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ABSTRACT

To overcome computational challenges of Optimal Transport (OT), several vari-
ants of Sliced Wasserstein (SW) has been developed in the literature. These ap-
proaches exploit the closed-form expression of the univariate OT by projecting
measures onto (one-dimensional) lines. However, projecting measures onto low-
dimensional spaces can lead to a loss of topological information. Tree-Sliced
Wasserstein distance on Systems of Lines (TSW-SL) has emerged as a promis-
ing alternative that replaces these lines with a more advanced structure called tree
systems. The tree structures enhance the ability to capture topological information
of the metric while preserving computational efficiency. However, at the core of
TSW-SL, the splitting maps, which serve as the mechanism for pushing forward
measures onto tree systems, focus solely on the position of the measure supports
while disregarding the projecting domains. Moreover, the specific splitting map
used in TSW-SL leads to a metric that is not invariant under Euclidean transforma-
tions, a typically expected property for OT on Euclidean space. In this work, we
propose a novel class of splitting maps that generalizes the existing one studied in
TSW-SL enabling the use of all positional information from input measures, re-
sulting in a novel Distance-based Tree-Sliced Wasserstein (Db-TSW) distance. In
addition, we introduce a simple tree sampling process better suited for Db-TSW,
leading to an efficient GPU-friendly implementation for tree systems, similar to
the original SW. We also provide a comprehensive theoretical analysis of pro-
posed class of splitting maps to verify the injectivity of the corresponding Radon
Transform, and demonstrate that Db-TSW is an Euclidean invariant metric. We
empirically show that Db-TSW significantly improves accuracy compared to re-
cent SW variants while maintaining low computational cost via a wide range of
experiments on gradient flows, image style transfer, and generative models. The
code is publicly available at https://github.com/Fsoft-AIC/DbTSW.

1 INTRODUCTION

Optimal transport (OT) (Villani, 2008; Peyré et al., 2019) is a framework designed to compare prob-
ability distributions by extending the concept of a ground cost metric, originally defined between the
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supports of input measures, to a metric between entire probability measures. OT has found utility
across a diverse array of fields, including machine learning (Bunne et al., 2022; Hua et al., 2023;
Nguyen et al., 2021b; Fan et al., 2022), data valuation (Just et al., 2023; Kessler et al., 2025), mul-
timodal data analysis (Park et al., 2024; Luong et al., 2024), statistics (Mena & Niles-Weed, 2019;
Weed & Berthet, 2019; Wang et al., 2022; Pham et al., 2024; Liu et al., 2022; Nguyen et al., 2022;
Nietert et al., 2022), computer vision, and graphics (Lavenant et al., 2018; Nguyen et al., 2021a;
Saleh et al., 2022; Solomon et al., 2015).

OT suffers from a computational burden due to its supercubic complexity with respect to the num-
ber of supports in the input measures (Peyré et al., 2019). To alleviate this issue, Sliced-Wasserstein
(SW) (Rabin et al., 2011; Bonneel et al., 2015) leverages the closed-form solution of OT in the one-
dimensional case to reduce computational demands by projecting the supports of the input measures
onto random lines. The vanilla SW distance has been continuously developed and enhanced by re-
fining existing components and introducing meaningful additions to achieve better performance. Ex-
amples include improvements in the sampling process (Nadjahi et al., 2021; Nguyen et al., 2024a),
determining optimal projection lines (Deshpande et al., 2019), and modifying the projection mech-
anism (Kolouri et al., 2019; Bonet et al., 2023b).

Related work. Relying solely on one-dimensional projections can result in the loss of essen-
tial topological structures in high-dimensional data. To address this, an alternative approach has
emerged that replaces these one-dimensional lines with different domains, applying to OT on Eu-
clidean spaces (Alvarez-Melis et al., 2018; Paty & Cuturi, 2019; Niles-Weed & Rigollet, 2022),
tree metric spaces (Indyk & Thaper, 2003; Le & Nguyen, 2021; Tran et al., 2025c;d), graph metric
spaces (Le et al., 2022; 2023; 2024), spheres (Quellmalz et al., 2023; Bonet et al., 2023a; Tran et al.,
2024b), and hyperbolic spaces (Bonet et al., 2023b). Specifically, Tran et al. (2025d) introduced
an integration domain known as the tree system, which functions similarly to lines with a more ad-
vanced structure design. This approach is proven to capture the topological information better while
maintaining the computational efficiency of the SW method. However, the proposed Tree-Sliced
Wasserstein distance on Systems of Lines (TSW-SL) in (Tran et al., 2025d), derived from the tree
system framework, fails to meet the Euclidean invariance property, which is typically expected for
OT in Euclidean spaces (Alvarez-Melis et al., 2019). In this paper, we address these issues by gen-
eralizing the class of splitting maps introduced in (Tran et al., 2025d), simultaneously resolving the
lack of invariance and the insufficient accounting for positional information. A new class of splitting
maps may encounter challenges, such as verifying the injectivity of the associated Radon transform,
resulting in a pseudo-metric on the space of measures.

Contribution. In summary, our contributions are three-fold:

1. We analyze the Euclidean invariance of 2-Wasserstein and Sliced p-Wasserstein distance be-
tween measures on Euclidean spaces and then discuss why Tree-Sliced Wasserstein distance
on Systems of Lines fails to satisfy Euclidean invariance. To address this issue, we introduce
a larger class of splitting maps that captures positional information from both points and tree
systems, generalizing the previous class while incorporating an additional invariance property.

2. We introduce a novel variant of Radon Transform on Systems of Lines, developing a new class
of invariant splitting maps that generalizes the previous version in (Tran et al., 2025d). By
providing a comprehensive theoretical analysis with rigorous proofs, we demonstrate how our
new class of invariant splitting maps ensures the injectivity of the Radon Transform.

3. We propose the novel Distance-based Tree-Sliced Wasserstein (Db-TSW) distance, which is
an Euclidean invariant metric between measures. By analyzing the choice of splitting maps
and tree systems in Db-TSW, we demonstrate that Db-TSW enables a highly parallelizable
implementation, achieving an efficiency similar to that of the original SW.

Organization. The structure of the paper is as follows: Section 2 recalls variants of Wasserstein
distance. Section 3 outlines the essential background of Tree-Sliced Wasserstein distance on Sys-
tems of Lines and discusses Euclidean invariance. Section 4 introduces a new class of splitting
maps and discusses the corresponding Radon Transform. Section 5 proposes Distance-based Tree-
Sliced Wasserstein (Db-TSW) distance and discusses the choices of components in Db-TSW. Fi-
nally, Section 6 evaluates Db-TSW performance. A complete theoretical framework of Db-TSW
and supplemental materials are provided in the Appendix.
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2 PRELIMINARIES

We review Wasserstein distance, Sliced Wasserstein (SW) distance, Wasserstein distance on metric
spaces with tree metrics (TW), and Tree-Sliced Wasserstein on Systems of Lines (TSW-SL) distance.

Wasserstein Distance. Let µ, ν be two probability distributions on Rd. Let P(µ, ν) be the set
of probability distributions π on the product space Rd × Rd such that π(A × Rd) = µ(A) and
π(Rd × A) = ν(A) for all measurable sets A. For p ⩾ 1, the p-Wasserstein distance Wp (Villani,
2008) between µ, ν is defined as:

Wp(µ, ν) = inf
π∈P(µ,ν)

(∫
Rd×Rd

∥x− y∥pp dπ(x, y)
) 1

p

. (1)

Sliced Wasserstein Distance. The Sliced p-Wasserstein distance (SW) (Bonneel et al., 2015) be-
tween two probability distributions µ, ν on Rd is defined by:

SWp(µ, ν) :=

(∫
Sd−1

Wp
p(Rfµ(·, θ),Rfν(·, θ)) dσ(θ)

) 1
p

, (2)

where σ = U(Sd−1) is the uniform distribution on the unit sphere Sd−1, operator R : L1(Rd) !
L1(R × Sd−1) is the Radon Transform (Helgason, 2011) defined by Rf(t, θ) =

∫
Rd f(x) ·

δ(t − ⟨x, θ⟩) dx, and fµ, fν are the probability density functions of µ, ν, respectively. The
one-dimensional p-Wasserstein distance in Equation (2) has the closed-form Wp

p(θ♯µ, θ♯ν) =∫ 1

0
|F−1

Rfµ(·,θ)(z) − F−1
Rfν(·,θ)(z)|

pdz, where FRfµ(·,θ) and FRfν(·,θ) are the cumulative distribu-
tion functions of Rfµ(·, θ) and Rfν(·, θ), respectively. To approximate the intractable integral in
Equation (2), Monte Carlo method is used as follows:

ŜWp(µ, ν) =

(
1

L

L∑
l=1

Wp
p(Rfµ(·, θl),Rfν(·, θl))

) 1
p

, (3)

where θ1, . . . , θL are drawn independently from the uniform distributions on Sd−1, i.e. U(Sd−1).

Tree Wasserstein Distances. Let T be a rooted tree (as a graph) with non-negative edge lengths, and
the ground metric dT , i.e., the length of the unique path between two nodes. Given two probability
distributions µ and ν supported on nodes of T , the Wasserstein distance with ground metric dT
(TW) (Le et al., 2019) has closed-form as follows:

WdT ,1(µ, ν) =
∑
e∈T

we ·
∣∣µ(Γ(ve))− ν(Γ(ve))

∣∣, (4)

where ve is the endpoint of edge e that is farther away from the tree root, Γ(ve) is the subtree of T
rooted at ve, and we is the length of e.

Tree-Sliced Wasserstein Distance on Systems of Lines. Tree-Sliced Wasserstein distance on Sys-
tems of Lines (TSW-SL) (Tran et al., 2025d) is proposed as a combination between the projecting
mechanism via Radon Transform in SW and the closed-form of Wasserstein distance with ground
tree metrics in TW. In TSW-SL, tree systems, which are well-defined measure spaces and metric
spaces with tree metric, are proposed to replace the role of directions in SW, and the corresponding
variant of Radon Transform is also presented. Details of TSW-SL are outlined in Section 3.

3 THE ORIGINAL TSW-SL AND THE LACK OF E(d)-INVARIANCE

In this section, we outline the details of TSW-SL in (Tran et al., 2025d) and discuss the invari-
ance under Euclidean transformations of TSW-SL and some variants of Wasserstein distance on
Euclidean spaces.

3.1 REVIEW ON THE ORIGINAL TSW-SL

We recall the notion and theoretical results of the Radon Transform on Systems of Lines and the
corresponding Tree-Sliced Wasserstein distance from (Tran et al., 2025d) with some modifications
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on the notations. We start with a function f ∈ L1(Rd). Usually, d is the dimension of data, and f is
the distribution of data. A line in Rd is an element in Rd × Sd−1, and a system of k lines in Rd is an
element of (Rd × Sd−1)k. We denote a system of lines by L, a line in L (also index) by l, and the
space of all systems of k lines by Ld

k. The ground set of L is defined by:

L̄ :=
{
(x, l) ∈ Rd × L : x = xl + tx · θl for an tx ∈ R

}
,

where xl+ t ·θl, t ∈ R is the parameterization of l. By abuse of notation, we sometimes index lines
by i = 1, . . . , k and denote the line of index i by li. The source and direction li are denoted by xi

and θi, respectively. We also denote the collection of all systems of lines in Rd with k lines by Ld
k.

A tree system is a system of lines L with an additional tree structure T . It is a well-defined metric
measure space and denoted by (L, T ) or by L if the tree structure is not needed to be specific. A
space of trees (i.e., collections of all tree systems with the same tree structure) is denoted by T with
a probability distribution σ on T, which comes from the tree sampling process. For L ∈ Ld

k, the
space of Lebesgue integrable functions on L is

L1(L) =

{
f : L̄! R : ∥f∥L =

∑
l∈L

∫
R
|f(tx, l)| dtx < ∞

}
. (5)

Given a splitting map α ∈ C(Rd,∆k−1), which is a continuous map from Rd to the (k − 1)-
dimensional standard simplex ∆k−1. For f ∈ L1(Rd), we define

Rα
Lf : L̄ −! R (6)

(x, l) 7−!

∫
Rd

f(y) · α(y)l · δ (tx − ⟨y − xl, θl⟩) dy. (7)

The function Rα
Lf is in L1(L). The operator

Rα : L1(Rd) −!
∏

L∈Ld
n

L1(L)

f 7−! (Rα
Lf)L∈Ld

k

is called the Radon Transform on Systems of Lines. This operator is injective. The Tree-Sliced
Wasserstein Distance on Systems of Lines TSW-SL between µ, ν ∈ P(Rd) is defined by

TSW-SL(µ, ν) =
∫
Ld
k

WdL,1(Rα
Lµ,Rα

Lν) dσ(L). (8)

The TSW-SL is a metric on P(Rd). Leveraging the closed-form expression of OT problems on
metric spaces with tree metrics (Le et al., 2019) and the Monte Carlo method, TSW-SL in Equation
(8) can be efficiently approximated by a closed-form expression.
Remark 1. The Radon Transform Rα depends on the choice of α ∈ C(Rd,∆k−1). Intuitively, the
splitting map α represents how the mass at a specific point is distributed across all lines in a system
of lines. In the context of the original Radon Transform R, only one line is involved, so α is simply
the constant function 1. As a result, Rα is a meaningful and nontrivial generalization of R.

3.2 E(d)-INVARIANCE IN OPTIMAL TRANSPORT ON EUCLIDEAN SPACES

Consider Rd with the Euclidean norm, i.e. ∥ · ∥2, we consider some groups with group actions
that preserve Euclidean norm and Euclidean distance between two points in Rd. We then discuss
E(d)-invariance of some Wasserstein distance variants.

Euclidean group E(d) and its action on Rd. For a ∈ Rd, the translation corresponding to a is the
map Rd ! Rd that x 7! x+ a. The translation group T(d) is the group of every translations in Rd.
Note that, T(d) is isomorphic to the additive group Rd. The orthogonal group O(d) is the group of
all linear transformations of Rd that preserve the Euclidean norm

O(d) =
{

linear transformation f : Rd ! Rd : ∥x∥2 = ∥f(x)∥2 for all x ∈ Rd
}
. (9)

Note that O(d) is isomorphic to the group of all orthogonal matrices

O(d) =
{
Q is an d× d real matrix : Q ·Q⊤ = Q⊤ ·Q = Id

}
. (10)
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Figure 1: An illustration highlighting the distinction between the old and new Radon Transform on
Systems of Lines, specifically focusing on two different definitions of splitting maps. Left: The old
splitting map relies solely on the location of points, leading to the same distribution and independent
of the position of the line systems. Right: The new splitting map considers the configuration of
systems of lines, leading to varied mass distributions depending on each system.

The Euclidean group E(d) is the group of all transformations of Rd that preserve the Euclidean
distance between any two points. Formally, E(d) is the semidirect product between T(d) and O(d),
i.e., E(d) ≃ T(d) ⋊ O(d). An element g of E(d) is denoted by a pair g = (Q, a), where a ∈ Rd

and Q ∈ O(d). The action of g on Rd is y 7! gy = Q · y + a.

Group actions of E(d) on Ld
k and T. The canonical group action of E(d) on Rd naturally induces

a group action on the set of all lines in Rd, i.e., Rd × Sd−1. Given a line l = (x, θ) ∈ Rd × Sd−1

and g = (Q, a) ∈ E(d), we define

gl := (Q · x+ a,Q · θ) ∈ Rd × Sd−1. (11)

For L =
{
li = (xi, θi)

}k
i=1

∈ Ld
k, the action of E(d) on Ld

k is similarly defined

gL =
{
gli = (Q · xi + a,Q · θi)

}k
i=1

∈ Ld
k. (12)

In (Tran et al., 2025d), a tree system is a system of lines with an additional tree structure, and by
design, this tree structure is preserved under the action of E(d). Thus, if L ∈ T is a tree system,
then gL is also a tree system. The group action of E(d) on Ld

k induces a group action of E(d) on T.

E(d)-equivariance in Optimal Transport. E(d)-invariance is natural in the context of Optimal
Transport on Euclidean space Rd since the distance between two measures should remain unchanged
when a distance-preserving transformation is applied to the underlying space. In details, let µ ∈
P(Rn) be a measure on Rd. For g ∈ E(d), denote the pushforward of µ via g : Rd ! Rd by g♯µ. It
canonically defines a group action of E(d) on P(Rn). We have the following result.
Proposition 3.1. The 2-Wasserstein distance and the Sliced p-Wasserstein distance are E(d)-
invariant. In other words, for every µ, ν ∈ P(Rd) and g ∈ E(d), we have

W2(µ, ν) = W2(g♯µ, g♯ν) and SWp(µ, ν) = SWp(g♯µ, g♯ν). (13)

Moreover, for Sliced Wasserstein distance, we have the below result for each projecting direction.
Proposition 3.2. Let g = (Q, a) ∈ E(d). For every µ, ν ∈ P(Rd) and θ ∈ Sd−1, we have

Wp

(
Rfµ(·, θ),Rfν(·, θ)

)
= Wp

(
Rfg♯µ(·, Qθ),Rfg♯ν(·, Qθ)

)
(14)

The proofs for Proposition 3.1 and Proposition 3.2 can be found in Appendix B.1.

Remark 2. With the setting of TSW-SL, the E(d)-invariance and the similar property as Proposition
3.2 can not be derived for a general splitting map. Assumptions on invariance of splitting maps will
be made to achieve invariance of TSW-SL.

4 RADON TRANSFORM WITH E(d)-INVARIANT SPLITTING MAPS

In (Tran et al., 2025d), the splitting maps are selected as continuous maps from Rd to ∆k−1, which
means that it depends solely on the position of points and ignores the tree systems. It is intuitively
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Figure 2: An illustration demonstrating E(d)-invariance of splitting maps. Starting with a point
and a system of lines, two Euclidean transformations are applied, resulting in two additional pairs
of points and systems of lines. An E(d)-invariant handles all three pairs identically, leading to the
same mass distribution from the point to lines within each system.

better for splitting maps to account positional information from both of points and tree systems,
than only from points. With this motivation, we introduce a larger class of splitting maps with the
corresponding Radon Transform and then discuss the injectivity of this Radon Transform variant.

4.1 RADON TRANSFORM ON SYSTEMS OF LINES

Denote C(Rd × Ld
k,∆k−1) as the space of continuous maps from Rd × Ld

k to ∆k−1 and refer to
maps in C(Rd ×Ld

k,∆k−1) as splitting maps. Here, we use the same name as in (Tran et al., 2025d)
since the new class of splitting maps contains the class of splitting maps in (Tran et al., 2025d).

C(Rd,∆k−1)
1−1
 −−−!

{α ∈ C(Rd × Ld
k,∆k−1) : α(x,L) = α(x,L′) for all x ∈ Rd and L,L′ ∈ Ld

k}.

Let L be a system of lines in Ld
n and α be a splitting map in C(Rd×Ld

k,∆k−1), we define an operator
associated to α that transforms a Lebesgue integrable functions on Rd to a Lebesgue integrable
functions on L. For f ∈ L1(Rd), define

Rα
Lf : L̄ −! R (15)

(x, l) 7−!

∫
Rd

f(y) · α(y,L)l · δ (tx − ⟨y − xl, θl⟩) dy, (16)

where δ is the 1-dimensional Dirac delta function. We have Rα
Lf ∈ L1(L) for f ∈ L1(Rd) and

moreover ∥Rα
Lf∥L ⩽ ∥f∥1. In other words, the linear operator Rα

L : L1(Rd) ! L1(L) is well-
defined. The proof of these properties can be found in Appendix B.2. We introduce a novel Radon
Transform on Systems of Lines, which is a generalization of the variant in (Tran et al., 2025d).
Definition 4.1 (Radon Transform on Systems of Lines). For α ∈ C(Rd × Ld

k,∆k−1), the operator

Rα : L1(Rd) −!
∏

L∈Ld
k

L1(L) (17)

f 7−! (Rα
Lf)L∈Ld

k
, (18)

is called the Radon Transform on Systems of Lines.
Remark 3. We use the same name and notation for Rα as in (Tran et al., 2025d). Figure 1 emphasizes
the difference between the old and new Radon Transform on Systems of Lines.

The injectivity of Rα will be discussed in the next part. Surprisingly, the E(d)-invariance of α is a
sufficient condition for the injectivity of Rα.

4.2 E(d)-INVARIANCE AND INJECTIVITY OF RADON TRANSFORM

Variants of Radon Transform usually require the transform to be injective. In the case of Rα, since
we introduce a larger class of splitting maps α, the proof for injectivity of the previous variant in
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(Tran et al., 2025d) is not applicable for this new variant. We found that if α is E(d)-invariant,
then the injectivity of the Radon transform holds. We first have the definition of E(d)-invariance of
splitting maps.
Definition 4.2. A splitting map α in C(Rd × Ld

k,∆k−1) is said to be E(d)-invariant, if we have

α(gy, gL) = α(y,L) (19)

for all (y,L) ∈ Rd × Ld
k and g ∈ E(d).

A visualization of E(d)-invariant splitting maps is presented in Figure 2. Using this property of
splitting maps, we get a result about injectivity of our Radon Transform variant.
Theorem 4.3. For an E(d)-invariant splitting map α ∈ C(Rd × Ld

k,∆k−1), Rα is injective.

The proof of Theorem 4.3 is presented in Appendix B.3.

Remark 4. Since the action of E(d) on Rd is transitive, i.e. for x, y ∈ Rd, there exists g ∈ E(d) such
that gx = y, so E(d)-invariant splitting maps α ∈ C(Rd,∆k−1) must be constant. Thus, imposing
invariance on previous splitting maps in (Tran et al., 2025d) significantly limits the class of maps.

Candidates for E(d)-invariant splitting maps will be presented in the next section.

5 DISTANCE-BASED TREE-SLICED WASSERSTEIN DISTANCE

In this section, we present a novel Distance-based Tree-Sliced Wasserstein (Db-TSW) distance. Let
consider the space of all tree systems of k lines T and a distribution σ on T.

5.1 TREE-SLICED WASSERSTEIN DISTANCE WITH E(d) SPLITTING MAP

For µ, ν ∈ P(Rd), a tree system L ∈ T, and an E(d)-invariant splitting map α ∈ C(Rd×Ld
k,∆k−1),

by the Radon transform Rα
L in Definition 4.1, probability measures µ and ν are transformed to Rα

Lµ
and Rα

Lν in P(L). Notice that L is a metric space with tree metric dL (Tran et al., 2025d), so we
can compute Wasserstein distance WdL,1(Rα

Lµ,Rα
Lν) between Rα

Lµ and Rα
Lν by Equation (4).

Definition 5.1 (Distance-Based Tree-Sliced Wasserstein Distance). The Distance-based Tree-Sliced
Wasserstein distance between µ, ν ∈ P(Rd) is defined by

Db-TSW(µ, ν) :=

∫
T

WdL,1(Rα
Lµ,Rα

Lν) dσ(L). (20)

Remark 5. Note that, Db-TSW depends on the space of tree systems T, the distribution σ over T,
and the E(d)-invariant splitting map α. For simplicity, these are omitted from the notation. The
choice of α will be discussed in the next part and is the reason for the name Distance-based.

The Monte Carlo method is utilized to estimate the intractable integral in Equation (20) as follows:

̂Db-TSW(µ, ν) =
1

L

L∑
i=1

WdLi
,1(Rα

Li
µ,Rα

Li
ν), (21)

where L1, . . . ,LL are drawn independently from the distribution σ on T. The Db-TSW distance is,
indeed, a metric on P(Rd). Moreover, Db-TSW is E(d)-invariant.
Theorem 5.2. Db-TSW is an E(d)-invariant metric on P(Rd).

The proof of Theorem 5.2 is presented in Appendix B.4. We discuss the computation of Db-TSW
in details in the next part.

5.2 COMPUTING DB-TSW

We construct the space of tree systems and E(d)-invariant splitting maps that are suited for Db-TSW.

Choices for the space of tree systems. In (Tran et al., 2025d), the space of tree systems T used
in computing Db-TSW is the collection of all tree systems with the tree structure is a chain of k

7
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nodes as a graph. We discovered that this approach complicates the implementation of Db-TSW,
resulting in a considerable increase in computation time. Here, we propose a method for sampling
tree systems that simplifies the implementation in practice. Let T be the space of all tree systems,
which consists of k lines with the same source. In details, L in T can be presented as

L =
{
(x, θ1), (x, θ2), . . . , (x, θk)

}
. (22)

In other words, tree system L consists of k concurrent lines with the same root. The distribution σ
on T is simply the joint distribution of k + 1 independent distributions, which are µ ∈ P(Rd) and
µ1, µ2, . . . , µk ∈ P(Sd−1). In details, to sample a tree system L ∈ T, we

1. Sample x ∼ µ, where µ is a distribution on a bounded subset of Rd, for instance, the
uniform distribution on the d-dimensional hypercube [−1, 1]d, i.e. U([−1, 1]d); and,

2. For i = 1, . . . , k, sample θi ∼ µi, where µi is a distribution on Sd−1, for instance, the
uniform distribution U(Sd−1).

We also concentrate on a subcollection of T, which includes tree systems that take into account
the angles between pairs of lines. Assume that k ⩽ d, denote T⊥ as the space of tree systems L
consists of k concurrent lines with the same root, and these lines are mutually orthogonal, i.e. L =
{(x, θ1), (x, θ2), . . . , (x, θk)} where ⟨θi, θj⟩ = 0 for all 1 ⩽ i < j ⩽ k. The intuitive motivation
for this choice is to ensure that the sampled tree systems do not include lines with similar directions.
Remark 6. The condition k ⩽ d arises because {θ1, . . . , θk} forms a subset of an orthogonal basis
of Rd. In practice, this has little impact, as the dimension d is typically large, while the number of
directions k is selected to be small.

Choices for E(d)-invariant splitting maps. Since the action of E(d) preserves the distance between
two points in Rd, it also preserves the distance between a point and a line in Rd. For x ∈ Rd and
L ∈ Ld

k, we denote the distance between x and line l of L as d(x,L)l given by:

d(x,L)l = inf
y∈l

∥x− y∥2. (23)

We have d(x,L)l is E(d)-invariant. As a result, a splitting map α : Rd ! ∆k−1 that is in the form

α(x,L)l = β
(
{d(x,L)l}l∈L

)
, (24)

where β is an arbitrary map Rk ! ∆k−1, is E(d)-invariant. In practice, we empirically observed
that choosing β to be the softmax function together with scaling by a scalar works well in applica-
tions. In details, we choose α as follows

α(x,L)l = softmax
(
{δ · d(x,L)l}l∈L

)
(25)

Here, δ ∈ R is considered as to be a tuning parameter.1 Intuition behind this choice of α is that it
reflects the proximity of points to lines in tree systems. As |δ| grows, the output of α tends to become
more sparse, emphasizing the importance of each line in the tree system relative to a specific point.
We summarize the computation of Db-TSW by Algorithm 1.
Remark 7. The above construction of α mainly bases on the distance between points and lines in
tree systems. That is the reason for the name Distance-based Tree-Sliced Wasserstein.

6 EXPERIMENTAL RESULTS

In this section, we experimentally demonstrate the advantages of our Db-TSW methods over tra-
ditional SW distance and its variants across three key domains: unconditional image synthesis,
gradient flows, and color transfer. Detailed experimental settings are provided in Appendix §C.1.
Our evaluation aims to establish that: (i) Db-TSW and Db-TSW⊥2 consistently enhance perfor-
mance across various generative and optimization tasks; (ii) Db-TSW⊥ significantly outperforms
not only baselines but also Db-TSW in all tasks, highlighting its superiority; and (iii) Db-TSW and
Db-TSW⊥ is universal applicable and can be seamlessly integrated into any Optimal Transport task.

1We abuse the notation δ ∈ R for the splitting map function α.
2⊥ stands for using orthogonal directions θ.
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Table 1: Results of different DDGAN variants for unconditional generation on CIFAR-10.

Model FID # Time/Epoch(s) #

DDGAN (Xiao et al. (2022)) 3.64 136
SW-DD (Nguyen et al. (2024b)) 2.90 140
DSW-DD (Nguyen et al. (2024b)) 2.88 1059
EBSW-DD (Nguyen et al. (2024b)) 2.87 145
RPSW-DD (Nguyen et al. (2024b)) 2.82 159
IWRPSW-DD (Nguyen et al. (2024b)) 2.70 152
TSW-SL-DD (Tran et al. (2025d)) 2.83 163
Db-TSW-DD (Ours) 2.60 160
Db-TSW-DD⊥ (Ours) 2.525 162

We maintain a consistent total number of sampled lines across all methods to ensure fair compari-
son. Db-TSW and Db-TSW⊥ offer two important advantages. First, these methods contain richer
information compared to SW for the same number of data points, as they incorporate positional
information from both points and tree systems. This allows for more effective sampling, specifi-
cally by sampling trees located around the support of target distributions (ideally near their means).
Second, the root-concurrent tree system design enables an algorithm with linear runtime and high
parallelizability, keeping the wall clock time of Db-TSW and Db-TSW⊥ approximately equal to
vanilla SW and surpassing some SW variants.

6.1 DIFFUSION MODELS

This experiment explores the efficacy of denoising diffusion models for unconditional image syn-
thesis. We employ a variant of the Denoising Diffusion Generative Adversarial Network (DDGAN)
(Xiao et al., 2022), as introduced by Nguyen et al. (2024b), which incorporates a Wasserstein dis-
tance within the Augmented Generalized Mini-batch Energy (AGME) loss function. A detailed
explanation of this Optimal Transport-based DDGAN is provided in Appendix §C.2. We evaluate
our proposed methods, Db-TSW-DD and Db-TSW-DD⊥, against DDGAN and various OT-based
DDGAN variants, as enumerated in Table 1. All models undergo training for 1800 epochs on the
CIFAR10 dataset (Krizhevsky et al., 2009). For vanilla SW and its variants, we adopt the parameters
from Nguyen et al. (2024b) and set L = 10000. For Db-TSW-DD⊥ and Db-TSW-DD models, we
set L = 2500, k = 4, δ = 10. Tree sampling is conducted from a Gaussian distribution N (mt, σ

2I),
where mt represents the mean of all training samples and σ = 0.1. Table 1 presents the Fréchet In-
ception Distance (FID) scores and per-epoch training times on an Nvidia V100 GPU for our methods
and the baselines. Lower FID scores indicate superior model performance. The results demonstrate
that both Db-TSW-DD⊥ and Db-TSW-DD achieve notable improvements in FID compared to all
baselines. Specifically, they outperform the current state-of-the-art OT-based DDGAN, IWRPSW-
DD (Nguyen et al., 2024b), by margins of 0.175 and 0.1, respectively. Importantly, our methods
maintain computational efficiency, with only a modest 6.5% increase in training time compared to
the current state-of-the-art.

6.2 GRADIENT FLOWS

The gradient flow task aims to minimize the distance between source and target distributions using
gradient descent process. The objective is to iteratively reduce this distance by optimizing the equa-
tion ∂tµt = −∇D(µt, ν) with the initial condition µ0 = N (0, 1), where µt represents the source
distribution at time t, −∂tµt denotes the change in the source distribution over time, and ∇D(µt, ν)
is the gradient of D with respect to µt. Here, D refers to our proposed distance metric and the
SW baselines. We evaluate our approach Db-TSW⊥, Db-TSW and several established techniques,
including vanilla SW Bonneel et al. (2015), MaxSW (Deshpande et al., 2019), LCVSW (Nguyen &
Ho, 2024), SWGG (Mahey et al., 2023), and TSW-SL (Tran et al., 2025d), using the Swiss Roll and
Gaussian 20d datasets.

To assess the effectiveness of these methods, we employ the Wasserstein distance to quantify average
Wasserstein distances between the source and target distributions across 10 runs at iterations 500,
1000, 1500, 2000 and 2500. The results demonstrated in Table 2 show Db-TSW and Db-TSW⊥

record the best result on almost all steps in Swiss Roll dataset, with a 3.78e-8 W2 on the last step
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Table 2: Average Wasserstein distance between source and target distributions of 10 runs on Swiss
Roll and Gaussian 20d datasets. All methods use 100 projecting directions.

Swiss Roll Gaussian 20d

Methods Iteration Time/Iter(s) Iteration Time/Iter(s)
500 1000 1500 2000 2500 500 1000 1500 2000 2500

SW 5.73e-3 2.04e-3 1.23e-3 1.11e-3 1.05e-3 0.009 18.24 16.48 14.66 12.60 10.30 0.006
MaxSW 2.47e-2 1.03e-2 6.10e-3 4.47e-3 3.45e-3 2.46 13.24 13.71 13.46 12.71 11.83 2.38
SWGG 3.84e-2 1.53e-2 1.02e-2 4.49e-3 3.57e-5 0.011 8.51 8.71 7.71 8.48 6.45 0.009
LCVSW 7.28e-3 1.40e-3 1.38e-3 1.38e-3 1.36e-3 0.010 17.26 14.70 12.00 9.04 6.15 0.009
TSW-SL 9.41e-3 2.03e-7 9.63e-8 4.44e-8 3.65e-8 0.014 3.13 9.67e-3 6.81e-3 6.15e-3 5.71e-3 0.010
Db-TSW 5.47e-3 8.04e-8 5.29e-8 3.92e-8 3.01e-8 0.006 3.27 1.12e-2 7.21e-3 5.63e-3 4.60e-3 0.006
Db-TSW⊥ 7.55e-3 2.65e-7 4.90e-8 4.18e-8 3.78e-8 0.009 2.46 7.96e-3 6.11e-3 5.22e-3 5.03e-3 0.009

in comparison with 1.05e-3 of vanilla SW and 3.57e-5 of SWGG. A similar trend is observed in
the Gaussian 20d dataset, with Db-TSW⊥ and Db-TSW consistently achieving the second best and
best Wasserstein distances respectively, outperforming the next best method SWGG by three orders
of magnitude (5.03e-3 and 4.60e-3 vs. 7.34) and vanilla SW by nearly four orders of magnitude
(10.30) at the final iteration. Notably, Db-TSW and Db-TSW⊥ maintain competitive computational
efficiency, with runtimes equal to good LCVSW variant (0.009 seconds per iteration) while boosting
the performance significantly.

6.3 COLOR TRANSFER

The color transfer task involves transferring color from a source image to a target image.
Considering source and target color palettes as X and Y , we define the curve Ż(t) =
−n∇Z(t)[D(PZ(t), PY )] where PX and PY are empirical distributions over X and Y and D are
customizable Wasserstein distance. Here, the curve starts from Z(0) = X and ends at Y . We iter-
ate along this curve to perform the transfer between the probability distributions PX and PY . We
evaluate our method against SW, TSW-SL, MaxSW, and various Quasi-Sliced Wasserstein (QSW)
variants (Nguyen et al., 2024a). We follow the settings used in (Nguyen et al., 2024a) for experi-
ment settings, detailed in Appendix §C.4. We set L = 33, k = 3 for Db-TSW and Db-TSW⊥ and
L = 100 for all baselines.

In Figure 5 (Appendix), we compare the Wasserstein distances and visualizations of various color
transfer methods. Notably, Db-TSW⊥ and Db-TSW achieve near-best performance (0.12 and 0.21
respectively) without randomization overhead of top-performing R-methods like RRQDSW and
RQDSW (both at 0.08) and significantly outperforming traditional approaches such as SW and
MaxSW (both at 9.58).

7 CONCLUSION

The paper presents the Distance-based Tree-Sliced Wasserstein (Db-TSW) distance for comparing
measures in Euclidean spaces. Built on the Tree-Sliced Wasserstein distance on Systems of Lines
(TSW-SL) framework, Db-TSW enhances the class of splitting maps that are central to TSW-SL.
This new class of splitting maps in Db-TSW resolves several challenges in TSW-SL, such as the
lack of Euclidean invariance, insufficient consideration of positional information, and slower com-
putational performance. To address the theoretical gaps regarding these new maps, we provide a
comprehensive theoretical framework with rigorous proofs for key properties of Db-TSW. Our ex-
periments show that Db-TSW outperforms recent Sliced Wasserstein (SW) variants on a wide range
of task, such as gradient flows, or generative models as GAN or diffusion models. In comparison to
these SW variants, Db-TSW primarily focuses on refining the integration domain using tree systems
and the associated measure projection mechanism through splitting maps, which are not existed in
SW framework. Therefore, adapting to Db-TSW several techniques used in proving the SW variant
is expected to be beneficial for future research. Additionally, the System of Lines for TSW provides
advanced geometric structure to go beyond the lines for SW, which is a promising research direction
for further investigation, e.g., the concurrent TSW-SL on the sphere (Tran et al., 2025b).
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NOTATION

Rd d-dimensional Euclidean space
∥ · ∥2 Euclidean norm
⟨·, ·⟩ standard dot product
Sd−1 (d− 1)-dimensional hypersphere
θ unit vector
⊔ disjoint union
L1(X) space of Lebesgue integrable functions on X

P(X) space of probability distributions on X

µ, ν measures
δ(·) 1-dimensional Dirac delta function
U(Sd−1) uniform distribution on Sd−1

♯ pushforward (measure)
C(X,Y ) space of continuous maps from X to Y

d(·, ·) metric in metric space
T(d) translation group of order d
O(d) orthogonal group of order d
E(d) Euclidean group of order d
g element of group
Wp p-Wasserstein distance
SWp Sliced p-Wasserstein distance
Γ (rooted) subtree
e edge in graph
we weight of edge in graph
l line, index of line
L system of lines, tree system
L̄ ground set of system of lines, tree system
ΩL topological space of system of lines
Ld
k space of symtems of k lines in Rd

T tree structure in system of lines
L number of tree systems
k number of lines in a system of lines or a tree system
R original Radon Transform
Rα Radon Transform on Systems of Lines
∆k−1 (k − 1)-dimensional standard simplex
α splitting map
δ tuning parameter in splitting maps
T space of tree systems
T⊥ space of orthogonal tree systems
σ distribution on space of tree systems
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A BACKGROUND FOR TREE-SLICED WASSERSTEIN DISTANCE ON SYSTEMS
OF LINES

This section provides background for Tree-Sliced Wasserstein distance on Systems of Lines. For
completeness, we recall essential definitions and theoretical results. Proofs and further details can
be found in (Tran et al., 2025d).

A.1 TREE SYSTEM

A line in Rd is determined by a pair (x, θ) ∈ Rd × Sd−1 and is parameterized as x + t · θ, where
t ∈ R. A line in Rd is denoted or indexed by l = (xl, θl) ∈ Rd × Sd−1. Here, xl and θl are referred
to as the source and direction of l, respectively. For k ⩾ 1, a system of k lines in Rd is a set of k
lines. We denote (Rd × Sd−1)k by Ld

k, which represents the space of systems of k lines in Rd, and
an element of Ld

k is typically denoted by L. The system L is said to be connected if the points on
the lines form a connected subset of Rd. By removing some intersections between lines, we obtain a
tree system L, where there is a unique path between any two points of L. For a quick visualization
of tree systems, kindly refer to Figure 3.
Remark 8. The term tree system is used because there is a unique path between any two points,
analogous to the definition of trees in graph theory.
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By identifying all remaining intersections, together with the notions of disjoint union topology and
quotient topology (Hatcher, 2005), we obtain a topology on a tree system as the gluing of copies of
R. Analyzing this topology, we find that tree systems are metric spaces with a tree metric.

A.2 SAMPLING PROCESS OF TREE SYSTEMS

The space of tree systems exhibits significant diversity due to the various possible choices for tree
structures (as graphs). (Tran et al., 2025d) outlines a comprehensive approach applicable to general
tree structures, and focuses on the implementation of chain-like tree structures. The process of
sampling tree systems based on this chain-like structure is as follows:

Step 1. Sample x1 ∼ µ1 and θ1 ∼ ν1 for ν1 ∈ P(Sd−1) and µ1 ∈ P(Rd).
Step i. Sample xi = xi−1+ ti · θi−1 where ti ∼ µi and θi ∼ νi for µi ∈ P(R) and νi ∈ P(Sd−1).

We assume all µ’s and ν’s are independent, and let:

1. µ1 to be a distribution on a bounded subset of Rd, for instance, the uniform distribution on
the d-dimensional cube [−1, 1]d, i.e. U([−1, 1]d);

2. µi for i > 1 to be a distribution on a bounded subset of R, for example, the uniform
distribution on the interval [−1, 1], i.e. U([−1, 1]);

3. θn to be a distribution on Sd−1, for example, the uniform distribution U(Sd−1).

We derive a distribution, denoted by σ, over the space of all tree systems that can be sampled in
this way, denoted by T. The tree system shown in Figure 3 is an example of a tree system with a
chain-like structure.

A.3 RADON TRANSFORM ON SYSTEMS OF LINES

Denote L1(Rd) as the space of Lebesgue integrable functions on Rd with norm ∥ · ∥1. Let L ∈ Ld
k

be a system of k lines. A Lebesgue integrable function on L is a function f : L̄! R such that:

∥f∥L :=
∑
l∈L

∫
R
|f(tx, l)| dtx < ∞. (26)

Denote L1(L) as the space of Lebesgue integrable functions on L.

Denote C(Rd,∆k−1) as the space of continuous maps from Rd to the (k− 1)-dimensional standard
simplex ∆k−1 = {(al)l∈L : al ⩾ 0 and

∑
l∈L al = 1} ⊂ Rk. A map in C(Rd,∆k−1) is called

a splitting map. Let L ∈ Ld
k, α ∈ C(Rd,∆k−1), we define a linear operator Rα

L that transforms a
function in L1(Rd) to a function in L1(L). For f ∈ L1(Rd), define:

Rα
Lf : L̄ −! R

(x, l) 7−!

∫
Rd

f(y) · α(y)l · δ (tx − ⟨y − xl, θl⟩) dy (27)

The (old) Radon Transform for Systems of Lines Rα in (Tran et al., 2025d) is defined as follows:

Rα : L1(Rd) −!
∏

L∈Ld
k

L1(L)

f 7−! (Rα
Lf)L∈Ld

k
.

As shown in (Tran et al., 2025d), Rα is injective for all splitting maps α ∈ C(Rd,∆k−1).

A.4 TREE-SLICED WASSERSTEIN DISTANCE ON SYSTEMS OF LINES (TSW-SL)

Given the space of tree systems T, distribution σ on T, α ∈ C(Rd,∆k−1), the Tree-Sliced Wasser-
stein distance on Systems of Lines (Tran et al., 2025d) between µ, ν in P(Rd) is defined by

TSW-SL(µ, ν) =
∫
T

WdL,1(Rα
Lµ,Rα

Lν) dσ(L). (28)
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Figure 3: An illustration of constructing a tree system: Starting with a bunch of lines with no
structure (left), we consider the intersections of all pairs of lines (middle), then removing some of
the intersections to obtain a tree system (Right). There exists a unique path between any two points,
since we only allows the pass through the remained intersections.

TSW-SL is indeed a metric on P(Rd). The proof in (Tran et al., 2025d) primarily relies on the
injectivity of the (old) Radon Transform on Systems of Lines Rα.

B THEORETICAL PROOFS

B.1 PROOF OF PROPOSITION 3.1 AND PROPOSITION 3.2

Invariance and Equivariance Properties in Machine Learning. Equivariant networks (Cohen &
Welling, 2016) enhance generalization and improve sample efficiency by embedding task symme-
tries into the model architecture. They have shown considerable success in a range of domains such
as trajectory prediction (Walters et al., 2020), robotics (Simeonov et al., 2022), graph-based models
(Satorras et al., 2021; Tran et al., 2024a), functional networks (Tran et al., 2025a; 2024c; Vo et al.,
2024), etc. Utilizing equivariance has been found to boost performance, increase data efficiency,
and enhance robustness against out-of-domain generalization.

Proof. For 2-Wasserstein distance, recall that, for µ, ν ∈ P(Rd), we have

W2(µ, ν) = inf
π∈P(µ,ν)

(∫
Rd×Rd

∥x− y∥22 dπ(x, y)
) 1

2

. (29)

We need to show that: for g ∈ E(d),

W2(µ, ν) = W2(g♯µ, g♯ν). (30)

For g = (Q, a), the map g : Rd ! Rd is an affine map that preserves Euclidean norm ∥ · ∥2 and
det(Q) = 1. By applying change of variable, we have

W2(g♯µ, g♯ν) = inf
π∈P(g♯µ,g♯ν)

(∫
Rd×Rd

∥x− y∥22 dπ(x, y)
) 1

2

(31)

= inf
π∈P(µ,ν)

(∫
Rd×Rd

∥x− y∥22 d(g♯π)(x, y)
) 1

2

(32)

= inf
π∈P(µ,ν)

(∫
Rd×Rd

∥x− y∥22 dπ(g−1x, g−1y)

) 1
2

(33)

= inf
π∈P(µ,ν)

(∫
Rd×Rd

∥gx− gy∥22 dπ(x, y)
) 1

2

(34)

= inf
π∈P(µ,ν)

(∫
Rd×Rd

∥x− y∥22 dπ(x, y)
) 1

2

(35)

= W2(µ, ν). (36)

We finish the proof for 2-Wasserstein distance. For Sliced p-Wasserstein distance, we first show
that, for g = (Q, a) ∈ E(d), µ, ν ∈ P(Rd) and θ ∈ Sd−1,

Wp

(
Rfµ(·, θ),Rfν(·, θ)

)
= Wp

(
Rfg♯µ(·, Qθ),Rfg♯ν(·, Qθ)

)
(37)
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Indeed, we have

Rfg♯µ(t, Qθ) =

∫
Rd

fg♯µ(x) · δ(t− ⟨x,Qθ⟩) dx (38)

=

∫
Rd

fµ(g
−1x) · δ(t− ⟨x,Qθ⟩) dx (39)

=

∫
Rd

fµ(x) · δ(t− ⟨gx,Qθ⟩) dx (40)

=

∫
Rd

fµ(x) · δ(t− ⟨Qx+ a,Qθ⟩) dx (41)

=

∫
Rd

fµ(x) · δ(t−
〈
x+Q−1a, θ

〉
) dx (42)

=

∫
Rd

fµ(x) · δ(t−
〈
Q−1a, θ

〉
− ⟨x, θ⟩) dx (43)

= Rfµ(t−
〈
Q−1a, θ

〉
, θ). (44)

Using the closed-form of one dimensional Wasserstein distance, we have

Wp

(
Rfg♯µ(·, Qθ),Rfg♯ν(·, Qθ)

)
= Wp

(
Rfµ(· −

〈
Q−1a, θ

〉
, θ),Rfν(· −

〈
Q−1a, θ

〉
, θ)

)
(45)

= Wp

(
Rfµ(·, θ),Rfν(·, θ)

)
, (46)

where we leverage the translation invariant properties of the ground cost Lp-norm of Wp for the
above second row.

So Equation (37) holds. For the rest of the proof, we show that

SWp(µ, ν) = SWp(g♯µ, g♯ν). (47)

Indeed, we have

SWp(g♯µ, g♯ν) =

(∫
Sd−1

Wp
p(Rfg♯µ(·, θ),Rfg♯ν(·, θ)) dσ(θ)

) 1
p

(48)

=

(∫
Sd−1

Wp
p(Rfg♯µ(·, Qθ),Rfg♯ν(·, Qθ)) dσ(Qθ)

) 1
p

(49)

=

(∫
Sd−1

Wp
p(Rfg♯µ(·, Qθ),Rfg♯ν(·, Qθ)) dσ(θ)

) 1
p

(50)

=

(∫
Sd−1

Wp
p(Rfµ(·, θ),Rfν(·, θ)) dσ(θ)

) 1
p

(51)

= SWp(µ, ν). (52)

We finish the proof.

B.2 Rα
Lf IS INTEGRABLE

Proof. Let f ∈ L1(Rd). We show that ∥Rα
Lf∥L ⩽ ∥f∥1. Indeed,

∥Rα
Lf∥L =

∑
l∈L

∫
R
|Rα

Lf(tx, l)| dtx (53)

=
∑
l∈L

∫
R

∣∣∣∣∫
Rd

f(y) · α(y,L)l · δ (tx − ⟨y − xl, θl⟩) dy

∣∣∣∣ dtx (54)
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⩽
∑
l∈L

∫
R

(∫
Rd

|f(y)| · α(y,L)l · δ (tx − ⟨y − xl, θl⟩) dy

)
dtx (55)

=
∑
l∈L

∫
Rd

(∫
R
|f(y)| · α(y,L)l · δ (tx − ⟨y − xl, θl⟩) dtx

)
dy (56)

=
∑
l∈L

∫
Rd

|f(y)| · α(y,L)l ·
(∫

R
δ (tx − ⟨y − xl, θl⟩) dtx

)
dy (57)

=
∑
l∈L

∫
Rd

|f(y)| · α(y,L)l dy (58)

=

∫
Rd

|f(y)| ·
∑
l∈L

α(y,L)l dy (59)

=

∫
Rd

|f(y)| dy (60)

= ∥f∥1 < ∞. (61)

So, we have Rα
Lf ∈ L1(L). It implies the operator Rα

L : L1(Rd)! L1(L) is well-defined.

Clearly, Rα
L is a linear operator.

B.3 PROOF OF THEOREM 4.3

As we nontrivially expand the class of splitting maps from C(Rd,∆k−1) to C(Rd × Ld
k,∆k−1),

the proof presented in (Tran et al., 2025d) is not applicable to this larger class. By introducing
an invariance condition on the splitting maps, we provide a new proof for the injectivity of Rα as
follows.

Proof. Recall the notion of the original Radon Transform. Let R : L1(Rd) ! L1(R × Sd−1) be
the operator defined by: For f ∈ L1(Rd), we have

Rf(t, θ) =

∫
Rd

f(y) · δ(t− ⟨y, θ⟩) dy (62)

It is well-known that the Radon Transform R is a linear bijection (Helgason, 2011) and its inverse
R−1 is defined as

f(x) = R−1(Rf(t, θ)) (63)

=

∫
Sd−1

(Rf(⟨x, θ⟩ , θ) ∗ η) (⟨x, θ⟩) dθ, (64)

where the convolution kernel η satisfies that its Fourier transform η̂(ω) = |ω|.
Back to the problem. Recall that Ld

k is the collection of all systems of k lines in Rd × Sd−1,

Ld
k =

{
L = {(xj , θj)}kj=1 : xj ∈ Rd, θj ∈ Sd−1

}
=
(
Rd × Sd−1

)k
. (65)

For an index i such that 1 ⩽ i ⩽ k and a direction θ ∈ Sd−1, define

Ld
k(i, θ) :=

{
L = {(xj , θj)}kj=1 ∈

(
Rd × Sd−1

)k
: θi = θ

}
. (66)

In words, Ld
k(i, θ) is a subcollection of Ld

k consists of all systems of k lines with the direction of the
ith line is equal to θ. It is clear that Ld

k is the disjoint union of all Ld
k(i, θ) for θ ∈ Sd−1,

Ld
k =

⊔
θ∈Sd−1

Ld
k(i, θ). (67)

We have some observations on these subcollections.
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Result 1. Each g = (Q, a) ∈ E(d), define a bijection between Ld
k(i, θ) and Ld

k(i, Q · θ). More
precisely, for the map ϕg , defined by

ϕg : Ld
k(i, θ) −! Ld

k(i, Q · θ) (68)

L = {(xj , θj)}kj=1 7−! gL = {(Q · xj + a,Q · θj)}kj=1, (69)

it is well-defined and is a bijection. This can be directly verified by definitions.

Result 2. For all 1 ⩽ i ⩽ k, y, y′ ∈ Rd and θ, θ′ ∈ Sd−1 , we have∫
Ld
k(i,θ)

α(y,L)i dL =

∫
Ld
k(i,θ

′)

α(y′,L)i dL. (70)

Note that, the integrations are taken over Ld
k(i, θ) and Ld

k(i, θ
′) with measures induced from the

measure of Ld
k. We show that Equation (70) holds. Note that, for θ, θ′ ∈ Sd−1, there exists an

orthogonal transformation Q ∈ O(d) such that Q·θ = θ′. Let a = y′−Q·y, and g = (Q, a) ∈ E(d).
By this definition, we have

gy = Q · y + a = Q · y + y′ −Q · y = y′. (71)

From Result 1, we have a corresponding bijection ϕg from Ld
k(i, θ) to Ld

k(i, θ
′). We have∫

Ld
k(i,θ

′)

α(y′,L)i dL =

∫
Ld
k(i,θ)

α(y′, gL)i d(gL) (change of variables) (72)

=

∫
Ld
k(i,θ)

α(gy, gL)i d(gL) (since y′ = gy) (73)

=

∫
Ld
k(i,θ)

α(y,L)i d(gL) (since α is E(d)-invariant) (74)

=

∫
Ld
k(i,θ)

α(y,L)i dL (since |det(Q)| = 1) (75)

We finish the proof for Result 2.

Result 3. From Result 2, for all 1 ⩽ i ⩽ k, we can define a constant ci such that

ci :=

∫
Ld
k(i,θ)

α(y,L)i dL. (76)

for all y ∈ Rd and θ ∈ Sd−1. Then

c1 + c2 + . . .+ ck = 1. (77)

In particular, there exists 1 ⩽ i ⩽ k such that ci is non-zero. To show this, first, recall that Ld
k is the

disjoint union of all Ld
k(i, θ) for θ ∈ Sd−1,

Ld
k =

⊔
θ∈Sd−1

Ld
k(i, θ), (78)

so we have ∫
Ld
k

α(y,L)i dL =

∫
Sd−1

(∫
Ld
k(i,θ)

α(y,L)i dL

)
dθ (79)

=

∫
Sd−1

ci dθ (80)

= ci. (81)

Then

c1 + c2 + . . . ck =

k∑
j=1

∫
Ld
k

α(y,L)j dL (82)
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=

∫
Ld
k

 k∑
j=1

α(y,L)j

 dL (83)

=

∫
Ld
k

1 dL (84)

= 1. (85)

We finish the proof for Result 3.

Consider a splitting map α in C(Rd × Ld
k,∆k−1) that is E(d)-invariant. By Result 3, let 1 ⩽ i ⩽ k

is the index that

ci =

∫
Ld
k(i,θ)

α(y,L)i dL ≠ 0. (86)

Now, for a system of lines L in Ld
k, we denote the ith line by lL:i and its source by xL:i. For a

function f ∈ L1(Rd), define a function g ∈ L1(R× Sd−1) as follows

g : R× Sd−1 −! R (87)

(t, θ) 7−!

∫
Ld
k(i,θ)

Rα
Lf
(
t− ⟨xL:i, θ⟩ , lL:i

)
dL (88)

From the definition of Rα
Lf ,

Rα
Lf : L̄ −! R (89)

(x, l) 7−!

∫
Rd

f(y) · α(y,L)l · δ (tx − ⟨y − xl, θl⟩) dy, (90)

we have

g(t, θ) =

∫
Ld
k(i,θ)

Rα
Lf
(
t− ⟨xL:i, θ⟩ , lL:i

)
dL (91)

=

∫
Ld
k(i,θ)

(∫
Rd

f(y) · α(y,L)i · δ (t− ⟨xL:i, θ⟩ − ⟨y − xL:i, θ⟩) dy

)
dL (92)

=

∫
Ld
k(i,θ)

(∫
Rd

f(y) · α(y,L)i · δ (t− ⟨xL:i + y − xL:i, θ⟩) dy

)
dL (93)

=

∫
Ld
k(i,θ)

(∫
Rd

f(y) · α(y,L)i · δ (t− ⟨y, θ⟩) dy

)
dL (94)

=

∫
Rd

(∫
Ld
k(i,θ)

f(y) · α(y,L)i · δ (t− ⟨y, θ⟩) dL

)
dy (95)

=

∫
Rd

f(y) · δ (t− ⟨y, θ⟩) ·

(∫
Ld
k(i,θ)

α(y,L)i dL

)
dy (96)

= ci ·
∫
Rd

f(y) · δ (t− ⟨y, θ⟩) dy (97)

= ci · Rf(t, θ). (98)

Let f ∈ KerRα, which means Rα
Lf = 0 for all L ∈ Ld

k. So g = 0 ∈ L1(R × Sd−1), and since
ci ̸= 0, it implies Rf = 0 ∈ L1(R × Sd−1). Additionally, recall that the Radon Transform R is a
bijection, we conclude that f = 0 ∈ L1(Rd).

Hence, Rα is injective. The proof is completed.

Remark 9. A formal proof would require Haar measure theory for compact groups, but we simplify
this for brevity and relevance to the scope of the paper.
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Remark 10. The injectivity still hold if we restrict Ld
k to a non-empty subset of Ld

k that is closed
under action of E(d). In concrete, let A be a non-empty subset of Ld

k satisfies that gL ∈ A for all
g ∈ E(d) and L ∈ A. Let f ∈ L1(Rd) such that Rα

Lf = 0 for all L ∈ A. Using the same argument,
we can demonstrate that f = 0. In particular, for T and T⊥ are introduced in Subsection 5.2, since
both T and T⊥ are closed under action of E(d), we see that a function f ∈ L1(Rd) is equal to 0, if
Rα

Lf = 0 for all L ∈ T, or for all L ∈ T⊥.

B.4 PROOF OF THEOREM 5.2

Proof. We show that

Db-TSW(µ, ν) =

∫
T

WdL,1(Rα
Lµ,Rα

Lν) dσ(L)., (99)

is a metric on P(Rd).

Positive definiteness. For µ, ν ∈ P(Rn), it is clear that Db-TSW(µ, µ) = 0 and Db-TSW(µ, ν) ⩾
0. If Db-TSW(µ, ν) = 0, then WdL,1(Rα

Lµ,Rα
Lν) = 0 for all L ∈ T. Since WdL,1 is a metric on

P(L), we have Rα
Lµ = Rα

Lν for all L ∈ T. By the remark at the end of Appendix B.3, it implies
that µ = ν.

Symmetry. For µ, ν ∈ P(Rn), we have:

Db-TSW(µ, ν) =

∫
T

WdL,1(Rα
Lµ,Rα

Lν) dσ(L) (100)

=

∫
T

WdL,1(Rα
Lν,Rα

Lµ) dσ(L) = Db-TSW(ν, µ). (101)

So Db-TSW(µ, ν) = TSW-SL(ν, µ).

Triangle inequality. For µ1, µ2, µ3 ∈ P(Rn), we have:

Db-TSW(µ1, µ2) + Db-TSW(µ2, µ3) (102)

=

∫
T

WdL,1(Rα
Lµ1,Rα

Lµ2) dσ(L) +
∫
T

WdL,1(Rα
Lµ2,Rα

Lµ3) dσ(L) (103)

=

∫
T

(
WdL,1(Rα

Lµ1,Rα
Lµ2) dσ(L) + WdL,1(Rα

Lµ2,Rα
Lµ3)

)
dσ(L) (104)

⩾
∫
T

WdL,1(Rα
Lµ1,Rα

Lµ3) dσ(L) (105)

= Db-TSW(µ1, µ3). (106)

So the triangle inequality holds for Db-TSW.

In conclusion, Db-TSW is a metric on the space P(Rd).

Db-TSW is E(d)-invariant. We need to show that Db-TSW is E(d)-invariant, which means for
all g ∈ E(d) such that

Db-TSW(µ, ν) = Db-TSW(g♯µ, g♯ν), (107)

where g♯µ, g♯ν as the pushforward of µ, ν via Euclidean transformation g : Rd ! Rd, respectively.
For a tree system L ∈ T such that L =

{
li = (xi, θi)

}k
i=1

, we have

gL =
{
gli = (Q · xi + a,Q · θi)

}k
i=1

. (108)

For g = (Q, a), note that |det(Q)| = 1, we have

Rα
gL(g♯µ)(gx, gl) =

∫
Rd

(g♯µ)(y) · α(y, gL)l · δ (tgx − ⟨y − xgl, θgl⟩) dy (109)
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=

∫
Rd

µ(g−1y) · α(y, gL)l · δ (tx − ⟨y − xgl, θgl⟩) dy (110)

=

∫
Rd

µ(g−1gy) · α(gy, gL)l · δ (tx − ⟨gy − xgl, θgl⟩) d(gy) (111)

=

∫
Rd

µ(y) · α(y,L)l · δ (tx − ⟨gy − xgl, θgl⟩) dy (112)

=

∫
Rd

µ(y) · α(y,L)l · δ (tx − ⟨Q · y + a−Q · xl − a,Q · θl⟩) dy (113)

=

∫
Rd

µ(y) · α(y,L)l · δ (tx − ⟨Q · y −Q · xl, Q · θl⟩) dy (114)

=

∫
Rd

µ(y) · α(y,L)l · δ (tx − ⟨y − xl, θl⟩) dy (115)

= Rα
Lµ(x, l) (116)

Similarly, we have

Rα
gL(g♯ν)(gx, gl) = Rα

Lν(x, l). (117)

Moreover, g induces an isometric transformation L! gL, so

WdL,1(Rα
Lµ,Rα

Lν) = WdgL,1(Rα
gLg♯µ,Rα

gLg♯ν). (118)

Finally, we have

Db-TSW(g♯µ, g♯ν) =

∫
Ld
k

WdL,1(Rα
Lg♯µ,Rα

Lg♯ν) dσ(L) (119)

=

∫
T

WdgL,1(Rα
gLg♯µ,Rα

gLg♯ν) dσ(gL) (120)

=

∫
T

WdL,1(Rα
Lµ,Rα

Lν) dσ(L) (121)

= Db-TSW(µ, ν) (122)

We conclude that Db-TSW is E(d)-invariant.

Remark 11. We will omit the ”almost-surely conditions” in the proofs, as they are simple to verify
and their inclusion would only introduce unnecessary complexity.

C EXPERIMENTAL DETAILS

C.1 ALGORITHM OF DB-TSW

Algorithm 1 Distance-based Tree-Sliced Wasserstein distance.

Input: Probability measures µ and ν in P(Rd), number of tree systems L, number of lines in tree
system k, space of tree systems T or T⊥, splitting maps α with tuning parameter δ ∈ R.
for i = 1 to L do

Sampling x ∈ Rd and θ1, . . . , θk
i.i.d∼ U(Sd−1).

if space of tree system is T ⊥ then
Orthonormalize θ1, . . . , θk.

end if
Contruct tree system Li = {(x, θ1), . . . , (x, θk)}.
Projecting µ and ν onto Li to get Rα

Li
µ and Rα

Li
ν.

Compute ̂Db-TSW(µ, ν) = (1/L) · WdLi
,1(Rα

Li
µ,Rα

Li
ν).

end for
Return: ̂Db-TSW(µ, ν).
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C.2 DENOISING DIFFUSION MODELS

Diffusion Models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have gained
significant attention for their ability to generate high-quality data. In this experiment, we explore
how these models work and the improvements introduced by our method. The diffusion process
starts with a sample from distribution q(x0) and gradually adding Gaussian noise to data x0 over T
steps, described by q(x1:T |x0) =

∏T
t=1 q(xt|xt−1), where q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI)

with a predefined variance schedule βt.

The denoising diffusion model aim to learns the reverse diffusion process to effectively recon-
struct the original data from noisy observations. The training process of the denoising diffusion
model aim to estimate the parameters θ of the reverse process, which is defined by pθ(x0:T ) =

p(xT )
∏T

t=1 pθ(xt−1|xt), where pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I). The standard training ap-

proach uses maximum likelihood by optimizing the evidence lower bound (ELBO), L̃ ⩽ pθ(x0),
which aims to minimize the Kullback-Leibler divergence between the true posterior and the model’s
approximation of the reverse diffusion process across all time steps:

L̃ = −
T∑

t=1

Eq(xt) [KL(q(xt−1|xt)||pθ(xt−1|xt))] + C,

where KL refers to the Kullback-Leibler divergence, and C represents a constant term.

Denoising Diffusion GANs. Original diffusion models, while producing high-quality and diverse
samples, are limited by their slow sampling process, which hinders their applications in real-world
scenarios. Denoising diffusion GANs (Xiao et al., 2022) address this limitation by modeling each
denoising step with a multimodal conditional GAN, enabling larger denoising steps and thus signifi-
cantly reducing the total number of steps required to 4, resulting in sampling speeds up to 2000 times
faster than traditional diffusion models while maintaining competitive sample quality and diversity.
Denoising diffusion GANs introduce an implicit denoising model:

pθ(xt−1|xt) =

∫
pθ(xt−1|xt, ϵ)Gθ(xt, ϵ)dϵ, ϵ ∼ N (0, I).

Xiao et al. (2022) employ adversarial training to optimize the model parameters θ. Its loss is defined
by:

min
ϕ

T∑
t=1

Eq(xt)[Dadv(q(xt−1|xt)||pϕ(xt−1|xt))],

where Dadv is the adversarial loss. Nguyen et al. (2024b) replace the adversarial loss by the aug-
mented generalized Mini-batch Energy distance. For two distributions µ and ν, with a mini-batch
size n ⩾ 1, the augmented generalized mini-batch Energy distance (AGME) using a Sliced Wasser-
stein (SW) kernel is expressed as:

AGME2
b(µ, ν; g) = GME2

b(µ̃, ν̃),

where µ̃ = f#µ and ν̃ = f#ν with f(x) = (x, g(x)) for a nonlinear function g : Rd ! R. GME is
the generalized Mini-batch Energy distance (Salimans et al., 2018), defined as

GME2
b(µ, ν) = 2E[D(PX , PY )]− E[D(PX , P ′

X)]− E[D(PY , P
′
Y )],

where X,X ′ i.i.d.∼ µ⊗m and Y, Y ′ i.i.d.∼ ν⊗m, with PX = 1
m

∑m
i=1 δxi

, X = (x1, . . . , xm). and
D are any valid distance. Here we replace D by TSW variants (including our proposed Db-TSW)
and SW variants.

Setting We use the same architecture and hyperparameters as in Nguyen et al. (2024b) and train
our models over 1800 epochs. For all our methods, including Db-TSW-DD⊥ and Db-TSW-DD, we
use L = 2500, k = 4, δ = 10. For vanilla SW and SW variants, we follow Nguyen et al. (2024b) to
use L = 10000.
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Figure 4: Logarithm of Wasserstein Distance over 3 runs on Gaussian 20d dataset.

Table 3: Average Wasserstein distance between source and target distributions of 10 runs on 25
Gaussians dataset. All methods use 100 projecting directions.

Methods Iteration Time/Iter(s)
500 1000 1500 2000 2500

SW 1.61e-1 9.52e-2 3.44e-2 2.56e-2 2.20e-2 0.002
MaxSW 5.09e-1 2.36e-1 1.33e-1 9.70e-2 8.48e-2 0.144
SWGG 3.10e-1 1.17e-1 3.38e-2 3.58e-3 2.54e-4 0.002
LCVSW 3.38e-1 6.64e-2 3.06e-2 3.06e-2 3.02e-2 0.001
TSW-SL 3.49e-1 9.06e-2 2.96e-2 1.20e-2 3.03e-7 0.002
Db-TSW-DD 3.84e-1 1.13e-1 2.48e-2 2.96e-3 1.00e-7 0.002
Db-TSW-DD⊥ 3.82e-1 1.11e-1 2.73e-2 1.45e-3 9.97e-8 0.003

C.3 GRADIENT FLOW

Additional Results on Multi-modal Synthetic Dataset. Table 3 showcases the performance of
our methods on the Gradient Flow task using the 25 Gaussians (multi-modal distribution) dataset.
Our approach consistently achieves the smallest Wasserstein distance, demonstrating robust perfor-
mance across various dataset types, including non-linear, multi-modal, and high-dimensional cases.
These results indicate that our methods outperform baseline models, further highlighting their effec-
tiveness across different challenging scenarios.

Hyperparameters. For Db-TSW⊥ and Db-TSW, we use L = 25, k = 4, δ = 10 for all our
experiments. For the baselines of SW and SW-variants, we use L = 100. The number of supports
generated for each distribution in all datasets is 100.

We follow Mahey et al. (2023) to set the global learning rate for all baselines to be 5e-3 for all
datasets. For our methods, we use the global learning rate of 5e-3 for 25 Gaussians and Swiss Roll
datasets and 5e-2 for Gaussian 20d.

Gaussian 20d detail results. We show the detail result of Db-TSW and Db-TSW⊥ in Table 4 and
visualize the result in Figure 4. Figure 4 reveals distinct performance patterns among different meth-
ods, with TSW variants showing faster convergence rate. Notably, Db-TSW⊥ achieves the fastest
convergence, followed by Db-TSW and TSW-SL, all exhibiting a sharp performance improvement
around iteration 1500. While these methods show some fluctuation mid-process as indicated by the
shaded variance regions, they maintain remarkable stability in the final iterations (iteration 2000–
2500). These results are further supported by the quantitative mean and standard deviation values
provided in Table 4.
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Table 4: Wasserstein distance between source and target distributions of 3 runs on Gaussian 20d
dataset. All methods use 100 projecting directions.

Methods Iteration

500 1000 1500 2000 2500

SW 17.57 ± 2.4e-1 15.86 ± 3.1e-1 13.92 ± 3.7e-1 11.70 ± 4.2e-1 9.22 ± 3.8e-1
SWGG 16.53 ± 1.2e-1 16.64 ± 1.4e-1 16.65 ± 1.7e-1 16.63 ± 1.6e-1 16.64 ± 1.5e-1
LCVSW 16.86 ± 4e-1 14.36 ± 3.4e-1 11.68 ± 3.3e-1 8.80 ± 4e-1 5.91 ± 2.3e-1
TSW-SL 12.61 ± 3e-1 5.68 ± 3.8e-1 6.90e-1 ± 8e-2 6.83e-4 ± 2.6e-5 4.22e-4 ± 1.2e-5
Db-TSW 12.46 ± 4.6e-1 5.12 ± 3.9e-1 4.8e-1 ± 3.3e-1 6.08e-4 ± 6.7e-5 3.84e-4 ± 2.2e-5
Db-TSW⊥ 12.15 ± 3.5e-1 4.67 ± 3.6e-1 1.22e-1 ± 1.6e-1 5.74e-4 ± 2e-5 3.78e-4 ± 1.4e-5

Figure 5: Comparison of color transferred image.

C.4 COLOR TRANSFER

Color transfer. Given a source image and a target image, we represent their respective color
palettes as matrices X and Y , where each matrix is characterized by dimensions n × 3 (with n
denoting the number of pixels). The source and target images employed in this analysis are derived
from the work of Nguyen et al. (2024a). This curve is initialized at Z(0) = X and is terminated
at Z(T ) = Y . Subsequently, we reduce the number of distinct colors in both images to 1000
utilizing K-means clustering. We then trace the trajectory between the empirical distributions of
colors in the source image (PX ) and the target image (PY ) through an approximate Euler integration
scheme. Given that the RGB color values are constrained within the range {0, . . . , 255}, a rounding
procedure is implemented at each Euler step during the final iterations.

Hyperparameters. The total number of iterations for all methodologies is standardized at 2000.
A step size of 1 is utilized for all baseline methods, while a step size of 17 is adopted for TSW-SL,
Db-TSW-SL⊥, and Db-TSW-SL. For the sliced Wasserstein variants, we set L = 100, whereas in
TSW-SL and our proposed methods, we utilize L = 33 and k = 3 to ensure a consistent and fair
comparison.

Qualitative results. Figure 6 shows the qualitative results of our methods, including Db-TSW-DD
and Db-TSW-DD⊥.
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(a) Generated images of Db-TSW-DD (b) Generated images of Db-TSW-DD⊥

Figure 6: Comparison of generated images from Db-TSW-DD and Db-TSW-DD⊥ methods.

C.5 COMPUTATIONAL INFRASTRUCTURE

The experiments of gradient flow and color transfer were carried out on a single NVIDIA A100
GPU. Each experiments for gradient flow take roughly 0.5 hours. The runtime for color transfer
experiments is 5 minutes.

In contrast, the denoising diffusion experiments were executed in parallel on two NVIDIA A100
GPUs, with each run lasting around 81.5 hours.

C.6 COMPUTATION AND MEMORY COMPLEXITY OF DB-TSW

Since GPUs are now standard in machine learning workflows due to their parallel processing ca-
pabilities, and Db-TSW is primarily intended use for deep learning tasks like generative modeling
and optimal transport problems which are typically GPU-accelerated, we provide both complexity
analysis and empirical runtime/memory of Db-TSW with GPU settings.

Computation and memory complexity of Db-TSW. Assume n ⩾ m, the computational com-
plexity and memory complexity of Db-TSW are O(Lknd+ Lkn log n) and O(Lkn+ Lkd+ nd),
respectively. In details, the Db-TSW algorithm will have there most costly operations as described
in Table 5:

Table 5: Complexity Analysis of Db-TSW

Operation Description Computation Memory
Projection Matrix multiplication

of points and lines
O(Lknd) O(Lkd+ nd)

Distance-based
weight splitting

Distance calculation
and softmax

O(Lknd) O(Lkn+ Lkd+ nd)

Sorting Sorting projected co-
ordinates

O(Lkn log n) O(Lkn)

Total O(Lknd+ Lkn log n) O(Lkn+ Lkd+ nd)

The kernel fusion trick: In the table, the distance-based weight splitting operation involves: (1)
finding the distance vector from each point to each line, (2) calculating the distance vectors’ norms,
and (3) applying softmax over all lines in each tree. The first step costs O(Lknd) computation and
O(Lknd) memory. Similarly, the second step costs O(Lkdn) computation and O(Lknd) memory.
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Lastly, the final step costs O(Lkn) computation and O(Lkn) memory. Therefore, this operation
theoretically costs O(Lknd) in terms of both computation and memory. However, we leverage the
automatic kernel fusion technique provided by torch.compile (Torch document) to “fuse” all these
three steps into one single big step, thus contextualizing the distance vectors of size Lkn × d in a
shared GPU memory instead of global memory. In the end, we only need to store two input matrices
of size Lk × d (a line matrix) and n × d (a support matrix), along with one output matrix of size
Ln × k (a split weight), which helps reduce the memory stored in GPU global memory to only
O(Lkn+ Lkd+ nd).

C.7 RUNTIME AND MEMORY ANALYSIS

In this section, we have conducted a runtime comparison of Db-TSW with respect to the number of
supports and the support’s dimension in a single Nvidia A100 GPU. We fix L = 100 and k = 10
for all settings and varies N ∈ {500, 1000, 5000, 10000, 50000} and d ∈ {10, 50, 100, 500, 1000}.

Runtime evolution. In Figure 7a, the relationship between runtime and number of supports demon-
strates predominantly linear scaling, particularly beyond 10000 supports, though there’s subtle non-
linear behavior in the early portions of the curves for higher dimensions. The performance gap be-
tween high and low-dimensional cases widens as the number of supports increases, with d = 1000
taking approximately twice the runtime of d = 500, suggesting a linear relationship between dimen-
sion and computational time.

Memory evolution. In Figure 7b the memory consumption analysis of Db-TWD reveals several
key patterns which align with the theoretical complexity analysis and suggest predictable scaling
behavior. Firstly, there is a clear linear relationship between memory usage and the number of
samples across all dimensions. Secondly, in higher-dimensional cases (d = 100, 500, 1000), the
memory requirements exhibit a proportional relationship with the dimension, as evidenced by the
approximately equal spacing between these curves. Finally, for lower dimensions (d = 10, 50, 100),
the memory curves nearly overlap due to the dominance of the Lkn term in the memory complexity
formula O(Lkn+Lkd+nd), where the number of supports components (Lkn) has a greater impact
than the dimensional components (Lkd and nd) when L = 100 and k = 10.
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Figure 7: Runtime and memory evolution of Db-TSW with respect to different dimension.

C.8 ABLATION STUDY FOR L, k AND δ

In this section, we include the ablation study for L, k, and δ on the Gradient flow task. We chose the
Gaussian 100d dataset. When not chosen to vary, we used the default values: number of projections
n = 100, learning rate lr = 0.005, number of iterations niter = 5000, number of trees L = 500,
number of lines per tree k = 2, and coefficient δ = 10. We fixed all other values while varying
k ∈ {2, 4, 16, 64, 128}, L ∈ {100, 500, 1000, 1500, 2000, 3000}, and δ ∈ {1, 2, 5, 10, 20, 50, 100}.

Ablation study for k. From Figure 8a, the ablation analysis of the number of lines k reveals an
interesting relationship between the number of lines per tree (k) and the algorithm’s performance.
When fixing the number of trees (L), configurations with fewer lines per tree demonstrate faster
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convergence to lower Wasserstein distances. This behavior is reasonable because increasing k ex-
pands the space of tree systems, which in turn requires more samples to attain similar performance
levels. For instance, k = 2 and k = 4 configurations reach lower Wasserstein distances compared
to k = 64 and k = 128. Additionally, as demonstrated in the runtime and memory analysis section
C.7, configurations with higher number of lines per tree incur greater computational and memory
costs while yielding suboptimal performance.

Ablation study for L. From Figure 8b, the convergence analysis demonstrates a clear relationship
between the number of trees (L) and the algorithm’s performance. When fixing the number of lines
per tree (k), configurations with more trees achieve significantly better convergence, reaching much
lower Wasserstein distances. This behavior is expected because increased sampling in the Monte
Carlo method used in Db-TSW leads to a more accurate approximation of the distance. Specifically,
comparing L = 3000 and L = 100, we observe that L = 3000 achieves a final Wasserstein distance
of 10−5, while L = 100 only reaches 102. However, there is a computation-accuracy trade-off since
more trees involves more computation and memory.

Ablation study for δ. From Figure 8c, the analysis of different δ values indicates variations in the
algorithm’s performance. Moderate values of delta (δ = 1 − 10) enhance the convergence speed
compared to δ = 1, as they effectively accelerate the optimization process. However, when delta
becomes too large (δ = 20− 100), the converged speed decreased.
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Figure 8: Ablation study for k, L, and δ on Gaussian 100d dataset.
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