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Figure 1: Compared with existing video diffusion-based interpolation methods, our method inter-
polates at extreme high efficiency, achieving 400× acceleration than the current multi-step solution
with also better results.

ABSTRACT

Recent research on video Frame Interpolation (VFI) shows that a pretrained Video
Diffusion Model (VDM) can solve many challenging scenarios, including large or
complex motion. However, VDMs require tedious diffusion sampling, making the
inference slow. One possible way to accelerate is to distill a multi-step model into
a one-step model, but additional modules are often introduced during distillation,
which significantly increase training overhead. Instead, we propose a Real-time
Diffusion-based Video Frame Interpolation pipeline, RDVFI. RDVFI achieves
efficient interpolation by disentangling this task into two subproblems: motion
and appearance generation. Specifically, RDVFI first calculates pixel movements
across frames with the continuous motion fields, only utilizing a few sparse key
frames. As a result, RDVFI only forwards the diffusion model for these sparse
key frames rather than for each intermediate frame, effectively reducing one-step
training cost. In the second appearance estimation step, RDVFI then only needs
to create intermediate frames by warping input frames with sampled optical flows
from the estimated continuous motion field in the first step. Because our diffusion
model creates motions only, it can work at a fixed and relatively small resolution,
leading to superior training and inference efficiency. Extensive experiments show
that our RDVFI generates comparable or superior interpolation quality compared
with existing multi-step solutions. It also offers outstanding inference efficiency,
interpolating 17FPS at 1024 × 576 resolution, achieving 50× acceleration than
the fastest diffusion-based generation by Wan et al. (2025).

1 INTRODUCTION

Video frame interpolation (VFI) aims to generate intermediate frames between low-frame-rate in-
puts, which has wide applications in super slow-motion video generation (Niklaus et al., 2017; Jiang
et al., 2018; Liu et al., 2019; Hu et al., 2022b), virtual reality (Anderson et al., 2016; Yang et al.,
2023), and video compression (Wu et al., 2018; Xu et al., 2024). The core of VFI is determining the
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pixel movements across frames, which is ambiguous and challenging because pixels can move from
the first image to the second along different paths. Traditional non-generative methods usually solve
this challenge with pre-determined motion models, like the linear model by Jiang et al. (2018); Bao
et al. (2019), polynomial by Xu et al. (2019); Liu et al. (2020)), or a learned motion model by Huang
et al.; Reda et al.; Li et al. (2023). Still, these methods can only handle simple motion and may fail
on complex and large real-world motion. Danier et al. and Lew et al. (2025) try to improve the
robustness of motion estimation using a pretrained image generation model, but they still mainly
focus on small and simple motion.

Recently, with the rapid development of video generation models, researchers (Wang et al., 2024;
Zhu et al., 2024; Wan et al., 2025) remodeled video interpolation as a conditional generation task
through recursive diffusion sampling with Video Diffusion Models (VDM). While these solutions
show great potential in handling complex motion, they still face several critical challenges: (1)
Multi-step sampling in the VDM restricts its efficiency. Current VDM-based interpolation inherits
the sampling strategy of a pretrained VDM, which is often slow, taking more than 20 steps. (2) Com-
putational overhead and performance degradation due to the additional modules. The majority of
VDM-based interpolation networks are trained by finetuning and fusing pretrained image-to-video
diffusion models (VDMs) (Wang et al., 2024; Zhu et al., 2024), optionally with auxiliary modules,
e.g., ControlNet, further slowing down inference (Zhu et al., 2024). (3) Interpolation instability.
Fusing two image-to-video generation models (Wang et al., 2024; Zhang et al., 2024) conditioned
on only one input image usually introduces mismatched results and unstable interpolation.

Although one-step distillation can significantly accelerate diffusion and has been widely used in
image (Liu et al., 2022; Yin et al., 2024) or video (Zhang et al., 2024) generation, there are still chal-
lenges when applying it to interpolation. First, existing one-step training may introduce additional
training overhead, making high-resolution training challenging. Normally, previous methods either
jointly optimize two diffusion models (Yin et al., 2024) or introduce adversarial networks (Zhang
et al., 2024; Mao et al., 2025). These additional modules improve visual quality with more resource
consumption. As a result, the majority of models either only support LoRA training (Mao et al.,
2025), or can only be fully finetuned on low-resolution frames (Zhang et al., 2024) (trained on
768x448, 14 frames). Second, some one-step training using adversarial loss may hurt the fidelity of
video interpolation, introducing non-existing high-frequency details or unnatural motion of objects.

To address these issues, we propose RDVFI, a real-time one-step diffusion-based interpolation
model that can deal with large, complex motions. Unlike previous diffusion-based interpolation
that directly generates output frames, our RDVFI decouples the problem into motion prediction and
appearance estimation. Specifically, RDVFI first constructs a continuous motion field, recording the
movement of all pixels between all interpolated frames. As previous work shows (Tulyakov et al.,
2022), even a low-resolution and sparse motion can represent complex motion, so we train a one-
step diffusion model to estimate a sparse motion field on a few key frames (e.g. 7 key frames). To
generate dense and high-resolution interpolation results (e.g., interpolate 24 frames between every
2 frames), we can sample their motion from the sparse motion field and upsample it to the full reso-
lution. This design greatly reduces the computational cost of the diffusion-based motion estimator.
In the next step, with the estimated motion, RDVFI further generates each frame by warping pixels
from two input frames and fusing them using another small synthesis network. With this design,
the computationally expensive diffusion model only runs on fixed and low-resolution sparse input
frames. Thus, our RDVFI can flexibly interpolate at dynamic spatial and temporal resolutions with
superior computation efficiency.

Furthermore, to effectively train RDVFI, we also introduce the latent-pixel training strategy. Instead
of end-to-end training, we break the training into two stages. The first stage only trains a motion-
guided decoding, which takes the VAE latents of all intermediate frames and outputs the continuous
motion field. Note that in actual inference, the network only takes the first and the last frame as
input to the motion estimator. Therefore, in the second stage, we train a one-step diffusion model
that estimates the latent features of all intermediate frames, which will be used as input to the motion
decoder in the first stage. This training strategy effectively decouples the appearance model training
from the motion module and reduces the training overhead at each stage. As a result, our model
can efficiently train on high-resolution videos (up to 1280x720 25-frame), resulting in high-quality
interpolation.
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With all these designs, our RDVFI outperforms state-of-the-art multi-step VDM-based VFI meth-
ods, as shown in Fig. 1. Benefit from less diffusion samplings at lower temporal and spatial resolu-
tion, our RDVFI interpolates at real-time (17FPS at 1024 × 576 resolution) 1, accelerating by 50×
compared with the latest baseline (Wan et al., 2025). In summary, our contributions include:

• We propose a novel one-step diffusion model for real-world VFI, RDVFI. To our knowl-
edge, it is the first diffusion-based VFI method with one-step inference.

• We propose an efficient and effective VFI pipeline by disentangling motion and appearance
generations, which flexibly interpolate at dynamic spatial and temporal resolutions.

• We design the latent-pixel training strategy for efficient one-step VFI diffusion training.
• Extensive experimental results demonstrate that the proposed RDVFI outperforms state-of-

the-art methods across various benchmarks with remarkable efficiency gain.

2 RELATED WORK

2.1 VIDEO FRAME INTERPOLATION

Conventional video frame interpolation methods can be distinguished by how they determine inter-
mediate motions. Creating motions across consecutive timesteps across input frames is an ill-posed
issue. Early methods solve this challenge by assuming pixels move along a trajectory defined by a
specific mathematical model, e.g., linear (Jiang et al., 2018; Bao et al., 2019), quadratic (Xu et al.,
2019; Liu et al., 2020); however, these methods cannot deal with diverse real-world motions, espe-
cially complex ones. Some methods (Huang et al.; Reda et al.; Li et al., 2023) adopt a data-driven
manner, forcing the network to predict flows between specific intermediate and input frames. These
methods reduce warping artifacts, but do not help solve large, complex motions, as they cannot
model nonlinear and non-rigid movements.

2.2 DIFFUSION MODELS IN VFI

Recently, researchers have found that diffusion models, particularly Latent Diffusion Models
(LDM), advance VFI quality. These diffusion-based methods have two main categories: image
diffusion-based (Danier et al.; Lew et al., 2025) and video diffusion-based (Feng et al., 2024; Yang
et al., 2024; Wang et al., 2024; Zhu et al., 2024). Image diffusion-based methods improve optical
flow accuracy between one specific intermediate and input frames with diffusion models. How-
ever, it is challenging to estimate optical flows for complex motions due to their nonlinear, nonrigid
nature and ambiguities. As a result, these methods still focus on small, simple motions. Video
diffusion-based methods simultaneously generate all intermediate frames through recursive sam-
pling, introducing substantial cost in time and computational resources. These methods fuse two
fine-tuned image-to-video SVD (Blattmann et al., 2023) to produce forward and backward frames,
conditioned on only the first or second input frame. However, their bi-directional predictions are
usually mismatched when input frames contain complex motions, as they only sample the diffu-
sion with one input frame; Zhu et al. (2024) tries to solve this problem by involving an additional
matching module to provide linear motion control signals, but it is hard to fit diverse real-world
motions.

2.3 DIFFUSION ACCELERATION

Reducing diffusion sampling steps is a straightforward and effective way to boost diffusion infer-
ence, involving methods like rectified flow (Liu et al., 2022; 2023), adversarial training (Lin et al.,
2025; Zhang et al., 2024), and score distillation (Wang et al., 2023; Yin et al., 2024). One-step
acceleration is an extreme setting that receives significant attention and has been integrated into
image and video generation algorithms. For instance, Liu et al. (2023) accelerates text-to-image
generation with rectified flow; Yin et al. (2024) mitigates target and generated distribution gaps for
superior image generation quality; Lin et al. (2025) and Zhang et al. (2024) introduce adversarial
loss for better video generation quality. However, these techniques cannot work for VFI tasks be-
cause of the unaffordable training overhead. In addition, intermediate frames that are away from

1All runtimes in this work are calculated on a single A100 at 1024x576 resolution for ×24 interpolation.
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Figure 2: Overall framework of the proposed RDVFI. Our RDVFI interpolates intermediate frames
Îvfi using one-step diffusion sampling with input two ending frames I0, I1. For efficient and ef-
fective training, we propose a two-stage training strategy. Stage 1 trains a motion-guided decoding
that decodes VAE latent into continuous motion field, which is used to synthesize high-resolution
frames. Stage 2 trains a one-step diffusion model to generate latent features of intermediate frames
from two input frames. Its output will be used as input to the motion estimator trained in stage 1.

the input usually have higher ambiguities. Simply adapting existing one-step text-to-image or text-
to-video acceleration techniques may hinder interpolation consistency. Thus, this work proposes a
simple and effective one-step diffusion sampling method that accelerates VFI diffusion inference.

3 METHOD

In this section, we first introduce the overall framework (Sec. 3.1), and then discuss each modules,
including the continuous motion field (Sec. 3.2), one-step Video Diffusion Model (Sec. 3.3), and
frame synthesis network (Sec. 3.4). Finally, we describe the training process (Sec. 3.5).

3.1 OVERALL FRAMEWORK

Fig. 2 shows our overall structure. Given two input frames {I0, I1} ∈ RH×W , we first downsample
them into a fixed low resolutions {I↓(s)0 , I

↓(s)
0 } and encode them with a pretrained diffusion VAE

encoder E(·) and obtain low-resolution latent features {z0, z1} ∈ Rh×w, where H,W, h,w are
image height, image width, latent height, latent width, respectively. Instead of directly estimating
the intermediate frames conditioned on encoded input latent features with the diffusion model, our
RDVFI adopts a two-step estimation, including motion and appearance estimation.

In the first step of motion estimation, we first estimate the latent features zk of key frames at a
fixed low resolution (l × h × w) by a diffusion model, even if the input frames are very high-
resolution. Then, we estimate the continuous motion field with estimated latent features. This is
much more efficient than previous diffusion-based interpolations that directly run diffusion model
on high resolution.

In the second step for appearance estimation, for each frame to be interpolated, RDVFI samples a
movement of between this frame and two input frames {f0→τj , f1→τj}Lj=1 ∈ RL×h×w from the
continuous motion field, and synthesizes intermediate frames {Iτj}Lj=1 based on the warped two
input frames, as shown in Fig. 3. Details of each step are introduced below.

3.2 CONTINUOUS MOTION FIELD

Motivation Current VFI methods usually model pixel movements across input frames in non-
parametric or parametric fashions. Non-parametric methods (Huang et al.; Reda et al.; Li et al.,
2023; Danier et al.; Lew et al., 2025) directly create optical flows in a data-driven manner for each
interpolation. They thus cannot deal with complex motions because estimating optical flows for
complex motions is challenging due to their nonlinear, non-rigid nature, even with known ground
truth frames. Parametric ones (Jiang et al., 2018; Bao et al., 2019; Xu et al., 2019; Liu et al., 2020;
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Figure 3: Continuous motion field estimation pipeline. Given key frames’ latent features {zki
}li=1,

RDVFI first estimates inter-frame flows (purple arrows) with a neural network ϕf
1 following Eq. 1

and then iteratively fuses these estimated flows to get pixel offsets from input to each key frame
(green arrows) following Eq. 2. Because we update a slight offset to the previous estimation f0→ki

based on fki→ki+1
, the network ϕf

2 can estimate f0→ki+1
efficiently and effectively. We further fit

pixel movement splines f0→τ with the estimated pixel offsets between key and input frames (white
points), which enables us to sample optical flows for interpolation at any intermediate time step
τ ∈ (0, 1) (yellow points). In a reversed order, we estimate the backward interpolation optical flows
in the same way and networks.

Tulyakov et al., 2022) approximate pixel movements with a specific mathematical function, such
as linear and quadratic. These functions are simple due to limited inputs and cannot fit real-world,
fast-changing pixel movements. Our continuous motion field advances these parametric methods
by involving key frames generated by the one-step diffusion sampling. These key frames break
down the time interval between input frames, enabling our continuous motion field to model pixel
movements across frames precisely. Please find Sec. A for more explanations.

Pipeline Our continuous motion field aims to solve the above limitations of existing pixel move-
ments modeling techniques to advance VFI in more practical applications. Instead of using a pre-
defined mathematical function to approximate the full pixel movements across input frames, we use
the motion of several key frames to define a smooth spline trajectory between two input frames.
The motion of key frames are estimated from the movement of latent VAE features. Based on that,
RDVFI then estimates forward and backward pixel moving trajectories:

fki→ki+1
, fki+1→ki

= ϕf
1 (zki

, zki+1
), (1)

where ϕf
1 is a neural network, 0 < k1 < ... < kl < 1 are time steps of key frames and fki→ki+1 is

optical flow from time ki to ki+1.

Further, we adopt a novel iterative motion estimation to improve accuracy. unlike existing methods
that directly estimate flows between input and each intermediate frames as (Lew et al., 2025; Danier
et al.) from scratch, our RDVFI iteratively fuses these pixels moving trajectories for optical flows
between input and each intermediate frames with a neural network ϕf

2 :

f0→ki+1
= ϕf

2 (f0→ki
, fki→ki+1

, z0, zki+1
). (2)

Eq. 2 shows an example of how we iterate optical flows from time 0 to 1, and we simultaneously
estimate these flows from time 1 to 0 in a reversed order. We utilize the same network ϕ2 and
weights for all estimation. Because ϕf

2 (·) updates a small pixel offset to the previous estimation
f0→ki and inter-frame motion fki→ki+1 , decomposing large complex motions into small and simple
components, our RDVFI can solve more challenging sequence motions compared with existing
flow-based diffusion methods (Lew et al., 2025; Danier et al.). The f0→ki+1 is a temporally discrete
and spatially dense pixel offset function. Inspired by (Tulyakov et al., 2022), we further fit pixel
movements splines with estimated f0→ki+1

for densification, which can generate flows f0→τ , where
τ ∈ (0, 1) can be any intermediate time steps. We define this as the continuous motion field.

3.3 ONE-STEP VIDEO DIFFUSION SAMPLING

The continuous motion estimation introduced above still relies on the low-resolution latent features
of intermediate key frames. However, during the actual inference, there are only two input frames

5
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and no intermediate latent features. Therefore, we use latent video diffusion model (LVDM) to
generate them from two input frames.

More specifically, for efficiency, RDVFI downsamples input video sequences I =
{I0, Iτ1 , ..., IτL , I1} along spatial and temporal dimensions, producing samples at a fixed resolu-
tion and length x = {I↓(s)k1

, I
↓(s)
k2

, ..., I
↓(s)
kl

}. This downsampling step greatly reduces the compu-
tational cost on heavy diffusion model. In the forward process, RDVFI first encodes these samples
to latent features z = E(x). Then, the corrupted latent zt is obtained by adding Gaussian noise
zt = αtz+ σtϵ, where t ∈ [0, T ] is a corruption step and zT matches pure noise, αt and σt define a
fixed noise schedule, ϵ is Gaussian Noise. We reverse such corruption with a denoising network fθ,
conditioning on encoded input frames z0, z1, where the training objective is:

Lθ(t) = ||fθ(zt; t, z0, z1)− vt||, (3)

vt = αtϵ−σtz is referred as v-prediction (Salimans & Ho). After convergence, we iteratively reverse
the noising process and obtain the denoised latent features ẑ. Unlike existing methods (Wang et al.,
2024; Zhu et al., 2024), decoding the denoised latent features ẑ with the VAE decoder D that pairs
with the encoder E for videos, our RDVFI decoding latent features with the estimated continuous
motion field in Sec. 3.2 using frame synthesis network in Sec. 3.4.

3.4 FRAME SYNTHESIS NETWORK

Given the motion field estimated from intermediate latent features ẑ by the LVDM, the last step
is to synthesize full-resolution dense output frames. We use a frame synthesis network to cal-
culate intermediate frames at any time {τj}Lj=1 ∈ (0, 1), based on forward and backward flows
({f0→τandf1→τ}). As shown in Algo. 1 and Fig. 2, we first sample optical flows at each interpola-
tion timestep τ = τj from the estimated continuous motion field to generate flows {f0→τj , f1→τj}
to warp frames. To further improve the interpolation by involving frame variations that flows cannot
model, we warp the denoised latent features by sampling inter-frame motion from the continuous
motion field. To avoid diffusion model biases towards appearance rather than motion generation,
we detach the gradient of denoised latent here. We then utilize a multi-scale neural network ϕs to
correct and fuse the final interpolation results {Îτj}Lj=1. Please find Sec. B.3 for more details.

Algorithm 1: RDVFI Frame synthesis.
for j=1, 2, ..., L do

Sample optical flows {f0→τj , f1→τj} from {f0→τ , f1→τ}
I0→τj = Warp(I0, f0→τj ), I1→τj = Warp(I1, f1→τj )
Find the nearest key frame timestep, satisfying ki < τj < ki+1, k0 = 0, kl+1 = 1
Sample optical flows {fτi→τj , fτi+1→τj} from {f0→τ , f1→τ}
zki→τj = Warp(zki , fki→τj ), zki+1→τj = Warp(zki+1 , fki+1→τj )

Îj = ϕs(I0, I1, I0→τj , I1→τj , f0→τj , f1→τj , zki→τj , zki+1→τj )
end for

3.5 TRAINING STRATEGIES

A simple end-to-end training of our network may result in poor training convergence. Instead,
we proposed a two-stage, motion-guided decoding stage and one-step diffusion stage, as shown
in Fig. 2. In the motion-guided decoding stage, we aim to train a robust motion-guided decoding
pipeline to replace the original diffusion VAE decoder D, which disentangles motion and appearance
generation in VFI. More specifically, we enforce the motion-guided decoding pipeline to reconstruct
high-frame-rate input video clip I by interpolating with ground truth latent features z and input
frames I0, I1. The training objective is defined by combining LPIPS (Zhang et al., 2018) Llpips and
L2-norm:

Lrec = w1Llpips(I, Îrec) + w2||I − Îrec||2, (4)

where the Îrec is the reconstructed frames, w1, w2 are loss coefficients and are set to be 0.5 and 1,
respectively. To this target, we remove the latent warping for {zki→τj , zki+1→τj} in the first 3/4
training iterations to force the network to interpolate only by flows and warping. We then freeze all
parameters except those related to latent warping for superior interpolation quality in the last 1/4
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training iterations. We do not generate ground truth optical flows to train our continuous motion
field. Estimating optical flows for distant frames is challenging due to their non-linear, non-rigid
nature and ambiguities. These inaccurate “ground truths” may hinder our network training and lead
to performance degradation.

In the one-step diffusion training stage, we freeze all parameters of the motion-guided decoding
pipeline after it converges and only update the denoiser network. The denoiser network aims to
fully remove added noise within one-step denoising. The training objective is as follows:

L = λ1Lθ(T ) + λ2Lrec(I, Îvfi). (5)

Here, the Lθ is defined in Eq. 3, which works for latent domain adaptation; λ1 and λ2 are loss
weights; Îvfi are interpolation results. The λ1 is a piecewise coefficient, which returns one for
the first 2/5 iterations and annealing with a factor of 0.996 for each 100 iterations. λ2 is a step
coefficient, zero for the first 2/5 iterations and one afterward. By doing so, we skip pixel-domain
decoding in the first 2/5 iterations, quickly adapting models to the VFI task.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Our RDVFI has two versions: RDVFI-U, which builds upon 1.5B SVD (Blattmann et al., 2023)
and RDVFI-D based on 1.3B (Wan et al., 2025). We have seven and eight key frames in RDVFI-
U and method-D, respectively. During training, we randomly resize images to one resolution of
(448 × 256, 576 × 320, 1024 × 576, 1280 × 720). Diffusion models and the continuous motion
estimator then work at the 448 × 256 resolution by resizing input images, and the motion-guided
decoding module generates intermediate frames at input resolutions with up-scaled optical flows.
We utilize a fixed 2e-5 learning rate for all experiments. We adopt eight A100-80G GPUs and a
total batch size of 8. We train 200K iterations for the first training stage and 500K for the second.
Please refer to Sec. B for network implementation details.

4.2 DATASETS AND EVALUATION METRICS

Following (Zhu et al., 2024), we form our training dataset by filtering video clips from the DAVIS
dataset (Pont-Tuset et al., 2017), and the RealEstate10K dataset (Zhou et al., 2018), supplemented by
high-frame-rate videos from Pixels and YouTube. We filtered out video clips that contain abnormal
motions like static or scene changes according to optical flows across consecutive frames. Each
training sample contains 25 frames and has spatial resolution 1280 × 720 similar to (Zhu et al.,
2024). We evaluate our methods on two benchmark datasets, the DAVIS-7 dataset by Jain et al.
for ×8 interpolation, the evaluation dataset by Zhu et al. (2024) for ×24 interpolation, as they
contain diverse motion patterns and objects. Additionally, to ensure data diversity, we created an
evaluation set comprising 52 human-selected, high-quality videos from Pixels, producing 100 video
clips for ×24 interpolation at a resolution of 1024× 576. We report numeric comparison results on
both reconstruction metrics, SSIM, and perceptual metrics, including LPIPS (Zhang et al., 2018),
FID (Heusel et al., 2017), and FVD (Ge et al., 2024). We introduce FID and FVD for evaluation as
they evaluate distribution distances between prediction results and ground truth, which convincingly
evaluate VFI quality in large complex motions with various motion patterns.

4.3 BENCHMARKING

Selected Methods and Setting We compare the proposed RDVFI with several state-of-the-art
methods, including conventional non-generative ones, such as RIFE (Huang et al.), FILM (Reda
et al.), and AMT (Li et al., 2023), as well as the diffusion-based ones, including LDMVFI (Danier
et al.), MoMo (Lew et al., 2025), TRF (Feng et al., 2024), ViBiDSampler (Yang et al., 2024),
GI (Wang et al., 2024), FCVG (Zhu et al., 2024), and Wan 1.3B InP (Wan et al., 2025). Because
methods may require different training strategies for the best performance, we utilize the released
weights without further tuning, as the authors have best tuned them. We evaluate Wan (Wan et al.,
2025) with blank text input.
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Input 0 Input 1 LDMVFI MoMo GI FCVG OursWan

Figure 4: Visual comparison results on DAVIS-7 (Jain et al.) (top two rows) and FCVG (Zhu
et al., 2024) (bottom two rows) datasets. Our RDVFI-D method consistently outperforms existing
diffusion-based VFI methods with less blurring, ghosting, color shifts, and fractions.

W
an

FC
V
G

O
ur
s

Start time End time
Figure 5: Sequence interpolation comparison. Our RDVFI-D can correctly estimate the continuous
motion field between input frames from diffusion outputs and thus interpolate with correct motion
and superior visual quality, compared with the direct generation method Wan (Wan et al., 2025) and
the linearly-controlled FCVG (Zhu et al., 2024).

Results We report numeric comparison results between the proposed RDVFI and baseline meth-
ods in Tab. 1. The results show that our RDVFI outperforms existing baseline methods across the
reported two benchmark datasets. Our DiT-based method RDVFI-D outperforms the SVD-based
version, RDVFI-U, benefiting from a more powerful backbone network. Image diffusion-based in-
terpolation methods cannot create complex motions between intermediate and input frames, thus
producing severe ghosting effects. Directly generating intermediate frames with Video Diffusion
Models (VDM) may introduce severe degradations (Feng et al., 2024; Yang et al., 2024; Wang et al.,
2024), due to the mismatched interpolation results from separate forward and backward interpo-
lation from two image-to-video SVD (Blattmann et al., 2023) models; FCVG (Zhu et al., 2024)
attempts to mitigate such misalignment by involving linear motion controls, however, sacrificing
motion generation ability of VDMs and utilizing them as shaders. As shown in Fig. 5, FCVG (Zhu
et al., 2024) produces severe degradations when the matching-based linear motion controller does
not distinguish the falling boy. Sharing the same backbone, however, our RDVFI-D significantly
outperforms Wan (Wan et al., 2025). Our motion-guided decoding pipeline creates intermediate
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Methods DAVIS-7 (Jain et al.) (Zhu et al., 2024) Pixels
LPIPS↓ FID↓ FVD↓ LPIPS↓ FID↓ FVD↓ LPIPS↓ FID↓ FVD↓

Non-Generative Methods
AMT (Li et al., 2023) 0.254 34.65 234.50 0.224 44.74 375.00 0.361 41.36 378.86
RIFE (Huang et al.) 0.258 23.98 240.04 0.247 39.01 366.14 0.278 31.10 207.82
FILM (Reda et al.) 0.271 30.16 214.80 0.241 39.82 279.08 0.251 27.06 158.68

Image Diffusion-based Methods
LDMVFI (Danier et al.) 0.276 22.10 245.02 0.228 37.74 371.49 0.287 31.36 211.70
MoMo (Lew et al., 2025) 0.268 23.67 240.09 0.207 33.59 261.37 0.269 27.31 230.19

Video Diffusion-based Methods
TRF (Feng et al., 2024) 0.270 29.12 230.12 0.331 45.37 305.88 0.301 35.31 279.65

ViBiDSampler (Yang et al., 2024) 0.261 27.33 208.53 0.292 39.83 257.15 0.263 29.28 184.57
GI (Wang et al., 2024) 0.267 27.71 211.47 0.334 43.08 282.22 0.273 33.27 251.38

FCVG (Zhu et al., 2024) 0.266 25.96 207.17 0.266 31.24 225.48 0.257 24.51 137.57
Wan (Wan et al., 2025) 0.323 26.97 248.14 0.223 28.52 214.45 0.261 22.48 131.22

Our RDVFI-U 0.260 23.65 201.49 0.220 27.03 217.72 0.261 23.71 129.33
Our RDVFI-D 0.251 21.17 189.37 0.201 19.98 197.86 0.253 19.48 119.21

Table 1: Numeric comparison results on three benchmark datasets from (Jain et al.), (Zhu et al.,
2024) and Pixels. The best and the second-best results are highlighted by bold and underline. The
proposed RDVFI outperforms existing baseline methods on most metrics.

Method GPU Mem. (GB) Runtime (sec.)
Non-Generative Methods

AMT 13.5 0.210
RIFE 1.4 0.025
FILM 8.0 0.830

Image Diffusion-based Methods
LDMVFI 21.7 1.563

MoMo 3.9 0.157

Method Category GPU Mem. (GB) Runtime (sec.)
Video Diffusion-based Methods

TRF Zero-shot 13.3 7.382
ViBiDSampler Zero-shot 26.24 3.708

GI Fine-tune 23.5 29.613
FCVG Fine-tune 27.6 14.381
Wan Fully Trained 18.0 2.579

Our RDVFI-U Fine-tune 14.2 0.137
Our RDVFI-D Fine-tune 13.1 0.057

Table 2: We compare the inference efficiency between our RDVFI and existing interpolation base-
line methods, including AMT (Li et al., 2023), RIFE (Huang et al.), FILM (Reda et al.), LD-
MVFI (Danier et al.), MoMo (Lew et al., 2025), TRF (Feng et al., 2024), ViBiDSampler (Yang
et al., 2024), GI (Wang et al., 2024), FCVG (Zhu et al., 2024), and Wan (Wan et al., 2025). Our
RDVFI is the fastest and most memory-efficient diffusion-based interpolation method. Although
RIFE (Huang et al.) is slightly faster than our RDVFI, our RDVFI outperforms it with a clear mar-
gin for large complex motions.

frames by warping, forcing the diffusion model to create latents that can correctly restore motions
across frames. Thus, our interpolation is smoother and more stable, producing the fewest artifacts
compared to other VDM-based solutions.

4.4 EFFICIENCY COMPARISONS

We report detailed efficiency metrics in Tab. 2. As we can observe, our RDVFI is the fastest
diffusion-based interpolation method, that can interpolate at real time (17 FPS) at the resolution
of 1024 × 576. Although a non-generative baseline method, RIFE (Huang et al.), is slightly faster
than our RDVFI, it cannot deal with large complex motions and introduce severe visual degrada-
tions. In contrast, our RDVFI can efficiently and effectively interpolate large complex motions,
outperforming RIFE with a clear margin, as shown in Tab. 1, Fig. 4, and Fig. 5.

4.5 ABLATION STUDY

We investigate the effectiveness of the proposed pipeline and training strategy. We utilize the same
configuration in Sec. 4.1 for all ablation studies.
Motion-guided Decoding Pipeline We degrade our RDVFI-D by replacing the motion-guided
decoding pipeline with the original VAE decoder, which is defined as “VAE Dec”. In addition,
we also claim that the iterative motion fusion for continuous motion field estimation is one of our
key contributions for accurate motion estimation. Thus, we degrade our motion-guided decoding
pipeline by removing the iterative flow fusion, estimating pixel offsets between each key frame and
input frames from scratch by regression. We define this setting as “Direct Warping”.
Training Strategy To validate our latent-pixel training strategy, we degrade our training objective
by removing the pixel-space perceptual loss only, formatting“L+P-L2 loss”, and all pixel-wise loss,
defined as “L loss”.
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Resolution Runtime (ms)
VAE-Dec RDVFI-D

576× 320 103.3 55.3
1024× 576 267.7 58.01
1280× 720 314.3 63.49

(a) Per-frame runtime comparison

Setting LPIPS↓ FID↓ FVD↓
Direct Warping 0.287 42.33 327.11

L loss 0.269 33.29 281.37
L+P-L2 loss 0.251 29.37 267.42
RDVFI-D 0.224 23.71 209.38

(b) Comparisons on different model settings

Table 3: Ablation study on inference efficiency, network design, and training strategy. Our method
outperforms all ablation experiments, showing the best interpolation efficiency and accuracy.

Input 0

1 Frame Skip

Results Input 1

3 Frame Skip

Results Input 1

7 Frame Skip

Results Input 1

Figure 6: Our RDVFI can robustly interpolate when input frames have consistent objects and enough
overlapping regions, such as the 1 frame and 3 frame skip cases. However, when the overlapped re-
gions become minimal, like the ending input frame produced by 7 frames skipped, the algorithm
cannot generate coherent and accurate intermediate optical flows to warp input pixels for interpola-
tion, resulting in severe degradations.

As shown in Tab. 3, our RDVFI-D consistently outperforms all degraded versions on efficiency
and accuracy. Benefiting from our motion-guided decoding, RDVFI-D can interpolate at different
resolutions at the same diffusion sampling cost, resulting in a significant efficiency gain compared
with traditional VAE decoders, as shown in Tab. 3a. Tab. 3b also shows the effectiveness of our
flow fusion strategy and training objective design. For fair comparison, we fine-tune each ablation
experiment and report our results at the same iterations.

4.6 FAILURE CASE

Our method warps input frames with generated intermediate optical flows for interpolation, thus
requiring the input frames to contain consistent objects and enough overlapping regions. As shown
in Fig. 6, with the same starting frame, our method can robustly interpolate with the ending input
frame produced by 1 frame and 3 frames skipped. However, when the overlapped regions become
minimal, even with a changed main object in the 7-frame-skipped situation, the algorithm struggles
to generate coherent and accurate optical flows to move pixels from the inputs to each intermediate
frame, resulting in severe degradations through interpolation.

5 CONCLUSION AND LIMITATION DISCUSSIONS

In this paper, we propose the first real-time video diffusion-based Video Frame Interpolation (VFI)
pipeline that can run 17FPS at 1024 × 576 resolution with even superior interpolation quality than
current multi-step solutions. Our work is advancing diffusion-based VFI to more practical and chal-
lenging scenarios, such as super slow motion and video compression. This work also hopes to sug-
gest that solving ambiguous components with diffusion models, rather than end-to-end generation,
may lead to superior accuracy and efficiency.

Limitations Despite the superior interpolation results for complex motions, our method may lag
behind conventional non-generative ones for extremely small and simple motions because the con-
tinuous motion field degrades to simple functions that existing methods can solve well. Our diffusion
sampling may introduce fluctuations, and cannot obtain a significant performance gain compared
with existing methods.
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Ethics Statement This work adheres to the ICLR Code of Ethics. In this study, no human sub-
jects or animal experimentation were involved. All datasets used, including DAVIS-7 (Jain et al.)
and FCVG (Zhu et al., 2024), were sourced in compliance with relevant usage guidelines, ensuring
no violation of privacy. We have taken care to avoid any biases or discriminatory outcomes in our
research process. No personally identifiable information was used, and no experiments were con-
ducted that could raise privacy or security concerns. We are committed to maintaining transparency
and integrity throughout the research process.

Reproducibility Statement We have made every effort to ensure that the results presented in this
paper are reproducible. All code, weights, and dataset will be released upon publication. The ex-
perimental setup, including training steps, model configurations, and hardware details, is described
in detail in the paper. We have also provided a full description of network designs in Sec. 3, net-
work structures in Sec. B, and implementation details in Sec. 4.1, to assist others in reproducing our
experiments.

Additionally, the DAVIS-7 (Jain et al.) and FCVG (Zhu et al., 2024) we adopt for evaluation are
publicly available, ensuring consistent and reproducible evaluation results.

We believe these measures will enable other researchers to reproduce our work and further advance
the field.
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In addition to our paper, we also provide a video demo to compare the proposed RDVFI against exist-
ing diffusion-based interpolation methods. Because many artifacts, such as unreasonable generated
motions and detail inconsistency, are hard to observe in the image domain, we strongly suggest the
reviewers to watch our demo for performance comparisons.

Real Pixel Movement Trajectory Linear Approximation Quadratic Approximation Our Continuous Motion Field

Key frames

Figure 7: Existing simple functions (linear and quadratic) cannot fit real pixel movements. Our
continuous motion field utilizes more complex movement splines, fitting these complex movements
better and accordingly producing reliable interpolation results.

A MORE EXPLANATIONS TO THE CONTINUOUS MOTION FIELD

Existing data-driven non-parametric methods generate optical flows between the middle and input
frames. They require iterative interpolation for frame sequences, resulting in inconsistent interpola-
tion and blurring effects due to multiple warping operations. Parametric methods can simultaneously
generate optical flows between all intermediate and input frames from the constructed object move-
ment function, leading to more consistent motion generation and exquisite details.

However, approximating real pixel movement trajectories parametrically is challenging because we
do not have enough known frames to fit complex mathematical functions. Existing solutions adopt
simple functions, such as linear and quadratic, to approximate pixel movements. However, as shown
in Fig. 7, they cannot fit fast-changing real-world motions, hindering interpolation quality. Our
continuous motion field solves this challenge by involving the one-step diffusion model to generate
sparse key frames to enable more complex functions for approximating real pixel movements. The
continuous motion field obviously shows superior motion approximation ability and leads to superior
interpolation accuracy for large, complex motions.

B NETWORK DETAILS

B.1 VIDEO DIFFUSION MODEL

We build our VFI Video Diffusion Models (VDM) upon SVD (Blattmann et al., 2023) and Wan 2.1
1.3B T2V (Wan et al., 2025) model. We do not apply LoRA (Hu et al., 2022a) fine-tuning technique
for both models because supervised fine-tuning leads to significant performance gain. To avoid
overfitting and backbone model degradation through fine-tuning, we collect and train our diffusion
on a large-scale dataset that consists of more than 500K valid video clips with random data aug-
mentation, like horizontal flipping, random resizing, and cropping. We do not utilize the pretrained
image-to-video SVD because it only conditions on the first input frame, introducing different frame
information biases than VFI, as frame information decreases with their distance to known frames.
We also do not utilize the Wan InP model, which supports start-end-frame generation because it
injects input frame conditions by concatenating input and intermediate noisy latent features along
the channel dimension, potentially introducing inconsistent interpolation. Thus, we initialize our
VDM with the T2V diffusion weights, concatenating input and intermediate latent features along
the temporal dimension, and modify the timestep embedding by assigning input latent features the
least noise level in the diffusion scheduler.

B.2 CONTINUOUS MOTION FIELD ESTIMATOR

Our continuous intermediate motion field estimator consists of two networks: ϕf
1 (·) and ϕf

2 (·). The
detailed network working flow and structures are shown in Algo. 2 and Tab. 4, respectively. We use
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Algorithm 2: Continuous Intermediate Motion Estimator

Input: Denoised latent features z0, zτ0 , ..., zτN−1
, z1; Two neural networks ϕf

1 , ϕf
2

Output: Flows for each interpolation {f0→τ , f1→τ}τN−1
τ=τ0

1 Calculate fτi→τi±1
= ϕ1(zi, zi±1);

2 Initialize f0→τ−1
= 0, f1→τN = 0;

3 foreach i=0, 1,..., N-1 do
4 Warp z0 with previous flow estimation results z0→τi−1 = Warp(f0→τi−1 , z0);
5 Flow fusion for time τ = τi: f0→τi = ϕ2(z0, zτi , z0→τi−1

, f0→τi−1
, fτi−1→τi) + f0→τi−1

6 foreach i=N-1, N-2, ..., 0 do
7 Warp z0 with previous flow estimation results z1→τi+1

= Warp(f1→τi+1
, z1);

8 Flow fusion for time τ = τi: f1→τi = ϕ2(z1, zτi , z1→τi+1
, f1→τi+1

, fτi+1→τi) + f1→τi+1

the same ϕf
1 (·), ϕ

f
2 (·) for estimation (same network, same weights) for all intermediate frames and

both flow fusion directions.

B.3 FRAME SYNTHESIS

We synthesize intermediate frames with estimated optical flows by borrowing IFBlocks from
RIFE (Huang et al.), shown in Tab. 5. The frame synthesis network ϕs(·) two IFBlocks at 1

4 and 1
2

scales, respectively. We warp frame using refined optical flows, resulting in I0→τj , I1→τj , respec-
tively, and fuse with the mask m by:

Iτj = sigmoid(m) · I0→τj + (1− sigmoid(m)) · I1→τj . (6)

where Iτj is the interpolated frame.

# Operation Input
ϕ1

1 Concatenate zki
, zki+1

2 Conv 3× 3× 256 #1
3 Conv 3× 3× 256 #2
4 LeakyReLU(0.2) #3
5 Conv 3× 3× 256 #4
6 LeakyReLU(0.2) #5
7 Conv 3× 3× 256 #6
8 LeakyReLU(0.2) #7
9 Add #2, #8
10 Conv 3× 3× 2 #9

ϕ2

11 Warp #10, z0
12 Concatenate #11, z0, zki+1

, f0→ki
, #10

13 Conv 3× 3× 256 #12
14 LeakyReLU(0.2) #13
15 Conv 3× 3× 256 #14
16 LeakyReLU(0.2) #15
17 Conv 3× 3× 256 #16
18 LeakyReLU(0.2) #17
19 Add #13, #18
20 Conv 3× 3× 2 19
21 Add #20, f0→ki+1

Table 4: Network implementation details of the continuous motion field estimator networks. Con-
volution specifications are given in order kernel height × kernel width × output channel; negative
slope of LeakyReLU is in the parentheses. We take the forward flow fusion as an example and can
simply estimate the backward flow fusion results using the same network but in reverse order.
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# Operation Input
1 Warp I0, f0→τj
2 Warp I1, f1→τj
3 Concatenate m, #1, #2, I0, I1, f0→τj , f1→τj
4 Resize #3
5 Conv 3× 3× C #4
6 LeakyReLU(0.2) #5
7 Conv 3× 3× C #6
8 LeakyReLU(0.2) #7
9 Conv 3× 3× C #8

10 LeakyReLU(0.2) #9
11 Add #10, #5
12 Conv 3× 3× 5 #11
13 Add First two channels of #12, f0→τi
14 Add Following two channels of #12, f1→τi
15 Add Last channel of #12, m

Table 5: Network implementation details of the IFBlock networks. Convolution specifications are
given in order kernel height × kernel width × output channel; negative slope of LeakyReLU is in
the parentheses. Convolution channel C varies with resize scales, which are 256 and 128 for 0.25
and 0.5 scales, respectively. We take the forward flow fusion as an example and can simply estimate
the backward flow fusion results using the same network but in reverse order.

# Operation Input
1 IFBlock at 1/4 scale I0, I1, f0→τj , f1→τj
2 IFBlock at 1/2 scale #1, I0, I1
3 Gradient Detach zki

4 Gradient Detach zki+1

5 Warp #3, fki→τj
6 Warp #4, fki+1→τj
7 Concatenate and Upscale #3, #4
8 Conv 3× 3× 64 #7
9 Conv 3× 3× 64 #8

10 LeakyReLU(0.2) #9
11 Conv 3× 3× 64 #10
12 LeakyReLU(0.2) #11
13 Conv 3× 3× 64 #12
14 LeakyReLU(0.2) #13
15 Add #8, #14
16 Conv 3× 3× 3 #15

Table 6: Full network implementation details of the frame synthesis network.

As shown in Tab. 6, we then refine the fused intermediate frame Îτj with denoised latent features for
variations that cannot be modeled by flows. We first detach the gradient of denoised key frame latent
features {zki

, zki+1
}, where zki

< τj < zki+1
to force the frame synthesis network interpolate with

correct motion rather than directly decoding latent features during training. Then, we warp these
latent features with sampled optical flow {fki→τj , fki+1→τj}. We upscale the warped latent to the
same resolution as the input frames, following a resblock at 64 channels. Finally, we add them to
the fused intermediate frame to generate the final interpolation results Îvfi at time τ = τj .

C MORE VISUALIZATION

We provide additional visualization in Fig.8 and Fig.9. As we can observe, existing video interpola-
tion methods cannot deal with nonlinear, non-rigid motions, interpolating by pixel-wise approxima-
tion and resulting in severe visual degradations. In contrast, our RDVFI can accurately decompose
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Figure 8: More visualization on challenging cases. The first two rows from DAVIS-7 dataset (Jain
et al.), and the last two from Pixels. Our RDVFI consistently outperforms existing video frame
interpolation methods on large complex motions.

large complex motions between input frames into small and easy-to-estimate components with dif-
fusion models and iteratively fuse them for interpolation. Accordingly, our RDVFI can interpolate
these challenging motions with superior visual quality.

D DISCUSSION ABOUT LIMITATIONS

As shown in Fig.10, both non-generative methods (Huang et al.; Reda et al.) and diffusion-based
methods (our RDVFI and Wan (Wan et al., 2025)) can interpolate small and simple motions well.
However, non-generative methods only focus on small and simple motions during training, while
both Wan (Wan et al., 2025) and our RDVFI deal with both small simple motions and large complex
ones. As a result, these non-genrative methods usually achieve superior numeric metrics.

E LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.
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Figure 9: More sequence interpolation results. The first row comes from the FCVG dataset (Zhu
et al., 2024) and the last two from Pixels dataset. Current video diffusion-based methods (Zhu
et al., 2024; Wan et al., 2025) cannot generate accurate motions when they are nonlinear and non-
rigid, performing pixel-wise approximation for interpolation that results in severe degradations (see
yellow boxes). In contrast, our RDVFI can better solve these challenging motions, resulting in
superior interpolation quality.
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LPIPS: 0.082LPIPS: 0.091 LPIPS: 0.108 LPIPS: 0.102

Input Frame 0 Input Frame 1 RIFE FILM Wan Ours

LPIPS: 0.065LPIPS: 0.062 LPIPS: 0.081 LPIPS: 0.073

Figure 10: Non-generative methods can interpolate small and simple motions well, as they can
approximate intermediate motions with the pre-determined functions. Although our RDVFI and
diffusion-based interpolation methods, such as Wan (Wan et al., 2025) can interpolate well to these
motions, non-generative models usually have superior numeric metrics as they only focus on small
and simple motions.
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