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Abstract

This paper presents a Bayesian nonparametric (BNP) method based on an innova-1

tive mathematical concept of the permutree, which has recently been introduced in2

the field of combinatorics. Conventionally, combinatorial structures such as permu-3

tations, trees, partitions and binary sequences have frequently appeared as building4

blocks of BNP models, and these models have been independently researched and5

developed. However, in practical situations, there are many complicated problems6

that require master craftsmanship to combine these individual models into a single7

giant model. Therefore, a framework for modelling such complex issues in a unified8

manner has continued to be demanded. With this motivation, this paper focuses for9

the first time in the context of machine learning on a tool called the permutree. It10

encompasses permutations, trees, partitions, and binary sequences as its special11

cases, while also allowing for interpolations between them. We exploit the fact that12

permutrees have a one-to-one correspondence with special permutations to propose13

a stochastic process on permutrees, and further propose a data modeling strategy.14

As a significant application, we demonstrate the potential for phylogenetic analysis,15

which involve coalescence, recombination, multiple ancestors, and mutation.16

1 Introduction17

Various combinatorial structures - Permutations, trees, partitions, and binary sequences have been18

frequently utilized in Bayesian modeling, and conventionally, various models have been studied19

separately for each subject. Permutations have been used in a wide range of applications such20

as Bayesian ranking [101, 63, 110, 73], matrix reordering [70, 81, 99], and the traveling salesman21

problem [102, 17, 105]. Various random permutation models, such as the Mallows model [54, 12, 16],22

the permuton models [37, 7, 51, 6] and the modified Chinese restaurant process [57], have been23

employed in Bayesian modeling. Trees are typically used for hierarchical clustering [22, 21] and24

multiple resolution regression [47, 25, 20]. In the Bayesian literature, the Dirichlet diffusion tree [62,25

45], the Mondrian process [88, 87] and the Pólya tree [56, 48, 27, 15] are particularly popular models.26

Partitions and binary sequences are fundamental tools in machine learning, with numerous examples27

of their usage in clustering, factor analysis, feature selection, and more. For the modeling of partitions28

and binary sequences, the Dirichlet process mixture model [23, 79, 100, 59], the Pitman-Yor process29

mixture model [76], the Chinese restaurant process [74], and the stick-breaking process [89] for30

random partitions, and the beta-Bernoulli process and the Indian buffet process [29, 95, 93] for31

random binary sequences have frequently been employed.32

Combination of different combinatorial structures - In real-world applications of machine learning,33

it is often a useful strategy to combine several different combinatorial structures to model data, rather34

than using only one combinatorial structure. For example, the combination of partitioning and factor35

models is particularly popular, including the infinite factorial hidden Markov models [24, 97], the36

subset infinite relational model [39], the infinite latent factor model with the infinite mixuture model37

[111, 112] and the kernel beta process [83]. As another example, the combination of tree structures38
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Figure 1: Overview of new combinatorial structures invented in [75]. Left: A permutree that is a
combinatorial object that includes the concepts of permutations, binary trees, clusters, factors, etc.,
but can also interpolate between them. The permutree is, as defined, a “directed” tree, but for visibility,
the direction of the edges from Parent to Child is omitted in the diagrams. Middle: Variant concepts
required to represent stochastic processes on permutrees indirectly through decorated permutations
in Section 3. Right: Special cases of permutrees. Remark 2.1 provides details on each interpretation.

and partitioning have also been actively studied, including the hierarchical Dirichlet process [94], the39

nested Dirichlet process [84, 64], their hybrid models [2, 71, 50], the infinite context-free grammar40

[49] and the tree-structured stick-breaking process [1, 65]. Furthermore, permutations are occasionally41

employed in conjunction with clustering to analyze relational data [61]. As we have discussed so far,42

this kind of strategy of combining multiple models into a single model is one promising direction for43

research and development. However, advancing research in this direction necessitates the evaluation44

of an enormous number of models in a combinatorial fashion, which becomes infeasible due to the45

exponentially increasing number of potential combinations. Consequently, we are striving to initiate46

a paradigm shift towards exploring an entirely new approach capable of unifying these models.47

Key insight - In our pursuit of creating a unified model capable of encompassing permutations, trees,48

partitions, and binary sequences, we are incorporating the concept of permutrees [75], which has49

recently emerged in the field of combinatorics, into the realm of Bayesian nonparametric (BNP)50

machine learning. Permutrees not only serve as a framework that includes permutations, trees,51

partitions, and binary sequences as distinct cases but also exhibit intriguing properties of interpolation52

between them. Figure 1 (a)-(d) provides a concise visual representation of the key characteristics.53

Our contributions - The main contribution of this paper is to produce, by using the concept of54

permutrees, a stochastic process that can represent combinatorial structures such as permutations,55

binary trees, partitions and binary sequences in a unified manner for the first time. Section 356

exploits the one-to-one correspondence between permutations and certain permutations using a57

two-dimensional marked point process to construct this process, which we call a permutree process.58

Section 4 derives a data modelling strategy using this stochastic process by analogy with the stick-59

breaking process that is frequently used in BNP machine learning. Section 5 demonstrates the60

application of phylogenetic analysis of DNA sequence data dealing with multiple biological events61

such as coalescence, recombination, mutation and multiple ancestry in a unified manner.62

2 Preliminaries: Permutree and related objects63

Permutree [75] - A permutree is a new mathematical tool invented recently in the field of combi-64

natorics, which not only represent permutations, trees, partitions, and binary sequences as special65

cases, but can also interpolate between them [75]. Let us begin with the definition of a permutree.66

We consider a directed tree T with a vertex set V of n (n ∈ N) vertices of degree at least 2, and a set67

of terminal nodes of degree 1 (See also Figure 1 (a)). For technical reasons (discussed immediately68

below), we dare to pay particular and explicit attention here to the set V of the “interior vertices”69

(i.e., vertices of degree at least 2) other than the terminal nodes. Each vertex v ∈ V is assigned70

a natural number p(v) as a label, using the bijective vertex labeling (one-to-one correspondence)71

p : V→ [n] := {1, 2, . . . , n} based on the following permutree requirements (Definition 1 in [75]):72

(C1) Each vertex v ∈ V has one or two parents, and one or two children.73
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(C2) If a vertex v has a left parent (or child), then all labels in the subtree of the left ancestor74

(or descendant) of v are smaller than p(v). If v has a right parent (or child), then all labels75

in the subtree of the right ancestor (or descendant) of v are greater than p(v).76

A directed tree T that satisfies the above requirements can be expressed more intuitively and clearly77

by introducing the notion of decorations to the vertices V. See also Figure 1 (e). We introduce78

the n-tuple decorations δ(T) := (δ(T)1, . . . , δ(T)n) ∈ {�,�,6,7}n, defined as follows: (i)79

δ(T)p(v) = � if v has one parent and one child, (ii) δ(T)p(v) = � if v has two parents and two80

children, (iii) δ(T)p(v) = 6 if v has one parent (lower in Figure 1 (e)) and two children (upper),81

and (iv) δ(T)p(v) = 7 if v has two parents (lower) and one child (upper). The symbolic feature of82

permutrees can represent various combination objects in a unified manner as follows:83

Remark 2.1. (See Example 4 in [75].) Permutation - Permutrees with decoration �n have a one-to-84

one correspondence with permutations of [n]. For example, by reading the horizontal labels in the85

order of the natural number of vertical labels, Figure 1 (i) represents a permutation 436152. Binary86

tree - Permutrees with decoration 7n have a one-to-one correspondence with rooted planar binary87

trees on n vertices. See Figure 1 (j) for an example. Cambrian tree - Permutrees with decoration88

{6,7}n are exactly the Cambrian trees proposed in [82, 13]. See Figure 1 (k) for an example.89

Binary sequence - Permutrees with decoration �n have a one-to-one correspondence with binary90

sequences with length n− 1. The ith element of the binary sequence is determined according to the91

following procedure: for any i ∈ [n − 1], there exists p(v) = i and p(w) = i + 1, and if v is the92

parent of w, output 1, otherwise output 0. See Figure 1 (l) for 10010 as an example.93

Now that we have summarized the important property of permutrees, we will describe the findings94

necessary to construct a stochastic process on a permutree, which is the main focus of this paper. As95

a motivation for describing the following findings, imagine actually drawing an instance of permutree96

on a hand-drawn blackboard. At this point, we notice that the horizontal positional relationship of97

vertices V is explicitly given by the natural number label p(· ∈ V), however, the vertical positional98

relationship is still ambiguous (In Figure 1, (f) is identical to (g) in terms of the permutree, but distinct99

in terms of the increasing tree). Hence, in order to construct a stochastic process on permutrees in100

a concise and clear manner, a mechanism to control the vertical positioning of the vertices of the101

permutrees is required. With this motivation in mind, we introduce two useful notions, an increasing102

tree (Figure 1 (g)) and a leveled permutree (Figure 1 (h)).103

Leveled permutree - To define the leveled permutree, we start by introducing an additional notion104

of an increasing tree. We consider a directed tree T with vertex set V. Each vertex v ∈ V is105

assigned a natural number label q(v), using the bijective vertex labeling (one-to-one correspondence)106

q : V→ [n] such that, if v ∈ V is the parent of w ∈ V, then q(v) < q(w) is satisfied. Intuitively,107

the function q serves to label the vertices V from 1 to n vertically from bottom to top (Figure 1 (g)).108

Then, a leveled permutree is a directed tree T with a vertex set V endowed with two bijective vertex109

labelings p, q : V→ [n] which respectively define a permutree and an increasing tree. By using two110

types of labels p and q, the horizontal and vertical arrangement of the vertices V can be explicitly111

specified, as shown in Figure 1 (h). The leveled permutree is a useful tool when considering the112

generative model of the permutree in Section 3, because its specification is clear.113

The notion of a leveled permutree so far has improved the prospects for dealing with permutrees.114

However, leveled permutrees are still combinatorial and geometric, and are not yet easy to handle115

computationally (in terms of Bayesian modeling, which is the main objective of this paper). Finally,116

we would like to wrap up this section by revealing one of the most important aspects of leveled117

permutrees: their relationship to decorated permutations.118

Decorated permutation - For the description of decorated permutations, the notion of a permutation119

table should be prepared first. A permutation table is a geometrical representation of a permutation σ120

with n length by the (n× n)-table, with rows labeled by positions from bottom to top and columns121

labeled by values from left to right, and with a dot at column i and row σ(i) for all i ∈ [n] [9].122

Figure 2 (left) shows an example for a permutation 536214. Now that we are ready, we move on to123

the description of a decorated permutation. A decorated permutation is a permutation table where124

each dot is decorated by �, �, 6, or 7. Figure 2 (left bottom) shows an illustration of a decorated125

permutation. One of the important properties of decorated permutations is shown below.126

Proposition 2.2. (See Proposition 8 in [75].) There exists one-to-one correspondence between127

decorated permutations with decorations δ̂ ∈ {�,�,6,7}n and leveled permutrees with δ(T) = δ̂.128
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Figure 2: Left: One-to-one correspondence between decorated permutations and leveled per-
mutrees. Right: Permutree process as marked point process - We introduce an intensity function λ
on the plane [0, 1]× [0, 1] (top left). Next, we generate random locations l1, . . . , ln from the Poisson
point process with intensity λ (middle left). Then, for each random location, we independently
assign one of the decorations {�,�,6,7} from the categorical distribution as a random mark mi

(i = 1, . . . , n) (bottom left). By reading the positional relationship of the points as a permutation
table, the resulting marked point {(li,mi) : i = 1, 2, . . . n} can be converted to a decorated permu-
tation. Furthermore, by the transformation used in Proposition 2.2 [75], the decorated permutation
can be converted to a leveled permutree, as follows. First, we draw auxiliary lines (dashed lines
colored red) below decorations �, 7 and above decorations �, 6. From this point on, we will stretch
the permutree edges, and it is important to emphasize that the permutree edges do not cross these
auxiliary lines. Next, focusing on the auxiliary lines extending to the bottom, we can view these as
dividing the lower region into smaller subregions (indicated by the red ovals). The edges are then
extended one by one from each subregion. As we extend the edges from the bottom to the top, when
they reach the height of each vertex, we connect the adjacent edges to that vertex (indicated by the
gray box). By doing this until all vertices are covered, we obtain a leveled permutree.

Now that we have reviewed the permutree findings, the next and subsequent sections will address129

three challenges: (i) How can we construct a stochastic process that can represent any permutree (in130

Section 3)? (ii) How can we construct a BNP prior model of the data using the stochastic process on131

the permutree (in Section 4)? (iii) What likelihood models can we combine the BNP prior with in132

actual machine learning applications (in Section 5)?133

3 Permutree processes134

The goal of this section is to construct a stochastic process that can represent any permutree; ideally, as135

is the basic philosophy of BNP, that stochastic process should also be able to simultaneously represent136

randomness with respect to complexity (in the context of permutrees, the number of vertices). In fact,137

our construction below can represent every permutree with an unlimited number of finite or infinite138

number of vertices in a unified manner, depending on certain hyperparameters. One thing to note in139

advance is that the stochastic process described in this section does not refer to any modeling of data.140

We will discuss data modeling in more detail in the next Section 4.141

Key insight - Our strategy is to use point processes. Recall that, as discussed in Section 2, permutrees142

can be represented through leveled permutrees (surjection), and furthermore, leveled permutrees have143

a one-to-one correspondence (bijection) with decorated permutations (Proposition 2.2). Thanks to144

these facts, instead of dealing directly with permutrees (seemingly difficult to handle), we can obtain145

a model of permutrees indirectly by considering a model of decorated permutations. So how can we146

model decorated permutations? We represent the random decorated permutations as a marked point147

process by considering random permutations as a point process and random decorations as marks.148

Marked point process for decorated permutations - We consider a marked point process consisting149

of a point process and associated marks, which can be expressed as {(li,mi) : i = 1, 2, . . . }, where150

l1, l2, . . . are locations and m1,m2, . . . are associated marks. Specifically, we employ the following151

Poisson process on a 2-dimensional plane [0, 1]× [0, 1] with discrete marks (Figure 2 right):152

• Random locations - We draw the random locations l1, l2, . . . from a Poisson point process on153

the plane [0, 1] × [0, 1] with the intensity function λ : [0, 1] × [0, 1] → R+, where R+ = {r :154

r > 0, r ∈ R}. Although not essential, for the sake of simplicity, we use a homogeneous Poisson155
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point process, that is, λ(A) = µ · Leb(A) for all measurable subset A of [0, 1] × [0, 1], where156

Leb(·) indicates the Lebesgue measure, and 0 < µ <∞ is a tunable variable. For convenience,157

let li = (li,1, li,2), where li,1 and li,2 are the horizontal and vertical positions, respectively.158

• Random marks - We draw the random marks m1,m2, . . . ,mn independently from a categorical159

distribution on {�,�,6,7}: Categorical(c�, c�, c6, c7), where c∗ ≥ 0 (∗ ∈ {�,�,6,7})160

denotes the probability that decoration ∗ is adopted.161

Transformation to leveled permutree - The above marked point process can immediately lead to a162

random leveled permutree with the following procedure. Recall that, as discribed in Section 2, the163

leveled permutree is defined by (i) the decorations on the vertices V and (ii) the two bijective vertex164

labelings p, q : V → [n]. For the decoration of vertices, we consider the point set of the marked165

point process as the vertex set V, and the mark mi assigned to the i-th point as the decoration of166

the i-th vertex vi ∈ V. Thus, the remainder to be considered is the setting of two functions p and167

q. By construction, we can obtain the indices a1, . . . , an so that the random positions l1, . . . , ln168

are in ascending order in the horizontal direction, that is, la1,1 < la2,1 < · · · < lan,1 (Recall that169

li = (li,1, li,2), and li,1 represents the horizontal position). Similarly, in the vertical direction, we can170

obtain the indices b1, . . . , bn so that lb1,2 < lb2,2 < · · · < lbn,2. Now, if we choose to set p(vai) = i171

and q(vbi) = i for i = 1, 2, . . . , n, then p and q satisfy the requirement of bijective functions. By the172

above, we have seen that indeed the marked point process provides us with what we need to define a173

leveled permutree, that is, the vertex decorations and two bijective functions p and q. Finally, Figure174

2 (right) show the procedure for explicitly converting a marked point process to a random leveled175

permutree. Inheriting Proposition 2.2 and the result (with the proof procedure) of [75, Proposition 8],176

we can confirm that this transformation is well defined (See Appendix E for details).177

4 Data modeling with permutree process178

The purpose of this section is to show how the permutree process described earlier can be used for179

modeling actual data. More specifically, this consists of the following two issues:180

• How to represent data using permutrees: As permutrees themselves are simply mathematical181

objects, we must be clear about how we relate them to data modeling and analysis. In fact,182

there are many possible ways to describe data by permutrees. We consider the situation where183

a data path (a lineage to describe the data in conjunction with some likelihood model, such as184

the evolutionary model in Section 5) from one of the lower terminal nodes to one of the upper185

terminal nodes on the permutree is assigned to each data (Figure 3 (a), top). For example, if we186

restrict the permutree to one of its special cases, the binary tree, this data path is attributed to187

the path from the root to the terminal node, which is a situation commonly used in hierarchical188

clustering (Figure 3 (a), bottom).1 We show a strategy to represent this random data path using a189

special variant of the nested Chinese restaurant process [10].190

• How to “implement” a permutree process: In the previous section, we have shown that a marked191

point process with an intensity function λ : [0, 1]× [0, 1] → R+ can be used for the stochastic192

process on permutrees. On the other hand, another important topic is to clarify how to implement193

models (or more practically, what intensity function λ to use) suitable for data analysis. Our194

strategy is to use the analogy of the stick-breaking process [89] to represent the infinite number195

of marked points generated from the marked point process, which is the entity of the permutree196

process. This can be viewed as a special case of using beta intensity in the horizontal direction and197

uniform intensity in the vertical direction as the intensity function λ of the permutree process.198

Experts in the BNP field might remind themselves that there are many other strategy options for the199

above topics in the light of the various findings that have emerged in the history of the development200

of the BNP method over the last 20 years. We will, for the sake of space, summarize in Appendix D201

the various ideas and their respective advantages and disadvantages with respect to those historical202

findings, including whether it is possible to extend the conventional tool of the “ordered” Chinese203

restaurant process [77, 85] for random binary trees to random permutrees. The main body of this204

paper focuses on the most straighforward strategy.205

1Some readers may wish to consider another typical situation: a path where the data starts at one of the
terminal nodes and “stops at an interior vertex” of the permutree. This modification can be easily achieved by
additionally introducing a chain of Bernoulli trials [10] or a time limit by representing the growth of the path as
a Markov process on a virtual time axis [88, 87]. Therefore, we will focus on the most basic situation.
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Figure 3: (a) Data path - We consider each data as having a data path (a lineage to describe the data
in conjunction with some likelihood model) from one of the lower terminal nodes to one of the upper
terminal nodes on the permutree (top). This will convince us of its generality and applicability, as it is
attributed to the hierarchical clustering from one of the terminal nodes to the root when restricting the
permutree to the special case of a binary tree (bottom). (b) Marked stick breaking process - Inspired
by the stick-breaking representation [89] for the construction of Dirichlet processes [23], in order to
represent a random permutree of infinite size, we can represent the random vertex positions of the
permutree by the stick-breaking process in the horizontal direction and uniform random measures
in the vertical direction. (c) Two-table Chinese restaurant process (Variant of two-class Dirichlet
allocation) - The data allocated to the lower terminal nodes are successively merged and distributed
depending on the mark of each vertex, according to the law of the ’the rich get richer’, to select paths.

Permutree of infinite size - We first generate random positions l1, l2, . . . , lk = (lk,1, lk,2), . . . in206

the point process of the permutree process, as shown in Figure 3 (b), using the stick-breaking process:207

βk ∼ Beta(1, α), lk,1 =

k∑
i=1

{
βi

i−1∏
i′=1

(1− βi′)
}
, lk,2 ∼ Uniform([0, 1]), (1)

where α > 0 is the concentration parameter. As in the original permutree process, each point mark208

mk (k = 1, 2, . . . ) is generated from a categorical distribution: mk ∼ Categorical(c�, c�, c6, c7).209

As mentioned earlier, by the procedure in Figure 2 (right), we can transform this sample (i.e., a set of210

infinite number of marked points) drawn from the permutree process into a uniquely single permutree.211

Data assignments to bottom terminal nodes - Next, we can represent data modeling by the paint-212

box scheme for the random permutree generated from the marked stick-breaking process described213

earlier. We associate one uniform random variable Uj for each data indexed by j = 1, 2, . . . , N214

(N ∈ N): Uj ∼ Uniform([0, 1]). Similar to Kingman’s representation to the exchangeable partitions,215

called paintbox schemes [44, 11], we choose which terminal node on the lower edge of the permutree216

to assign the jth data to, depending on which stick in the stick-breaking process this random variable217

Uj is located on [0, 1], as shown in Figure 3 (b).218

Data path modeling - Finally, we model the path assignment for each data by choosing a path that219

starts at this assigned lower terminal node and reaches one of the upper terminal nodes through the220

following two-table Chinese restaurant process (i.e., variant of two-class Dirichlet allocation):221

• 6 - We break up the set of data flowing in, following the left-right table-assignement operation222

below2: the first data is chosen uniformly at random from either the left or the right table. For the223

nth data, the left table is chosen with probability (NLeft + γ/2)/(n+ γ) and the right table with224

probability (NRight + γ/2)/(n+ γ), where γ > 0 is a hyperparameter, and NLeft and NRight225

are the number of data allocated so far to the left and right tables respectively.226

• 7 - We merge the sets of data flowing from the two lower branches and feed them into the upper.227

• � - It would be straightforward to perform operations whose marks are 6 and 7 together.228

Another promising option is the representation of data flowing from the left parent to the left229

child and from the right parent to the right child. This can be interpreted as giving the mark �230

the ability to partitioning. This interpretation also plays an important role in the validity of finite231

truncation, which will be discussed below.232

2This is equivalent to a categorical-Dirichlet hierarchical model with two classes (two tables). We can obtain
the form described in the text by marginalising the intermediate Dirichlet variable in this hierarchical model.
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• � - We pass on the whole data set that flows in, all the way to the top.233

For notational simplicity, we will denote the random variable for the jth data path by Zj . For a234

sample z of data paths between the upper and lower terminal nodes of the permutree (specified by a235

sequence of edges), the above generative probabilistic model allows us to evaluate the probability236

P[Zj = z] of the jth data choosing a data path sample z.237

Property #1: Exchangeability - Random data paths based on the generative probability model238

described above have exchangeability, an important property common to most BNP models [3, 36, 41].239

Simply put, the model probability is invariant to the indexing of the data. As a result, it follows the240

philosophy of BNP models that even if the actual data to be observed is finite, the model itself, with241

infinite complexity, can reflect the uncertainty due to unobserved data. More specifically, this can be242

summarised as the following statement:243

Proposition 4.1 (Exchangeability). For any permutation σ of length N (N ∈ N), we have P[Z1 =244

z1, Z2 = z2, . . . , ZN = zN ] = P[Zσ(1) = z1, Zσ(2) = z2, . . . , Zσ(N) = zN ], where zj (j ∈ [N ]) is245

a sample of paths of random permutrees. (See Appendix A.1 for proof.)246

Property #2: Validity of finite truncation - The above generative probability model requires in247

principle an infinite number of random variables for its description, but finite truncation works248

reasonably well for a finite number of actual observed data. This poses an inherently non-trivial249

challenge that is not present in the validity of approximating the stick-breaking process [89] for the250

Dirichlet process [23] with a finite number of stick-breaking procedures, which is a typical topic251

in the past [94, 87, 67]. The reason for this non-triviality is that the substructure of a permutree252

with infinite size is, in principle, affected by an infinite numnber of all marked vertices. Therefore,253

restricting the structure of the permutree to only some marked vertices may have a significant impact254

on the structure of the permutree. However, as the following statement shows, the substructure of the255

permutree has the good property that it depends only on a subset of marked vertices.256

Proposition 4.2 (Finite truncation). In the above generative probability model of data indexed by257

j = 1, 2, . . . , N (N ∈ N), we consider an event that all random variables Uj (j = 1, . . . , N),258

representing the horizontal position of the jth data, falls in the range [0, 1− ϵ) as a situation with a259

sufficiently high probability P[∧Nj=10 ≤ Uj < 1− ϵ] =
∏N

j=1 P[0 ≤ Uj < 1− ϵ] > 1− ϵ · O(N),260

where ϵ > 0 is a tiny real value. In this situation, there exists some natural number K < ∞, and261

all data paths are assigned with probability 1 only to paths on the finite-size random permutree262

generated from the random marked points l1, l2, . . . , lK . (See Appendix A.2 for proof.)263

5 Application to phylogenetic permutree analysis264

This section presents an application example of using the prior model representation of data using265

permutrees, which has been described in Section 4, in conjunction with a likelihood model in a266

specific application. One of the most promising applications of permutrees would be phylogenetic267

tree analysis for DNA molecular sequence data (e.g., CAGTC). DNA sequences from one or more268

populations are related by a branching structure known as genealogy. The complex correlative269

structure of a collection of DNA sequences can be represented as a phylogenetic tree, a record of270

coalescence, recombination, and mutation events in the history of the target organism: coalescence271

refers to the event in which two sequences are attributed to a common ancestor, recombination refers272

to the event in which a lineage splits into two sub-lineages when looking back in time from the273

present to the past, and mutation refers to the change of each letter of a DNA sequence over time.274

Challenges of conventional methods - The most standard structure that has been used in phylogenetic275

analysis is the binary tree [66, 78, 58, 103, 98, 113, 107, 106, 60]. In fact, binary trees are very276

well suited to represent coalescence events in genealogy. However, one drawback of binary tree277

models is that they are not suitable for representing recombination events in a way that is compatible278

with coalescence events. To circumvent this drawback, the ancestral recombination graphs (ARGs)279

have sometimes been used as models that can represent both coalescence and recombination at the280

same time [52, 42, 80, 72, 90, 28]. However, it is not easy to model or infer ARGs directly, and281

often indirect ways of representing models by other perspectives (e.g., the fragmentation-coagulation282

process [92, 19]) have been explored, or approximate models (e.g., the coalescent hidden Markov283

model [34, 53] and the sequentially Markov coalescent model [80]) have been considered. Moreover,284

conventional phylogenetic tree analysis, including not only ARGs but also binary tree models,285
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GAATCCTGTA

X
GCATATCGCT

X
AGTCCCGGTA

X
GCATCCGGTA

GGATCCGCTA

GGATCTGGAA GCGTCAGGTA

GCATCCGGTA

GGATCCGCTA

GGATCCGCTAGGATCCGCTA

GCATCTGCTA

Figure 4: (a) Phylogenetic permutree can simultaneously and unifiedly represent (b) coalescence,
(c) recombination, multiple ancestry through (d) partition, and (e) mutation. We note that the past
(upper) to present (lower) direction (indicated by ↓) as biological events is the opposite of the parent
(lower) to child (upper) direction (indicated by ↑) of the permutree as a purely mathematical object.

generally imposes a strong assumption that observed DNA sequences or observed taxa have a286

single ancestor. In other words, this implies that the inferred phylogenetic tree should be a strongly287

connected graph. Needless to say, such an assumption is reasonable for taxa that have been carefully288

selected by biologists. On the other hand, when we want to use a large number of taxa that are too289

large to be selected by experts as observation data (i.e., the situation that BNP methods are really290

aiming for), a mechanism that allows multiple ancestors to be inferred in a data-driven manner will291

be very useful. In light of the above, phylogenetic tree analysis requires a model that can represent292

coalescence, recombination, multiple ancestors, and mutation in a unified manner.293

Phylogenetic permutree - As input observation data, we used DNA (molecular) sequences observed294

at letter length S over N species. For example, the sequence GAGTAC (i.e., N = 1 species) has295

length S = 6. We regard these DNA sequences as following a phylogenetic permutree. Specifically,296

we represent coalescence, recombination, multiple ancestry, and mutation events in genealogy by297

combining the four types of the decorations 7,6,�,� with the following interpretations. We note298

that, to be consistent with the traditional notation of phylogenetic tree analysis, the past (upper) to299

present (lower) direction as biological events is the opposite of the parent (lower) to child (upper)300

direction of the permutree as a purely mathematical object that we have used in the diagrams so far.301

• Coalescence 7 - A coalescence event represents two lineages (bottom side of Figure 4 (b))302

having a common ancestral lineage (top side).303

• Recombination 6 - A recombination event represents the joining of two exclusive sub-304

sequences of two lineages (top side of Figure 4 (c)) by one lineage (bottom).305

• Partition � - We give the decoration � the role of division so that a single permutree can306

represent a phylogenetic tree with multiple ancestors. Specifically, as shown in Figure 4 (d),307

we connect the two left edges and connect the two right edges resulting in two tree structures308

unconnected to each other on either side of decoration �.309

• Backward in time � (optional) - We assume that no mutation occurs while going back in time310

from a vertex to a vertex with � (Figure 4 (e)). This allows us to set the mutation rate in the311

evolutionary model as a single parameter common to all branches, and the mutation rate can be312

adjusted according to the permutree itself.313

Evolutionary models on permutrees - Statistical models of gene mutation have a history of more314

than half a century, and a vast number of models have been proposed. An excellent recent review315

article can be found, for example, in [4]. For simplicity, we adopt two of the most popular models,316

the Jukes-Cantor model (JC) [40] and the generalized time reversible model (GTR) [91], for DNA317

sequences (i.e., words with A, G, C, and T as letters of the alphabet {A,G,C,T}, such as CCTAAG).318

JC is defined as a Markov process in which (1) all letters are independently generated from a uniform319

categorical distribution on {A,G,C,T} as initialization and (2) one letter (e.g., A) changes to another320

letter (e.g., G) after t seconds with probability (1−exp(−4αt))/4 or does not mutate with probability321

(1+ 3 exp(−4αt))/4, where α (> 0) is a hyperparameter representing the mutation rate. Simply put,322

JC means that the transition probabilities of letters in mutation are fixed. GTR, on the other hand, can323

be regarded as a more flexible version of the JC model, in which the letter transition probabilities324

themselves are also estimated from the data as hidden parameters.325
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Figure 5: Experimental results of test perplexity (mean±std) comparison for real-world data.

Demonstration - We use the following three benchmark datasets [60] for DNA sequences: RMPS326

(N = 64 species, S = 1008 length) [86], HWB (N = 41, S = 1137) [33], and ZB (N = 50,327

S = 1133) [108]. In addition, to establish a situation where the permutree notion would be useful328

(i.e., multiple ancestry derived from exclusive disconnected graphs), we extract the sequences of329

these datasets by S = 1000 length from the beginning and mix them to create a dataset we call330

COMB (N = 155). We use the marked stick-breaking process (referred to as MSBP; Section 4)331

as our proposed model. Since MSBP can easily adjust the representational capabilities of of its332

own model, as ablation studies, we use MSBP-bTree as the one restricted to binary trees (with the333

prior (c�, c�, c6, c7) ∼ Dirichlet(ϵ/2, 0, 0, ϵ/2)), MSBP-cTree as the one restricted to Cambrian334

trees (with Dirichlet(ϵ/3, 0, ϵ/3, ϵ/3)), and MSBP-pTree as the main proposal permutrees (with335

Dirichlet(ϵ/4, ϵ/4, ϵ/4, ϵ/4)), where we set ϵ = 0.01. For the evolutionary model, we employ336

the mutation rate α ∼ Gamma(ϵ′, ϵ′), where ϵ′ = 0.1. We only present the case of K = 100337

as the truncation level here, while we report the other cases in Appendix C. We compare these338

models to the hierarchical Dirichlet process hidden Markov model (HDPHMM) [8, 94, 5], the339

fragmentation-coagulation process (FCP) [92], and the binary tree model with the MrBayes [38, 46],340

the probabilistic path Hamilton Monte Carlo (ppHMC) [18], and the nested combinatorial sequential341

Monte Carlo (ncSMC) [60]. It is noted that HDPHMM and FCP do not use evolutionary models342

because they represent sequence data directly without tree structure. We held out 20% letters of the343

input sequences for testing, and each model was trained using the remaining 80% of the letters. Each344

inference method uses MCMC to estimate the posterior distribution by the following 100 samples:345

each method extracts 5 MCMC runs with different random numbers, and each MCMC run is sampled346

every 50 iterations after 2000 burn-in until 3000 iterations. We evaluate the models using perplexity347

as a criterion: perplexity(·) = exp(−(log p(·))/E), where E is the number of missing letters in the348

input sequences. Figure 5 shows the comparison of the prediction performance of each method for349

the four sets of data. As an overall trend, it can be seen that the Cambrian tree and permutree models350

show better prediction performance than the binary tree model, which has limited expressive power.351

6 Discussion and limitation352

This paper (i) imports the notion of permutrees, recently invented in combinatorics, to Bayesian353

analysis, (ii) proposes the stochastic process that can represent various models such as permutations,354

trees, partitions, and factors in a unified manner, (iii) and applies it to phylogenetic permutree analysis.355

Limitations - While our proposed permutree process can represent various combinatorial structures356

in a unified “prior model,” the likelihood model that describes the data (as we have shown in the357

context of phylogenetic tree analysis in Section 5, for example) must be prepared separately by the358

user or engineer. Thus, while the permutree process is a tool that allows data-driven inference of the359

model structure as a broad framework, the design of the likelihood model needs to be carefully done360

manually. In the near future, the exploration of representing this likelihood model in some kind of361

black box function model would be an important research direction.362

Remaining challenge - In the technical context of the BNP field, an important topic is whether a363

marginalized representation of the marked stick-breaking process, an infinite-dimensional intermedi-364

ate random variable in the representation of data paths with exchangeability described in Section 4,365

can be obtained. This topic is a question closely related to the Aldous-Hoover-Kallenberg representa-366

tion theorem for exchangeability in general [3, 36, 41]. As a more familiar analogy, it corresponds367

to the fact that if we marginalise the stick-breaking process representation in a Dirichlet process368

infinite mixture model, then we obtain the Chinese restaurant process representation. Our strategy369

and budding attempts on this question are summarized in Appendix D.370
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A Properties of marked stick-breaking process621

This section provides proofs of Propositions 4.1 and 4.2 concerning two properties of the marked622

stick-breaking process omitted in Section 4 of the main text.623

A.1 Exchangeability624

One of the most important properties of random data paths drawn from the generative probabilistic625

model described in Section 4 is exchangeability, that is, the model probability is invariant to the626

indexing of the data. More specifically, this can be summarised as the following statement:627

Proposition A.1 (Exchangeability; Proposition 4.1). For any permutation σ of length N (N ∈ N),628

we have P[Z1 = z1, Z2 = z2, . . . , ZN = zN ] = P[Zσ(1) = z1, Zσ(2) = z2, . . . , Zσ(N) = zN ],629

where zj (j ∈ [N ]) is a sample of paths of random permutrees.630

Proof. Broadly as a whole, we will check two following facts:631

(i) The random data assignments to bottom terminal nodes by the stick-breaking process [89]632

and the Kingman’s paintbox scheme [44] are themselves exchangeable.633

(ii) The selection of data paths by the two-table Chinese restaurant process is exchangeable.634

Exchangeability of data assignments to bottom terminal nodes - We denote the index of the stick635

of the stick-breaking process to which the jth (j = 1, . . . , N) data is assigned by the random variable636

Zbottom
j . It follows from the model construction that, given a random partition of [0, 1] drawn from637

the stick-breaking process, the random variable Uj (j = 1, . . . , N) is independent. As a result, for638

any permutation σ of length N , we have639

P
[
Z

(bottom)
1 = sN , . . . , Z

(bottom)
N = sN

]
=

N∏
j=1

[
Z

(bottom)
j = sj

]
=

N∏
j=1

[
Z

(bottom)
σ(j) = sj

]
= P

[
Z

(bottom)
σ(1) = sN , . . . , Z

(bottom)
σ(N) = sN

]
, (2)

where sj (j = 1, . . . , N) is a sample of stick indices (∈ N).640

Exchangeability of data path selection - Given the assignment of data to the terminal nodes, the641

choice of data paths follows a chain of the two-table Chinese restaurant process (see Figure 3 (c) in642

the main text) according to the decoration of each inner vertex of the permutree. It should be noted643

that in the two-table Chinese restaurant process, the data paths are chosen deterministically when644

the decorations are �,�, and 7. Therefore, we only need to focus on the case of table partitioning645

(Figure 3 (c), top) when the decoration is 6. It immediately from the model construction that the646

probability of partitioning the data when the decoration is 6 is obtained as follows:647

P
[
Z1 = z1, . . . , ZN = zN | Z(bottom)

1 = sN , . . . , Z
(bottom)
N = sN

]
=

∏
r

{
(1 + γ

2 ) · · · (N
(r)
Left +

γ
2 )
}
·
{
(1 + γ

2 ) · · · (N
(r)
Right +

γ
2 )
}

(1 + γ)(2 + γ) · · · (n(r) + γ)
, (3)
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where the variable sj is the index of bottom terminal nodes (i.e., the stick index of the stick-breaking648

process on [0, 1]) included in the path sample zj , the variable n(r) represents the number of data649

flowing to the rth permutree vertex from the bottom in the vertical direction in the collection of data650

path samples z1, . . . , zN , and N (r)
Left and N (r)

Right represent the number of data to be partitioned into651

the left and right tables at the rthth vertex (if the decoration at that vertex is 6), respectively. It is652

important to note that the probability of selecting this datapath depends only on the number of data in653

the division of the table at each vertex. That is, in other words, it does not depend on the index of the654

data as follows:655

P
[
Z1 = z1, . . . , ZN = zN | Z(bottom)

1 = sN , . . . , Z
(bottom)
N = sN

]
= P

[
Zσ(1) = z1, . . . , Zσ(N) = zN | Z(bottom)

σ(1) = sN , . . . , Z
(bottom)
σ(N) = sN

]
, (4)

for any permutation σ with length N . Thus, it can be checked that the selection of data paths is656

exchangeable. From Equations 2 and 4, we have completed our proof.657

A.2 Validity of finite truncation658

The generative probability model (described in Section 4) requires in principle an infinite number of659

random variables for its description, but finite truncation works reasonably well for a finite number of660

actual observed data. More specifically, we can summarize this property as follows:661

Proposition A.2 (Finite truncation; Proposition 4.2). In the generative probability model (described662

in Section 4) of data indexed by j = 1, 2, . . . , N (N ∈ N), we consider an event that all random663

variables Uj (j = 1, . . . , N), representing the horizontal position of the jth data, falls in the range664

[0, 1− ϵ) as a situation with a sufficiently high probability P[∧Nj=10 ≤ Uj < 1− ϵ] =
∏N

j=1 P[0 ≤665

Uj < 1 − ϵ] > 1 − ϵ · O(N), where ϵ > 0 is a tiny real value. In this situation, there exists some666

natural number K < ∞, and all data paths are assigned with probability 1 only to paths on the667

finite-size random permutree generated from the random marked points l1, l2, . . . , lK .668

Proof. It follows from the construction that the uniformly random random random variables Uj669

(j = 1, . . . , N) are independent, so that the probability of an event for which all those random670

variables fall within the range [0, 1ϵ) can be checked as follows.671

P
[
∧Nj=1 0 ≤ Uj < 1− ϵ

]
=

N∏
j=1

P
[
0 ≤ Uj < 1− ϵ

]
=

(
1− ϵ

)N
> 1− ϵN. (5)

Then, from the construction of the marked stick-breaking process on [0, 1], since there are countably672

infinite number of marked points in the range [1− ϵ, 1]× [0, 1], the probability that there exists some673

natural number K <∞ and the corresponding decoration of it is � is 1. That is, we have674

P
[
K <∞ ∧ mK = � ∧ 1− ϵ ≤ lK,1 ≤ 1

]
= 1. (6)

From the construction of the two-table Chinese restaurant process (described in Section 4) and675

the permutree requirement (C2) (described in Section 2), the data path assigned to the 1st to Kth676

bottom terminal nodes in the stick-breaking process never reaches the (K + 1)th and subsequent677

indexed permutree vertices. Therefore, each have a data path only on the edges of the finite permutree678

consisting of the 1st to Kth marked vertices. From the above, we have completed the proof.679

B Relationship between permutree process and other stochastic processes680

The purpose of this section is to provide additional information to help the reader better understand681

the characteristics of the permutree process as marked point process.682

We clarify the relationship between the permutree process and other existing stochastic processes.683

Specifically, the permutree process can lead to the uniform random permutations and the Mondrian684

process as its special cases. These relationships can be derived immediately from the fact that each685

can be expressed as a Poisson process of some sort. We will discuss each of these in specific detail686
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Figure 6: Relationship between permutree process and other existing stochastic processes. (a)
Uniform random permutation - If we restrict the decoration weights for marks to (c�, c�, c6, c7) =
(1, 0, 0, 0) and make the Poisson process homogeneous, the permutree process leads to a stochastic
process that generates a uniform random permutation. This relation follows immediately from the
following fact: If a collection of i.i.d. uniform random variables U1, U2, · · · ∼ Uniform([0, 1]) is
ordered in ascending order, it follows a uniform random permutation. (b) Mondrian process - If
we restrict the decoration weights to (c�, c�, c6, c7) = (0, 0, 1, 0) and set λ(·) = µ · Leb(·), the
permutree process leads to a stochastic process that simulates a Mondrian process [88, 87] on [0, 1]
with the intensity µ and the budget 1. By viewing the vertical position in the marked point process as
the moment when the event of the cut in the Markov process (i.e., the Mondrian process) occurs, and
the horizontal position as the location where the cut occurs, the special permutation process described
above can be reduced to a Mondrian process.

below. First of all, for self-containment, the core of the permutree process is restated, although it is687

the same as that detailed in the body of this paper.688

Permutree process - We consider a marked point process consisting of a point process and associate689

marks, which can be expressed as {(li,mi) : i = 1, 2, . . . }, where l1, l2, . . . are locations and690

m1,m2, . . . are associated marks. Specifically, we employ the following Poisson process on a691

2-dimensional plane [0, 1]× [0, 1] with discrete marks:692

• Random locations - Draw the random locations l1, l2, . . . from a Poisson point process693

on the plane [0, 1] × [0, 1] with the intensity function λ : [0, 1] × [0, 1] → R+, where694

R+ = {r : r > 0, r ∈ R}. For notational convenience, we use li = (li,1, li,2) (∈ R2), where695

li,1 and li,2 are the horizontal and vertical positions, respectively.696

• Random marks - Draw the random marks m1,m2, . . . ,mn independently from a categorical697

distribution on {�,�,6,7}: Categorical(c�, c�, c6, c7), where c∗ (∗ ∈ {�,�,6,7})698

denotes the probability that decoration ∗ is adopted.699

Connection to uniform random permutation - If we restrict the decoration weights for marks to700

(c�, c�, c6, c7) = (1, 0, 0, 0) and make the Poisson process homogeneous (i.e., make the intensity701

function λ uniform), the permutree process leads to a stochastic process that generates a uniform702

random permutation. This fact can be easily derived by interpreting the permutation process as703

follows. See also Figure 6 (a). By construction, we can obtain the indices a1, . . . , an so that the704

random positions l1, . . . , ln are in ascending order in the horizontal direction, that is, la1,1 < la2,1 <705

· · · < lan,1. If we choose to set p(vai
) = i for the i-th vertex vi (i = 1, 2, . . . ) of the resulting706

permutree, then p can lead to a permutation. The following fact shows that p corresponds to a uniform707

random permutation:708

Proposition B.1. (See, for example, Lemma 2.2 in [32].) A uniform random permutation σ with709

length n can be obtained via a sequence of n i.i.d. Uniform([0, 1]) random variables W1, . . . ,Wn710

(Note that their values are distinct with probability 1), by taking σ to be the unique permutation for711

which Wσ(1) < · · · < Wσ(n).712

Connection to Mondrian process - If we restrict the decoration weights to (c�, c�, c6, c7) =713

(0, 0, 1, 0) and set λ(·) = µ ·Leb(·), the permutree process leads to a stochastic process that simulates714

a Mondrian process [88, 87] on [0, 1] with the intensity µ and the budget 1. This fact can be easily715

derived by interpreting the permutation process as follows. In the above setup, the sample generated716

by the permutation process can be restricted to a binary tree by following the procedure described in717
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(a) (c�, c�, c6, c7) = (3/4, 0, 0, 1/4) with µ = 10 (top), µ = 20 (middle), and µ = 40 (bottom).

(b) (c�, c�, c6, c7) = (1/4, 3/4, 0, 0) with µ = 10 (top), µ = 20 (middle), and µ = 40 (bottom).

(c) (c�, c�, c6, c7) = (0, 0, 1/2, 1/2) with µ = 10 (top), µ = 20 (middle), and µ = 40 (bottom).

(d) (c�, c�, c6, c7) = (1/4, 1/4, 1/4, 1/4) with µ = 10 (top), µ = 20 (middle), and µ = 40 (bottom).

Figure 7: Samples drawn from permutree process with intensity λ(·) = µ · Leb(·) and decoration
weights (c�, c�, c6, c7). Ten samples are generated for each parameter setting.

Section 3 (Figure 6) of the main text. From the fundamental properties of the Poisson process, the718

vertical interval between two adjacent vertices at random locations follows an exponential distribution719

Exp(µ). Imagine the time evolution in the partition of a line segment of length 1 horizontally drawn720

from bottom to top, as shown in Figure 6 (b). The time evolution of this partition can be viewed as a721
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Markov process with an intensity µ and a time limit of 1. Furthermore, if we consider the horizontal722

location of the marked point process as the position where the line segment of length 1 is cut, we can723

consider this time evolution as a hierarchical partition of the line segment. Therefore, this can be724

regarded as a Mondrian process.725

C Bayesian inference for phylogenetic permutree (omitted in Section 5)726

This section reveals the Bayesian inference algorithm for phylogenetic permutree analysis using our727

permutree processes. For the sake of generality, we will use the marked point process representation728

described in Section 3 in particular as a permutree process. This argument can also be applied,729

with minor modifications, to the special case of the marked stick-breaking process (with its finite730

truncation) described in Section 4.731

Overview - Standard Bayesian inference algorithms such as Markov chain Monte Carlo (MCMC)732

methods can be realized by sequentially iterating the following two update rules: (i) updating the733

permutree process (ii) updating the evolutionary model. Since the latter can be supported by standard734

inference methods to evolutionary models, it is the updating method of the former that is particularly735

important here. For the former, various inference algorithms that have been proposed for generic736

marked point processes and their extensions [68, 69, 26, 96, 43, 104, 30, 55, 31, 14, 35, 109] would be737

applicable, since the entity of the permutree process is a marked point process as shown in Section 3738

of the main text. This section describes a useful inference method that exploits an important property739

of Poisson processes, namely, that a certain Poisson process can be obtained by thinning operations740

from another Poisson process with higher intensity. Section C.1 provides a brief description of the741

thinning operation for the Poisson process as a preliminary to our MCMC method. Then, Section C.2742

once again writes down the whole generative probabilistic model, since it should be possible to see at743

a glance what the parameters to be inferred are in the permutree process and its phylogenetic tree744

described in Section 5. Finally, Section C.3 describes the MCMC inference algorithm.745

C.1 Preliminaries: thining operations for Poisson processes746

Our MCMC method uses important properties of Poisson processes. Specifically, we will discuss747

how to represent a certain Poisson process via another Poisson process with higher intensity.748

Homogeneous Poisson process - In this paper, we mainly consider homogeneous Poisson processes749

on [0, 1] × [0, 1], i.e., where the intensity function is given by a constant. A Poisson process on750

[0, 1]× [0, 1] with intensity µ (where 0 < µ <∞) is a stochastic process for a random set of points,751

where the number of points belonging to (x1, x2]× (y1, y2] follows a Poisson distribution with the752

parameter µ(x2 − x1)(y2 − y1) for any 0 ≤ x1 < x2 ≤ 1, 0 ≤ y1 < y2 ≤ 1. For notational753

simplicity, we will denote a Poisson process on [0, 1]× [0, 1] with intensity µ by PP(µ, [0, 1]× [0, 1]).754

We also recall that in the main text, we defined this homogeneous Poisson process as the Poisson755

process with the intensity function λ(·) = µ · Leb(·) as an equivalent expression, where Leb(·)756

indicates the Lebesgue measure.757

Thinning operation on Poisson processes - One of the most interesting properties of Poisson758

processes is that a Poisson process with a certain intensity can be obtained by applying the thinning759

operation from a Poisson process with a higher intensity. More specifically, a Poisson process with760

intensity µ can be constructed as follows:761

(i) We generate a random set of points from a Poisson process with intensity ν (> µ).762

(ii) For each point generated, independently decide whether or not to accept it with probabil-763

ity µ/ν.764

(iii) The set of only accepted points can be regarded as following the Poisson process with765

intensity µ.766

C.2 Full description of phylogenetic permutree with permutree process767

As input observation data, we consider DNA (molecular) sequences xj (j = 1, . . . , N) observed at768

letter length S over N species. For example, the sequence xj = GAGTAC has length S = 6. Figure769

8 (top) shows the observation DNA sequences as an S × N matrix. The four colors represented770

19



Figure 8: Observed DNA sequences (top), phylogenetic permutree (middle), and observed DNA
serquences assigned to leaf nodes of phylogenetic permutree (bottom). Note that each leaf node
(lower) of the phylogenetic permutree does not necessarily have to be the assignment of a single
observation DNA sequence. The blue dividing line in the figure below represents a group of DNA
sequences where each parcel corresponds to one leaf (lower) node. The phenomenon that each
observed sequences within the same group is different is due to mutation events based on the
evolutionary model.

by each element of the matrix correspond to the four different letters A,C,G, and T. We regard771

these DNA sequences as following a phylogenetic tree based on a permutree. First, we generate the772

marked points {(li,mi) : i = 1, 2, . . . n} and the corresponding permutree T from the permutree773

process. We recall that the transformation from marked points to permutree can be performed by774

the transformation in Figure 9 (which we will call MPP2PT). Then, we represent coalescence,775

recombination, multiple ancestry, and mutation events in genealogy by combining the four types of776

the decorations 7,6,�,� with the following interpretations:777

• Coalescence 7 - A coalescence event represents two lineages having a common ancestral778

lineage.779

• Recombination 6 - A recombination event represents the joining of two exclusive sub-780

sequences of two lineages by one lineage.781

• Partition � - We give the decoration � the role of division so that a single permutree782

can represent a phylogenetic tree with multiple ancestors. Specifically, we connect the783

two left edges and similarly connect the two right edges to lead to two unconnected tree784

structures on either side of decoration �.785

• Backward in time � (optional) - We suppose that no mutation occurs when going back786

in time from a vertex to a vertex with �.787
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Figure 10 shows an intuitive illustration of the above interpretation of the transformation from a788

permutree T to a phylogenetic permutree T . We will refer to this transformation as PT2PP : T 7→ T .789

Here, we will use the vertical coordinate li,2 of each marked point as a representation of how far790

back in time each vertex is in the phylogenetic tree. Each vertex v of the phylogenetic tree T shall791

have a hidden DNA sequence hv (i.e., a sequence of length S with each element having the letter792

from A,C,G, and T), which shall mutate according to the gene evolutionary models, such as the793

Jukes-Cantor model (JC) [40] and the generalized time reversible model (GTR) [91]. Figures 11 and794

12 show examples of the evolution of the hidden DNA sequences (hv)v∈T (e.g., sequence length795

S = 10) on the phylogenetic tree T in the mutation-prone and mutation-resistant cases, respectively.796

For notational convenience, we will denote the gene evolutionary models with mutation rate α (> 0)797

on the phylogenetic tree T and mark locations l1, . . . , ln by Evo(T , (li)ni=1, α). Finally, each of the798

N input sequences is independently assigned to a data path from the two-table Chinese restaurant799

process (refered to as 2tCRP) with the concentration parameter γ > 0. In short, the overall model800

can be summarized as follows:801

l1, l2, . . . ln ∼ PP(µ, [0, 1]× [0, 1]) : Locations (7)
(c�, c�, c6, c7) ∼ Dirichlet(ϵ/4, ϵ/4, ϵ/4, ϵ/4) : Decoration weights (8)

mi ∼ Categorical(c�, c�, c6, c7) : Marks (9)
T← MPP2PT((li,mi)

n
i=1) : Permutree (10)

T ← PT2PP(T) : Phylogenetic permutree (11)

α ∼ Gamma(ϵ′, ϵ′) : Mutation Rate (12)
(hv)v∈T ∼ Evo(T , (li)ni=1, α) : DNA evolution (13)

Z1, . . . , ZN ∼ 2tCRP(γ) : Data paths (14)
xj ∼ Evo(T |Zj

, lZj
, α) : Observation sequence (15)

for i = 1, 2, . . . , n and j = 1, . . . , N , where T |Zj
refers to a phylogenetic tree (a tree consisting802

of one edge and two vertices at either end) from which only the leaf nodes and their children are803

extracted from the phylogenetic tree T . Since the variables ϵ and ϵ′ are hyperparameters for the804

non-informative prior distributions, it is standard to use them fixed to tiny values. Can we then805

consider how to directly infer the above generative probability model? Certainly, it is possible in806

principle to infer the above generative probability model as it is by direct updating of the permutree807

process as shown in Figure 13. However, in such direct inference, the complexity n is often strongly808

affected by bad local modes, and often the Markov chain is entangled in the local optima, resulting in809

slow convergence. Therefore, using the properties of Poisson processes described in the preparation,810

a method can be considered to reduce the influence of such local optima by taking the dare to have811

redundant model parameters. Equation (7) and (9) can be rewritten as follows.812

l̂1, l̂2, . . . , l̂K ∼ PP(µ, [0, 1]× [0, 1]) : Redundant locations (16)
m̂i ∼ Categorical(c�, c�, c6, c7) : Redundant marks (17)
bi ∼ Bernoulli(µ/ν) : Binary indicators (18)

l1, l2, . . . ln ←
{
l̂1, . . . , l̂K | bi = 1 (i = 1, . . . ,K)

}
: Locations (19)

m1,m2, . . .mn ← {m̂1, . . . , m̂K | bi = 1 (i = 1, . . . ,K)} : Marks (20)

for i = 1, . . . ,K. The above is the full phylogenetic tree model based on the permutree. One point to813

recall here is that permutrees includes binary trees and Cambrian trees as special cases (as discussed814

in Remark 2.1 of the main text). Therefore, the permutree process can be attributed to various815

models by adjusting the prior distribution for the decoration weights (c�, c�, c6, c7). Figure 14 (left)816

shows the permutree process with (c�, c�, c6, c7) ∼ Dirichlet(ϵ/2, 0, 0, ϵ/2) as BINARYTREE817

(restricting the expressive power to binary trees). Figure 14 (right) shows (c�, c�, c6, c7) ∼818

Dirichlet(ϵ/3, 0, ϵ/3, ϵ/3) as CAMBRIANTREE (restricting it to Cambrian trees).819

Joint probability - For notational convenience, we use X := (x1, . . . ,xN ), H := (hv)v∈T ,820

Z := (Z1, . . . , ZN ), b := (b1, . . . , bK), L̂ := (l̂1, . . . , l̂K), m̂ := (m̂1, . . . , m̂K), and c =821
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Figure 9: (Reprinted from the main text.) Left: Marked point process - We introduce an intensity
function λ (e.g., uniform measure) on the plane [0, 1]× [0, 1] (top figure). Then, we generate random
locations l1, . . . , ln from the Poisson point process of the intensity λ (middle figure). Finally, for each
random location, we independently assign one of the decorations {�,�,6,7} from the uniform
categorical distribution as a random mark mi (i = 1, . . . , n) (bottom figure). The resulting marked
point process {(li,mi) : i = 1, 2, . . . n} can be regarded as a random decorated permutation. Right:
Transformation to random permutree - Note that the marked points generated from the marked
point process can be considered as a decorated permutation by noting its horizontal and vertical
ordering. Since decorated permutations and leveled permutrees have a one-to-one correspondence,
we are guaranteed to be able to construct their bijective transformation. First, auxiliary lines (red
dashed lines) are drawn below decorations �, 7 and above decorations �, 6. From this point on, we
will extend the permutree edges, but it is important to emphasize that the permutree edges do not cross
these auxiliary lines. Next, if we look at the auxiliary lines extending all the way to the bottom, we
can see that this divides the lower region into smaller sub-regions (indicated by the red oval). Then,
one edge is extended from each sub-region. The edges are extended from bottom to top, and when
the height of each vertex is reached, the edges adjacent to that vertex are connected (indicated by the
gray boxes). This is done until all vertices are covered, resulting in a leveled permutree. Finally, if
we forget about the vertical position of each vertex in the leveled permutree and focus only on its
structure as a directed tree, we obtain the corresponding permutree.

(c�, c�, c6, c7). We obtain the following joint probability density function:822

Pjoint(X,H, b,Z, L̂, m̂, c) = Pobs

(
X; L̂, m̂, b, z, α

)
· Pevo

(
H; L̂, m̂, b, α

)
PPP

(
L̂; ν

)
· PBernoulli(b;µ/ν) · PCategorical (m̂; c)

·PDirichlet (c; ϵ) · PGamma (α; ϵ
′) · P2tCRP (Z; γ) , (21)

where Pobs is the probability density function (PDF) of Equation (15), Pevo is PDF of Equation (13),823

PPP is PDF of Equation (16), and subsequent terms are PDFs of the standard distributions. The824

posterior distribution of the parameters H, b,w, z, L̂, m̂, c to be estimated is proportional to this825

joint probability density.826

C.3 Bayesian inference algorithm for phylogenetic permutree827

We can construct the MCMC algorithm by iteratively repeating the following update rules for the828

DNA evolution H on the phylogenetic permutree, the binary indicators b, the leaf node weights w,829

the observation assignments z, the redundant locations L̂, the redundant marks m̂, and the decoration830

weights c.831

Update rule for DNA evolution H - We recall that each element of the matrix H = (Hs,j)S×N832

consists of one of the letters A, C, G, or T. Using Equation (21), we calculate the joint probability that833
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Figure 10: Intuitive illustration of transformation PT2PP from permutree (left) to phylogenetic
permutree (right). The number assigned to each vertex v represents the function q(v) (i.e., the order
of the vertices vertically from bottom to top). We can regard this transformation as giving the role of
the partition (red dotted line in the right figure) to the decoration � (i.e., the vertex with two parents
and two children in the left figure).

each element Hs,j is A, C, G, or T, respectively, and let pA, pC, pG, or pT denote them respectively.834

Then we obtain the following Gibbs update rule:835

Hs,j ∼ Categorical(pA, pC, pG, pT) (s = 1, . . . , S, and j = 1, . . . , N) (22)

Update rule for binary indicators b - For each i = 1, . . . ,K, we can obtain the Gibbs update rule836

derived by calculating the posterior probability ratio for bi = 0 and bi = 1 using Equation (21).837

Specifically, we suppose that the value of the joint density for bi = 0 is π0 and the value for bi = 1 is838

π1, and then we obtain the following update rule:839

bi ∼ Bernoulli (π1/(π0 + π1)) (i = 1, . . . ,K). (23)

Update rule for leaf node weights w - From the conjugacy of the Dirichlet and Categorical840

distributions, we obtain the following Gibbs update rule:841 (
w1 . . . , w|LN (T )|

)
∼ Dirichlet

(
N1 + ϵ′′, . . . ,N|LN (T )| + ϵ′′

)
(i = 1, . . . ,K), (24)

where Ni (i = 1, . . . , |LN (T )|) indicates the number of the observation sequences xj (j =842

1, . . . , N) which is assigned to the ith leaf node of the phylogenetic permutree T .843

Update rule for observation assignments z - Using Equation (21), we calculate the joint probability844

that each observation sequence xj (j = 1, . . . , N) is assigned to the ith (i = 1, . . . , |LN (T )|) leaf845

node of the phylogenetic permutree T , and let w̄i denote it. Then we obtain the following Gibbs846

update rule:847

zj ∼ Categorical
(
w̄1, . . . , w̄|LN (T )|

)
(j = 1, . . . , N) (25)

Update rule for redundant locations L̂ - We use the simple Metropolis-Hastings (MH) method.848

For each position, we generate a new candidate sample from the normalized probability measure λ̂ of849

the intensity function λ, that is, l̂i ∼ λ̂ (i = 1, . . . ,K), and decide whether to adopt it through the850

MH acceptance/rejection scheme using Equation (21).851

Update rule for redundant marks m̂ - Using Equation (21), we calculate the joint probability852

that each element m̂i has 7,6,�,�, respectively, and let p7, p6, p�, p� denote them respectively.853

Then we obtain the Gibbs update rule:854

m̂i ∼ Categorical
(
p7, p6, p�, p�

)
(i = 1, . . . ,K) (26)
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Figure 11: Phylogenetic trees and DNA evolution through Jukes-Cantor evolutionary model with
mutation rate α = 0.1.

Update rule for decoration weights c - From the conjugacy of the Dirichlet and Categorical855

distributions, we obtain the following Gibbs update rule:856

(c7, c6, c�, c�) ∼ Dirichlet
(
N7 + ϵ/4,N6 + ϵ/4,N� + ϵ/4,N� + ϵ/4

)
, (27)

where N∗ (∗ ∈ {7,6,�,�}) indicates the number of the marks m̂i (i = 1, . . . ,K) which has the857

decoration ∗.858

C.4 Empirical impact of finite truncation859

To investigate the empirical impact of finite censoring on the marked stick-breaking process described860

in Section 4, we report in Figure 15 the prediction performance for different levels of finite censoring,861

K = 25, 50, 100 and 150, in the same experimental setup as in the main text (Section 5). It can be862

seen that when the level of finite truncations is extremely restricted, the prediction performance has863

been reduced, while when some level of censoring is ensured, the prediction performance is not so864

reduced. This can be seen as reflecting the fact that the marked stick-breaking process can adjust its865

own real model complexity in a data-driven manner according to the observation data.866
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Figure 12: Phylogenetic trees and evolution of DNA lineages through Jukes-Cantor evolutionary
model with mutation rate α = 0.001 (i.e., a situation where mutations are almost unlikely to occur).

Figure 13: Illustration of simplest inference method for permutree process as marked point process.
The current leveled permutree in Markov chain Monte Carlo inference corresponds to a certain state
of the marked point process (left). One marked point (slightly enlarged and colored red) is chosen
to be a candidate for updating. The region to be updated is quantized (center) to generate a new
candidate marked point (slightly enlarged and colored blue) from the conditional posterior probability
(or some proposal distribution). Finally, the generated new marked points are updated or not by the
Metropolis-Hastings scheme, which is the next state of the Markov chain (right).

D Remaining challenges867

The main difficulty in applying the permutree process to data modeling is how to handle its unlimited868

finite or infinite model complexity (i.e., number of vertices). Roughly speaking, it is not possible869

in principle to naively implement a model with infinite parameters on current computers. This is a870
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Figure 14: Binary tree (left) and Cambrian tree (right) attributed from permutree by restricting
decoration weights.
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Figure 15: Effect of prediction performance on finite truncation level K = 25, 50, 100 and 150 of
marked stick-breaking process.

central topic in the BNP field, and we have historically had two policies. One is to represent models871

of infinite complexity such that finite truncation works reasonably well. This corresponds just to872

the representation methods for the stick-breaking process [89] in Dirichlet process infinite mixture873

models [79] and the beta-Bernoulli process in infinite factor models [95, 93]. The other method is a874

model representation in which, in conjunction with the finite amount of observed data, the model875

activates only as many of the potentially infinite number of parameters as necessary. This corresponds876

to the Chinese restaurant process [74, 76] in the mixure models or the Indian buffet process [29] in877

the factor models. While Section 4 focuses on the former policy, this section will explore the latter.878

D.1 Preliminary: ordered Chinese restaurant process879

We begin our discussion with a representation using oCRP for binary trees, a special case of880

permutrees. Let θ > 0 be the concentration parameters and α > 0 the discount parameter. We will881

now take a so-called spinal decomposition (Figure 16 left) of the binary tree. In the metaphor of CRP,882
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Figure 16: Standard Chinese restaurant process (left) for random partition and “ordered” Chinese
restaurant process for random binary tree.

the customer can be viewed as as seeking a dish at the terminal node of the binary tree. The new883

customer can then either proceed to the existing subtree or create a new branch on one of the edges,884

according to the proportions shown in Figure 16 right. This can be viewed as CRP with random885

ordering of the CRP tables.886

Ordered Chinese restaurant process (oCRP) [77, 85] - This stochastic process is a generative887

prbabilistic model that constructs a random binary tree by means of a recursive structure as follows.888

Let α and θ be the discount parameter and the concentration parameter, respectively.889

• The first customer goes straight from the root to form one terminal node.890

• The second customer forms a split between the root and the terminal node where the first891

customer is located. At this stage, the advanced subtree of the second customer is assigned892

a weight of 1 − α and each edge of the split spinal cord is assigned a weight of α and θ,893

respectively.894

• The third and subsequent guests determine their own destination according to the proportion895

of weights assigned to the subtree and each edge on the spinal cord. If it chooses an edge on896

the spinal cord, it creates a new branch there to become a subtree and assigns weight α to897

the newly created edge on the spinal cord. If it moves on to an existing subtree, it recursively898

determines its own destination according to the nested oCRPs on that subtree and adds 1 to899

the weight of the subtree.900

One will notice that this stochastic process is very similar to the standard Chinese restaurant process901

(CRP). If each subtree is considered a table, the probability that a new customer will sit at an existing902

table is proportional to the weight of the number of customers already sitting at that table minus903

the discount parameter α. It will be seen that this is the same situation as in the standard CRP904

corresponding to the well-known Pitman-Yor process [76]. However, it differs from the standard CRP905

in that when a new table is seated, that table is determined by reference to the order of the existing906

tables. For this reason, this stochastic process is called an “ordered” CRP.907

One of the most important properties of oCRPs is exchangeablity:908

Theorem D.1 (Proposition 1 (a) [77]). A random binary tree generated by the nested oCRPs with the909

discount parameter α and the concentration parameter θ has exchangeable leaf labels for all n ̸= 1910

if and only if α = θ = 1/2.911

D.2 Our attempt: Chinese restaurant street912

Strategy sketch and advance notice - Recalling the requirements of (C1) and (C2) for the definition913

of permutrees (Section 2), we could introduce the following metaphor of CRP (See also Figure 17):914

• Each customer is looking for a dish in a Chinese restaurant street and prefers a street that is popular915

with other customers, but is also willing to explore new streets on a whim. The development of the916

streets, with one customer after another searching for a dish, represents the permutree evolution.917

• The Chinese restaurant street has a recursive structure. The boulevard (main street) has side918

streets, and each side street becomes the next boulevard, with its own next side streets recursively.919

This recursive structure would be reminiscent of an existing oCRP or nested CRP that recursively920

calls smaller CRPs in the overall process. When a side street becomes a cross street, it represents921

a vertex with �. If the side street extends only one way, it corresponds to a vertex with 6 or 7.922
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Figure 17: Overview of Chinese restaurant street

Chinese restaurant street (CRS) - CRS is given by the recursive structure of the streets, consisting923

of boulevards and side streets. Let θ1 > 0 and θ2 ≥ 0 be the concentration parameters and α > 0924

the discount parameter. Figure 18 illustrates the situation where a new boulevard is a small CRS in925

a large CRS with the recursive structure. A CRS at a certain level consists of a boulevard and side926

streets, where each side of the boulevard is weighted by the concentration parameters θ1, θ2 and the927

discount parameter α, and each side street is assigned a weight equal to the number of customers who928

proceeded to it minus the discount parameter α. When the next customer enters this boulevard, the929

next destination is determined according to the ratio of those weights. It would have been a wishful930

idea if this vanilla CRS could be used as a permutree model, but unfortunately, it does not satisfy the931

requirements (C1) and (C2) as it is.932

Properties - (1) The most important feature of CRS is that it is an extension of the existing oCRP.933

Specifically, in the case of θ2 = 0 (i.e., a situation where both boulevards and side streets grow only934

to one side), CRS is equivalent to oCRP for random binary trees. (2) Another important property935

is exchangeability (i.e., invariance of probabilities with respect to the order in which customers936

enter the process), which is often the case with variants of CRPs. For our CRS, we can show that937

it is exchangeable in the case of α = θ1 + θ2 = 1/2, inheriting the result of exchangeability [77,938

Proposition 1] of oCRP. This property would be helpful in Bayesian inference.939

Theorem D.2. A random tree generated CRS with the discount parameter α and the two concentration940

parameters θ1 and θ2 (described in Section 3.2 of the main text) has exchangeable leaf labels for all941

n ̸= 1 if and only if α = θ1 + θ2 = 1/2.942

Proof. This can be verified by inheriting the exchangeability of oCRPs described in Theorem D.1.943

We shall consider each subtree in oCRP as a table and assign natural numbers of labels to the tables,944

starting from 1 according to the order in which the tables were generated. By reducing the resolution945

of the leaf labels in Theorem D.1 to table labels, the ordered tables generated by oCRP are also946

exchangeable. Then, for the random tree generated by CRS, if we consider each subtree as a table947

and set θ1 + θ2 = θ, this is also attributed to the random ordered tables of oCRP with the discount948

parameter α and the concentration parameter θ. Thus, by repeatedly applying the fact that the table949

labels of oCRP are exchangeable only when α = θ = θ1 + θ2 = 1/2, until each table eventually950

becomes a leaf node, we can confirm that the CRS has exchangeable leaf labels.951

E Validity of transformation from marked points to permutree952

This section verifies that the marked points {(li,mi) : i = 1, 2, . . . n} generated from the marked953

point process are correctly transformed into permutrees by the algorithm in Figure 9 (Algorithm 1 of954

the main text). This can be verified by the following procedure, which is similar to the method in the955

proof of Proposition 8 in [75].956

(i) There is exactly one strand in each section separated along the auxiliary line (the red dotted957

line in Figure 9). This can be shown by mathematical induction on the number of nodes in958

the permutree.959

(ii) The graph created by the algorithm in Figure 9 has no cycles. This can be shown by using the960

proof by contradiction. If the graph had cycles, it would cross the red dotted line. However,961

by construction, the graph never crosses the red dotted line.962
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Figure 18: Generative model of Chinese restaurant street - (a): Suppose a customer encounters
a new boulevard. The boulevard has a forward road and a backward road on both sides of it with
an entrance in between. When the new boulevard is opened up, which direction is the forward or
backward road is determined with probability 1/2. The figure shows the case where the forward road
is up. Given two concentration parameters θ1 > 0 and θ2 ≥ 0, the first customer to enter through
the entrance chooses the forward road with probability θ1/(θ1 + θ2), otherwise the backward road,
and receives the dish being served at the end. We assign weights θ1 and θ2 to the forward and back
roads, respectively. At this stage, the one that the customers did not choose between the forward and
backward roads (the lower backward road, represented by the dashed line in the figure) has not yet
been activated. Until both the forward and backward roads are activated, the entrance itself serves as
another endpoint of this boulevard. (b): The next customer coming to this boulevard, entering through
the entrance to this boulevard, will proceed to the side street on that side in the proportion according
to the weights assigned to each side. This side street itself corresponds to the boulevard in the next
smaller CRS in the recursive structure. That is, the forward direction of this side street (i.e., whether
it extends to the left or right first in the figure) is determined by this customer with probability 1/2.
The concept of whether the forward or backward road is chosen first on each side street determines
whether the vertex corresponding to this side street in the permutree structure extends initially to the
parent side or to the child side. (c): Given a discount parameter α ≥ 0, this side street is assigned a
weight of 1− α, which is the number of customers who have taken the side street minus the discount
parameter α. The edge divided by the side street is assigned a weight of the discount parameter α.
(d)-(e): When the next customer decides where to go based on the ratio of weights assigned to edges
and side streets, she/he may choose an inactive road (dashed line in (c)). In that case, after the new
side street is added (which also releases the entrance termination facility), the backstreet beyond
it (dashed line in (d)) will continue to remain inactive. (f)-(g): The above procedures are repeated
sequentially and recursively.

(iii) From (i) and (ii), the graph generated by the algorithm in Figure 9 is a tree, and furthermore,963

since the red dotted line separates the left and right ancestor and descendant sub-trees, this964

is a leveled permutree.965
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