

:::
are

:::::
unique

:::::::
within

:::
the

::::::
initial

:::::::::
candidate

::::::::
generation

::::::::
phase,

::::::::::::::
demonstrating

::::::::
significant

:::::::::::
incremental

::::::
value

:::::
and

:::::::
diversity

::
to

:::
the

::::::::::::::
recommendation

::::
pool.

:

:::
We

::::::
observe

::::::::
minimal

:::::::::
trade-offs:

::::::::::::
platform-level

::::::
content

:::::::::::
engagement

:::::::
declined

:::::::::
marginally

::::
(less

::::
than

:::::
0.01%

::
in

::::
most

::::::
cases),

::::
with

:::::
small

:::::::::
reductions

::
in

:::::::
purchase

:::
UV

::::::::
(-0.09%)

:::
and

:::
live

::::::::
broadcast

::::::::::
engagement

:::::::
(-0.07%)

::::
due

::
to

:::::::::
systematic

:::
ad

:::::::::::
prioritization

:::::
based

:::
on

::::::
learned

::::
user

:::::::::::
preferences.

::::::
These

::::::::
negligible

::::::::
decreases

:::
are

:::::::::::
substantially

::::::::::
outweighed

:::
by

:::::::::
advertising

:::::::::::
performance

:::::
gains

:::::
while

::::::::::
maintaining

::::
user

:::::::::
experience

::::::::
integrity.

::::::
Based

:::
on

:::::
these

:::::::::
promising

::::::
results,

::::
we

::::
have

:::::
fully

::::::::
deployed

:::
the

:::::::
method

::
to

:::::::::
production

:::::
across

:::
the

:::::
entire

::::::::
platform.

:

::::::
Details

::
of

:::
our

:::::
online

:::::::
serving

:::
can

:::
be

:::::
found

::
in Section E.2

:
.
:

6 CONCLUSION

We introduce RED-Rec, a unified hierarchical LLM-based sequential recommendation framework
designed to leverage multi-scenario behavioral contexts for context-aware user modeling at industry
scale. The proposed two-tower architecture, combined with scenario-aware mixing and querying
policies, enables expressive and efficient recommendations across diverse scenarios, including feeds,
search, and advertising. Comprehensive empirical evaluations—conducted on a newly constructed
million-scale multi-scenario dataset and through large-scale real-world deployment—demonstrate
substantial improvements over strong baselines in both offline and production environments. Our
work underscores the importance of unified user interest modeling in enabling more consistent,
intelligent, and user-centric recommendation systems, paving the way for richer and more seamless
experiences on large-scale content platforms.
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ETHICS STATEMENT

The dataset used and planned for release in this work has been fully anonymized and does not contain
any personal or individually identifiable information, but rather consists of a collection of publicly
accessible content. The paper does not include any analysis, reporting, or disclosure of private user
details, and care has been taken to ensure that all data handling aligns with privacy regulations and
ethical guidelines.

REPRODUCIBILITY STATEMENT

We have provided demo source code and running tutorials as supplementary materials
::
and

::::
also

::
in https://anonymous.4open.science/r/RedSeqRec-ano-4158. Key implementa-
tion details and experimental settings are described in the main paper (Section 4 and Section 5). We
promise we will open-source both the code and the dataset used in our experiments upon acceptance.
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A
::::::::
TERMS

:::
We

:::::
would

::::
like

::
to

:::::
firstly

::::
offer

::::::::
additional

:::::::::::
explanations

:::
for

::::::
specific

:::::
terms

::::
used

::::::::::
throughout

:::
the

::::
paper

::
in

::::
order

::
to

::::::::
facilitate

::::::::::::
understanding

::
for

::::::::::
non-expert

::::::
readers:

:

:::::::::
Homefeed

::::
refers

::
to
:::
the

:::::
main

::::
feed

::
or

:::::::
landing

::::
page

:::::::::
displayed

::
to

:
a
::::
user

:::::
when

::::
they

:::::
open

:
a
::::::
content

:::::::
platform

::
or

::::
app.

::
It
::::::::
typically

:::::::
consists

::
of

::
a

::::::::::
personalized

::::::::
selection

::
of

:::::
items

:::::
(such

::
as

:::::
posts,

::::::::
products,

::::::
videos,

::::
etc.)

::::::::::::
recommended

::
to

:::
the

::::
user

:::::
based

::
on

::::
their

::::::::::
preferences

:::
and

::::
past

::::::::
behavior.

:

:::::::
Internal

:::::
Flow

::::::
denotes

::::
the

:::::::
content

:::::::::::
consumption

::::::
pattern

:::::::
within

:::
the

::::::::::::
single-column

:::::::
sliding

::
or

::::::
swiping

:::::::
through

:::::::
content

:::::
(e.g.,

:::::::
images,

::::::
videos,

::
or
::::::::

articles).
::::::

Users
::::::
engage

:::::
with

::::::::::::::
recommendations

::::::
directly

::::::
within

::::
this

:::::::
detailed

:::::
view

:::
by

::::::::::
navigating

:::::::
between

:::::::
related

:::::
items

:::
or

::::::
sliding

:::
to

:::
the

::::
next

:::::::::::
recommended

:::::::
content.

:

:::::::
External

:::::
Flow

:::::
refers

::
to

::
the

:::::::
content

::::::::::
consumption

::::
flow

::::
that

:::::
occurs

:::
on

:::
the

::::
main

::::
feed

::
of

:::
the

:::::::
platform,

:::::
where

:::::
users

::::::
browse

:::
the

:::
list

::
of

::::::::::::
recommended

:::::
items

::::::::
presented

:::
to

::::
them

:::::
upon

:::::::
opening

:::
the

::::
app.

::::
This

::::::
process

:::::::
typically

::::::::
involves

::::
users

::::::::
scrolling

::::::::
vertically

::::::
through

:::
the

:::::::::::
two-columns

:::::
page.

:

::::::::
Scenarios

::::
refer

::
to

:::::::
distinct

::::
user

:::::::::
interaction

::::::::::::
environments

::
or

::::::::
channels

::::::
within

:::
the

::::::::
platform,

::::
each

:::::::::::
characterized

::
by

::::::
unique

::::
user

::::::
intents

::::
and

:::::::::
behavioral

:::::::
patterns.

:::
In

:::
this

:::::
paper,

:::
we

:::::
focus

:::
on

::::
three

::::
core

::::::::
scenarios:

:::::::::
homefeed,

::::
ads,

::::
and

::::::
search.

::::
The

::::::::
homefeed

:::::::
scenario

:::::::::
represents

:::
the

:::::::
primary

::::::::::
personalized

:::
feed

::::::
where

:::::
users

::::::::
consume

::
a
:::::::

diverse
::::::::::

assortment
::
of

:::::::::::::
recommended

:::::::
content.

:::::
The

::::
ads

:::::::
scenario

::::::::::
corresponds

::
to

::::
user

:::::::::::
engagement

::::
with

:::::::::
sponsored

:::
or

:::::::::::
promotional

::::::
content

::::::::::
distributed

:::::::::
throughout

::::::
various

::::
parts

:::
of

:::
the

::::::::
platform.

:::::::::
Although

::::::::::::
advertisement

:::::::
content

:::
can

::::::
appear

::::::
within

:::
the

:::::::::
homefeed,

::
we

:::::
treat

::
it
:::
as

:
a
::::::::

separate
::::::::
scenario

:::::::
because

::
it
:::::::::
represents

::
a
::::::::
different

::::::
source

::::
and

::::::
serves

::::::
distinct

:::::::
business

:::::::::
objectives.

::::
The

::::::
search

:::::::
scenario

:::::::
involves

:::::
users

:::::::
actively

:::::::::
retrieving

::::::::::
information

::
or

::::::
content

::
by

:::::::::
submitting

:::::::
queries.

:::::
last-n

::::
refers

::
to
:::

the
:::::
most

:::::
recent

:::
’n’

:::::
items

:
a
::::
user

:::
has

:::::::::
interacted

::::
with

::
on

:::
the

::::::::
platform.

::::
For

:::::::
example,

::::::
’last10’

::::::::
indicates

:::
the

:::::
user’s

:::
last

:::
10

::::::::
consumed

::::::
items.

::::
This

:::::::
concept

:
is
:::::::::
commonly

:::::
used

::
to

::::::
capture

:::
and

::::::
analyze

:
a
::::::
user’s

::::
most

::::::
current

:::::::
interests

:::
or

::::::
activity

::::::
history.

:

::::::
Engage

::::::::
represents

::::
user

::::::::::
interactions

::::
with

:::::::
content,

::::
such

::
as

::::::
clicks,

::::
likes,

::::::::::
comments,

:::::
shares,

:::
or

::::
dwell

::::
time.

:::::::::::
Engagement

::::::
metrics

:::
are

:::::
used

::
to

:::::::
measure

::::
how

::::
users

:::::::
interact

::::
with

::::::::::::
recommended

:::::
items

:::
and

::
to

:::::
assess

:::
the

:::::::::::
effectiveness

::
of

:::::::::::
recommender

::::::::
systems.

B
::::::::::
FURTHER

:::::::::::::::
EXPERIMENTS

:::
We

::::::
further

:::
test

:
RED-Rec

::
on

:::::::
Amazon

::::::
Books

::::::::::::::::::::::::::
Reviews(McAuley et al., 2015),

::
a

::::::
widely

::::
used

:::::
subset

::
in

:::::::::::
recommender

::::::
system

:::::::
research

:::::::
datasets

::::::
which

:::::::
sampled

::::
from

:::
the

::::::::
Amazon

::::::
Review

:::::::
dataset.

::
In
:::

the
:::::
Books

::::::
subset,

:::::
each

::::::
review

::::::::
typically

:::::::
contains

:::::
fields

:::::
such

::
as

::::::::
reviewer

:::
ID,

:::::
item

::::::
(book)

:::
ID,

:::::
rating

:::
(1-5

::::::
stars),

::::::
review

::::
text,

::::::::::
timestamp,

:::
and

:::::::::
sometimes

:::::::::
additional

::::::::
metadata

:::::
(e.g.,

::::
book

:::::
title).

::::
We

:::
test

:::
and

::::::::
compare RED-Rec

:
in

:
Table 5.

::::::::::
Following

:::::::::::::::::::::::::
LLM4CDSR(Liu et al., 2025),

:::
we

::::::
further

::::
test

:::
and

:::::::
compare RED-Rec

:
in

:::
an

:::::::::::
cross-scenario

:::::::
setting,

:::::
where

:::
we

::::::
choose

:::
the

::::::::::
Cloth-Sport

::::::::::::
sub-categories

::
of

::
the

::::::::
Amazon

::::::
dataset.

::::
The

::::::
results

:::
are

:::::
shown

::
in
:
Table 6 2

:
.

::
On

::::
the

:::::::
Amazon

::::::
Books

::::::::
Reviews

:::::::
dataset,

:::
our

::::::
model

::::::::
achieves

::::::
slightly

::::::
better

::::::
results

::::
than

::::::
HLLM

:::
and

:::::::::::
outperforms

:::::::::
traditional

::::::::
methods.

:::
A

:::::::::
reasonable

:::::::::::
explanation

::
is

::::
that

::::
both

::::
our

::::::::
approach

:::
and

::::::
HLLM

:::::::
leverage

:::::
LLMs

:::
for

:::::::::::::
semantic-based

::::
item

:::::::::::
embeddings,

:::::
which

:::::::
provides

::
a
::::::
natural

::::::::
advantage

::
in

::::::::
capturing

:::::
deeper

:::::
item

:::::::::::
relationships.

:::
In

:::
the

::::::::::::
cross-scenario

::::::::
reasoning

::::
task,

:
RED-Rec

:::
also

::::::::
surpasses

::::
most

::::::::
baselines.

::::::::
Although

::
it

::::::::
performs

::::::
slightly

:::::
worse

::::
than

:::::::::::
LLM4CDSR

::
in

:::::
some

:::::
cases,

:
it
::
is
::::::::
important

::
to

::::
note

::::
that

:
RED-Rec

:::
and

:::::::::::
LLM4CDSR

::::
are

::::::::::::
fundamentally

::::::::
designed

:::
for

::::::::
different

::::
task

:::::::
settings.

::::::::::
Specifically,

:::::::::::
LLM4CDSR

:::::::
focuses

:::::
more

::
on

:::::::
interest

::::::::::::
generalization

::::::
across

:::::::
distinct

::::::
interest

::::::
groups

::::
(such

:::
as

::::
from

::::::::
Clothing

::
to

::::::
Sports)

:::::::
through

::::::
careful

::::::
prompt

::::
and

::::::::::
architectural

::::::
design,

:::::
while

:
RED-Rec

::::
aims

:::
for

:::::::::
large-scale

::::::
unified

::::::::
modeling

::::::
across

:::::::
business

::::::::
domains,

::::::::
focusing

::::
more

:::
on

:::
the

:::::::
holistic

:::
user

::::::::
modeling

::::
from

::::
their

:::::::::
behaviors.

2
:
*
:::::
means

:::::
results

::
of

:::
the

:::::::
baselines

:::
are

::::::
adopted

::::
from

::
the

::::::
original

::::::::::
LLM4CDSR

:::::
paper.
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Table 5:
:
A

:::::::::
comparison

::
on

:::
the

::::::
Amazon

:::::
Books

::::::
dataset.

:::::::
Baselines Ò

: ::::::::::
HR/NDCG10 ::::::::::

HR/NDCG50 :::::::::::
HR/NDCG200

::::::
SASRec

: ::::::
3.06/1.64

: ::::::
7.54/2.60

: :::::::
14.31/3.62

:

:::::::::
MoRec(bert)

::::::
3.21/1.82

: ::::::
8.21/2.33

: :::::::
18.29/3.71

:

::::::::
HSTU-1B

::::::
4.78/2.62

: ::::::::
10.82/3.93

:::::::
19.08/5.17

:

::::::::::
DLRM-v3-1B

: ::::::
6.22/2.88

: ::::::::
12.74/5.12

:::::::
23.12/5.29

:

::::::::
HLLM-1B

: ::::::
9.28/5.65

: ::::::::
17.34/7.41

::::
27.22/

:::
8.89

RED-Rec
:::::::::::
-1.1B-LLaMA

::::::
9.46/5.49

: ::::::::
18.63/7.03

:::::::
29.88/8.45

:

RED-Rec
:::::::::::
-1.5B-Qwen2.5

: :::::::
9.98/5.88

::::::::
19.98/7.88

::::
32.62

:::
/8.78

:

Table 6:
::::::::
Comparison

:::
on

:::
the

::::::
Amazon

:::::::::
Cloth-Sport

:::::::::::
cross-scenario

::::::
setting.

::::::
Metrics

:::
for

::::
Cloth

:::
are

:::::
shown

:::
on

::
the

:::
left,

:::
and

::
for

:::::
Sport

::
on

:::
the

::::
right.

::::::
Method

::::
HR10::::::

(Cloth)
:::::::
NDCG10::::::

(Cloth)
::::
HR10::::::

(Sport)
:::::::
NDCG10::::::

(Sport)

:::::::
SASRec*

::::
70.57

: :::::
0.6543

::::
59.64

: :::::
0.4900

::::::::
Bert4Rec*

::::
65.31

: :::::
0.5720

::::
53.50

: :::::
0.4514

::::::
AMID*

::::
74.75

: :::::
0.6814

::::
63.77

: :::::
0.5867

::::
STAR

: ::::
62.36

: :::::
0.5243

::::
51.22

: :::::
0.4724

::::
M2M

: ::::
65.27

: :::::
0.5362

::::
52.08

: :::::
0.4626

::::::::::
LLM4CDSR*

: ::::
80.18

: :::::
0.7316

::::
70.46

: :::::
0.6312

RED-Rec
:::::::::::
-1.1B-LLaMA

::::
76.28

: :::::
0.6821

::::
66.28

: :::::
0.5824

RED-Rec
:::::::::::
-1.5B-Qwen2.5

: ::::
78.25

: :::::
0.7214

::::
71.12

: :::::
0.6318

C
::::::::::
DATASET

:::
We

:::::::
compare

:::
our

::::::
dataset

::::
with

::::
other

:::::::
existing

::::::::
datasests

::
or

::::::::::
benchmarks

::::
from

:
UGC

::::::::
platforms

::
in Table 7.

::
An

::::
item

:::
in

::
the

::::::::
proposed

::::::
dataset

::
is
::::
like:

:

Listing 1: Example of an item in the training dataaset.

:
{

:::
”

:::::
u s e r i d

::
” :

::
”
:::
xxxx

::
” ,

:::
”

:::
d a t a

::
” :

:
{

::::
”
::::::::::::::::
h o m e f e e d i t e m l a s t n

::
” :

::
[

::::::
{

::::::::
”
::::::
d u r a t i o n

::
” :

:::
28 ,

::::::::
”
::::::
i s c l i c k

::
” :

::
1 ,

::::::::
”
:::::::::::::
i s c l i c k p r o f i l e

::
” :

::
0 ,

::::::::
”
::::::::
i s c o l l e c t

::
” :

::
0 ,

::::::::
”
::::::::
i s comment

::
” :

::
0 ,

::::::::
”
:::::::
i s f o l l o w

::
” :

::
0 ,

::::::::
”
:::::
i s h i d e

::
” :

:::
0 ,

::::::::
”
:::::
i s l i k e

::
” :

:::
0 ,

::::::::
”
:::::
i s n n s

:
” :
:::

0 ,

::::::::
”
:::::::::
i s p a g e t i m e

:
” :
:::

1 ,

::::::::
”
::::::::::::
i s r e a d c o m m e n t

::
” :

::
1 ,

::::::::
”
::::::
i s s h a r e

::
” :

::
0 ,

::::::::
”
:::::::::
i s v i d e o e n d

:
” :
:::

0 ,

::::::::
”
:::::
i t e m i d

::
” :

::::
”684

::::::::::::::::::
a48440000000023014319

::
” ,

::::::::
”
::::::
page key

::
” :

::
0 ,

::::::::
”
:::::::
t imes t amp

::
” :

::::::::::
1749771247 ,

::::::::
”
:::
t y p e

::
” :

:
”
::::
n o t e ”

:::::::
} ,

::::::
{

::::::::
”
::::::
d u r a t i o n

::
” :

:::
17 ,

::::::::
”
::::::
i s c l i c k

::
” :

::
1 ,

::::::::
”
:::::::::::::
i s c l i c k p r o f i l e

::
” :

::
0 ,

::::::::
”
::::::::
i s c o l l e c t

::
” :

::
0 ,

:::::::::
. . .

::::::::
”
:::::::::
i s p a g e t i m e

:
” :
:::

1 ,

::::::::
”
::::::::::::
i s r e a d c o m m e n t

::
” :

::
0 ,

::::::::
”
::::::
i s s h a r e

::
” :

::
0 ,

::::::::
”
:::::::::
i s v i d e o e n d

:
” :
:::

0 ,

::::::::
”
:::::
i t e m i d

::
” :

::::
”684

::::::::::::::::::
aa0720000000021003dbe

::
” ,

::::::::
”
::::::
page key

::
” :

::
0 ,
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Table 7:
:
A
::::
brief

:::::::::
comparison

::
of

:::::::::::
public-released

::::::
datasets

:::
and

:::
the

::::::
training

::::::
dataset RED-Rec

::::
used.

:::::::
Property

::::::
Amazon

::
JD

::::::
Search

:::::::
KuaiSAR

:::
Qilin RED-Rec

:::::::
(dataset)

::::
Users

: ::::
192.4k

: :::::
173.8k

: ::::
25.8k

::::
15.5k

: ::::
1.0m

::::
Items

: ::::
63.0k

::::
12.9m

: :::
6.9m

: ::::
2.0m

: ::::::
300.6m

:::::
Queries

: ::::
3.2k

:::::
171.7k

: :::::
453.7k

:::::
571.9k

:::::
search

::::
items

:

:::::
Actions

: ::::
1.7m

::::
26.7m

: :::::
19.7m

::::
2.5m

: ::::::
683.2m

:::::
Content

: ::::::::
text/image

::
text

: :::::::
text/video

: ::::::::::::
text/image/video

: ::::::::::::
text/image/video

:::::::
Scenario

::
Rec

: :::::
Search

: :::::::::
Search+Rec

:::::::::
Search+Rec

::::::::::::
Search+Rec+Ads

:

::::::::
”
:::::::
t imes t amp

::
” :

::::::::::
1749732355 ,

::::::::
”
:::
t y p e

::
” :

:
”
::::
n o t e ”

::::::
}

:::::::
/ /

:::
. . .

:::::
] ,

::::
”
::::::::::::
a d s i t e m l a s t n

::
” :

:
[
::::

. . .
::

] ,

::::
”
::::::::::::::
s e a r c h i t e m l a s t n

::
” :

::
[
:::

. . .
::

]

:::
}

:
}

:::::
where

•
::::::
user id

:
:
::::::
Unique

::::::::
identifier

:::
for

:::
the

::::
user,

::::
e.g.,

:::::
xxxx

:
.

•
::::
data:

:

–
::::::::::::::::::
homefeed item lastn:

::::
An

:::::
array

::
of

:::::::
objects

::::::::::
representing

::::
the

:::
last

::
n
:::::

items
:::::

from
:::
the

:::::
user’s

:::::
home

::::
feed.

:::::
Each

:::::
object

::::::::
contains:

* ::::::::::
duration:

:::::::
Viewing

::::::::
duration

::
(in

::::::::
seconds).

:

* :::::::::
is click

:
:
:::::::
Whether

:::
the

::::
item

::::
was

::::::
clicked

:::
(1)

::
or

:::
not

:::
(0).

:

* ::::::::::::::::::
is click profile

:
:
:::::::
Whether

:::
the

:::::
user’s

::::::
profile

::::
was

::::::
clicked

::
(1

::
or

:::
0).

:

* ::::::::::::
is collect:

::::::::
Whether

:::
the

::::
item

:::
was

::::::::
collected

::
or

:::::
saved

::
(1

::
or

:::
0).

:

* ::::::::::::
is comment:

::::::::
Whether

:::
the

::::
item

:::
was

::::::::::
commented

:::
on

::
(1

::
or

:::
0).

* ::::::::::
is follow

:
:
:::::::
Whether

:::
the

::::
user

::::::::
followed

::::
from

:::
this

:::::
item

::
(1

::
or

:::
0).

* ::::::::
is hide:

::::::::
Whether

:::
the

::::
item

::::
was

::::::
hidden

::
(1

::
or

:::
0).

* ::::::::
is like:

::::::::
Whether

:::
the

::::
item

::::
was

::::
liked

::
(1

::
or

:::
0).

:

* ::::::::::::
is message:

::::::::
Whether

:::
the

:::::
author

::
of

:::
the

::::::::
message

:::
was

::::::::
messaged

:::
(1

::
or

::
0).

:

* :::::::::::::
is pagetime:

::::::::
Whether

:::
the

::::
page

::::
time

:::::
event

:::
was

::::::::
triggered

::
(1

::
or

:::
0).

:

* :::::::::::::::::
is read comment

:
:
:::::::
Whether

:::::::::
comments

::::
were

::::
read

::
(1

::
or
:::
0).

:

* :::::::::
is share

:
:
:::::::
Whether

:::
the

::::
item

::::
was

:::::
shared

:::
(1

::
or

::
0).

:

* :::::::::::::
is videoend:

::::::::
Whether

:
a
:::::
video

::::
was

:::::::
watched

::::
until

:::
the

:::
end

:::
(1

::
or

::
0).

:

* ::::::::
item id:

::::::::
Identifier

:::
for

:::
the

:::::::
content

::::
item.

:

* :::::::::
page key

:
:
::::
Page

::::::::
identifier.

:

* :::::::::::
timestamp:

::::::::::
Timestamp

::
of

:::
the

::::::::::
interaction.

* :::::
type:

:::::
Type

::
of

:::::
item,

::::
e.g.,

:::::
note.

:

–
::::::::::::
ads item lastn

:
:
::::::

Array
:::

of
:::
the

::::
last

:::
n

::::::::
interacted

:::::::::::::
advertisement

:::::
items

::
(
::::::::
item id,

::::::::::
duration,

:::::
etc.).

–
:::::::::::::::
search item lastn:

::::::
Array

::
of

:::
the

:::
last

::
n

:::::
search

:::::
items

::::
with

::::::
similar

::::::::
structure.

:

::::::
Privacy

:::::::::
protection

:::
is

::::::::::
paramount

::
in

::::
our

:::::::
dataset

:::::::::::
construction,

::::::::::::
implemented

::::::::
through

:::::::
multiple

::::::::::::
complementary

::::::::::
techniques

:::
to

::::::::
safeguard

:::::
user

::::::::::::
confidentiality.

:::::
We

:::::::
employ

:::::::::::::
comprehensive

::::
data

::::::::::::
anonymization

::
by

:::::::::
replacing

:::
real

::::
user

::::
with

:::::::::::::::
cryptographically

::::::
secure

::::::
hashes,

::::::::
ensuring

::::::::::
unlinkability

::
to

:::::::
original

:::::::
entities.

::::
We

:::::
also

:::
add

::
a
:::::::::

consistent
::::

bias
:::

to
:::
the

:::::::::::
engagement

:::::::::
timestamp.

:::::
We

:::::
retain

::::
only

:::::::
essential

:::::::::
behavioral

::::::
signals

:::::::
required

:::
for

::::::::::::::
recommendation

:::::::
research

:::::
while

::::::::
removing

:::::::::
potentially

:::::::::
identifying

::::::::
metadata

::::
such

:::
as

::::::
device

::::::::::
information,

:::::::
location

:::::
data,

::::
and

:::::::
detailed

::::::
content

::::::::::
descriptors,

::::::
thereby

:::::::
creating

:
a
::::::::::::::::
privacy-preserving

::::::
dataset

:::
that

:::::::
enables

::::::::::::::
recommendation

::::::
system

:::::::
research

::::::
without

::::::::::::
compromising

:::
user

:::::::
privacy.

:

:::
We

:::::
focus

:::::::::
exclusively

:::
on

:::::
active

::::::::
platform

:::::
users

::::
who

::::::::::
demonstrate

::::::::::
substantial

::::::::::
engagement

:::::::
patterns:

::::
users

:::::
must

:::::
have

::
at

:::::
least

:::
30

:::::
valid

:::::
clicks

:::
in

:::
the

:::::::::
homefeed

::::::::
scenario

::::
and

::
5
:::::
valid

:::::
clicks

:::
in

:::
the

:::::::::::
advertisement

::::::::
scenario,

::::::
where

:
a
:::::
click

::
is

:::::::::
considered

:::::
valid

::::
only

::
if

:::
the

:::::::::
associated

:::::::
viewing

:::::::
duration

::::::
exceeds

::
5
:::::::
seconds.

:
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D
::::::::::
METRICS

::
In

:::
this

:::::
work,

:::
we

:::::
focus

:::
on

:::::
three

::::::
widely

:::::::
adopted

:::::::
metrics:

:::
Hit

:::::
Ratio

::::::
(HR),

::::::::::
Normalized

:::::::::
Discounted

:::::::::
Cumulative

:::::
Gain

:::::::::
(NDCG),

:::
and

::::::
Mean

:::::::::
Reciprocal

::::::
Rank

:::::::
(MRR).

::
In

::::::::::::
recommender

::::::::
systems

:::
and

:::::::::
information

::::::::
retrieval,

::::::
model

::::::::::
performance

::
is

::::::::
typically

:::::::
assessed

::
by

::::::::::::
ranking-based

:::::::::
evaluation

::::::
metrics

:::
that

::::::
reflect

::::
both

:::
the

:::::::
accuracy

::::
and

:::
the

:::::::
ordering

::
of

:::::::::::::::
recommendations.

::::::
These

::::::
metrics

:::
are

:::::::::
evaluated

:
at

::::::
various

:::::::
ranking

::::::
cutoffs

::
K

:::::
(e.g.,

::::::::::::::::
K “ 10, 100, 1000)

:::
to

::::::
provide

::
a
:::::::::::::
comprehensive

::::
view

::
of

:::::::
retrieval

::::::
quality

:::::
across

:::::::
different

::::
user

::::::::::
engagement

:::::::
depths.

:::
Hit

:::::
Ratio

:::::
(HR)

:::
Hit

:::::
Ratio

::::::::
(HR@K)

::::::::
measures

:::
the

:::::::::
proportion

::
of

::::
test

:::::
cases

::
in

:::::
which

:::
at

::::
least

:::
one

::::::
relevant

:::::
item,

:::::::
usually

:::
the

:::::::::::
ground-truth

:::::
item,

::
is

::::::
found

:::::
within

::::
the

::::::
top-K

::::::::
positions

::
of

:::
the

::::::
ranked

:::::::::::::
recommendation

::::
list.

::::::::
Formally,

:::
for

:
a
:::
set

::
of

:::
N

::::
users

:::
(or

:::::::
queries),

::
it
::
is

::::::
defined

:::
as:

:

HR@K “
1

N

N
ÿ

i“1

Ipranki ď Kq,

::::::::::::::::::::::::::

(4)

:::::
where

:::::
ranki:::::::

denotes
:::
the

:::::::
position

:::::::
(starting

:::::
from

::
1)

::
at

:::::
which

:::
the

:::::::::::
ground-truth

::::
item

:::
for

:::
the

::::
i-th

:::
user

:::::
occurs

::
in

:::
the

::::::::
predicted

::::::::
ranking,

:::
and

:::
Ip¨q

::
is
:::
the

::::::::
indicator

::::::::
function.

:::
HR

::
is
:::::::::
equivalent

::
to

::::::::
recall@K

::
in

::
the

::::
case

:::
of

:
a
:::::
single

:::::::
relevant

::::
item

:::
per

::::::
query.

::::::
HR@K

::
is

:::::::
intuitive

::::
and

:::::::::::
interpretable,

:::::::::
indicating

:::
the

:::::::::
likelihood

::::
that

:
a
::::::

user’s
::::::
desired

:::::
item

::::::
appears

:::::
among

::::
the

:::::
top-K

::::::::::::::::
recommendations.

:::::::::
However,

::
it

::::
does

::::
not

::::::
reward

::::::
higher

:::::::::
placements

::::::
within

:::
the

:::::
top-K

:::
and

:::::::::
disregards

:::
the

::::::
relative

:::::::
ranking

::::::
among

::::::::::::
recommended

:::::
items.

:

::::::::::
Normalized

::::::::::
Discounted

:::::::::::
Cumulative

:::::
Gain

::::::::
(NDCG)

:::::::::
Normalized

::::::::::
Discounted

::::::::::
Cumulative

::::
Gain

::::::::::
(NDCG@K)

:::::::
extends

::::::
HR@K

:::
by

:::::::::
accounting

:::
for

:::
the

:::::::
position

::
of

:::::::
relevant

::::::
items,

::::::::
rewarding

:::::
items

:::
that

::
are

::::::
ranked

::::::
higher

::
in

:::
the

::::::::::::
recommended

:::
list.

::::
For

::::
each

:::
test

:::::
case,

::::
DCG

::
is

::::::::
computed

:::
as:

:

DCG@K “

K
ÿ

j“1

relij
log2pj ` 1q

,

::::::::::::::::::::::::

(5)

:::::
where

::::
relij::

is
:::
the

::::::::
relevance

::::
label

::::::::
(typically

::
1
:::
for

:::
the

::::::::::
ground-truth

::::
item

::::
and

:
0
:::::::::
otherwise)

:::
for

:::
the

:::
j-th

::::
item

::
in

:::
the

::::::
ranked

:::
list

:::
for

::::
user

:
i.
::::

The
:::::
DCG

::
is

::::
then

::::::::::
normalized

::
by

:::
the

:::::
ideal

:::::
DCG

:::::::
(IDCG),

:::
i.e.,

:::
the

::::::::
maximum

:::::::
possible

:::::
DCG

:::
for

:::
that

::::
user,

:::
to

:::::
yield:

NDCG@K “
1

N

N
ÿ

i“1

DCGi@K

IDCGi@K
:::::::::::::::::::::::::::

(6)

:::::::::
NDCG@K

:::::::
captures

:::::
both

:::
the

::::::::
relevance

:::
and

:::::::
ranking

:::::::
quality,

:::::::::
penalizing

:::::::
relevant

:::::
items

:::
that

::::::
appear

:::::
lower

::
in

:::
the

:::::::
ranking.

:::
It

::
is

::::::::
especially

::::::
useful

::
in

::::::::
scenarios

::::
with

::::::::
multiple

:::::::
relevant

:::::
items

:::
per

::::
user

::
or

:::::
graded

:::::::::
relevance.

:

:::::
Mean

::::::::::
Reciprocal

:::::
Rank

::::::
(MRR)

:::::
Mean

:::::::::
Reciprocal

::::
Rank

::::::::::
(MRR@K)

::::::::
evaluates

::::
how

:::::
highly

:::
the

:::
first

::::::
relevant

::::
item

::
is
:::::::
ranked,

:::
and

::
is

::::::
defined

:::
as:

:

MRR@K “
1

N

N
ÿ

i“1

1

ranki
,

::::::::::::::::::::::

(7)

:::::
where

:::::
ranki::

is
:::
the

:::::::
position

::
of

:::
the

::::
first

:::::::
relevant

::::
item

::
in
:::
the

::::::::::::
recommended

:::
list

:::
for

::::
user

::
i,
::::
and

::
set

::
to

::::::
infinity

::::
(i.e.,

::::::::
reciprocal

::::
rank

::
is
::
0)

::
if
:::
no

::::::
relevant

:::::
items

:::
are

:::::
found

::
in
:::
the

::::::
top-K.

:::::::::
MRR@K

:::::::::
emphasizes

::::
early

:::::::::
precision,

::::::
heavily

:::::::::
rewarding

::::::::::
algorithms

::::
that

::::::
surface

::::
the

:::::::
relevant

::::
item

::
at
:::

or
::::
near

::::
the

:::
top.

::
Its

:::::::::
sensitivity

::
to

:::
the

::::
first

:::::::
relevant

:::::
item’s

::::::::
position

:::::
makes

::
it
::::::::::
particularly

:::
apt

:::
for

:::::::
settings

:::::::::
prioritizing

::::::::
immediate

:::::::::
relevance

::::
(e.g.,

:::::::
question

::::::::::
answering,

::::::
search).

:
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:::::::::
Evaluation

:::::::::
Protocols

:::
and

::::::
Cutoff

::::::
Values

::
In

:::
our

:::::
work,

:::
all

::::::
metrics

:::::
above

:::
are

::::::::
computed

::
at

:::::::
different

:::::
cutoff

::::::
values

:::
K

::
to

:::::::::::
approximate

:::::::
various

::::
user

::::::::
scenarios

:::::
(e.g.,

::::
users

::::::::::
interacting

::::
with

:::
the

:::
top

:::
10

::
or

:::
top

:::
100

::::::
items).

:::::::
These

:::
are

:::::::
denoted

::
as

::::::::
HR@K,

::::::::::
NDCG@K,

::::
and

::::::::::
MRR@K,

:::
for

::::::
various

:::
K

::::
(e.g.,

::::::::::::::::
K “ 10, 100, 1000).

::::
For

:::::::::::::
interpretability

:::
and

::::::
easier

::::::::::
comparison,

:::::
MRR

::
is
:::::

often
:::::::::
multiplied

:::
by

:::
100

:::
and

:::::::
reported

::
as
::::::::::
MRR˚100.

::::::
These

::::::
metrics

:::
are

:::::::::
computed

:::::
under

::
a

:::::::::::
leave-one-out

::
or

:::::::::::::
leave-many-out

:::::::::
evaluation:

:::
for

::::
each

::::
user,

::::
one

::
or

:::::
more

:::::::::::
ground-truth

::::::
relevant

:::::
items

:::
are

::::
held

::::
out

::::
(used

:::
as

::::::::
positives),

:::
and

:::
the

:::::::
ranking

::
is
:::::::

judged
::::
over

::
a

::::::::
candidate

::::
pool

::::::::::
comprising

:::::
these

::::::::
positives

::::
and

:::::
many

:::::::
sampled

::::::::
negatives.

:

E
:::::::::::::::::::
IMPLEMENTATION

:::::::::
DETAILS

E.1
:::::::
MODEL

::::::::::::::::
IMPLEMENTATION

:::
We

::::::
provide

:::::::::
additional

:::::::::::::
implementation

:::::
details

:::
of

:::
the

:::::::
proposed

:
RED-Rec

:
.
:

::::
Item

::::::::
Encoder.

:::
The

::::
item

:::::::
encoder

:
is
::::::::
designed

::
to

::::::::
construct

:::::
robust

:::::::
content

:::::::::::::
representations,

::::::::
leveraging

:
a
:::::::::
pretrained

::::
LLM

:::
as

::
its

::::::::::
foundation.

:::::::
Textual

::::::::::
information

::::::
related

::
to

::::
each

::::::::::::::
item—including

::::
titles

:::
and

:::::::::::::
descriptions—is

:::::::::::
concatenated,

:::::::::
tokenized,

::::
and

::::::::
prepended

::::
with

::
a
:::::::::
designated

::::::
special

:::::
token

::
to

::::::
sharpen

::
the

::::::::::::
representation

::::::
focus.

::::
This

::::::::
sequence

::
is

::::
then

::::::
passed

:::::::
through

:::
the

::::
LLM

::::::::
encoder,

::::::::
producing

:::::
dense

:::::::
semantic

::::::::::
embeddings

:::
for

:::::
each

::::
item.

:::::::::::
Specifically,

:::
we

::::::
extract

::::
the

:::::::::
embedding

::::::::::::
corresponding

::
to
:::

the
::::::
special

:::::
token.

::::
The

:::::::
resulting

:::::::::::
embedding’s

:::::::::
dimension

:::::::
matches

:::
the

:::::::
model’s

::::::
hidden

::::
size;

:::
for

:::::::
instance,

::::
1536

:::
for

::::::::::::
LLaMA2-1.3B

::::
and

::::
3584

:::
for

:::::::::
Qwen-7B.

:::
For

::::::::::
multimodal

:::::
input,

:::::
there

:::
are

:::::::::
essentially

::::
two

:::::::
primary

::::::::::
approaches.

:::::
The

::::
first

:::::::
involves

:::::::
utilizing

::
an

:::::::::
individual

:::::
vision

:::::::
encoder

::::
such

::
as

:::::::::::::::::::::::::
ViT(Dosovitskiy et al., 2020)

:::
like

::::::::::::::::::::
LLaVA(Liu et al., 2023),

::
to

:::::
extract

::::::
visual

::::::
tokens,

::::::
which

:::
are

::::
then

:::::::::
projected

:::
into

::::
the

::::::::
language

:::::::::
embedding

::::::
space.

::::
The

::::::
second

:::::::
approach

:::::::
directly

:::::::::
leverages

::::::::::::::
vision-language

::::::
models

::::::::
(VLMs)

::::
such

:::
as

::::::::::
Qwen-VL,

:::::
which

::::::
jointly

::::::
process

::::::
visual

:::
and

::::::
textual

::::::
inputs

::::::
within

:
a
:::::::

unified
::::::::::
architecture.

:::
In

::::
our

:::::
work,

:::
we

::::::::
primarily

:::::
adopt

::
the

::::
first

::::::::
approach

:::::
based

::
on

::::::::::::
considerations

:::
of

:::::
model

::::
size

:::
and

::::::::
efficiency

:::
for

::::::
online

:::::::
serving.

::::
User

::::::::
Encoder.

:::
User

:::::::::::::
representation

:::::::
learning

::
is

::::::::
managed

:::
via

::::::::::
hierarchical

:::::::
interest

::::::::
modeling

::::
over

::::
long

:::::::::
interaction

::::::::
histories.

:::::
User

::::::::::
interaction

:::::::::
sequences

:::
are

::::
first

:::::::
encoded

:::::
using

::::
the

::::
item

:::::::
encoder,

:::::::
resulting

::
in

::::::::::::
contextualized

::::
item

:::::::::::
embeddings.

:::::
These

:::
are

::::
then

:::::::::
organized

:::
and

::::::
refined

:::
by

:::
the

:::::::
proposed

:::::
mixer

::::::
module

::::
that

:::::::
captures

::::::::
temporal

::::
and

::::::::
sequential

::::::::::::
dependencies.

:::::
The

::::::::
enhanced

::::::::::::
representations

::
are

::::::::::::
subsequently

::::
fed

::::
into

::
a

:::::::::::
disentangled

::::::::::::
multi-interest

:::::::
learning

::::::::
module,

::::::
which

:::::
goes

::::::
beyond

::::::::::
conventional

::::::::::::
single-vector

::::
user

:::::::
profiles

::::
by

:::::::
learning

::::::::
multiple

:::::::::::
independent

::::::::::::::::
embeddings—each

:::::::
attending

::
to
::

a
::::::
distinct

:::::
facet

::
of

::::
user

:::::
intent.

:

:::::::
Training

::::::::::
supervision

:::::::
extends

::::
past

:::::::::
traditional

::::::::
next-item

:::::::::
prediction,

:::::::::::::
encompassing

::
all

::::::::::
interactions

:::::
within

::
a
:::::::::
lookahead

:::::::
window

:::
to

:::::
better

::::::
reflect

::::::::
realistic

::::::::
browsing

::::::::
patterns.

::::
To

:::::::
achieve

::::
this,

:::
we

::::
apply

::::::
cosine

:::::::::
similarity

::::::::
clustering

:::
to

:::::::
partition

:::::
target

::::::
items

:::::
based

:::
on

:::::::::
behavioral

:::::::
signals,

:::::::
followed

::
by

:::::::::
Hungarian

::::::::
algorithm

::::::::
matching

::
to
::::::::

associate
::::
each

::::::
cluster

:::::::
centroid

:::::
with

::
its

::::::::::::
corresponding

::::::
interest

:::::
vector.

:::
A

::::::::::
contrastive

::::
loss

:::::::
function

::::::
drives

:::
the

:::::::::::
specialization

:::
of

::::
each

::::::::::
embedding,

::::::::
ensuring

:::::
broad

:::::::
coverage

::::
and

:::::::
effective

:::::::::::::
disambiguation

::
of

:::::::
diverse

::::
user

::::::::::
preferences

:::::
across

:::::::
multiple

:::::::
interest

::::::
groups.

::::::::
Complete

:::::::::::::
implementation

::::::
details

::
are

::::::::
available

::
in

:::
our

:::::::::::::
supplementary

::::
code

:::::::::
repository.

:

::
To

::::::
model

::::
user

::::::::
interests

::
in

::
a
:::::::::::
disentangled

:::::::
manner,

::::
we

::::::::
introduce

::::::::
learnable

:::::::
queries

::::
that

::::::
capture

::::::
refined,

:::::::
distinct

:::::::
interests

:::::::::
according

::
to

:::::
three

:::
key

:::::::::
principles:

:::::::::
sufficient

::::::::::
supervision

:::
for

::::
each

:::::
query,

:::::::
minimal

::::::
overlap

::
in
:::::::

interest
::::::::
coverage,

::::
and

:::::::
coherent

:::::::::::
optimization

:::::::::
directions.

::::::
Given

::::::
refined

::::::
interest

::::::::::
embeddings

::::::::::
tr1, . . . , rsu

:::
and

:::::::
positive

:::::::
samples

:::::::::::
tt1, . . . , twu

::::
from

:::
the

:::::
target

::::::::
window,

:::
we

::::::
cluster

::
the

::::::
positive

:::::::
samples

::::
into

::
s

::::::
groups

:::::
using

:::::
cosine

:::::::::
similarity

:::
and

::::
then

::::::
match

::::::
cluster

::::::::
centroids

::
to

::::::
interest

::::::::::
embeddings

:::
via

:::
the

:::::::::
Hungarian

::::::::
algorithm

:::
to

::::::::
maximize

::::::::
pairwise

::::::::
similarity.

::::
The

::::::::::
contrastive

::::
loss

:
is

::::::
applied

::::
only

::
to

:::::
these

:::::::
matched

:::::
pairs.

::::
The

:::::::::
contrastive

:::
loss

:::::
LNCE::

is
::::::
defined

:::
as:

:

LNCEpt, rq “ ´ log
esimpt,rq{τ

esimpt,rq{τ `
řm

i“1 e
simpr,eiq{τ

:::::::::::::::::::::::::::::::::::::::

(8)

:::::
where

::
m

:::
is

:::
the

:::::::
number

::
of

::::::::
negative

:::::::
samples,

:::
ei ::

is
:::
the

:::
ith

:::::::
negative

:::::::
sample

::::::::::
embedding,

::::
and

:::
sim

::::::
denotes

::::::
cosine

::::::::
similarity.

:
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::::
This

:::::
design

:::::::
enables

:::::::
adaptive

::::::::
learning:

:::::::
queries

:::::::
naturally

:::::::::
specialize

:::
for

:::::
users

::::
with

::::::
diverse

:::::::
interests

:::
and

:::::::
converge

:::
for

:::::
users

:::::
whose

::::::::::
preferences

:::
are

::::
more

:::::::
focused.

::::::
nterest

:::::
users

:::::
while

:::::::
naturally

:::::::::
converging

::
for

:::::
users

::::
with

:::::::
focused

::::::::::
preferences.

:

E.2
:::::::
ONLINE

::::::::::::
DEPLOYMENT

::::::::::::::
OPTIMIZATION

::
In

:::
this

:::::::
section,

:::
we

::::::::
describe

:::
our

::::::::
practical

:::::::::::
optimizations

::
at
:::::

both
:::
the

::::
item

::::
and

::::
user

:::::
sides,

:::::::
ensuring

::::::::
efficiency,

:::::::::
scalability,

::::
and

:::::::::
robustness

::
in

:
a
:::::::::
real-world

:::::::::::
environment.

::::::::
Item-side

::
To

::::::
enable

:::
fast

::::::::
candidate

::::::::
retrieval,

:::
we

::::::::::
precompute

:::
and

::::::
cache

::::::::::
embeddings

:::
for

::
all

:::::
active

::::
items

:::
on

::::
the

::::::::
platform

:::::
using

::::
our

::::
item

::::::::
encoder.

:::::::::
Existing

:::::
items

::::
are

:::::::
retraced

:::
in

::::
large

:::::::
batches

::::
every

::
7
:::::
days

:::::::
utilizing

:::
64

:::::
H800

::::::
GPUs,

:::::
while

::::
new

::::::
items

:::
are

:::::::
indexed

:::::
daily

::::
with

::
5

::::
L20

:::::
cards

::
on

::
the

:::::
item

::::::
serving

:::::
side.

:::::
The

:::::::
resulting

:::::
item

::::::::::
embeddings

:::
are

::::::
stored

::
in

::
a
::::::::::::::
high-throughput,

:::::::
scalable

::::::::
key-value

:::::
(KV)

:::::::
database

:::
for

::::::::
real-time

::::::
lookup

::::::
during

:::::::
serving.

:::::::::::
Embedding

::::::
updates

::::
are

::::::::
performed

:::::::::::::
asynchronously,

:::::::
ensuring

:::
the

:::::::
retrieval

:::::::
pipeline

:::::::
remains

:::::::::
responsive

::::
even

::::::
during

::::::
refresh

::::::
cycles.

::::
This

::::::
caching

:::::::
strategy

::::::::::
significantly

:::::::
reduces

::::::::
inference

:::::::
latency,

::
as

:::
the

:::::
model

:::::
does

:::
not

::::
need

::
to

::::::
encode

::::
each

::::
item

::::::::
on-the-fly.

::::::::::::
Furthermore,

::
we

:::::::
observe

::::
that

:::
the

:::
top

::::
20%

::
of

:::::
items

:::::::
account

:::
for

::::
99%

::
of

::::
user

:::::
clicks,

:::
and

:::::::::
leveraging

:::
the

:::
KV

:::::
cache

:::::::::
effectively

:::::::::
eliminates

::::::::
redundant

::::::::::
computation

:::
for

:::::
these

::::::::::::
high-frequency

:::::
items.

::::::::
User-side

:::
For

:::
user

:::::::::::::
representation,

::
we

::::::::
maintain

:
a
::::::
rolling

:::::::
window

::::::::
capturing

::::
each

:::::
user’s

::::
most

:::::
recent

::::::::
behaviors

::
on

:::
the

:::::::::
platform.

:::::
Upon

::::
each

::::
user

:::::::
request,

:::
the

::::::::
backend

:::::::
retrieves

:::
the

::::::::::::
corresponding

::::
item

::::::::::
embeddings

:::
for

:::::
these

:::::::::
behaviors

:::::::
directly

::::
from

::::
the

::::
item

::::
KV

::::::
cache.

::::::
These

:::::::
cached

::::::::::
embeddings

::
are

:::::
then

:::
fed

::::
into

:::
the

::::::::
user-side

::::::::
encoder,

:::::
which

:::::::::
leverages

:::
the

:::::
LLM

::::::
model

::
to

:::::::
generate

:::::::::
up-to-date

:::
user

:::::::::::::
representations

:::::::
within

:::::
strict

::::::
latency

:::::::::::
constraints.

::::
To

::::::
further

:::::::::
minimize

:::::::
latency,

::::::::
user-side

:::::::
encoding

::
is
:::::::::
optimized

:::::::
through

:::::::
efficient

::::::::
batching,

::::::::
grouping

:::::::
requests

::
to

:::::::::
maximize

::::
GPU

:::::::::
throughput

:::::
during

:::::::::
sequential

:::::::::
modeling.

::::
We

::::
also

:::::::::
implement

:::::::::::
intermediate

::::::::::::
representation

:::::::
caching:

::::
for

:::::
highly

:::::
active

:::::
users,

:::
we

:::::
cache

::::
and

:::::::::::
incrementally

::::::
update

:::::
their

::::
user

::::::::::
embeddings

::
as

::::
new

::::::::::
interactions

:::::
occur,

::::::::::
recomputing

::::
only

:::::
when

:::::::::
substantial

:::::::::
behavioral

:::::::
changes

:::
are

::::::::
detected.

::::
The

::::::::
user-side

::::::
service

::::
uses

::
20

:::
L20

:::::
cards.

:

:::::
Model

:::::::::::::
Compression

:::::
and

::::::::::::
Quantization

::
To

:::::::::::::
accommodate

::::
the

::::::::::
deployment

:::
of
::::::::::

large-scale
:::::::::
parameters,

:::
we

:::::::
employ

::::::
model

:::::::::::
quantization

:::
and

:::::::::::
compression

::::::::::
techniques

::
to

::::::
ensure

:::::::::::
cost-effective

:::
and

:::::::
efficient

::::::::
inference.

:::
On

:::
the

::::
user

::::
side,

:::
we

::::::
utilize

::::
bf16

::::::::::
quantization

::
to

:::::::::
accelerate

::::::::::
computation

:::
and

:::::
reduce

::::::::
memory

:::::
usage,

:::::
while

:::
on

:::
the

::::
item

::::
side,

::::::::::
embeddings

:::
are

:::::::::
maintained

:::::
with

:
6
:::::::
decimal

:::::
places

::
to

:::::
further

::::::::
minimize

::::::
bandit

:::::::
pressure

:::
and

::::::::
optimize

:::::
cache

::::::::
efficiency.

:::
We

::::
use

::::::
ONNX

:::::::
Runtime3

:::
for

:::::
further

::::::::::
acceleration,

::::
and

:::
we

::::::::::
specifically

:::::::::
precompile

::::::::
intensive

::::::::
operators

:::::
such

::
as

:::::::::
multi-head

::::::::
attention

:::
and

::::
layer

::::::::::::
normalization

:::
for

:::
the

:::::
LLM

::::::::::
components

::
to

::::::
further

::::::::
minimize

:::::::
latency

:::::
during

::::::
online

::::::::
inference.

:::::
These

::::::::
strategies

::::::::
decrease

:::::::
memory

::::::::
footprint

::::
and

:::::
lower

:::::::
serving

::::::
latency,

::::::::::
particularly

::::
for

:::::::
user-side

::::::::::
computation.

:::::
All

::::::
serving

::::::
nodes

::::::
operate

::::::::::
statelessly,

::::::
relying

:::
on

:::::::::
distributed

::::::
caches

::::
and

::::::::
databases

::
for

:::::
both

:::::::::
embedding

:::::::
retrieval

::::
and

::::
user

:::::
state

:::::::::::
management.

:::::
This

::::::
design

::
is

:::
for

::::::::
seamless

::::::::
horizontal

::::::
scaling.

:::::::::::
Additionally,

::
if
::
a

:::
user

:::::::
disables

:::
an

::::
item

::::
they

::::
have

:::::::::::::::
posted—rendering

::
it
::::::::::
invalid—the

::::::
system

:::::::::::
automatically

::::
pads

:::
the

::::::::
sequence

::::
with

::::::
empty

::::::
content

::
to

::::::
ensure

::::::::
consistent

:::::
input

::::::::
structure

:::
and

:::::
model

:::::::
stability.

F
::::::::::
FURTHER

:::::::::::::::
EXPERIMENTS

F.1
::::::::::::
PRETRAINING

:::::::::::
VALIDATION

:::
Our

::::
first

:::
set

::
of

::::::::::
experiments

::::::::::
investigates

:::
the

:::::
effect

::
of

:::::::
varying

:::
the

::::::::
backbone

::::::
LLMs

:::
for

:::
the

::::
item

:::
and

:::
user

:::::::::
encoders.

::::::::::
Specifically,

:::
we

:::::::
explore

:::
the

::::::::
following

::::::::::::
configurations:

::::
(1)

::::
using

::::::::
different

::::::::
pretrained

:::::
LLMs

:::
for

:::::
item

::::
and

::::
user

::::::::
encoders,

::::
(2)

:::::::
training

::::
one

::
or

:::::
both

::::::::
encoders

:::::
from

::::::
scratch

:::::::
instead

::
of

:::::::::
initializing

::::
from

:
a
:::::::::
pretrained

::::::
model,

:::
and

:::
(3)

:::::::
freezing

:::
the

::::
item

:::::::
encoder

::::::
during

:::::::
training.

::::
The

::::::
detailed

:::::
results

:::
are

::::::::::
summarized

::
in
:::::
Table

::
8.
:

::::::
Across

::
all

:::::::
settings,

:::
we

:::::::
observe

::::
that

::::
using

:::::::
exactly

:::
the

::::
same

:::::::::
pretrained

:::::
LLM

:::
for

::::
both

::::
item

::::
and

:::
user

:::::::
encoders

:::
and

::::::::::
fine-tuning

::::
them

::::::
jointly

:::::
yields

:::
the

::::
best

:::::::::::
performance.

::
In

:::::::
contrast,

:::::::
utilizing

::::::::::
mismatched

3
::::::::::::::::::::::::::::::
https://github.com/microsoft/onnxruntime
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Table 8:
::::::
Ablation

:::::
results

:::
for

::::::
different

::::::::::
combinations

::
of
::::
item

:::
and

:::
user

:::::
LLMs

:::
and

:::::::
training

:::::::
strategies.

Scenario Configuration HR/NDCG10 HR/NDCG100 HR/NDCG1k MRR˚100

Homefeed RED-Rec (2 * Qwen) 2.31/0.68 12.59/1.88 31.94/3.86 1.27
Item LLM from scratch 0.00/0.00 0.00/0.00 0.03/0.01 0.00
User LLM from scratch 0.00/0.00 0.03/0.01 1.32/0.21 0.01
Item LLM frozen 1.27/0.36 5.51/0.77 11.37/1.02 0.37
User LLM frozen 1.78/0.44 10.47/1.02 23.06/1.48 1.01

Homefeed + Ads RED-Rec (2 * Qwen) 4.36/1.31 18.32/3.27 42.61/5.02 2.11
Item LLM from scratch 0.00/0.00 0.00/0.00 0.08/0.04 0.01
User LLM from scratch 0.00/0.00 0.00/0.00 1.01/0.07 0.03
Item LLM frozen 1.49/0.41 9.49/1.31 19.29/1.52 0.76
User LLM frozen 2.57/1.01 13.72/1.98 29.72/1.88 3.28

Homefeed + Ads RED-Rec (2 * Qwen) 4.36/1.31 18.32/3.27 42.61/5.02 2.11
RED-Rec-CoT (2 * Qwen) 4.46/1.35 18.78/3.60 44.61/5.01 2.15

::::::::
encoders,

:::::::::
initializing

::::
from

:::::::
scratch,

::
or

:::::::
freezing

:::::
either

:::::::
encoder

::
all

:::::
result

::
in

:::::::::
significant

:::::
drops

::
in

:::::
overall

:::::::
accuracy.

:::::
This

::::::::
suggests

:::
that

:::::::::
consistent

::::::::::::
representation

::::::
spaces

::::
and

:::::::::::
co-adaptation

::::::::
between

:::
the

:::
two

:::::::
encoders

:::
are

::::::
crucial

:::
for

::::::
optimal

::::::
model

:::::::::::
performance.

:

F.2
::::
COT

:::::::::::
VALIDATION

:::
We

::::::::
explore

:::::::::::
explainable

:::::::::::::::::
recommendations

:::::::
based

::::
on

:::
Chain-of-Thought (CoT)

:::::
-based

::::::::::::::
(Wei et al., 2022)

::::::::::
explanations

:::
for

:::
the

:::::
input

:::::
layer

::
in

::::::::::::
multi-scenario

::::::
setting.

:::
In

:::
this

:::::::::::
experiment,

::
we

::::::::
introduce

:
a
:::::::::::::::
Chain-of-Thought

::::::
(CoT)

::::::::
auxiliary

::::
loss:

:::::::
beyond

:::::::
learning

::::::::::::
discriminative

::::
user

:::
and

::::
item

::::::::
encoders,

::
we

:::::::::
encourage

::::::::::
explainable

::::::::::::
multi-scenario

::::::::
reasoning

:::
by

::::::
forcing

:::
the

::::
user

:::::
model

::
to

:::::::
generate

::::::
natural

:::::::
language

:::::::::
rationales

::
for

:::::
each

:::::
action:

:

LCoT “ ´
ÿ

uPU

|Su|
ÿ

t“1

Lt
ÿ

ℓ“1

log pϕprt,ℓ | rtăℓ, zu,tq,

:::::::::::::::::::::::::::::::::::::

(9)

:::::
where

::::
pϕpq

:::::::
denotes

:::
the

::::::::::
probability,

::::::::
computed

:::
by

::
a

::::::::
learnable

:::::::
language

::::::
model

:::::
head

:::::::::::
parameterized

::
by

::
ϕ,

:::
of

:::::::::
generating

:::
the

::::
ℓ-th

:::::
token

::::
rt,ℓ::

of
::::

the
:::::::
rationale

:::::::::::
conditioned

::
on

::::
the

:::::::
previous

::::::
tokens

::::
rtăℓ

:::
and

:::
the

:::::::::::::
contextualized

::::
user

::::::::::
embedding

::::
zu,t ::

at
::::::::::
interaction

::
t.

::::
The

:::::::
overall

:::::::
training

::::
loss

::
is
::::

then
::::::::::::::::::::::
Ltotal “ LNCE ` λCoTLCoT.

:::
We

:::
use

::::
GPT

:::
4.1

::
to
::::::::

generate
::::
CoT

:::::::::::
explanations.

::::
An

:::::::
example

::
of

:::
the

:::::::::
generated

::::
CoT

:::::::::::
explanantion

:
is

::::
like:

::::
”The

::::
user

:::::::
browsed

:::::::
multiple

:::::::
articles

::::::
related

::
to

::::::::::
Switzerland

::
on

:::
the

::::::::::
homepage,

::::
such

::
as

::::
”Do

:::
you

::::
dare

::
to

:::::
guess

:::
how

:::::
many

:::::
days

::
of

:::::::
sunshine

::
in

::::::::::::
Switzerland?”

::::
and

::::::
”What

::
to

:::::
wear

::
for

::
a
:::
trip

::
to
::::::::::

Switzerland
:::
next

:::::::
week?”

::::
This

::::::::
indicates

::
a
:::::
clear

:::::::
interest

::
in

:::::::::::
Switzerland.

::::::
While

:::::::::
previously

::::::::::::
recommended

:::
ads

:::::::
included

:::::
those

::::::
related

::
to

:::::
travel,

::::
they

::::
were

::::
not

:::::::::
specifically

:::::::
targeted

::
at

:::::::::::
Switzerland.

::::::::
Therefore,

:::
we

::::::::::
recommend

::
to
::::

the
::::
user

:::
the

:::::::
targeted

:::
ad

:::::::::
”Personal

:::::
tested

::::
and

::::::
useful!

::::
The

:::::::
ultimate

::::::::::::
transportation

::::
ticket

::::
map

::::
tool

::
for

::::::::
traveling

::
in

::::::::::::
Switzerland!”,

::
as

::::
well

::
as

:::::
other

:::
ads

::::::
related

::
to

:::::::
traveling

::
in

::::::::::
Switzerland,

::::
such

:::
as

:::::::::::
”Countdown

::
to

::::::::
opening!

::::
The

::::
four

::::::::
legendary

::::::
theme

:::::
parks

::
of

::::::
Fiesch

::::
First

:::::::::
Mountain”

:::
and

::::::::::
”Interlaken

:::::::
sledding

::::::::
premium

:::
tips

:::
—

::::
Save

:::
400

:::::
RMB

:::::::::
instantly”.

:::
The

:::::
CoT

::::::::::
explanation

:::::::
module

::
is

::::::::::
particularly

::::::::::
well-suited

::
to

::::
the

::::::::::::
multi-scenario

::::::::::::::
recommendation

::::::
setting.

::::
By

:::::::::
generating

:::::::::::
step-by-step

:::::::::
rationales

::::
that

:::::::
account

:::
for

::::
user

:::::::::
behaviors

::::::
across

:::::::
different

:::::::
scenarios

:::
or

::::::::
domains,

::::
the

::::::
model

:::
can

:::::::
provide

:::::::::::
contextually

::::::::
accurate

:::
and

:::::::::::::::::::
human-understandable

::::::::::
justifications

:::
for

:::
its

:::::::::::::::
recommendations.

::::
This

::::::::
improves

:::::
both

::::::::::
transparency

::::
and

::::
user

::::
trust,

:::::::
crucial

::
for

::::::::::::
scenario-aware

:::::::
systems.

:::::::::
However,

:::
we

::::::
observe

::::
that

:::::::
applying

:::
the

:::::::::
CoT-based

::::::::
approach

::
to

:::::::::
large-scale

::::::
datasets

:::::::::
introduces

:::::::::
significant

:::::::::
challenges.

::::
The

::::::::::
requirement

::
to

:::::::
generate

:::::::::::::::
context-dependent

::::::::
rationales

::
for

:::::
every

::::
user

:::::::::
interaction

:::::
leads

::
to

:::::::::::
substantially

::::::::
increased

::::::::::::
computational

:::
and

::::::::
memory

:::::
costs.

:::::
Given

::::
these

::::::::::
limitations,

:::
we

:::::::
restrict

:::
our

:::::::::::
experiments

::
to
::::::::::

small-scale
::::::::

testings.
:::::

The
:::::::
detailed

::::::
results

:::
are

::::::::::
summarized

::
in

:
Table 8

:
.
:::::::::
Including

::::
CoT

::::
data

::
in
:::::::

training
::::

has
:::
led

::
to
:::::::

certain
::::::::::::
improvements,

::::
but

:
it

::::
does

:::
not

:::::::::
outperform

:::
the

:::::::::
pretrained

::::::
model.
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