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Abstract

We introduce an improvement for reinforcement learning (RL) algorithms for con-1

tinuous setting called state planning policy RL (SPP-RL). In SPP-RL, the actor2

plans for the next state provided the current state. To communicate the actor out-3

put to the environment, we incorporate an inverse dynamics control model and4

train it using supervised learning. We evaluate our improvement using the off-5

policy state-of-the-art reinforcement learning algorithms: TD3 and SAC. The tar-6

get states need to be physically relevant; the overall learning procedure is formu-7

lated as a constrained optimization problem, solved via the classical Lagrangian8

multipliers method. We benchmark the state planning RL approach using a set of9

Safety-gym level 0 (no safety cost involved) environments and the AntPush env..10

We find that SPP-RL significantly beats the baselines in terms of average return.11

We assign the performance boost to the more efficient SPP-RL agent exploration,12

performed in the target-state space rather than the action space. We report numer-13

ical experiments confirming this finding.14

1 Introduction15

Research on reinforcement learning (RL) has brought many successful applications in diverse fields16

of science and technology. RL application areas can be split into two classes: discrete (e.g., board17

games) and continuous (e.g., robotic problems). Here, we are interested in continuous simulation18

environments, mostly in robotics. The RL is concerned with training a policy governing agent19

motion via interactions with the environment to maximize the expected total return.20

Traditionally, RL is based on searching for the optimal policy within the space of state-action map-21

pings; the policy is a function assigning an action to take depending on the current state. We propose22

an improvement based on the principle of training an actor (a policy) operating entirely in the state23

space (state-state mappings). We call such policies the state planning policies (SPP), whose ac-24

tions determine desired trajectories in the state space. The task of training SPP may initially seem25

infeasible due to a significantly larger dimension of states than actions. Nonetheless, quite surpris-26

ingly, we show that the approach is feasible and often leads to significant improvements in average27

performance and decreased sample efficiency for a class of robotic locomotion tasks.28

We call our approach State Planning Policy Reinforcement Learning (SPP-RL). It is a generic ap-29

proach for problems specified using continuous environments. The main building block of SPP-RL –30

the RL agent can be implemented using virtually any model-free RL algorithm. We chose to develop31

our approach using the state-of-the-art off-policy DDPG [18], TD3 [8], and SAC [11] algorithms.32

Note that, in SPP-RL we need another trainable model to communicate the policy output to the en-33

vironment; as such, we incorporate a learnable inverse dynamics control model (IDM), see Fig. 1.34

The overall algorithm optimizes the policy simultaneously with IDM. To ensure that the policy tar-35

get states satisfy physical and under-actuation constraints, we formulate a constrained optimization36
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objective for policy training. Our work lies within the category of RL methods that have already37

implemented state-state policies, including work on hierarchical RL [21], the D3G algorithm [6],38

and behavioral cloning from observation [27]. In this work, we show the properties and advantages39

of state-planning policies that have not been demonstrated earlier.40

Summary of results. Although the SPP-RL algorithm searches for the optimal policy within a41

much larger space, our performance benchmarks revealed that SPP-RL implementations often out-42

perform their vanilla RL counterparts. Experiments in Safety-Gym Level 0 environments [25] (with-43

out safety cost) demonstrate that SPP-TD3 and SPP-SAC outperform by a great margin TD3 and44

SAC, respectively. Experiments in AntPush task [21] show that SPP-TD3 outperforms hierarchical45

RL method HIRO [21] and provides some interpretability of the agent behavior.46

We hypothesize that the superior performance of SPP-RL in the tested continuous environments47

originates in more efficient state-space exploration by state-state policies than traditional state-action48

policies; here noise is being added to target states rather than actions. To argue this, we performed49

series of experiments, including evaluation of a shadow agent utilizing experience from SPP and50

vanilla replay buffers (Sec. 5.2) and a study of the distributions of states gathered in different replay51

buffers (Sec. 5.4).52

We implemented SPP-RL methods as a modular PyTorch library shared as open-source. SPP-RL53

algorithms are derived from their vanilla RL counterparts, making extending the library with new54

RL algorithms straightforward. We also share videos with test episodes of the trained agents to55

accompany benchmark plots [1].56

1.1 Related work57

We present a (non-exhaustive) list of related works; refer to Tab. 1 for a perspective on related58

work. The closest approach to ours is the D3G algorithm introduced by [6], which includes state59

planning policies, and introduces a novel form of the value function defined on state-next state pairs.60

There are two main ways our method is distinct. First, SPP employs the classical formulation of61

the value function. Also, we do not include a forward dynamics model nor the cycle loss. Instead,62

to guarantee consistency of the policy target-states in SPP, we formulate a constrained optimization63

problem (compare Fig. 2) solved via Lagrangian optimization.64

Our work builds on the classical RL algorithms going back to REINFORCE [30], Asynchronous65

Actor-Critic [19], and especially the off-policy actor-critic algorithms including Q-Prop [9], DDPG66

[18], SAC [11, 12], and TD3 [8]. State planning policies have been used in hierarchical RL (HRL)67

methods like HIRO [21] and FuN [28]. Contrary to HRL SPP-RL approach does not employ a68

hierarchy of multiple policies nor state conditioned value functions.69

Training predictive models (like IDMs) is fundamental for the model-based RL approach including70

algorithms: a locally linear latent dynamics model [29], model-based planning for discrete and71

continuous actions [14], model-predictive control [5], and model based policy optimization [16].72

We deployed IDMs for mapping current-target states to actions; other applications of IDMs in RL73

include the context of planning: search on replay buffer [7], episodic memory graph [31], and74

topological memory for navigation [26]. Existing many other applications of IDM in context of RL75

including: policy adaptation during deployment [13], sim to real transfer [4], adversarial exploration76

[15], curiosity-driven exploration [23], and video pre-training for minecraft [3].

Technique State-state policy Inverse/forward model State cond. Q funct. Policy Hierarchy Planning horizon

SPP (ours) yes inverse no single policy single step
D3G yes inverse & forward yes single policy single step
HRL yes(upper level) inverse yes(upper level) multiple policies multiple steps
Planning yes inverse yes N/A multiple steps
Model based no forward N/A single policy single step

Table 1: A Perspective on Related Work

77
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1.2 Background78

Following the standard setting used in RL literature, we work with infinite horizon Markov decision79

process (MDP) formalism (S,A, P, r, ρ0, γ), where S is a state space, A is a action space, P : S ×80

A×S → [0, 1] is a transition probability distribution, r : S ×A → R is a reward function, ρ0 is an81

initial state distribution, and γ ∈ (0, 1) is a discount factor. From now on we assume that the MDP82

is fixed. In RL the agent interacts with E in discrete steps by selecting an action at for the state st83

at time t, causing the state transition st+1 = E(st, at), as a result the agent collects a scalar reward84

rt+1(st, at), the return is defined as the sum of discounted future reward Rt =
∑T
i=t γ

(i−t)r(si, ai).85

The goal in RL is to learn a policy that maximizes the expected return from the start distribution.86

2 State Planning Policy Reinforcement Learning Approach87

Our SPP approach is rooted in state-state reinforcement learning, by which we mean setting in which88

RL agent is trained to plan goals in the state-space, the approach already employed e.g., in HRL,89

planning, D3G RL algorithms (see Tab. 1). In SPP a state planning policy π given the current state90

st outputs zt – the desired target state to be reached by the environment in the next step. Forcing91

the environment to reach the desired state requires translating the target state to a suitable action at.92

Hence, we employ an additional model capable of mapping the current state-target state pair (st, zt)93

to the action at – a (trainable) IDM model. Ideally, we like to have consistency zt(st) ≈ st+1.94

The consistency cannot be guaranteed a-priori, is rather achieved in SPP setting by employing a95

constrained optimization approach. A diagram illustrating SPP approach is presented in Fig. 1.96

We have freedom of choice of the particular RL algorithm (RL agent) and IDMs implementations.97

Currently, we use feed-forward neural networks, and RL Agent using implementations of the state-98

of-the-art off-policy RL algorithms: DDPG [18], TD3 [8] and SAC [11]. We present details of99

SPP-RL implementation in Sec. 4 using as the example SPP-DDPG. The encountered experiences100

during the execution of an off-policy RL algorithm are stored in replay buffer D.101

The main building block of SPP-RL are the state planning policies, intuitively a state planning policy102

selects a desired trajectory in the state-space of the environment.103

Definition 1. We call a state planning policy a map πθ : S → P(S) parametrized using a vector of104

parameters θ ∈ Rn(θ), and we denote πθ(z|s) a probability of the desired target state z ∈ S for the105

given current state s ∈ S.106

We call a deterministic state planning policy a parametrized map πθ : S → S , and we denote107

πθ(s) = z.108

We assume that π has continuous and bounded derivatives with respect to θ. We will call state109

planning policy whenever it is clear from the context deterministic/stochastic and omit the parameter110

subscript π = πθ.111

Besides the state planning policy (Def. 1) the second main building block of the overall SPP agent112

is a model for mapping the current state-target pair (st, zt) to suitable action at. Following the113

existing literature, we call such model the inverse dynamics control model (IDM), or simply the114

control model.115

Definition 2. For a given MDP (S,A, P, r, ρ0, γ). Let s, z ∈ S. We define the control model:116

CM : S × S → A, CM(s, z) = a,

i.e. for the given two states CM computes the action a. We call s, z the initial state and the target state117

respectively, where a informally satisfies argmaxb∈S P (s, a, b) ∼ z for stochastic E, or z ≈ E(s, a)118

for deterministic E.119

Obviously, in order to work, SPP requires consistency of the target states generated by the policy120

with the actual next-states of the environment. We call this property the state consistency property121

(or simply consistency) of π, refer to Fig. 2. As it may be intractable to verify SPP for all possible122

interactions in continuous environments, we are interested in guaranteeing the state consistency for123

the experiences stored in the replay buffer. It is analogous to the behavioral cloning from observation124

loss [27].125
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Property 1. Let D be a replay buffer, CM be an IDM and π be a (SPP) policy. We say that π has126

the state consistency property with threshold d > 0 if it holds that127

E
(st,st+1)∈D
zt∼π(st)

[
∥st+1 − zt∥22

]
≤ d,

for deterministic π we have zt = π(st). Given (zt, st+1), we call distance ∥zt − st+1∥22 the state-128

consistency distance (refer Fig. 2). We will often assume that d is known from context and omit129

’with threshold d > 0’.130

Environment

RL Agent Control model

Figure 1: Diagram presenting
our SPP method

actor (spp)

control model state
consistency
distance

Figure 2: Diagram presenting the idea
of state consistency property, ultimately

we want to achieve zt ≈ st+1.

131

132

3 Ensuring State Consistency Property by Constrained Optimization133

Our SPP algorithm is utilizing three parametrized models: IDM CMψ , policy model πθ, and Q-134

function model(s) Qϕ. In our current implementation, all of the models are feed-forward neural135

networks. One way of ensuring the state consistency property (Prop. 1) is to modify the policy136

training loss, such that the expected values are maximized under fixed state consistency distance137

penalty. However, such an approach has many disadvantages, e.g., choosing appropriate learning138

temperature (λ) for the state consistency penalty is a very delicate issue, see the ablation study in139

Appendix 5.5. It is easy to notice that setting its value too low would result in π biased towards140

nonphysical target-states. On the other hand, setting its value too high would make π overly con-141

servative for off-policy states. Hence, we find a solution relying on constrained optimization more142

appealing for the studied problem. Namely, the objective for policy training is to maximize the sum143

of discounted rewards assuming a fixed threshold for the state consistency distance.144

Definition 3. Let π be a state planning policy (Def. 1), CM be a control model (Def. 2), D be the145

replay buffer with experience generated by executing an off-policy RL algorithm. In particular zt’s146

are target states evaluated on-the-fly by π (susceptible to be changed during the course of algorithm),147

and st+1’s are E next-states. Let d > 0 be a fixed hyperparameter.148

We define the constrained objective for state planning policy π as follows149

max
π

E
τ∼π,CM

ai=CM(si,zi)

[
T∑

i=0

γir(si, ai)

]
, (1a)

s.t. E
(st,st+1)∈D
zt∼π(st)

[
∥st+1 − zt∥22

]
≤ d, (1b)

where d is a hyperparameter for determining the allowed threshold for the expected divergence150

of predictions from actual next-states, (1a) is an expectation over the policy trajectories generated151

by both of the state planning policy and IDM (trajectory is composed out of tuples (st, zt, at)).152

The whole optimization process of (1a) is being performed off-policy, see Sec. 4. The con-153

strained objective in (1) is being solved using the standard Lagrange multiplier method. The154

max-min Lagrangian objective L(π, λ) for the constrained optimization problem takes the form155

maxπminλ≥0 L(π, λ) = E
τ∼π

[R0(π)] − λ

(
E
D

[
∥st+1 − zt∥22

∣∣∣
zt∼π(st)

]
− d

)
. For more details156

refer to App. B.1.157

4 Algorithm Implementation158

We briefly present here details of the SPP Algorithm implementation, more detailed discussion159

can be found in Appendix B. We implemented SPP-DDPG, SPP-TD3, and SPP-SAC as a modu-160
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lar Python library within PyTorch framework [22]. All gradient optimization steps were performed161

using the Adam optimizer by [17]. Many of the algorithmic choices were motivated by the Spin-162

ning Up RL on-line resource [2]. We publish the modular SPP-RL software package as open-source163

[1]. For illustrative purposes, we present the pseudo-code of the full SPP-DDPG algorithm in Algo-164

rithm 1. SPP-SAC and SPP-TD3 algorithms are presented in Appendix B. We emphasize that SPP165

algorithms are not using any extra samples, i.e. the samples utilized for ICM training are added to166

the buffer and then reutilized for RL training, and if the buffer is full new samples are not being167

added anymore. An important caveat of our policy implementation in SPP-DDPG, not present in168

the vanilla DDPG, is that the output of π is being normalized in order to reflect the physical bounds.169

Contrary to vanilla DDPG where π outputs actions within well-defined uniform bounds, in SPP a170

suitable normalization of target state π output is being computed online – depends on the past E ob-171

servations. Implementation of π is a feed-forward neural network (refer to Appendix C for details)172

with tangential outputs bounded within [−1, 1]. Hence, we normalize the output of neural network173

π by utilizing the current mean and min/max values of the past observations in replay buffer D. We174

recompute mean and min/max values after each episode of the algorithm. Our base implementation

Algorithm 1: SPP-DDPG Algorithm
input : environment E; initial model parameters θ, ϕ, ψ; state planning distance threshold d; empty

replay buffer D; the DDPG algorithm hyperparameters
output: trained model parameters θ, ϕ, ψ; total return
repeat

Sample random action a ∼ U ;
Store experience (st, at, zt = st+1, rt+1, st+1) in replay buffer D; (use next-state as the initial actor

actions)
until random exploration is done;
repeat

if buffer D is not full then
Compute actor prediction zt = π(st) + ε, where ε ∼ N ;
Compute action at = CM(st, zt) and observe reward rt+1 and next state st+1;
Store experience (st, zt, at, st+1, rt+1) in D;

end
if it’s time to update CM then

Sample {bi = {((st, st+1), a)}}bi=1 b batches of samples from replay buffer D;
SGD train CM using the batches and MSE loss;

end
if it’s time to update actor and critic then

for update steps do
Randomly sample B = {(st, zt, at, st+1, rt+1)} set of batches from D;
Compute ãk+1 = CM(st+1, π(st+1));
Compute targets y = rt+1 + γQπ,CM

ϕtarg
(st+1, ãk+1) (using target parameters ϕtarg);

Update ϕ = ϕ− lϕ
|B| · ∇ϕ

∑
B

(
y −Qπ,CM

ϕ (st, at)
)2

;
Update policy parameters (ascent w.r.t θ of max-min Lagrangian obj.) θ =

θ + lθ

(
1
|B| · ∇θ

∑
B Q

π,CM
ϕ (st, at)

∣∣∣
at=CM(st,πθ(st))

− λ
|B| · ∇θ

∑
B ∥st+1 − πθ(st)∥22

)
;

Update (descent w.r.t. λ of max-min Lagrangian obj.)
λ = λ+ lλ

(
1
|B|

∑
B ∥st+1 − πθ(st)∥22 − d

)
;

Update actor & critic ϕtarg = (1− τ)ϕtarg + τϕ; θtarg = (1− τ)θtarg + τθ;
end

end
until convergence;

175
of DDPG algorithm is parametrized by the usual hyper-parameters including episode length, update176

batch size, Polyak averaging parameter (τ ), actor and critic learning rate l, maximal episode length,177

number of test episodes, γ. To ensure that we perform minimization (2) within the domain of posi-178

tive λ values, we optimize the parameter of the softplus function. All relevant hyper-parameters are179

provided in Appendix C.180
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5 Experimental Evaluation181

To show the feasibility of our method, we performed experiments on a set of benchmarks using182

continuous environments, most of them having large space dimensions. We performed all of the183

reported experiments using the default vector state input. We show that SPP-RL implementations184

compare favorably to their vanilla RL counterparts. As our SPP approach differs considerably from185

the vanilla off-policy RL, we performed a thorough hyper-parameter sweep from scratch. We pro-186

vide the hyper-parameter values from the actual SPP implementations in Appendix C. For the sake187

of presentation we share videos with example test episodes rendered using the trained actors and188

high-resolution benchmark plots. All of our experiments are reproducible, we share the sources,189

training, evaluation, and trained models online [1]. We also evaluated SPP-RL in classical MuJoCo190

tasks, and the performance is comparable to vanilla (see [1]). All of the reported experiments were191

run using CPU only, and a single experiment was always run on a single CPU core, i.e., we have not192

performed collecting experience in parallel. The experiments were performed on an example ma-193

chine: AMD Ryzen Tr. 1920X, 64 Gb RAM, Ubuntu OS 18.04. Example average time of execution194

of 106 steps stands at SPP-DDPG 5hrs 58′, DDPG 3hrs, 7′, (SPP-)SAC 19hrs 20′, SAC 11hrs.195

5.1 Safety-Gym (Locomotion Tasks)196

We use environments from the safety-gym suite by [25]. Currently, we employed only Level 0 envi-197

ronments (which does not involve the cost function for violating the safety). We find Level 0 tasks198

from the safety-gym suite as the perfect ground to study the performance of SPP-RL in robotic lo-199

comotion environments, the goal being to steer agents (robots) to solve planar goal-reaching tasks.200

Moreover, we concentrate on difficulties arising from higher dimensionality of the state (and actions)201

space rather than maximizing returns under safety constraints. The experiments were performed us-202

ing solely the vector state input. We leave investigating the higher-level environments considering203

the cost function as a topic of future research. We chose a subset of the most challenging Level204

0 tasks, including Car-Push, Doggo-Goal, Doggo-Button environments. We also create a custom205

environment (termed Doggo-Columns) based on Doggo-Goal with additional 10 fixed pillars placed206

in the arena, obscuring the paths toward the goal. We evaluate our SPP-TD3 implementation against207

state-of-the-art off-policy algorithms like TD3 and SAC. The results presented in Fig. 3 clearly208

show that SPP-TD3 is superior to vanilla off-policy algorithms within the studied safety-gym envi-209

ronments. Also, there is a noticeable difference in the learned behavior of the trained agents. The210

agents trained using the SPP-RL approach show smarter and more efficient behavior; for instance,211

the trained using SPP doggo robot learned an efficient gait of moving backward to mark a goal or212

press a button. For comparison, we publish videos of the trained agents online [1]. We argue that213

the performance boost exhibited by SPP-RL algorithms over vanilla counterparts is due to improved214

exploration. In Sec. 5.2 we show results from evaluating a TD3 shadow agent, i.e. vanilla TD3215

agent utilizing for training some portion of experience from SPP-TD3 replay buffer. In Sec 5.4 we216

investigate differences in distribution of states collected by both of the methods.217

5.2 More Efficient Exploration in SPP-RL218

Our experimental evaluation using the safety-gym environments show that SPP-RL implementations219

outperform by a great margin their vanilla off-policy RL counterparts (TD3 and SAC) in terms of the220

average returns (See Fig.4). In this section, we argue the performance boost of SPP-RL compared221

to the vanilla RL counterparts. Our intuition is that exploration performed in the target-state space222

rather than in the action space may be more efficient in some cases. Exploration using SPP policies223

results in more viable experience being collected in the replay buffer, leading to more efficient224

Actor & Critic training. It is also possible that the constrained optimization induces some kind of225

curriculum. To confirm the mentioned intuition, we evaluated the performance of a TD3 shadow226

agent i.e., a vanilla TD3 Actor&Critic trained using (partially) experience collected by the SPP-TD3227

agent. Both of the agents were trained in parallel. The TD3 shadow agent updates were performed228

using samples drawn from two of the replay buffers. The replay buffers of the SPP-TD3 and TD3229

agent were used according to a 50/50 ratio. The results are presented in Fig. 4. Such TD3 shadow230

agent outperforms vanilla TD3, and eventually, its performance matches SPP-TD3 agent’s in all of231

the studied safety-gym environments, excluding Doggo-Button. We present plots of the discretized232

distributions of states encoded using a random encoder and cross-entropy of two distributions w.r.t.233

the quantity of gathered experience.234

6



0.0 0.5 1.0 1.5 2.0 2.5 3.0
steps

10

5

0

5

10

15

20

av
er

ag
e 

re
tu

rn

(a) Car-Push,
(SPP)TD3 & SAC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
steps

0

20

40

60

80

av
er

ag
e 

re
tu

rn

(b) Doggo-Goal,
(SPP)TD3 & SAC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
steps

0

20

40

60

80

100

av
er

ag
e 

re
tu

rn

(c) Doggo-Button,
(SPP)TD3 & SAC
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Figure 3: Experimental comparison of SPP-TD3 with corresponding vanilla off-policy RL on set of
safety-gym level 0 environments. Figures show test return computed every 5k frames averaged over
10 different seeds. The continuous curve is the mean, whereas the faded color regions std. deviation.
D3G did not converge (return oscillated around zero, or it diverged in CarPush to a large negative
score - removed from the plot for clarity). Fine-tuning D3G to make it work in this setting is beyond
scope of the research. Refer to Appendix C for exact hyperparameters that we used to perform those
experiments.
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Figure 4: Experimental evaluation of (SPP)TD3 agents and a TD3 shadow agent, i.e. vanilla TD3
agent trained utilizing experience collected by a SPP-TD3 agent, on a set of safety-gym level 0
environments. Presented metrics are same as in Fig. 3.

5.3 Harder Exploratory Task AntPush235

We describe an experiment in AntPush environment from [21]. The experiments were performed236

using solely the vector state input. The task is to control the ant such that it reaches the goal. The237

goal is hidden within a chamber behind a block. Therefore, Ant needs to learn to walk around238

the block and push it to the right first before eventually reaching the goal. Success is defined as239

finishing the episode within a radius 5 from the goal. We benchmark SPP-TD3 against the state-240

of-the-art hierarchical RL HIRO method by [21]. Specifically, we used the implementation [24].241

Instead of reporting the achieved success rate of a single training run like in [21], which may be242

spurious if a lucky seed is chosen, we report the mean and std.dev. of the AntPush success rate using243

10 random seeded training runs. Our experiments revealed that HIRO is highly susceptible to the244

random seed used. Only a single HIRO agent out of 10 trained using random seeds in total achieved245

a positive success rate, comparing to 7 out of 10 SPP-TD3 agents successfully learned to solve the246

task. The performance reported in Fig. 5a shows SPP-TD3 is eventually superior to HIRO. Example247

two solution paths are marked on Fig. 5b (blue curves). The right path is suboptimal as Ant blocks248

the entrance to the chamber where the goal is. The left path is optimal, Ant traverses to the left to249

push the red block away and open the passage towards the goal (green arrow).250

Finally, Figs 5c, 5d show the obtained paths in the state space (blue dashed), and the policy target251

states zt’s (orange solid), only the first two coordinates corresponding to the position of the Ant252

body in x, y coordinates are illustrated. Observe that in the case of the suboptimal path in Fig. 5c,253

the planned path diverts to the left from the actual path (blue dashed), which indicates that the agent254

learned and attempted the correct behavior of pushing the red brick away and successfully open the255
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entrance to the goal. In this case, however, the block is not movable; it is stuck as it was pushed256

forward before, hence as we see, the actual path in the state-space diverts in the middle. Figs 5c,5d257

show that apparently, the policy target states path being more erratic than the actual path in the state258

space. Erratic behavior can be mitigated by adjusting the hyperparameter d in (1b) (the smaller d,259

the closer the paths will be). Nonetheless, the policy target paths (orange) in Figs 5c,5d could be260

potentially used to cluster agent behavior, qualitatively differentiating two example agents executing261

(sub)optimal path. This information could then be used to pick appropriate agents for deployment.
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Figure 5: Experiment in AntPush environment from [21]. Fig. 5a shows success rate for SPP-TD3
& HIRO computed every 5k frames averaged over 10 different seeds (10 independent training runs
were used). The continuous curve is the mean, whereas the faded color regions std. dev. Fig. 5b
show two possible solution Ant paths. Figs 5c,5d show the paths in the state space (blue dashed) and
target states (orange solid), the coordinates describing the position of the Ant body (x, y) are used.

262

5.4 SPP-RL vs Vanilla RL Replay Buffer263

As argued in Sec. 5.2, the performance boost visible in SPP-RL vs. vanilla RL approaches is pre-264

sumably attributed to more efficient exploration performed by SPP-RL algorithms than vanilla RL.265

One empirical argument is given in Sec.5.2. Here we provide empirical evidence that the distribu-266

tion of observations in replay buffers gathered by SPP-RL and vanilla RL implementations differs267

considerably. In Fig. 6 we present an empirical study of distributions of states gathered in SPP-SAC268

and vanilla SAC replay buffers for the Doggo-Goal task. The state space in this task has 72 dimen-269

sions. Hence to make it amenable to visual investigation and entropy computation, we encode the270

state vectors using a random encoder. The encoder architecture that we used for this task is a simple271

architecture with random weights (not optimized): 72 → 20 tanh → 10 tanh → 2. Fig. 6 show272

plots of discretized state distributions gathered by example run of vanilla SAC and SPP-SAC re-273

spectively using the Doggo-Goal environment and encoded using the random encoder, observe that274

the state distributions are different, i.e., the distribution for vanilla SAC is visibly more concentrated275

than the one for SPP-SAC. We also compute cross-entropy to quantify the difference between those276

distributions as the training of both algorithms progresses and the replay buffer is filled up. Observe277

that the cross-entropy is increasing as the replay buffer is being filled up, suggesting that vanilla278

RL and SPP-RL algorithms gather different observation distributions in the replay buffer. We also279

performed an analogous analysis for the (SPP)TD3 approach, but it looked qualitatively similar and280

is not reported here.281

5.5 Ablation Study of the Lagrangian Objective282

Using the Doggo-Goal environment, we performed an ablation study of the SPP-TD3 the most im-283

portant feature. We investigate the impact of the Lagrangian objective (1) on the overall SPP-RL284

performance. We compare the implementation with Lagrangian objective to the implementation uti-285

lizing fixed λ values (parameter not trained using dual optimization), including λ = 1, 0.5, 0.1, 0.01.286

Performance varies greatly depending on this parameter, demonstrating how delicate the matter of287

choosing appropriate λ (when fixed) per given environment is. Observe that λ = 1 results in a lack288

of convergence, and λ = 0.1 or 0.01 results in even better performance than the SPP-TD3 imple-289

mentation with the Lagrangian multipliers. However, employing the Lagrange multipliers provides290

a natural way of solving the constrained objective optimization and avoids separate fine-tuning of λ291
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(a) Encoded state density from
vanilla SAC buffer

(b) Encoded state density from
SPP-SAC buffer
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Figure 6: Visualizations of states distribution (density histogram plot) in the replay buffer at the
end of training taken from single vanilla SAC, SPP-SAC runs. States are encoded in 2D using the
random encoder.

per each environment. Moreover, the average target – next-state distance in case of λ = 0.01 is way292

above the set target for the Lagrangian method (0.2), whereas the Lagrangian objective successfully293

keeps it close to the target. We also present in Fig. 7. The study SPP-TD3 less init. sample., when294

much less randomly generated experience is added to the replay buffer at the beginning of executing295

Alg. 3 (the first repeat until block). In some cases, like SPP-TD3 for Doggo-Goal, see Table 4, we296

choose to include a lot of random samples in the buffer (400k). However, this has no considerable297

effect on performance (Fig. 7a). The SPP-RL agent utilizing much fewer random samples (the same298

number as vanilla RL) has comparable performance. Other ablations that we tested included: SPP-299

TD3 Q(s, s′) critic (state-state critic), replacing the traditional target Q function computation using300

state-action pairs with state-next state pairs, and π not being normalized using the current mean and301

min/max values of the replay buffer observations. We do not show this ablations, as the algorithm302

did not converge for these settings.
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Figure 7: Ablation Study for the Lagrangian objective of SPP-TD3 algorithm, performed in the
Doggo-Goal environment. The continuous curve is the mean, whereas the faded color regions std.
deviation. computed from 5 independent runs.

303

6 Conclusions304

We evaluated the state planning policies in reinforcement learning, where the policy selects target305

states for the environment. Experiments performed on continuous benchmark environments often306

show the superior performance of SPP-RL compared to state-of-the-art vanilla off-policy RL algo-307

rithms. There are various avenues for future work pertaining to this research. One path is to include308

in our approach physically informed control models. Another important work path is to implement a309

long-term policy planning method scheme and application in the safety RL setting of SPP approach.310
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